JPH11156879A - Polypropylene resin in-mold foamed molded product and its production - Google Patents
Polypropylene resin in-mold foamed molded product and its productionInfo
- Publication number
- JPH11156879A JPH11156879A JP9324132A JP32413297A JPH11156879A JP H11156879 A JPH11156879 A JP H11156879A JP 9324132 A JP9324132 A JP 9324132A JP 32413297 A JP32413297 A JP 32413297A JP H11156879 A JPH11156879 A JP H11156879A
- Authority
- JP
- Japan
- Prior art keywords
- polypropylene resin
- foamed
- peak
- temperature
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、断熱材、緩衝包装
材、通箱、特に自動車のバンパー、ピラーなどの車両の
内外装用衝撃吸収材などに用いられるポリプロピレン系
樹脂型内発泡成形体及びその製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polypropylene-based resin-type internal foam molded article used as a heat-insulating material, a shock-absorbing packaging material, a pass-through box, and in particular, a shock-absorbing material for the interior and exterior of vehicles such as automobile bumpers and pillars, and the like. It relates to a manufacturing method.
【0002】[0002]
【従来の技術】ポリプロピレン系樹脂発泡粒子を金型内
に充填し加熱発泡させて得られる型内発泡成形体は、緩
衝性、断熱性、圧縮強度に優れているので、断熱材、緩
衝包装材、自動車のバンパー用芯材などに広く用いられ
ている。しかし、近年、自動車分野においては、安全志
向の高まりから、より高い機械的物性をもつ発泡成形体
が望まれている。2. Description of the Related Art In-mold foamed articles obtained by filling foamed polypropylene resin particles in a mold and subjecting them to heat foaming are excellent in cushioning properties, heat insulating properties and compressive strength. Widely used as core materials for automobile bumpers. However, in recent years, in the field of automobiles, there has been a demand for a foamed molded article having higher mechanical properties due to an increase in safety consciousness.
【0003】従来、機械的物性に優れるポリプロピレン
系樹脂型内発泡成形体及びその製造方法としては次のよ
うなものが知られている。Hitherto, the following are known as foams in polypropylene resin molds having excellent mechanical properties and methods for producing the same.
【0004】特公昭63−24618号公報では、ポリ
プロピレン系樹脂型内発泡成形体の示差走査熱量測定に
よって得られるDSC曲線に該ポリプロピレン系樹脂固
有の固有ピークと、ピークの頂点の温度が該固有ピーク
の頂点の温度より5℃以上高温側である高温ピークとが
現れる結晶構造を有する成形体を開示している。しか
し、ここには、成形体のDSC曲線の2つの融解ピーク
の温度のみが規定されているに過ぎず、成形体における
機械的強度に最も重要である高温側ピークの結晶融解熱
量については記載されてはおらず、ここに開示されたポ
リプロピレン系樹脂型内発泡成形体では、必ずしも高い
機械的強度が得られていない。[0004] In Japanese Patent Publication No. 63-24618, a DSC curve obtained by differential scanning calorimetry of a foamed molded article in a polypropylene-based resin mold shows a characteristic peak peculiar to the polypropylene-based resin and a temperature at a peak of the peak. A molded article having a crystal structure in which a high-temperature peak that is higher than the temperature of the peak by 5 ° C. or more appears. However, only the temperature of the two melting peaks of the DSC curve of the compact is specified here, and the heat of crystal fusion of the high-temperature side peak which is most important for the mechanical strength of the compact is described. However, high mechanical strength is not necessarily obtained in the foamed molded article in a polypropylene resin mold disclosed herein.
【0005】また、特開平3−254930号公報で
は、高温側吸熱ピークの融解熱量が4.0cal/g以
上であるポリプロピレン系樹脂発泡粒子を5〜40%の
圧縮率で金型内に圧縮充填しスチームで加熱して成形体
を得る方法を開示している。しかし、ここには、発泡粒
子の高温側吸熱ピークの融解熱量について開示されてい
るだけであり、成形体における機械的強度に最も重要で
ある成形体における高温側ピークの結晶融解熱量につい
ては記載されてはおらず、また、実施例に用いられてい
る発泡粒子の高温側吸熱ピークの融解熱量は4.0〜
5.1cal/gと比較的低い範囲であり、基材樹脂と
して融点が150℃のポリプロピレン系樹脂を用いてい
るにかかわらず、十分な機械的強度が得られていない。In Japanese Patent Application Laid-Open No. 3-254930, foamed polypropylene resin particles having an endothermic peak at a high temperature side of 4.0 cal / g or more are compression-filled into a mold at a compression ratio of 5 to 40%. A method for obtaining a molded body by heating with steam is disclosed. However, here, only the heat of fusion of the high-temperature endothermic peak of the expanded particles is disclosed, and the crystal heat of fusion of the high-temperature peak in the molded product, which is most important for the mechanical strength of the molded product, is described. And the heat of fusion of the high-temperature endothermic peak of the expanded particles used in Examples was 4.0 to 4.0.
It is a relatively low range of 5.1 cal / g, and sufficient mechanical strength is not obtained irrespective of the fact that a polypropylene resin having a melting point of 150 ° C. is used as the base resin.
【0006】さらに、特開平8−20662号公報で
は、高温側ピークの融解熱量が3.5cal/gよりも
大きく、かつ6.0cal/g以下であるポリプロピレ
ン系樹脂発泡粒子を10〜60%の圧縮率で金型内に圧
縮充填しスチームで加熱して成形体を得る方法を開示し
ている。しかし、この方法では、発泡粒子の高温側融解
ピーク熱量が5.0cal/gを超える場合には、成形
体の強度の低下が現れ、安定的に高い機械的強度を有す
る成形体が必ずしも得られていない。また、ここにも、
成形体における機械的強度に最も重要である成形体にお
ける高温側ピークの結晶融解熱量については記載されて
はおらず、更に、この方法は圧縮充填成形のみに限定さ
れている。Further, Japanese Patent Application Laid-Open No. Hei 8-20662 discloses that 10 to 60% of expanded polypropylene resin particles having a heat of fusion at the high temperature side peak of more than 3.5 cal / g and not more than 6.0 cal / g. It discloses a method of compressively filling a mold at a compression ratio and heating it with steam to obtain a molded body. However, according to this method, when the high-temperature-side melting peak calorie of the expanded particles exceeds 5.0 cal / g, the strength of the molded body decreases, and a molded body having a stable high mechanical strength is not necessarily obtained. Not. Also here,
No mention is made of the heat of crystal fusion at the high temperature side peak in the molded article, which is most important for the mechanical strength of the molded article, and this method is limited to only compression filling molding.
【0007】[0007]
【発明が解決しようとする課題】本発明は、従来技術の
上記欠点を解消し、発泡成形体の機械的物性が改善され
たポリプロピレン系樹脂型内発泡成形体、及び機械的物
性が改善されたポリプロピレン系樹脂型内発泡成形体を
安定的に製造しうる方法を提供するものである。DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned drawbacks of the prior art, has improved the mechanical properties of a foamed molded article in a polypropylene-based resin mold, and has improved the mechanical properties. An object of the present invention is to provide a method capable of stably producing a foamed molded article in a polypropylene resin mold.
