JPH11142124A - Method and equipment for measuring sectional shape of rail - Google Patents
Method and equipment for measuring sectional shape of railInfo
- Publication number
- JPH11142124A JPH11142124A JP30292697A JP30292697A JPH11142124A JP H11142124 A JPH11142124 A JP H11142124A JP 30292697 A JP30292697 A JP 30292697A JP 30292697 A JP30292697 A JP 30292697A JP H11142124 A JPH11142124 A JP H11142124A
- Authority
- JP
- Japan
- Prior art keywords
- rail
- measuring
- light source
- light
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉄道交通等におい
て、車両の車輪を支持、案内して車両の走行を維持する
レ−ルの磨耗測定等に用いるレ−ルの断面形状測定方法
及びレ−ルの断面形状測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rail cross-sectional shape measuring method and a rail used for measuring abrasion of a rail for supporting and guiding wheels of a vehicle and maintaining the running of the vehicle in railway traffic and the like. The present invention relates to a device for measuring the cross-sectional shape of a rule.
【0002】[0002]
【従来の技術】鉄道交通では、図1に示すように、レ−
ル上を走行する車両の鉄の車輪がレ−ルの上側及び内側
と接触するため、レ−ルの頭部の上面と内側面が磨耗す
る。このレ−ルの磨耗は、曲率が小さい急曲線区間では
頭部の内側面の磨耗の進行が直線区間と比べて早い。こ
のようなレ−ルの磨耗は列車運行の安全性に支障をきた
すため、レ−ルの磨耗状態を測定するレ−ル磨耗測定装
置が要望されている。従来、レ−ル磨耗測定装置とし
て、接触式のレ−ル磨耗測定装置が知られている。しか
しながら、この接触式のレ−ル磨耗測定装置は、レ−ル
に取り付けてレ−ルの磨耗状態を測定するものであるた
め測定箇所へ持ち運んでレ−ルに取り付ける作業が必要
である、また1箇所の測定に長時間を必要とするため測
定箇所数に限りがある、測定精度がよくない等の問題点
があった。そこで、レ−ザ光等を用いた非接触式のレ−
ル磨耗測定装置が開発されている。2. Description of the Related Art In railway traffic, as shown in FIG.
Since the iron wheels of the vehicle running on the rail contact the upper and inner sides of the rail, the upper and inner surfaces of the head of the rail are worn. The wear of the rail is such that the wear on the inner surface of the head progresses faster in a sharp curve section having a small curvature than in a straight section. Since such rail wear interferes with the safety of train operation, there is a need for a rail wear measuring device for measuring the state of rail wear. 2. Description of the Related Art Conventionally, a contact-type rail wear measuring device has been known as a rail wear measuring device. However, since this contact-type rail wear measuring device is mounted on a rail to measure the state of wear of the rail, it is necessary to carry the rail to a measurement location and attach it to the rail. Since a long time is required for one measurement, the number of measurement points is limited, and measurement accuracy is poor. Therefore, a non-contact type laser using laser light or the like is used.
A wear measuring device has been developed.
【0003】[0003]
【発明が解決しようとする課題】この非接触式のレ−ル
磨耗測定装置は、測定車等に取り付け可能であり、測定
車等を走行させながらレ−ルの磨状態耗を測定すること
ができるため、レ−ル磨耗測定装置の持ち運び作業や、
レ−ルへの取り付け作業等が不要であり、また短時間に
精度良くレ−ルの磨耗状態を測定することができる。し
かしながら、従来の非接触式のレ−ル磨耗測定装置は、
発光器や受光器等の測定機器とレ−ルとの相対位置が予
め定められた相対位置より変化するとレ−ルの磨耗状態
を正確に測定することができない。一方、測定車等の走
行速度が速くなると、ロ−リング運動やヨ−イング運動
等によって測定車等のレ−ルに対する揺れが激しくな
り、測定車等、すなわち測定機器とレ−ルとの相対位置
が変化する。このため、測定機器とレ−ルとの相対位置
との変化を抑制するように、例えば25km/h程度以
下の低速で測定車等を走行させなければならなかった。
本発明は、このような問題点を解決するために創案され
たものであり、高速で走行しながらレ−ルの磨耗測定等
のためのレ−ルの断面形状測定用のデ−タを得ることが
でき、またこのデ−タに基づいて高精度にレ−ルの長手
方向に直角な断面あるいはレ−ルの長手方向の断面の形
状を測定することができるレ−ルの断面形状測定方法及
びレ−ルの断面形状測定装置を提供することを課題とす
る。This non-contact type rail wear measuring device can be attached to a measuring vehicle or the like, and can measure the wear of the rail while running the measuring vehicle or the like. To carry the rail wear measuring device,
No work on the rail is required, and the wear state of the rail can be accurately measured in a short time. However, conventional non-contact rail wear measuring devices are
If the relative position between the rail and a measuring device such as a light-emitting device or a light-receiving device changes from a predetermined relative position, the state of wear of the rail cannot be accurately measured. On the other hand, when the traveling speed of the measuring vehicle or the like is increased, rolling of the measuring vehicle or the like to the rail becomes severe due to rolling motion or yawing motion, and the relative movement between the measuring vehicle and the rail, ie, the measuring device and the rail. The position changes. For this reason, in order to suppress a change in the relative position between the measuring instrument and the rail, the measuring vehicle or the like has to run at a low speed of, for example, about 25 km / h or less.
The present invention has been made in order to solve such a problem, and obtains data for measuring a sectional shape of a rail for measuring abrasion of the rail while traveling at a high speed. And a rail cross-sectional shape measuring method capable of measuring the cross-section perpendicular to the longitudinal direction of the rail or the longitudinal cross-section of the rail with high accuracy based on the data. And a rail cross-sectional shape measuring apparatus.