【0008】[0008]
【課題を解決するための手段】本発明は、かかる実情に
鑑み鋭意研究の結果、ポリプロピレン系樹脂発泡粒子の
有する2つの融解ピークの熱量うち、高温側の融解ピー
ク熱量QH1 を比較的高い特定の範囲に調整したものを
用いて型内成形し、しかも、得られる成形体の高温側の
融解ピーク熱量QH2 を高くすることにより、発泡成形
体の機械的強度が改善され、また、上記型内成形時の加
熱水蒸気温度を特定の温度範囲にする事により、高い機
械的強度を有する成形体を安定的に得ることができるこ
とを知見し、本発明を完成するに至った。The present invention SUMMARY OF], such circumstances result of intensive research in view of the out heat of two melting peaks with the polypropylene resin expanded particles, a relatively high specific melting peak heat QH 1 on the high temperature side molded in a mold using a material obtained by adjusting to a range of, moreover, by increasing the melting peak heat QH 2 on the high temperature side of the obtained molded article, mechanical strength of the foamed molded article is improved, also, the type The inventors have found that a molded body having high mechanical strength can be stably obtained by setting the temperature of the heated steam at the time of internal molding to a specific temperature range, and have completed the present invention.
【0009】即ち、本発明は、示差走査熱量計にて40
℃から220℃まで10℃/分の速度で昇温した際に得
られるDSC曲線において2つの融解ピークを有し、こ
の2つの融解ピークのうち高温側ピークの融解熱量QH
1 が4.5〜8.0cal/gであるポリプロピレン系
樹脂発泡粒子を用いて型内発泡成形してなり、前記発泡
粒子の高温側融解ピークに由来する融解ピークの熱量Q
H2 が7.0cal/g以上であるポリプロピレン系樹
脂型内発泡成形体、並びに、示差走査熱量計にて40℃
から220℃まで10℃/分の速度で昇温した際に得ら
れるDSC曲線において2つの融解ピークを有し、この
2つの融解ピークのうち高温側ピークの融解熱量QH1
が4.5〜8.0cal/gであるポリプロピレン系樹
脂発泡粒子を成形金型内に充填した後、低温側融解ピー
ク温度+2℃以上で、かつ2つの融解ピークの境界温度
−2℃以下の範囲の温度の水蒸気で加熱して、前記発泡
粒子の高温側融解ピークに由来する融解ピークの熱量Q
H2 が7.0cal/g以上となるように成形すること
を特徴とするポリプロピレン系樹脂型内発泡成形体の製
造方法、及び、前記製造方法において、ポリプロピレン
系樹脂発泡粒子に、無機ガスで1.18気圧以上のガス
圧力を付与せしめ、これを成形金型内に充填して水蒸気
で加熱して成形してなるポリプロピレン系樹脂型内発泡
成形体の製造方法、を内容とするものである。That is, the present invention uses a differential scanning calorimeter of 40
The DSC curve obtained when the temperature was raised from 10 ° C. to 220 ° C. at a rate of 10 ° C./min. Had two melting peaks, and the heat of fusion QH of the high-temperature side peak among the two melting peaks.
The in- mold foam molding is carried out using expanded polypropylene-based resin particles in which 1 is 4.5 to 8.0 cal / g, and the calorific value Q of the melting peak derived from the high-temperature side melting peak of the expanded particles.
A foamed molded article in a polypropylene resin mold having H 2 of 7.0 cal / g or more, and 40 ° C. with a differential scanning calorimeter
Has two melting peaks in the DSC curve obtained when the temperature is increased from 10 to 220 ° C. at a rate of 10 ° C./min, and the heat of fusion QH 1 of the high-temperature side peak of the two melting peaks.
Is filled with 4.5 to 8.0 cal / g of the polypropylene-based resin expanded particles in a molding die, and the temperature is higher than the low-temperature-side melting peak temperature + 2 ° C and the boundary temperature between two melting peaks -2 ° C or lower. Heating with steam at a temperature in the range, the calorific value Q of the melting peak derived from the high-temperature side melting peak of the expanded particles
The method for producing a foamed article in a polypropylene-based resin mold characterized in that the foamed article is molded so that H 2 becomes 7.0 cal / g or more. A method for producing a foamed article in a polypropylene resin mold, which is obtained by applying a gas pressure of .18 atm or more, filling this into a molding die, and heating and molding with steam.
【0010】ポリプロピレン系樹脂発泡粒子は、示差走
査熱量計にて40℃から220℃まで10℃/分の速度
で昇温した際に得られるDSC曲線において、該ポリプ
ロピレン系樹脂の原料樹脂が本来有している結晶状態の
融解に基づく融解ピークと、それより高温側に現れる融
解ピークとの2つの融解ピークを有している。In the DSC curve obtained when the polypropylene resin expanded particles are heated at a rate of 10 ° C./min from 40 ° C. to 220 ° C. by a differential scanning calorimeter, the raw material resin of the polypropylene resin is inherently It has two melting peaks, a melting peak based on the melting in the crystalline state and a melting peak appearing on the higher temperature side.
【0011】本発明における示差走査熱量測定法につい
て説明する。測定装置としては、通常の示差走査熱量
計、例えばパーキンエルマー(Perkin−Elme
r)社製のDSC−2型、セイコー電子工業株式会社製
のSSC5200H型などが挙げられる。本発明では、
ポリプロピレン系樹脂発泡粒子及び該型内発泡成形体の
低温側及び高温側の融解ピーク熱量は、サンプル1〜1
0mgにつき、上記のような測定装置にて10℃/分の
昇温速度で測定を行う。The differential scanning calorimetry according to the present invention will be described. As a measuring device, a conventional differential scanning calorimeter, for example, Perkin-Elmer (Perkin-Elme)
r), DSC-2200H manufactured by Seiko Denshi Kogyo KK, and the like. In the present invention,
The melting peak calories on the low temperature side and the high temperature side of the expanded polypropylene resin particles and the in-mold expanded molded product are as shown in Samples 1 to 1.
With respect to 0 mg, the measurement is carried out at a heating rate of 10 ° C./min with the measuring device as described above.
【0012】図1は、後述する実施例1に用いたポリプ
ロピレン系樹脂発泡粒子のDSC曲線のグラフであり、
ポリプロピレン系樹脂発泡粒子の2つの融解ピークのう
ち高温側ピークに基づく融解熱量QH1 の測定方法を示
すものであり、また、図2は、実施例1で得られたポリ
プロピレン系樹脂型内成形体のDSC曲線のグラフであ
り、ポリプロピレン系樹脂発泡粒子の高温側融解ピーク
に由来するポリプロピレン系樹脂型内成形体における融
解ピークの熱量QH2 の測定方法を示したものである。FIG. 1 is a graph of the DSC curve of the expanded polypropylene resin particles used in Example 1 described below.