【0004】[0004]
【課題を解決するための手段】前記課題を解決するため
に、請求項1に記載の発明は、平面光が照射されている
レ−ルの測定部分の撮像情報及び前記レ−ルの方向ベク
トルに基づいて前記レ−ルの測定部分の断面の形状を測
定するレ−ルの断面形状測定方法である。請求項1に記
載のレ−ルの断面形状測定方法を用いれば、高速で走行
しながらレ−ルの断面形状測定用のデ−タを得ることが
できるとともに、このデ−タに基づいて高精度にレ−ル
の測定部分の断面の形状を測定することができる。ま
た、請求項2に記載の発明は、レ−ルの測定部分に平面
光を照射する光源と、前記光源からの平面光が照射され
ているレ−ルの測定部分の撮像情報を出力する撮像手段
と、前記レ−ルの方向ベクトルを測定する方向ベクトル
測定手段とを備え、前記撮像手段からのレ−ルの測定部
分の撮像情報及び前記方向ベクトル測定手段からのレ−
ルの方向ベクトルに基づいて前記レ−ルの測定部分の断
面の形状を測定するレ−ルの断面形状測定装置である。
請求項2に記載のレ−ルの断面形状測定装置を用いれ
ば、高速で走行しながらレ−ルの断面形状測定用のデ−
タを得ることができるとともに、このデ−タに基づいて
高精度にレ−ルの測定部分の断面の形状を測定すること
ができる。また、請求項3に記載の発明は、レ−ルの測
定部分に平面光を照射する第1の光源と、前記第1の光
源からの平面光が照射されているレ−ルの測定部分の撮
像情報を出力する第1の撮像手段と、前記レ−ルの基準
部分に平面光を照射する第2の光源と、前記第2の光源
からの平面光が照射されているレ−ルの基準部分の撮像
情報を出力する第2の撮像手段とを備え、前記第2の撮
像手段からのレ−ルの基準部分の撮像情報に基づいてレ
−ルの方向ベクトルを測定し、さらに前記第1の撮像手
段からのレ−ルの測定部分の撮像情報及び前記レ−ルの
方向ベクトルに基づいて前記レ−ルの測定部分のレ−ル
の長手方向に直角な断面の形状を測定するレ−ルの断面
形状測定装置である。請求項3に記載のレ−ルの断面形
状測定装置を用いれば、簡単な構成で、高速で走行しな
がらレ−ルの断面形状測定用のデ−タを得ることができ
るとともに、このデ−タに基づいて高精度にレ−ルの長
手方向に直角な断面の形状を測定することができる。ま
た、請求項4に記載の発明は、レ−ルの測定部分に平面
光を照射する第1の光源と、前記第1の光源からの平面
光が照射されているレ−ルの測定部分の撮像情報を出力
する第1の撮像手段と、前記レ−ルの基準部分に平面光
を照射する第2の光源と、前記第2の光源からの平面光
が照射されているレ−ルの基準部分の撮像情報を出力す
る第2の撮像手段とを備え、前記第2の撮像手段から出
力されるレ−ルの長手方向に沿った複数箇所の基準部分
の撮像情報に基づいて前記複数箇所のレ−ルの方向ベク
トルを測定し、さらに前記第1の撮像手段から出力され
るレ−ルの長手方向に沿った複数箇所の測定部分の撮像
情報及び前記複数箇所のレ−ルの方向ベクトルに基づい
て前記レ−ルの測定部分のレ−ルの長手方向の断面の形
状を測定するレ−ルの断面形状測定装置。請求項4に記
載のレ−ルの断面形状測定装置を用いれば、簡単な構成
で、高速で走行しながらレ−ルの断面形状測定用のデ−
タを得ることができるとともに、このデ−タに基づいて
高精度にレ−ルの長手方向の断面の形状を測定すること
ができる。また、請求項5に記載の発明は、請求項3ま
たは4に記載のレ−ルの断面形状測定装置において、前
記第2の光源として前記レ−ルの2箇所の基準部分に平
面光を照射する光源を用い、前記第2の撮像手段として
前記第2の撮像手段からのレ−ルの平面光が照射されて
いるレ−ルの各基準部分の撮像情報を出力する撮像手段
を用い、前記第2の撮像手段からの撮像情報に基づいて
レ−ルの各基準部分の基準点の座標を測定し、前記各基
準部分の基準点の座標に基づいて前記複数箇所のレ−ル
の方向ベクトルを測定する。請求項5に記載のレ−ルの
断面形状測定装置を用いれば、容易にレ−ルの方向ベク
トルを測定することができる。また、請求項6に記載の
発明は、レ−ルの測定部分に平面光を照射する第1の光
源と、前記第1の光源からの平面光が照射されているレ
−ルの測定部分の撮像情報を出力する第1の撮像手段
と、前記レ−ルの基準部分に平面光を照射する第2の光
源と、前記第2の光源からの平面光が照射されているレ
−ルの基準部分の撮像情報を出力する第2の撮像手段
と、前記第1の撮像手段及び前記第2の撮像手段からの
撮像情報を記憶する記憶手段とを備えるレ−ルの断面形
状測定用デ−タ測定装置である。請求項6に記載のレ−
ルの断面形状測定用デ−タ測定装置を用いれば、簡単な
構成で、高速で走行しながらレ−ルの断面形状測定用デ
−タを測定することができる。In order to solve the above-mentioned problems, according to the present invention, there is provided an imaging information of a measurement portion of a rail irradiated with plane light and a direction vector of the rail. A method of measuring the cross-sectional shape of a rail, which measures the cross-sectional shape of the measurement portion of the rail based on the above. According to the method for measuring the cross-sectional shape of a rail according to the first aspect, data for measuring the cross-sectional shape of the rail can be obtained while traveling at a high speed, and the data can be obtained based on the data. The cross-sectional shape of the rail measurement portion can be measured with high accuracy. According to a second aspect of the present invention, there is provided a light source for irradiating plane light to a measurement portion of a rail, and an imaging device for outputting imaging information of a measurement portion of the rail to which the plane light from the light source is irradiated Means, and direction vector measuring means for measuring a direction vector of the rail, wherein imaging information of a rail measurement portion from the imaging means and a ray from the direction vector measuring means are provided.
This is a rail cross-section shape measuring device for measuring the cross-sectional shape of the rail measurement portion based on the rail direction vector.
According to the rail cross-sectional shape measuring apparatus of the second aspect, a data for measuring the cross-sectional shape of the rail while traveling at high speed.
Data can be obtained, and the cross-sectional shape of the rail measurement portion can be measured with high accuracy based on this data. According to a third aspect of the present invention, there is provided a first light source for irradiating plane light to a measuring portion of the rail, and a measuring portion of the rail to which flat light from the first light source is irradiated. A first imaging means for outputting imaging information, a second light source for irradiating plane light to a reference portion of the rail, and a reference for a rail irradiated with plane light from the second light source. Second imaging means for outputting imaging information of a portion, measuring a direction vector of the rail based on imaging information of a reference portion of the rail from the second imaging means, and further comprising: For measuring the shape of a cross section perpendicular to the longitudinal direction of the rail of the measurement part of the rail based on the imaging information of the measurement part of the rail from the imaging means and the direction vector of the rail. This is a device for measuring the cross-sectional shape of a shell. By using the rail cross-sectional shape measuring device according to the third aspect, it is possible to obtain data for measuring the rail cross-sectional shape while traveling at high speed with a simple configuration, and to obtain the data. The shape of the cross section perpendicular to the longitudinal direction of the rail can be measured with high accuracy based on the data. According to a fourth aspect of the present invention, there is provided a first light source for irradiating plane light to a rail measurement part, and a rail measurement part for irradiating plane light from the first light source. A first imaging means for outputting imaging information, a second light source for irradiating plane light to a reference portion of the rail, and a reference for a rail irradiated with plane light from the second light source. A second imaging means for outputting imaging information of a portion, wherein the plurality of reference portions along the longitudinal direction of the rail outputted from the second imaging means are used for the plurality of reference portions. The direction vector of the rail is measured, and further, the image information of a plurality of measurement portions along the longitudinal direction of the rail and the direction vector of the rail at the plurality of positions are output from the first imaging means. A rail for measuring the shape of the section of the rail in the longitudinal direction of the measuring portion of the rail based on the Le sectional shape measuring device. According to the rail cross-sectional shape measuring device of the fourth aspect, a data for measuring the cross-sectional shape of the rail while traveling at a high speed with a simple configuration.
Data, and the shape of the rail in the longitudinal direction can be measured with high accuracy based on this data. According to a fifth aspect of the present invention, in the rail sectional shape measuring apparatus according to the third or fourth aspect, two reference portions of the rail are irradiated with plane light as the second light source. A light source which emits image information of each reference portion of the rail irradiated with the plane light of the rail from the second image pickup means as the second image pickup means; The coordinates of the reference points of each reference portion of the rail are measured based on the imaging information from the second imaging means, and the direction vectors of the plurality of rails are determined based on the coordinates of the reference points of each reference portion. Is measured. By using the rail sectional shape measuring apparatus according to the fifth aspect, the rail direction vector can be easily measured. According to a sixth aspect of the present invention, there is provided a first light source for irradiating plane light to a rail measurement portion, and a rail measurement portion for irradiating plane light from the first light source. A first imaging means for outputting imaging information, a second light source for irradiating plane light to a reference portion of the rail, and a reference for a rail irradiated with plane light from the second light source. Rail cross-sectional shape measurement data comprising second imaging means for outputting imaging information of a portion, and storage means for storing imaging information from the first imaging means and the second imaging means. It is a measuring device. The laser according to claim 6.
By using the data measuring device for measuring the sectional shape of the rail, it is possible to measure the data for measuring the sectional shape of the rail while traveling at high speed with a simple structure.
【0005】[0005]
【発明の実施の形態】以下に、本発明の実施の形態を図
面を用いて説明する。本発明では、平面光を測定物体の
測定部分に照射し、平面光が照射されている測定物体の
測定部分を撮像手段により撮像して測定部分の測定部分
の外形形状を光の帯の情報として得、この光の帯の情報
に基づいて測定物体の測定部分の断面形状を測定する光
切断法を用いる。光切断法については、井口征士、佐藤
宏介著,株式会社昭晃堂発行の「三次元画像計測」等に
詳述されている。この光切断法の概略を図2を用いて説
明する。光切断法では、レ−ザ光をガルバノミラ−によ
り平面走査して照射する光源やレ−ザ光を直線形状のス
リットを介して照射する光源等の平面光を照射する光
源、前記光源からの平面光が照射されている測定物体の
測定部分を撮像するCCDカメラ等の撮像手段(以下、
「カメラ」という)を測定機器として設け、カメラから
の測定物体の測定部分の撮像情報、測定物体の空間座標
系とカメラの撮像画面上のカメラ座標系とを関連付ける
パラメ−タ(以下、「カメラパラメ−タ」という)、光
源からの平面光の空間座標系上の位置(以下、「光源パ
ラメ−タ」という)等に基づいて測定物体の測定部分の
断面形状を測定する。Embodiments of the present invention will be described below with reference to the drawings. In the present invention, plane light is irradiated on the measurement portion of the measurement object, the measurement portion of the measurement object irradiated with the plane light is imaged by the imaging means, and the outer shape of the measurement portion of the measurement portion is defined as light band information. Then, a light-section method is used for measuring the cross-sectional shape of the measurement portion of the measurement object based on the information of the light band. The light sectioning method is described in detail in Seiji Iguchi and Kosuke Sato, "Three-dimensional image measurement" published by Shokodo Co., Ltd., and the like. The outline of the light cutting method will be described with reference to FIG. In the light cutting method, a light source that irradiates plane light, such as a light source that irradiates laser light by scanning the plane with a galvanomirror, a light source that irradiates laser light through a linear slit, and a plane from the light source Imaging means such as a CCD camera for imaging a measurement portion of a measurement object irradiated with light (hereinafter, referred to as a CCD camera)
A “camera” is provided as a measuring device, and parameters (hereinafter, “camera”) relating imaging information of a measurement portion of the measurement object from the camera, a spatial coordinate system of the measurement object and a camera coordinate system on an imaging screen of the camera. The cross-sectional shape of the measurement portion of the measurement object is measured based on the position of the plane light from the light source on the spatial coordinate system (hereinafter, referred to as “light source parameter”).