FIG. 2 shows a method of measuring a heat of fusion QH 1 based on a high-temperature side peak among two melting peaks of expanded polypropylene resin particles. FIG. 2 shows a molded article of a polypropylene resin in-mold obtained in Example 1. of a graph of the DSC curve shows a method of measuring heat QH 2 melting peaks in the polypropylene-based resin-mold molded product derived from the high temperature side melting peak of the polypropylene resin foamed beads.
【0013】ポリプロピレン系樹脂発泡粒子の高温側ピ
ークの融解熱量QH1 (ポリプロピレン系樹脂発泡粒子
の結晶の全融解熱量中における高温側の融解ピーク熱
量)を図1に基づいて説明すると、融解終了に基づく直
線aから、融解開始点(c点)へ直線dを引き、低温側
ピークと高温側ピークの境界点(b点)から前記直線d
へ垂線eをおろし、高温側ピークと直線d、垂線eとの
囲む面積を、ポリプロピレン系樹脂発泡粒子の高温側融
解ピーク熱量QH1 とする。The heat of fusion QH 1 at the peak on the high temperature side of the expanded polypropylene resin particles (the heat of fusion peak on the high temperature side in the total heat of fusion of the crystals of the expanded polypropylene resin particles) will be described with reference to FIG. A straight line d is drawn from the straight line a based on the melting start point (point c) to the straight line d from the boundary point (point b) between the low-temperature peak and the high-temperature peak.
Lower the perpendicular line e to the high temperature side peak and straight line d, the area surrounded with the perpendicular line e, and the high temperature side melting peak heat QH 1 of PP beads.
【0014】次に、ポリプロピレン系樹脂発泡粒子の高
温側融解ピークに由来するポリプロピレン系樹脂型内発
泡成形体における高温側ピークの融解熱量QH2 を図2
に基づいて説明すると、融解終了に基づく直線a’か
ら、融解開始点(c’点)へ直線d’を引き、型内成形
に用いたポリプロピレン系樹脂発泡粒子の低温側ピーク
と高温側ピークの境界点温度(b点)から前記直線d’
へ垂線e’をおろし、高温側ピークと直線d’、垂線
e’の囲む面積を高温側融解ピーク熱量QH2 とする。Next, FIG. 2 shows the heat of fusion QH 2 of the high-temperature side peak of the expanded foamed product in the polypropylene-based resin mold derived from the high-temperature side melting peak of the expanded polypropylene resin particles.
From the straight line a ′ based on the end of melting, a straight line d ′ is drawn to the melting start point (point c ′), and the low temperature side peak and the high temperature side peak of the expanded polypropylene resin particles used for in-mold molding are obtained. From the boundary point temperature (point b), the straight line d '
'Down the high temperature side peak and the straight line d' perpendicular e to, the area surrounding the perpendicular line e 'and the high-temperature side melting peak heat QH 2.
【0015】本発明に用いるポリプロピレン系樹脂発泡
粒子の高温側ピークの融解熱量QH 1 は、4.5〜8.
0cal/g、好ましくは5.0〜7.0cal/gで
ある。発泡粒子の高温側ピークの融解熱量QH1 が4.
5cal/g未満の場合であっても良好な成形体を得る
ことはできるが、その場合には成形体の高温側融解ピー
ク熱量QH2 が十分高くならないため十分な機械的強度
を発現しない。発泡粒子の高温側ピークの融解熱量QH
1 を4.5cal/g以上にすることにより、圧縮強度
に優れる型内発泡成形体を得ることができる。また、発
泡粒子の高温側ピークの融解熱量QH1 が8.0cal
/gを超えると、型内成形において内部融着を高めるた
めに水蒸気温度を高くする必要があり、得られる成形体
の高温側融解ピークの結晶が融解し、該融解熱量QH2
が低くなるために、成形体の圧縮強度は低下する傾向に
ある。従って、ポリプロピレン系樹脂発泡粒子の高温側
ピークの融解熱量QH1 を4.5〜8.0cal/gに
することにより、圧縮強度に優れる型内発泡成形体を得
ることが出来る。[0015] Foamed polypropylene resin used in the present invention
Heat of fusion QH of peak at high temperature side of particle 1Are 4.5-8.
0 cal / g, preferably 5.0-7.0 cal / g
is there. Heat of fusion QH at peak on high temperature side of expanded particles1Is 4.
Good molded product is obtained even when less than 5 cal / g
However, in this case, the high-
Heat quantity QHTwoIs not high enough and has sufficient mechanical strength
Does not appear. Heat of fusion QH at peak on high temperature side of expanded particles
1Is 4.5 cal / g or more, so that the compressive strength
The in-mold foam molded article excellent in the above can be obtained. Also, departure
Heat of fusion QH at peak on high temperature side of foam particles1Is 8.0 cal
/ G, internal fusion increases during in-mold molding.
The temperature of the steam must be raised in order to
Is melted, and the heat of fusion QHTwo
, The compressive strength of the compact tends to decrease
is there. Therefore, the high-temperature side of polypropylene-based resin expanded particles
Heat of fusion QH of peak1To 4.5-8.0 cal / g
By doing so, it is possible to obtain an in-mold foam molded article with excellent compressive strength
Rukoto can.
【0016】また、本発明に係るポリプロピレン系樹脂
型内発泡成形体における、前記ポリプロピレン樹脂発泡
粒子の高温側融解ピークに由来する融解ピークの熱量Q
H2は7.0cal/g以上である。前記発泡粒子の高
温側融解ピークに由来する成形体における融解ピークの
熱量QH2 が7.0cal/g未満の場合、機械的強度
発現に必要な高温側融解ピーク域の結晶量が少ないため
に、成形体の圧縮強度は低下する傾向にある。前記発泡
粒子の高温側融解ピークに由来する型内発泡成形体にお
ける融解ピークの熱量QH2 が多いほど機械的強度発現
に必要な高温側融解ピーク域の結晶量が増加するため、
成形体の機械的強度は向上する。The calorific value Q of the melting peak derived from the high-temperature side melting peak of the expanded polypropylene resin particles in the expanded polypropylene resin molded article according to the present invention.
H 2 is 7.0cal / g or more. When the calorific value QH 2 of the melting peak in the molded article derived from the high-temperature side melting peak of the expanded particles is less than 7.0 cal / g, the amount of crystals in the high-temperature side melting peak region required for developing mechanical strength is small. The compressive strength of the compact tends to decrease. Since the amount of crystals of the high-temperature side melting peak area necessary mechanical strength development the more heat QH 2 melting peaks in-mold foamed article from a high temperature side melting peak of the expanded particles is increased,
The mechanical strength of the molded body is improved.