【0006】いま、空間座標系上の座標が(X,Y,
Z)の測定物体上の点がカメラの撮像画面上、すなわち
カメラ座標系上の座標が(Xc,Yc)の点に撮像され
ている場合には、空間座標系上の点は以下のようなカメ
ラパラメ−タC11〜C34を用いてカメラ座標系上の点へ
変換することができる。Now, the coordinates on the spatial coordinate system are (X, Y,
When the point on the measurement object of Z) is imaged on the imaging screen of the camera, that is, the point on the camera coordinate system at the point (Xc, Yc), the point on the spatial coordinate system is as follows. It can be converted to a point on the camera coordinate system using the camera parameters C11 to C34.
【数1】 ここで、C11〜C34には、カメラに関する位置、姿勢、
画角等のカメラに関する情報が含まれている。このカメ
ラパラメ−タC11〜C34は、3次元形状が既知の基準物
体をカメラで撮像することによって求めることができ
る。例えば、図2に示すように、予め各点の空間座標系
上の座標が分かっている立方体等の基準物体をカメラで
撮像し、基準物体の基準点A〜Gの空間座標系上の座標
(X,Y,Z)と、カメラの撮像画面上の基準点A’〜
G’のカメラ座標系上の座標(Xc,Yc)を求める
と、(1式)が成り立つ。 (C11−C31Xc)X+(C12−C32Xc)Y+(C13−C33Xc)Z =C34Xc−C14 (C21−C31Yc)X+(C22−C32Yc)Y+(C23−C33Yc)Z =C34Yc−C24 (1式) したがって、カメラパラメ−タC11〜C34まで12個を
求めるためには、少なくとも基準物体上の基準点と撮像
画面上の基準点の6対の対応がわかればよい。なお、6
対以上の基準点についてカメラパラメ−タを求め、最小
二乗法を用いてカメラパラメ−タを決定すれば、精度を
上げることができる。(Equation 1) Here, C11 to C34 include the position, posture,
Information about the camera such as the angle of view is included. The camera parameters C11 to C34 can be obtained by imaging a reference object having a known three-dimensional shape with a camera. For example, as shown in FIG. 2, a camera captures a reference object such as a cube in which the coordinates of each point on the space coordinate system are known in advance, and the coordinates of the reference points A to G of the reference object on the space coordinate system ( X, Y, Z) and reference points A ′ to
When the coordinates (Xc, Yc) of G ′ on the camera coordinate system are obtained, (Equation 1) holds. (C11-C31Xc) X + (C12-C32Xc) Y + (C13-C33Xc) Z = C34Xc-C14 (C21-C31Yc) X + (C22-C32Yc) Y + (C23-C33Yc) Z = C34Yc-C24 (Equation 1) In order to obtain twelve camera parameters C11 to C34, it is sufficient to find at least six pairs of reference points on the reference object and reference points on the imaging screen. Note that 6
Accuracy can be improved by obtaining camera parameters for the reference points above the pair and determining the camera parameters using the least squares method.
【0007】また、光源の空間座標系上の位置は、光源
から照射される平面光、すなわち光源から照射される平
面光によって切断される測定物体の切断面の空間座標系
上の方程式で特定することができる。この切断面上の点
の空間座標系上の座標を(x,y,z)とすると、切断
面の方程式は(2式)で表すことができる。 ax+by+cz=d (2式) ここで、a、b、cは光源パラメ−タであり、光源の空
間座標系上の位置に関する情報が含まれている。また、
dは任意の定数である。この光源パラメ−タa、b、c
は、3次元形状が既知の基準物体を光源からの平面光で
照射することによって求めることができる。例えば、図
2に示すように、予め各点の空間座標系上の座標が分か
っている立方体等の基準物体を光源からの平面光で照射
し、平面光により切断される基準物体の切断面N上の基
準点、例えば基準点K〜Mの空間座標系上の座標(X,
Y,Z)を求めて(2式)に代入すると、(3式)を得
ることができる。 aX+bY+cZ=d (3式) したがって、光源パラメ−タa〜cを求めるためには、
少なくとも基準物体の切断面N上の3点の基準点の座標
がわかればよい。なお、基準物体の切断面上の3点以上
の基準点について光源パラメ−タを求め、最小二乗法を
用いて光源パラメ−タを決定すれば、精度を上げること
ができる。Further, the position of the light source on the spatial coordinate system is specified by an equation on the spatial coordinate system of the plane of the measuring object cut by the plane light emitted from the light source, ie, the plane light emitted from the light source. be able to. Assuming that the coordinates of the point on the cutting plane on the spatial coordinate system are (x, y, z), the equation of the cutting plane can be expressed by (Equation 2). ax + by + cz = d (Equation 2) Here, a, b, and c are light source parameters, and include information on the position of the light source on the spatial coordinate system. Also,
d is an arbitrary constant. These light source parameters a, b, c
Can be determined by irradiating a reference object having a known three-dimensional shape with plane light from a light source. For example, as shown in FIG. 2, a reference object such as a cube in which the coordinates of each point on a spatial coordinate system are known in advance is irradiated with plane light from a light source, and the cut surface N of the reference object cut by the plane light is irradiated. The upper reference point, for example, the coordinates (X,
When (Y, Z) is obtained and substituted into (Equation 2), (Equation 3) can be obtained. aX + bY + cZ = d (Equation 3) Therefore, in order to obtain the light source parameters a to c,
It is sufficient that at least the coordinates of the three reference points on the cut surface N of the reference object are known. If the light source parameters are obtained for three or more reference points on the cut surface of the reference object, and the light source parameters are determined using the least square method, the accuracy can be improved.
【0008】以上のようにして求めたカメラパラメ−タ
C11〜C34と光源パラメ−タa〜cを用いると、(4
式)で示すように、光源からの平面光によって切断され
る測定物体の切断面上、すなわち平面光が照射されてい
る測定物体の測定部分上の点の空間座標系上の座標
(X,Y,Z)は、この点のカメラ座標系上の座標(X
c,Yc)から求めることができる。Using the camera parameters C11 to C34 and the light source parameters a to c obtained as described above,
As shown in the equation, the coordinates (X, Y) of the point on the cut surface of the measurement object cut by the plane light from the light source, that is, the point on the measurement portion of the measurement object irradiated with the plane light, , Z) are the coordinates (X
c, Yc).
【数2】 したがって、カメラパラメ−タ及び光源パラメ−タが分
かっていれば、光源からの平面光が照射されている測定
物体の測定部分、すなわち光の帯の部分の各点のカメラ
座標系上の座標に基づいて測定物体の測定部分の各点の
空間座標系上の座標を求めることができ、求めた各点の
空間座標系上の座標により測定物体の測定部分の断面形
状を測定することができる。(Equation 2) Therefore, if the camera parameters and the light source parameters are known, the coordinates of the measurement portion of the measurement object irradiated with the plane light from the light source, that is, the coordinates of each point of the light band portion on the camera coordinate system. The coordinates of each point of the measurement portion of the measurement object on the space coordinate system can be obtained based on the coordinates, and the cross-sectional shape of the measurement portion of the measurement object can be measured based on the obtained coordinates of the point on the space coordinate system.
【0009】次に、前記した光切断法を用いてレ−ルの
断面形状を測定する本発明のレ−ルの断面形状測定装置
の一実施の形態の概略図を図3及び図4を用いて説明す
る。図3は、測定車等の平面図を示し、図4は図3を矢
印P方向から見た側面図である。図3、図4において、
測定車等の車両10には、レ−ル1上を転動する車輪1
1が設けられているとともに、レ−ル1の断面形状を測
定するための各手段が取り付けられる基台12が防振ゴ
ム等の緩衝部材を介して設けられている。基台12に
は、磨耗が発生するレ−ル1の頭部の上面及び内側面等
の測定部分に平面光を照射する光源14、光源14から
の平面光が照射されているレ−ル1の測定部分の撮像情
報を出力するCCDカメラ等の撮像手段15、レ−ル1
の頭部の外側面の2箇所の基準部分に平面光を照射する
光源16、17、光源16、17からの平面光が照射さ
れているレ−ル1の2箇所の基準部分の撮像情報を出力
するCCDカメラ等の撮像手段18が設けられている。
車両10、基台12には、光源14、16、17からの
平面光がレ−ル1に照射され、平面光が照射されている
レ−ル1の測定部分、基準部分をカメラ15、18によ
って撮像可能に開口部が形成されている。なお、基台1
2を車両の下部に設けてもよいし、光源14、16、1
7、カメラ15、18を車両10の下部に直接設けても
よい。また、カメラ15、18からのレ−ル1の測定部
分及び基準部分の撮像情報を記憶する記憶手段や、測定
部分及び基準部分の撮像情報、カメラパラメ−タ、光源
パラメ−タ等に基づいてレ−ル1の測定部分の断面形状
を測定するコンピュ−タ等の処理手段等が設けられる。
この処理手段は、車両上に設けてもよいし、地上に設け
てもよい。また、処理手段は、ハ−ドウェアで構成して
もよいし、ソフトウェアで構成してもよい。また、処理
手段によるレ−ルの測定部分の断面形状の測定は、カメ
ラ15、18からのレ−ル1の測定部分及び基準部分の
撮像情報を処理手段に供給して同時に行ってもよいし、
カメラ15、18からのレ−ル1の測定部分及び基準部
分の撮像情報を一旦記憶手段に記憶させておき、後で記
憶手段に記憶した撮像情報を処理手段に供給して行って
もよい。また、撮像情報を処理手段に供給する方法とし
ては、有線回線あるいは無線回線のいずれを用いてもよ
い。Next, referring to FIGS. 3 and 4, there is shown a schematic diagram of an embodiment of a rail sectional shape measuring apparatus of the present invention for measuring the sectional shape of the rail by using the above-mentioned light cutting method. Will be explained. FIG. 3 is a plan view of a measuring vehicle and the like, and FIG. 4 is a side view of FIG. 3 and 4,
On a vehicle 10 such as a measuring vehicle, wheels 1 rolling on rails 1
1 and a base 12 to which each means for measuring the cross-sectional shape of the rail 1 is provided via a buffer member such as a vibration-proof rubber. The base 12 has a light source 14 for irradiating plane light to a measurement portion such as an upper surface and an inner surface of the head of the rail 1 where wear occurs, and a rail 1 for irradiating plane light from the light source 14. Imaging means 15, such as a CCD camera, for outputting imaging information of the measurement portion of
Light sources 16 and 17 for irradiating two reference portions on the outer side surface of the head with plane light, and imaging information of two reference portions of the rail 1 where the plane light from the light sources 16 and 17 are irradiated. An imaging unit 18 such as a CCD camera for outputting is provided.
The vehicle 10 and the base 12 are irradiated with the plane light from the light sources 14, 16 and 17 onto the rail 1, and the cameras 15 and 18 measure the measurement part and the reference part of the rail 1 irradiated with the plane light. An opening is formed so that an image can be taken. Base 1
2 may be provided at the lower part of the vehicle, or the light sources 14, 16, 1
7. The cameras 15, 18 may be provided directly below the vehicle 10. In addition, storage means for storing imaging information of the measurement part and the reference part of the rail 1 from the cameras 15 and 18 and imaging information of the measurement part and the reference part, camera parameters, light source parameters, etc. Processing means such as a computer for measuring the sectional shape of the measurement portion of the rail 1 is provided.
This processing means may be provided on the vehicle or on the ground. Further, the processing means may be constituted by hardware or software. The measurement of the cross-sectional shape of the rail measurement part by the processing means may be performed simultaneously by supplying the imaging information of the measurement part and the reference part of the rail 1 from the cameras 15 and 18 to the processing means. ,
The imaging information of the measurement part and the reference part of the rail 1 from the cameras 15 and 18 may be temporarily stored in the storage means, and the imaging information stored in the storage means may be supplied to the processing means later. Further, as a method of supplying the imaging information to the processing means, either a wired line or a wireless line may be used.