【0017】ポリプロピレン樹脂発泡粒子の高温側融解
ピークに由来する融解ピークの熱量QH2 が7.0ca
l/g以上である本発明に係るポリプロピレン系樹脂型
内発泡成形体は、上記のような高温側ピークの融解熱量
QH1 が4.5〜8.0cal/gであるポリプロピレ
ン系樹脂発泡粒子を成形金型内に充填した後、低温側融
解ピーク温度+2℃以上で、かつ2つの融解ピークの境
界温度−2℃以下の範囲温度の水蒸気で加熱して成形す
ることで得ることができる。The calorific value QH 2 of the melting peak derived from the high-temperature side melting peak of the expanded polypropylene resin particles is 7.0 ca.
polypropylene resin mold expansion-molded article according to the present invention which is a l / g or more, a heat of fusion QH 1 on the high temperature side peak as described above polypropylene resin foamed beads is 4.5~8.0cal / g After filling in a molding die, it can be obtained by heating and molding with steam having a temperature in a range of not less than a low-temperature side melting peak temperature + 2 ° C and a boundary temperature between two melting peaks -2 ° C or less.
【0018】上記のように、本発明に係るポリプロピレ
ン系樹脂発泡粒子の型内成型方法においては、加熱水蒸
気温度を該発泡粒子の低温側融解ピーク温度+2℃以
上、かつ低温側と高温側との2つの融解ピークの境界温
度−2℃以下の範囲とする。水蒸気温度が低温側融解ピ
ーク温度+2℃よりも低い場合、型内発泡成形体の高温
側融解ピーク熱量QH2 の増加が十分でなく、高い圧縮
強度が得られない。また、水蒸気温度が2つの融解ピー
クの境界温度−2℃よりも高いと、型内発泡成形体の高
温側融解ピーク熱量QH2 が減少し圧縮強度は低下す
る。ポリプロピレン系樹脂予備発泡粒子の型内成形時の
加熱水蒸気温度を上記の温度範囲にすることにより、得
られる型内発泡成形体の高温域の結晶量が増加し安定的
に圧縮強度の高い成形体を得ることができる。As described above, in the in-mold molding method of the expanded polypropylene resin particles according to the present invention, the heating steam temperature is set to be equal to or higher than the melting peak temperature on the low temperature side of the expanded particles + 2 ° C. and between the low temperature side and the high temperature side. The boundary temperature between the two melting peaks is set to −2 ° C. or less. When the steam temperature is lower than the low-temperature-side melting peak temperature + 2 ° C., the high-temperature-side melting peak calorific value QH 2 of the in-mold foam molded article is not sufficiently increased, and a high compressive strength cannot be obtained. On the other hand, when the water vapor temperature is higher than the boundary temperature between the two melting peaks, −2 ° C., the high-temperature side melting peak calorific value QH 2 of the in- mold foam molded article decreases, and the compressive strength decreases. By setting the heating steam temperature during the in-mold molding of the polypropylene resin pre-expanded particles within the above temperature range, the amount of crystals in the high-temperature region of the obtained in-mold foam molded product increases, and the molded product having a high compressive strength stably. Can be obtained.
【0019】また、本発明の型内発泡成形方法におい
て、用いるポリプロピレン系樹脂発泡粒子に予め1.1
8気圧以上のガス圧力を付与することにより、更に表面
性良好の成形体を得ることができる。In the in-mold foam molding method of the present invention, the expanded polypropylene resin particles to be used are added in advance by 1.1.
By applying a gas pressure of 8 atm or more, a molded body having better surface properties can be obtained.
【0020】上記のようにして製造される本発明に係る
ポリプロピレン系樹脂型内発泡成形体の機械的強度は、
具体的には、密度が25〜100g/Lであるポリプロ
ピレン系樹脂型内発泡成形体のNDS−Z0504に準
拠する圧縮強度の測定における、圧縮率50%時の強度
が下記式(1)を満足する。 Y≧0.15X−2.0・・・(1) 〔但し、式中、Yは圧縮強度(Kg/cm2 )、Xは成
形体密度(g/L)である。〕The mechanical strength of the foamed molded article in a polypropylene resin mold according to the present invention produced as described above is as follows:
Specifically, in the measurement of the compression strength of a foamed article in a polypropylene-based resin mold having a density of 25 to 100 g / L according to NDS-Z0504, the strength at a compressibility of 50% satisfies the following formula (1). I do. Y ≧ 0.15X−2.0 (1) [wherein, Y represents the compressive strength (Kg / cm 2 ), and X represents the density of the compact (g / L). ]
【0021】[0021]
【発明の実施の形態】本発明に使用するポリプロピレン
系樹脂としては、例えばプロピレンホモポリマー、エチ
レン−プロピレンランダムコポリマー、エチレン−プロ
ピレンブロックコポリマー、エチレン−プロピレン−ブ
テンランダムタ−ポリマー、プロピレン−塩素化ビニル
コポリマー、プロピレン−ブテンコポリマー、プロピレ
ン−無水マレイン酸コポリマーなどが挙げられ、立体規
則性重合方法によって製造されたものが好ましい。これ
らは単独で用いてもよいし、また、2種以上混合して使
用してもよい。このポリプロピレン系樹脂中のプロピレ
ン成分の割合としては、50重量%以上、好ましくは8
0重量%以上である。DETAILED DESCRIPTION OF THE INVENTION Examples of the polypropylene resin used in the present invention include propylene homopolymer, ethylene-propylene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-butene random copolymer, propylene-chlorinated vinyl. Copolymers, propylene-butene copolymers, propylene-maleic anhydride copolymers and the like are mentioned, and those produced by a stereoregular polymerization method are preferred. These may be used alone or as a mixture of two or more. The proportion of the propylene component in the polypropylene resin is 50% by weight or more, preferably 8% by weight.
0% by weight or more.
【0022】これらのプロピレン系樹脂は無架橋の状態
が好ましいが、過酸化物や放射線により架橋させてもよ
い。またプロピレン系樹脂と混合使用可能な他の熱可塑
性樹脂、例えば低密度ポリエチレン、直鎖低密度ポリエ
チレン、ポリスチレン、ポリブテン、アイオノマーなど
をプロピレン系樹脂の特性が失われない範囲で混合使用
してもよい。例えば低密度ポリエチレン、直鎖低密度ポ
リエチレン、ポリスチレン、ポリブテン、アイオノマー
を併用する場合には、ポリプロピレン系樹脂100部
(重量部、以下同様)に対して5〜20部、ポリスチレ
ンを併用する場合には5〜10部がより好ましい。ま
た、上記以外の熱可塑性樹脂を併用する場合にも、ポリ
プロピレン系樹脂100部に対して20部以下とするこ
とが好ましい。These propylene resins are preferably in a non-crosslinked state, but may be crosslinked by peroxide or radiation. Further, other thermoplastic resins that can be used in combination with the propylene-based resin, for example, low-density polyethylene, linear low-density polyethylene, polystyrene, polybutene, ionomers, and the like may be mixed and used within a range in which the properties of the propylene-based resin are not lost. . For example, when low-density polyethylene, linear low-density polyethylene, polystyrene, polybutene, and an ionomer are used in combination, 5 to 20 parts with respect to 100 parts (parts by weight, hereinafter the same) of the polypropylene-based resin; 5 to 10 parts are more preferred. Also, when a thermoplastic resin other than the above is used in combination, the content is preferably 20 parts or less based on 100 parts of the polypropylene resin.
【0023】これらのポリプロピレン系樹脂は、通常、
予備発泡に利用されやすいように、予め押出機、ニーダ
ー、バンバリミキサー、ロールなどを用いて溶融し、円
柱状、楕円状、球状、立方体状、直方体状などのような
所望の粒子形状で、その粒子の平均粒径が0.1〜10
mm、好ましくは0.7〜5mmになるように成形加工
される。These polypropylene resins are usually
Extruders, kneaders, Banbury mixers, rolls, etc., are melted in advance so as to be easily used for prefoaming, and are formed in a desired particle shape such as a columnar shape, an elliptical shape, a spherical shape, a cubic shape, and a rectangular parallelepiped. The average particle size of the particles is 0.1 to 10
mm, preferably 0.7 to 5 mm.
【0024】本発明で用いるポリプロピレン系樹脂発泡
粒子は、DSC法による測定で2つの融解ピークを有
し、該2つの融解ピークのうちの高温側ピークに基づく
融解熱量QH1 が4.5〜8.0cal/gである。前
記2つの融解ピークの関係については特に限定はない
が、2つの融解ピークの差が10〜25℃であるのが、
成形加熱時の融着がし易くなるという点から好ましい。
2つの融解ピーク温度は、樹脂の分子構造、樹脂の熱履
歴、発泡剤量、発泡温度、発泡圧力などによって変わる
が、高温側で発泡させると2つの融解ピークの温度差は
大きくなる。また、低温側の融解ピークは125〜15
5℃の範囲にあり、高温側の融解ピークは通常、145
〜175℃の範囲にあり、使用するプロピレン系樹脂の
種類によって変わる。The expanded polypropylene resin particles used in the present invention have two melting peaks as measured by the DSC method, and have a heat of fusion QH 1 of 4.5 to 8 based on the higher temperature peak of the two melting peaks. 0.0 cal / g. The relationship between the two melting peaks is not particularly limited, but the difference between the two melting peaks is 10 to 25 ° C.
It is preferable because fusion during molding heating is facilitated.
The two melting peak temperatures vary depending on the molecular structure of the resin, the heat history of the resin, the amount of the foaming agent, the foaming temperature, the foaming pressure, and the like. However, when foaming is performed at a higher temperature, the temperature difference between the two melt peaks increases. The melting peak on the low temperature side is 125 to 15
In the range of 5 ° C., the melting peak on the high temperature side is usually 145.
It is in the range of 17175 ° C. and varies depending on the type of propylene resin used.
【0025】上記高温側ピークに基づく融解熱量が4.
5〜8.0cal/gのポリプロピレン系樹脂発泡粒子
を製造する方法に特に限定はないが、例えば耐圧容器内
でポリプロピレン系樹脂粒子に揮発性発泡剤を含有さ
せ、攪拌しながら水中に分散させ、加圧下で所定の発泡
温度まで加熱したのち、該水分散物を低圧域に放出する
などの方法が利用されうる。高温側融解ピーク熱量は樹
脂の分子構造によって変わるが、一般に発泡温度を高く
すると小さくなる。The heat of fusion based on the high temperature side peak is 4.
There is no particular limitation on the method for producing the foamed polypropylene resin particles of 5 to 8.0 cal / g. For example, a volatile foaming agent is added to the polypropylene resin particles in a pressure vessel and dispersed in water with stirring. After heating to a predetermined foaming temperature under pressure, a method such as releasing the aqueous dispersion to a low pressure region may be used. The high-temperature-side melting peak calorific value varies depending on the molecular structure of the resin, but generally decreases as the foaming temperature increases.
【0026】本発明に用いる発泡粒子は、ポリプロピレ
ン系樹脂粒子の融点(融解ピーク温度)をTM℃とする
とき、プロピレン系樹脂の種類、使用発泡剤量、目的と
する発泡粒子の発泡倍率等によって、発泡温度を概ね
(TM−20)〜(TM)℃の範囲に設定することによ
り容易に得られる。When the melting point (melting peak temperature) of the polypropylene resin particles is set to TM ° C., the expanded particles used in the present invention depend on the type of the propylene resin, the amount of the blowing agent used, the expansion ratio of the target expanded particles, and the like. , Can be easily obtained by setting the foaming temperature in the range of approximately (TM-20) to (TM) ° C.
【0027】本発明に使用されるプロピレン系樹脂粒子
に含浸させる揮発性発泡剤としては、例えばプロパン、
ブタン、ペンタン、ヘキサンなどの脂肪族炭化水素類;
シクロペンタン、シクロブタンなどの脂肪式環化水素
類;トリクロロトリフルオロメタン、ジクロロジフルオ
ロメタン、ジクロロテトラフルオロメタン、トリクロロ
トリフルオロエタン、メチルクロライド、メチレンクロ
ライド、エチルクロライドなどのハロゲン化炭化水素類
が挙げられる。これらの発泡剤は単独で用いてもよく、
また、2種類以上併用してもよい。またその使用量に限
定はなく、目的とするプロピレン系樹脂発泡粒子の発泡
度に応じて適宜使用すれば良く、通常その使用量はプロ
ピレン系樹脂粒子100部に対して5〜50部である。The volatile blowing agent for impregnating the propylene resin particles used in the present invention includes, for example, propane,
Aliphatic hydrocarbons such as butane, pentane and hexane;
Aliphatic hydrides such as cyclopentane and cyclobutane; and halogenated hydrocarbons such as trichlorotrifluoromethane, dichlorodifluoromethane, dichlorotetrafluoromethane, trichlorotrifluoroethane, methyl chloride, methylene chloride, and ethyl chloride. These blowing agents may be used alone,
Also, two or more kinds may be used in combination. The amount of the propylene-based resin particles is not particularly limited and may be appropriately used depending on the desired degree of expansion of the expanded propylene-based resin particles. The amount is usually 5 to 50 parts based on 100 parts of the propylene-based resin particles.
【0028】前記水分散物の調製に際しては、分散剤と
して、例えば第3リン酸カルシウム、塩基性炭酸マグネ
シウム、炭酸カルシウムなどや、少量の界面活性剤、例
えばドデシルベンゼンスルホン酸ソーダ、n−パラフィ
ンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ
などが分散助剤として併用される。前記のような分散剤
や、分散助剤としての界面活性剤は、その種類や用いる
プロピレン系樹脂粒子とその使用量によって異なるが、
通常、水100部に対して分散剤の場合で0.2〜3
部、界面活性剤の場合で0.001〜0.1部である。In preparing the aqueous dispersion, as a dispersant, for example, tribasic calcium phosphate, basic magnesium carbonate, calcium carbonate, or the like, or a small amount of a surfactant, for example, sodium dodecylbenzenesulfonate or sodium n-paraffin sulfonate. , Α-olefin sodium sulfonate and the like are used in combination as a dispersing aid. The dispersant and the surfactant as a dispersing agent as described above vary depending on the type and the amount of the propylene-based resin particles used and the amount used,
Usually, 0.2 to 3 in the case of a dispersant with respect to 100 parts of water.