【0010】光源14、カメラ15は、図5に示すよう
に設置する。すなわち、光源14は、磨耗が発生する測
定部分、例えばレ−ルの頭部の上面及び内側面に平面光
を照射可能な位置に設置する。また、カメラ15は、光
源14からの平面光が照射されているレ−ルの測定部
分、すなわち平面光が照射されて光の帯として見えてい
る部分を撮像可能な位置に設置する。ここで、カメラ1
5の撮像画面には、平面光の照射によって光の帯として
見えているレ−ルの測定部分の外形形状の画像と平面光
が照射されていないレ−ルの他の部分の画像が撮像され
ており、また光の帯は幅を持っている。カメラ15の撮
像画面上における測定部分を光の帯を幅を持った状態で
認識すると、レ−ルの測定部分のカメラ座標系上の座標
の測定精度、したがってレ−ルの測定部分の空間座標系
上の座標の測定精度が低下する。そこで、カメラ15の
撮像画面上の各画素毎の輝度値を検出し、ピ−ク値を持
つ画素を抽出する。このようにして抽出したレ−ルの測
定部分の各点は、図6aに示すように、幅が狭いレ−ル
断面14として表される。なお、カメラ15の撮像画面
からレ−ルの測定部分の撮像情報を抽出する処理は、専
用の処理手段で行ってもよいし、レ−ルの測定部分の断
面形状を測定する処理手段で行ってもよいし、カメラ1
5内で行ってもよい。レ−ルの測定部分の撮像情報、す
なわちレ−ル断面14上の各点のカメラ座標系上の座標
を(4式)に代入することにより、レ−ルの測定部分の
各点の空間座標系上の座標を求めることができる。レ−
ルの測定部分の各点は、空間座標系では図6bに示すレ
−ル断面として表される。そして、空間座標系上のレ−
ルの測定部分の各点をレ−ルの長手方向に直角な平面
上、すなわちレ−ルの方向ベクトルに直角な平面上に投
影することにより、レ−ルの測定部分のレ−ルの長手方
向に直角な断面の形状を測定することができる。なお投
影平面は、厳密にレ−ルの長手方向に直角でなくてもよ
い。The light source 14 and the camera 15 are installed as shown in FIG. That is, the light source 14 is installed at a position where a plane light can be irradiated on a measurement part where wear occurs, for example, the upper surface and the inner surface of the head of the rail. Further, the camera 15 is installed at a position where a measurement portion of the rail irradiated with the plane light from the light source 14, that is, a portion irradiated with the plane light and seen as a light band can be imaged. Here, camera 1
On the imaging screen 5, an image of the outer shape of the measurement part of the rail, which is seen as a band of light due to the irradiation of the plane light, and an image of another part of the rail not irradiated with the plane light are taken. And the band of light has a width. When the measurement portion on the imaging screen of the camera 15 is recognized in a state where the band of light has a width, the measurement accuracy of the coordinates of the measurement portion of the rail on the camera coordinate system, and thus the spatial coordinates of the measurement portion of the rail. The measurement accuracy of the coordinates on the system decreases. Therefore, the luminance value of each pixel on the imaging screen of the camera 15 is detected, and the pixel having the peak value is extracted. Each point of the measurement portion of the rail thus extracted is represented as a narrow rail cross section 14, as shown in FIG. 6a. The processing for extracting the imaging information of the rail measurement part from the imaging screen of the camera 15 may be performed by a dedicated processing means or by the processing means for measuring the cross-sectional shape of the rail measurement part. Or camera 1
5 may be performed. By substituting the imaging information of the rail measurement portion, that is, the coordinates of each point on the rail section 14 on the camera coordinate system into (Equation 4), the spatial coordinates of each point of the rail measurement portion are obtained. The coordinates on the system can be obtained. Ray
Each point of the measurement part of the rail is represented in the spatial coordinate system as a rail cross section shown in FIG. 6b. And the ray on the spatial coordinate system
By projecting each point of the measurement part of the rail on a plane perpendicular to the longitudinal direction of the rail, that is, on a plane perpendicular to the direction vector of the rail, the length of the rail of the measurement part of the rail is projected. The shape of the cross section perpendicular to the direction can be measured. The projection plane need not be strictly perpendicular to the longitudinal direction of the rail.
【0011】ところで、車両走行中は、車両のロ−リン
グ運動やヨ−イング運動等によって車両の中心軸とレ−
ル方向との相対的な位置ずれ、すなわち光源やカメラ等
の測定機器の空間座標上における位置とレ−ルの空間座
標系上の方向ベクトルとの相対的な位置ずれが生じるた
め、空間座標系上におけるレ−ルの方向ベクトル、した
がってレ−ルの方向ベクトルに直角な平面の座標も変化
する。このため、レ−ルの測定部分のレ−ルの長手方向
に直角な断面の形状を正確に測定するには、レ−ルの方
向ベクトルに直角な平面を空間座標上で特定し、特定し
た平面上に空間座標系上のレ−ルの測定部分の各点を投
影する必要がある。このレ−ルの方向ベクトルに直角な
平面をレ−ルの空間座標系上の方向ベクトルを測定する
ことによって特定するために、光源16、17、カメラ
18が設けられている。光源16、17、カメラ18
は、図7に示すように設置する。すなわち、光源16、
17は、比較的油汚れなどがつきにくく、磨耗がほとん
どなく、基準点の抽出が容易である基準部分の2箇所に
平面光を照射可能な位置に設置する。本実施の形態で
は、基準面としてレ−ルの頭部の外側面を選択し、基準
点として図1に示すようなレ−ル外側のレ−ルの頭部と
脚部の交点eを選択した。また、カメラ18は、光源1
6、17からの平面光が照射されているレ−ルの基準部
分、すなわち平面光が照射されて光の帯として見えてい
る部分を撮像可能な位置に設置する。While the vehicle is running, the center axis of the vehicle is shifted from the center axis of the vehicle by a rolling motion or a yawing motion of the vehicle.