Parts, in the case of a surfactant, 0.001 to 0.1 part.
【0029】また、前記揮発性発泡剤を含有したプロピ
レン系樹脂粒子は、水中での分散性を良好なものとする
ために、通常、水100部に対して20〜100部添加
されるのが好ましい。The propylene resin particles containing the volatile blowing agent are usually added in an amount of 20 to 100 parts per 100 parts of water in order to improve the dispersibility in water. preferable.
【0030】上記のようにして調製された水分散物は、
加圧下で加熱されたのち、2〜10mmφの開孔オリフ
ィスを通して低圧下に放出され、プロピレン系樹脂粒子
が発泡せしめられ、本発明の型内発泡成形体の製造に用
いられるプロピレン系樹脂発泡粒子が得られる。The aqueous dispersion prepared as described above is
After being heated under pressure, the propylene-based resin particles are released under a low pressure through an opening orifice having a diameter of 2 to 10 mm to foam the propylene-based resin particles. can get.
【0031】前記水分散物は予め上記のような耐圧容器
中、加圧下で発泡温度まで加熱されるが、加熱温度は用
いるプロピレン系樹脂粒子の種類、目的とするプロピレ
ン系樹脂発泡粒子の有するDSC法で測定される高温側
の融解ピークの熱量をどの値に選択するかで変わってく
るので、一義的には定められないが、前記した如く、用
いたプロピレン系樹脂粒子のDSC法によって測定され
た融点(融解ピーク)をTM℃としたとき、ほぼ(TM
−20)〜(TM)℃の範囲から決定される。一方、発
泡圧力は主に所定の発泡倍率により選択されるが、概ね
10〜50kg/cm2 −Gである。The aqueous dispersion is heated in advance in a pressure vessel as described above under pressure to the foaming temperature. The heating temperature depends on the type of propylene-based resin particles used and the DSC of the intended propylene-based resin foamed particles. It depends on which value the calorie of the melting peak on the high temperature side measured by the method is selected, so it is not uniquely determined, but as described above, the propylene resin particles used are measured by the DSC method. The melting point (melting peak) is TM
-20) to (TM) ° C. On the other hand, the foaming pressure is selected mainly according to a predetermined foaming ratio, but is generally about 10 to 50 kg / cm 2 -G.
【0032】前記耐圧容器の構造には特に限定はなく、
上記圧力及び温度に耐えられるものであればいずれのも
のでも使用しうるが、耐圧容器の具体例として、例えば
オートクレーブ型の耐圧容器が挙げられる。The structure of the pressure vessel is not particularly limited.
Any material can be used as long as it can withstand the pressure and temperature described above. Specific examples of the pressure-resistant container include, for example, an autoclave-type pressure-resistant container.
【0033】本発明に係るポリプロピレン系樹脂型内発
泡成形体の成形方法としては、ポリプロピレン系樹脂発
泡粒子を閉鎖しうるが密閉し得ない金型内に充填し、水
蒸気などで加熱し、発泡粒子を相互に加熱融着させて型
通りに成型する方法がある。また、本発明の成形におい
て、発泡粒子を金型内に充填する前に1.18気圧以上
のガス圧力を付与せしめても良く、この場合には、ポリ
プロピレン系樹脂発泡粒子を無機ガスの加圧下に保持す
ることにより1.18気圧以上のガス圧力を付与せしめ
ることが出来る。As a method of molding the expanded foamed article in the polypropylene resin mold according to the present invention, the expanded foamed polypropylene resin particles are filled in a mold that can be closed but cannot be sealed, heated with steam or the like, Are heat-fused with each other and molded according to a mold. Further, in the molding of the present invention, a gas pressure of 1.18 atm or more may be applied before filling the foamed particles into the mold. In this case, the polypropylene resin foamed particles are compressed under the pressure of inorganic gas. , A gas pressure of 1.18 atm or more can be applied.
【0034】[0034]
【実施例】次に、実施例及び比較例に基づき本発明を詳
しく説明するが、本発明はこれら実施例のみに限定され
るものではない。Next, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
【0035】〔ポリプロピレン系樹脂発泡粒子の製造〕
エチレン−プロピレンランダムコポリマー(株式会社グ
ランドポリマー社品、エチレン含有量2.4重量%、M
I(メルトフローインデックス)=7)のペレット(一
粒子重量約1.8mg、DSC法融点TM=152.5
℃)100部、イソブタン5部〜15部、分散剤として
パウダー状塩基性第3リン酸カルシウム2.0部及びn
−パラフィンスルホン酸ソーダ0.05部を水300部
とともに耐圧容器に仕込み、各々所定温度に加熱した。
このときの容器内圧力は約12〜17kg/cm2 −G
であった。続いて、容器内圧力にイソブタンを圧入しな
がら、各々所定の発泡圧力16〜23kg/cm2 −G
に調整した。所定の発泡圧力に送達したら容器内圧力を
保持しつつ、耐圧容器下部のバルブを開いて水分散物を
開孔径4.4mmφのオリフィス板を通して大気圧下に
放出して発泡を行い、No.1〜6の6種類のポリプロ
ピレン系樹脂発泡粒子を得た。[Production of expanded polypropylene resin particles]
Ethylene-propylene random copolymer (Grand Polymer Co., Ltd. product, ethylene content 2.4% by weight, M
I (melt flow index) = 7) pellets (one particle weight: about 1.8 mg, DSC melting point TM = 152.5)
C) 100 parts, isobutane 5 to 15 parts, powdered basic tribasic calcium phosphate 2.0 parts as a dispersant and n
-0.05 parts of sodium paraffin sulfonate were placed in a pressure vessel together with 300 parts of water, and each was heated to a predetermined temperature.
The pressure in the container at this time is about 12 to 17 kg / cm 2 -G
Met. Subsequently, while isobutane is being pressed into the pressure in the container, a predetermined foaming pressure of 16 to 23 kg / cm 2 -G is applied.
Was adjusted. When a predetermined foaming pressure is delivered, while maintaining the pressure inside the container, the valve at the lower part of the pressure-resistant container is opened, and the aqueous dispersion is discharged under atmospheric pressure through an orifice plate having an opening diameter of 4.4 mmφ to perform foaming. Six types of expanded polypropylene resin particles 1 to 6 were obtained.
【0036】得られた発泡粒子は、発泡倍率10.0〜
16.0倍で、DSC法で測定した高温側の融解ピーク
に基づく融解ピーク熱量QH1 は表1に示すとおりであ
った。The obtained expanded particles have an expansion ratio of 10.0 to
16.0 fold, melting peak heat QH 1 based on the high temperature side of the melting peak measured by DSC method was as shown in Table 1.