Relative displacement from the direction of the rail, that is, a relative displacement between the position of the measuring device such as a light source and a camera on the spatial coordinates and the direction vector of the rail on the spatial coordinate system occurs. The rail direction vector above, and thus the coordinates of the plane perpendicular to the rail direction vector, also changes. For this reason, in order to accurately measure the shape of the cross section perpendicular to the longitudinal direction of the rail at the rail measurement portion, a plane perpendicular to the rail direction vector is specified on spatial coordinates and specified. It is necessary to project each point of the rail measurement part on the spatial coordinate system on a plane. Light sources 16, 17 and a camera 18 are provided to identify a plane perpendicular to the rail direction vector by measuring the rail direction vector on the spatial coordinate system. Light sources 16, 17, camera 18
Are installed as shown in FIG. That is, the light source 16,
Reference numeral 17 is provided at a position where plane light can be applied to two reference portions, which are relatively resistant to oil stains, hardly worn, and easy to extract a reference point. In this embodiment, the outer surface of the head of the rail is selected as the reference plane, and the intersection e of the head and the leg of the rail outside the rail as shown in FIG. 1 is selected as the reference point. did. The camera 18 is connected to the light source 1.
The reference portion of the rail irradiated with the plane light from 6 and 17, that is, the portion irradiated with the plane light and seen as a band of light is set at a position where the image can be taken.
【0012】そして、カメラ18の撮像画面上の各画素
毎の輝度値を検出し、ピ−ク値を持つ画素を抽出する。
このようにして抽出したレ−ルの基準部分の各点は、図
8に示すように、幅が狭いレ−ル断面16、17として
表される。なお、カメラ18の撮像画面からレ−ルの基
準部分の撮像情報を抽出する処理は、専用の処理手段で
行ってもよいし、レ−ルの即知恵部分の断面形状を測定
する処理手段で行ってもよいし、カメラ18内で行って
もよい。レ−ルの基準部分の基準点、すなわち図1に示
した基準点e点に対応するレ−ル断面16、17上の基
準点f、gのカメラ座標系上の座標を(4式)に代入す
ることによりレ−ルの基準部分の基準点の空間座標系上
の座標を求め、基準点f、gを結ぶことによって空間座
標系上のレ−ルの方向ベクトルを求める。基準点f、g
のカメラ座標系上の座標を検出するには、例えば撮像画
面上のレ−ル断面16、17が図8に示す配置となるよ
うに光源16、17及びカメラ18を設置し、0点から
Yc軸方向に走査しレ−ル断面と初めて交差する点を基
準点fとして認識しカメラ座標系上の座標を検出し、ま
た0点からXc軸方向に走査しレ−ル断面と初めて交差
する点を基準点gとして認識しカメラ座標系上の座標を
検出する。なお、レ−ルの2箇所の基準部分に平面光を
照射する1つの光源を用いてもよいし、また平面光が照
射されているレ−ルの2箇所の基準部分の撮像情報をそ
れぞれ出力する2台のカメラを用いてもよい。Then, a luminance value of each pixel on the image pickup screen of the camera 18 is detected, and a pixel having a peak value is extracted.
Each point of the reference portion of the rail extracted in this manner is represented as a narrow rail cross section 16, 17 as shown in FIG. The processing for extracting the imaging information of the reference portion of the rail from the imaging screen of the camera 18 may be performed by a dedicated processing means, or may be performed by the processing means for measuring the cross-sectional shape of the immediate knowledge part of the rail. It may be performed, or may be performed in the camera 18. The coordinates on the camera coordinate system of the reference points f and g on the rail sections 16 and 17 corresponding to the reference point e of the reference portion of the rail, ie, the reference point e shown in FIG. By substituting, the coordinates of the reference point of the reference portion of the rail on the space coordinate system are obtained, and by connecting the reference points f and g, the direction vector of the rail on the space coordinate system is obtained. Reference points f, g
In order to detect the coordinates on the camera coordinate system, for example, the light sources 16, 17 and the camera 18 are installed so that the rail cross sections 16, 17 on the imaging screen are arranged as shown in FIG. The point which scans in the axial direction and intersects with the rail cross section for the first time is recognized as the reference point f, and the coordinates on the camera coordinate system are detected. Is recognized as the reference point g, and the coordinates on the camera coordinate system are detected. Note that one light source that irradiates plane light to two reference portions of the rail may be used, or imaging information of the two reference portions of the rail to which plane light is radiated may be output. Two cameras may be used.
【0013】以上のようにして測定した空間座標系上の
レ−ルの方向ベクトルに直角な平面上に空間座標系上の
レ−ルの測定部分の各点を投影することによってレ−ル
の測定部分のレ−ルの長手方向に直角な断面の形状を正
確に測定することができる。レ−ルの方向ベクトルに直
角な平面上にレ−ルの測定部分の各点を投影する方法と
しては、例えレ−ルの測定部分の各点からレ−ルの方向
ベクトルに平行な直線を引き、この直線とレ−ルの方向
ベクトルに直角な平面との交点を求める。By projecting each point of the measured portion of the rail on the spatial coordinate system on a plane perpendicular to the direction vector of the rail on the spatial coordinate system measured as described above, The shape of the cross section perpendicular to the longitudinal direction of the rail of the measuring portion can be accurately measured. As a method of projecting each point of the rail measurement portion on a plane perpendicular to the rail direction vector, a straight line parallel to the rail direction vector can be projected from each point of the rail measurement portion. Then, the intersection of this straight line and a plane perpendicular to the rail direction vector is determined.