【0037】[0037]
【表1】 [Table 1]
【0038】〔ポリプロピレン系樹脂型内発泡成形体の
製造〕上記のようにして得られたポリプロピレン発泡粒
子を耐圧容器に入れ、温度70℃、圧力7.2Kg/c
m2 −Gで1時間処理したものを、290×270×6
0mmのブロック金型に充填し、約3.5kg/cm2
−G〜5.0kg/cm2 −Gの水蒸気圧で加熱成形す
ることにより融着、表面外観の問題ない、実施例1〜
4、及び比較例1〜4の型内発泡成形体を得た。得られ
たポリプロピレン系樹脂型内発泡成形体について、高温
側ピーク溶解熱量QH2 、密度、及び50%圧縮時の強
度を測定し、結果を表2に示した。[Production of foamed molded article in polypropylene resin mold] The foamed polypropylene particles obtained as described above are put in a pressure vessel, at a temperature of 70 ° C. and a pressure of 7.2 kg / c.
What was processed for 1 hour at m 2 -G was 290 × 270 × 6
Filled into a 0 mm block mold, about 3.5 kg / cm 2
-G to 5.0 kg / cm 2 -Heat molding at a steam pressure of -G, no fusing, no problem in surface appearance, Examples 1 to
4 and Comparative Examples 1-4 were obtained. For the obtained foamed molded article in a polypropylene resin mold, the peak heat of fusion QH 2 , the density, and the strength at the time of 50% compression were measured, and the results are shown in Table 2.
【0039】[0039]
【表2】 [Table 2]
【0040】更に、上記実施例、および比較例の成形体
の50%圧縮強度と密度との関係をグラフにし、図3に
示した。尚、図3には、従来のポリプロピレン系樹脂型
内発泡成形体の例として、特開平3−25493号公
報、及び特開平8−20662号公報に開示される成形
体についての圧縮強度と密度との関係も示した。FIG. 3 is a graph showing the relationship between the 50% compressive strength and the density of the molded articles of the above Examples and Comparative Examples. FIG. 3 shows, as an example of a conventional foamed molded article in a polypropylene-based resin mold, the compressive strength, density and density of the molded articles disclosed in JP-A-3-25493 and JP-A-8-20662. The relationship was also shown.
【0041】[0041]
【発明の効果】以上のとおり、本発明のポリプロピレン
系樹脂型内発泡成形体は、従来のポリプロピレン系樹脂
型内発泡成形体よりも圧縮強度が高く、式、Y≧0.1
5X−2.0〔但し、式中、Yは圧縮強度(Kg/cm
2 )、Xは成形体密度(g/L)である。〕を満足す
る。また、本発明に係る製造方法によれば、圧縮強度が
高いポリプロピレン系樹脂型内発泡成形体を、安定的に
製造することができる。As described above, the foamed molded article in the polypropylene resin mold of the present invention has higher compressive strength than the conventional foamed molded article in the polypropylene resin mold.
5X-2.0 [where Y is the compressive strength (Kg / cm
2 ), X is the green density (g / L). Is satisfied. Further, according to the production method of the present invention, it is possible to stably produce a foamed molded article in a polypropylene resin mold having high compressive strength.
【図1】 実施例1に用いたエチレン−プロピレンラン
ダムコポリマー発泡粒子のDSC曲線のグラフであり、
ポリプロピレン系樹脂発泡粒子の高温側ピークの融解熱
量QH1 の測定方法を示す図である。FIG. 1 is a graph showing a DSC curve of expanded ethylene-propylene random copolymer particles used in Example 1,
Method of measuring the heat of fusion QH 1 on the high temperature side peak of the polypropylene resin foamed beads is a diagram showing a.
【図2】 実施例1で得られた成形体のDSC曲線のグ
ラフであり、発泡粒子の高温側ピークに由来する成形体
における高温側ピークの融解熱量QH2 の測定方法を示
す図である。FIG. 2 is a graph of a DSC curve of the molded article obtained in Example 1, which shows a method for measuring the heat of fusion QH 2 of the high-temperature peak in the molded article derived from the high-temperature peak of the foamed particles.
【図3】 本発明の実施例、比較例、及び従来のポリプ
ロピレン系樹脂型内発泡成形体の50%圧縮時の強度と
成形体密度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the strength at the time of 50% compression and the density of a foamed molded article in a polypropylene-based resin mold according to an example of the present invention, a comparative example, and a conventional polypropylene-based resin molded article.
Claims (7)
まで10℃/分の速度で昇温した際に得られるDSC曲
線において2つの融解ピークを有し、この2つの融解ピ
ークのうち高温側ピークの融解熱量QH1 が4.5〜
8.0cal/gであるポリプロピレン系樹脂発泡粒子
を用いて型内発泡成形してなり、前記発泡粒子の高温側
融解ピークに由来する融解ピークの熱量QH2 が7.0
cal/g以上であるポリプロピレン系樹脂型内発泡成
形体。1. From 40 ° C. to 220 ° C. with a differential scanning calorimeter
In the DSC curve obtained when the temperature was raised at a rate of 10 ° C./min, there were two melting peaks, and the heat of fusion QH 1 of the high-temperature side peak of the two melting peaks was 4.5 to 4.5.
8.0cal / g and is using the polypropylene resin expanded particles becomes to mold foaming, the foamed heat QH 2 melting peaks derived from the high temperature side melting peak of the particles 7.0
cal / g or more foamed molded article in a polypropylene resin mold.
〜7.0cal/gであるポリプロピレン系樹脂発泡粒
子を用いて成形した請求項1記載のポリプロピレン系樹
脂型内発泡成形体。2. The heat of fusion QH 1 at the high temperature side peak is 5.0.
The foamed molded article in a polypropylene resin mold according to claim 1, wherein the molded article is molded using polypropylene resin foamed particles having a particle size of from 7.0 to 7.0 cal / g.
S−Z0504に準拠する圧縮強度の測定において、圧
縮率50%時の強度が下記式(1)を満足するポリプロ
ピレン系樹脂型内発泡成形体。 Y≧0.15X−2.0・・・(1) 〔但し、式中、Yは圧縮強度(Kg/cm2 )、Xは成
形体密度(g/L)である。〕3. The ND having a density of 25 to 100 g / L.
A foamed molded article in a polypropylene resin mold having a strength at a compressibility of 50% that satisfies the following formula (1) in the measurement of compression strength in accordance with S-Z0504. Y ≧ 0.15X−2.0 (1) [wherein, Y represents the compressive strength (Kg / cm 2 ), and X represents the density of the compact (g / L). ]
ン−プロピレンランダムコポリマーである請求項1、
2、又は3記載のポリプロピレン系樹脂型内発泡成形
体。4. The foam according to claim 1, wherein the expanded polypropylene resin particles are an ethylene-propylene random copolymer.
4. The foamed molded article in a polypropylene resin mold according to 2 or 3.
1〜4のいずれかに記載のポリプロピレン系樹脂型内発
泡成形体。5. The polypropylene-based resin-type internal foam molded article according to claim 1, which is a shock absorbing material for interior and exterior of a vehicle.
まで10℃/分の速度で昇温した際に得られるDSC曲
線において2つの融解ピークを有し、この2つの融解ピ
ークのうち高温側ピークの融解熱量QH1 が4.5〜
8.0cal/gであるポリプロピレン系樹脂発泡粒子
を成形金型内に充填した後、低温側融解ピーク温度+2
℃以上で、かつ2つの融解ピークの境界温度−2℃以下
の範囲温度の水蒸気で加熱して、得られる成形体におけ
る前記発泡粒子の高温側融解ピークに由来する融解ピー
クの熱量QH2 が7.0cal/g以上となるように成
形することを特徴とするポリプロピレン系樹脂型内発泡
成形体の製造方法。6. From 40 ° C. to 220 ° C. by a differential scanning calorimeter.
In the DSC curve obtained when the temperature was raised at a rate of 10 ° C./min, there were two melting peaks, and the heat of fusion QH 1 of the high-temperature side peak of the two melting peaks was 4.5 to 4.5.
After the foamed polypropylene resin particles of 8.0 cal / g were filled in a molding die, the melting peak temperature on the low temperature side +2
When heated with steam at a temperature of not less than 2 ° C. and a boundary temperature between two melting peaks and not more than −2 ° C., the calorific value QH 2 of the melting peak derived from the high-temperature side melting peak of the expanded particles in the obtained molded product is 7 A method for producing a foamed article in a polypropylene-based resin mold, wherein the foamed article is molded so as to have a caliper of 0.0 cal / g or more.
ガスで1.18気圧以上のガス圧力を付与せしめ、これ
を成形金型内に充填して水蒸気で加熱して成形してなる
請求項6記載のポリプロピレン系樹脂型内発泡成形体の
製造方法。7. The foamed polypropylene resin particles are provided with a gas pressure of 1.18 atm or more with an inorganic gas, filled in a molding die, and heated with steam to be molded. A method for producing a polypropylene resin in-mold molded article of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9324132A JPH11156879A (en) | 1997-11-26 | 1997-11-26 | Polypropylene resin in-mold foamed molded product and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9324132A JPH11156879A (en) | 1997-11-26 | 1997-11-26 | Polypropylene resin in-mold foamed molded product and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11156879A true JPH11156879A (en) | 1999-06-15 |
Family
ID=18162505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9324132A Pending JPH11156879A (en) | 1997-11-26 | 1997-11-26 | Polypropylene resin in-mold foamed molded product and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11156879A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003340859A (en) * | 2002-03-19 | 2003-12-02 | Jsp Corp | Manufacturing method for polypropylene resin in-mold foam molded object and in-mold foam molded object |
US6956067B2 (en) | 2000-09-20 | 2005-10-18 | Jsp Corporation | Expanded polypropylene resin bead and process of producing same |
US7531116B2 (en) | 2001-11-01 | 2009-05-12 | Jsp Corporation | Process of producing foamed molding from expanded polypropylene resin beads |
JP2011005868A (en) * | 2002-03-19 | 2011-01-13 | Jsp Corp | Method for manufacturing in-mold foamed molding of polypropylene-based resin |
US8569390B2 (en) | 2005-01-12 | 2013-10-29 | Kaneka Corporation | Polypropylene resin pre-expanded particles and in-mold foamed articles prepared therefrom |
-
1997
- 1997-11-26 JP JP9324132A patent/JPH11156879A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6956067B2 (en) | 2000-09-20 | 2005-10-18 | Jsp Corporation | Expanded polypropylene resin bead and process of producing same |
US7531116B2 (en) | 2001-11-01 | 2009-05-12 | Jsp Corporation | Process of producing foamed molding from expanded polypropylene resin beads |
US7560498B2 (en) | 2001-11-01 | 2009-07-14 | Jsp Corporation | Process of producing foamed molding from expanded polypropylene resin beads and process of producing expanded polypropylene resin beads |
JP2003340859A (en) * | 2002-03-19 | 2003-12-02 | Jsp Corp | Manufacturing method for polypropylene resin in-mold foam molded object and in-mold foam molded object |
JP2011005868A (en) * | 2002-03-19 | 2011-01-13 | Jsp Corp | Method for manufacturing in-mold foamed molding of polypropylene-based resin |
JP4629313B2 (en) * | 2002-03-19 | 2011-02-09 | 株式会社ジェイエスピー | Method for producing polypropylene resin in-mold foam molded body and in-mold foam molded body |
US8569390B2 (en) | 2005-01-12 | 2013-10-29 | Kaneka Corporation | Polypropylene resin pre-expanded particles and in-mold foamed articles prepared therefrom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1213112A (en) | Expanded particles of polyolefin resin and process for producing same | |
KR950010982B1 (en) | Process for production of foamed molded articles of polypropylene resin | |
US4720509A (en) | Pre-expanded particles of propylene resin | |
WO1996031558A1 (en) | Foamed particles of propylene homopolymer and moldings of said particles | |
US5032620A (en) | Propylene resin foamed particles and foamed mold article | |
JPH0629334B2 (en) | Method for producing linear low-density polyethylene resin in-mold foam molding | |
JP2805286B2 (en) | Polyolefin-based resin foam molded article having communicating voids and method for producing the same | |
JP3692760B2 (en) | Method for producing foamed molded product in polypropylene resin mold | |
JPH10147661A (en) | Preliminarily foamed granule of flame-retardant polyolefin and production of inmold foamed molded product using the same | |
JP3858517B2 (en) | Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding | |
JP3950557B2 (en) | Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom | |
JP4519335B2 (en) | Polyolefin resin pre-expanded particles and method for producing the same | |
JP2886248B2 (en) | In-mold molding method for expanded polypropylene resin particles | |
JPH11156879A (en) | Polypropylene resin in-mold foamed molded product and its production | |
JP3461583B2 (en) | Method for producing foamed molded article in polypropylene resin mold | |
JPH061874A (en) | Preexpanded polyethylene resin particle | |
JPH0657435B2 (en) | In-mold foam molding of polypropylene resin | |
JPS6244778B2 (en) | ||
JP2002248645A (en) | Method for manufacturing thermoplastic resin foamed small piece molded object | |
JP2790791B2 (en) | Method for producing foamed molded article in polypropylene resin mold | |
JP5758586B2 (en) | Polyethylene resin expanded particles and polyethylene resin in-mold expanded molding | |
JP3126449B2 (en) | Polyolefin resin foam particles | |
JP2000219766A (en) | Foamed polypropylene resin molding and automotive interior furnishing material | |
JP2000319437A (en) | Polypropylene resin expandable beads and in-mold expanded, molded product | |
JPH0218225B2 (en) |