【0014】次に、以上のようにして得たレ−ルの測定
部分のレ−ルの長手方向と直角な断面の形状に基づいて
レ−ルの磨耗を測定する処理を説明する。まず、測定車
等に光源14、16、17、カメラ15、18、記憶手
段等を設け、測定車等を走行させながらカメラ15及び
18からのレ−ルの測定部分の撮像情報及びレ−ルの基
準部分の撮像情報を記憶手段に記憶させる。この時、撮
像情報がレ−ル上のどの位置の撮像情報であるかを示す
位置情報、例えば測定車等の所定走行距離毎の移動情報
や起点に対する絶対位置情報等を撮像情報と共に記憶手
段に記憶させる。測定部分及び基準部分の撮像後、記憶
手段を地上の監視所等に設けられている処理手段に接続
する。なお、カメラ15及び18からのレ−ルの測定部
分の撮像情報及びレ−ルの基準部分の撮像情報を直接処
理手段に供給してもよい。レ−ルの長さ方向の任意の箇
所、例えば図9aに示すレ−ルの長手方向に沿った複数
箇所j〜nにおけるレ−ルの磨耗状態を測定する場合に
は、処理手段は、各箇所j〜nにおけるレ−ルの測定部
分及び基準部分の撮像情報を記憶手段から読み出し、読
み出したレ−ルの測定部分及び基準部分の撮像情報、カ
メラパラメ−タ、光源パラメ−タ等に基づいて、前記し
た方法により各箇所j〜nにおけるレ−ルの長手方向に
直角な断面の形状を測定する。そして、このようにして
測定した各箇所j〜nにおけるレ−ルの長手方向に直角
な断面の形状、すなわち図9aの矢印Q方向から見たレ
−ルの断面形状を、表示手段やプリンタ等に例えば図9
bに示す形態で出力する。これにより各箇所におけるレ
−ルの磨耗状態を判別することができる。なお、レ−ル
の長さ方向に沿った任意の1地点のレ−ルの断面形状の
みを出力することもできる。Next, a description will be given of a process of measuring the wear of the rail based on the shape of the section of the rail measured as described above, which is perpendicular to the longitudinal direction of the rail. First, light sources 14, 16, 17, cameras 15, 18 and storage means are provided in a measuring vehicle or the like, and imaging information and rails of a rail measurement portion from the cameras 15 and 18 while running the measuring vehicle or the like. Is stored in the storage means. At this time, position information indicating which position on the rail the image pickup information is, such as movement information of a measuring vehicle or the like for every predetermined traveling distance or absolute position information with respect to the starting point, is stored in the storage means together with the image pickup information. Remember. After the measurement part and the reference part are imaged, the storage means is connected to a processing means provided at a monitoring station or the like on the ground. The imaging information of the rail measurement part and the imaging information of the rail reference part from the cameras 15 and 18 may be directly supplied to the processing means. In order to measure the state of wear of the rail at any point in the length direction of the rail, for example, at a plurality of points j to n along the longitudinal direction of the rail shown in FIG. The imaging information of the measurement part and the reference part of the rail at the points j to n are read out from the storage means, and based on the read out imaging information of the measurement part and the reference part of the rail, camera parameters, light source parameters, and the like. Then, the shape of the cross section perpendicular to the longitudinal direction of the rail at each of the points j to n is measured by the method described above. The cross-sectional shape perpendicular to the longitudinal direction of the rail at each point j to n measured in this way, that is, the cross-sectional shape of the rail viewed from the direction of arrow Q in FIG. For example, FIG.
Output in the form shown in FIG. This makes it possible to determine the state of wear of the rail at each location. It is also possible to output only the cross-sectional shape of the rail at an arbitrary point along the length of the rail.
【0015】また、レ−ルの長手方向に直角な断面上の
任意の点、例えば図1に示した基準点eからレ−ルの長
手方向に直角な断面方向に所定距離離れているあるいは
レ−ルの長手方向に直角な断面方向に所定角度の位置に
ある点のレ−ルの長さ方向の磨耗状態(波状磨耗とい
う)を測定する場合には、処理手段は、図9bに矢印で
示した、複数箇所j〜nにおけるレ−ルの長手方向に直
角な断面上の基準点eから所定距離離れているあるいは
所定角度の位置にある点の座標を検出する。そして、こ
れらの点を直線で結び表示手段やプリンタ等に例えば図
9cに示す形態で出力する。これにより、図9aの矢印
R方向から見た波状磨耗状態を測定することができる。
なお、図1に示した基準点eをレ−ルの方向ベクトルに
直角な平面上の0点に設定すると、基準点eから所定距
離離れているあるいは所定角度の位置にあるレ−ルの長
手方向に直角な断面上の点の判別が容易となる。また、
各箇所j〜nの間隔を縮めることによって、レ−ルの長
さ方向の波状磨耗状態をより正確に判別することができ
る。Further, an arbitrary point on the cross section perpendicular to the longitudinal direction of the rail, for example, a predetermined distance or distance from the reference point e shown in FIG. 1 in the sectional direction perpendicular to the longitudinal direction of the rail. When measuring the state of wear in the longitudinal direction of the rail (referred to as wavy wear) at a point located at a predetermined angle in the cross-sectional direction perpendicular to the longitudinal direction of the rail, the processing means is indicated by an arrow in FIG. The coordinates of a point at a predetermined distance or a predetermined angle from a reference point e on a cross section perpendicular to the longitudinal direction of the rail at a plurality of locations j to n are detected. Then, these points are connected by a straight line and output to a display means, a printer, or the like, for example, in the form shown in FIG. 9C. This makes it possible to measure the wavy wear state viewed from the direction of arrow R in FIG. 9A.
When the reference point e shown in FIG. 1 is set to a zero point on a plane perpendicular to the direction vector of the rail, the longitudinal length of the rail at a predetermined distance from or at a predetermined angle from the reference point e is determined. It is easy to determine a point on a cross section perpendicular to the direction. Also,
By shortening the interval between the points j to n, it is possible to more accurately determine the wavy wear state in the rail length direction.
【0016】また、図9b、図9cに示す形態でレ−ル
の磨耗状態を出力した場合、レ−ルの磨耗量が基準値に
達しているか否かを判断するのが困難である。そこで、
図9b、図9cに示すレ−ルの長手方向に直角な断面の
形状(断面磨耗状態)、レ−ルの名手方向の断面の形状
(波状磨耗状態)を出力する際に、レ−ルを交換すべき
磨耗状態を示すレ−ルの基準断面形形状、レ−ルの基準
磨耗レベル等も一緒に出力するとレ−ルの磨耗量が基準
値に達しているか否かを容易に判断することができる。
また、レ−ルの磨耗量が基準値に達しているか否かを処
理手段に判別させるとレ−ルの磨耗量が基準値に達して
いるか否かを判断する必要がなくなる。この処理は、例
えば磨耗がない状態の参照レ−ル断面形状の接線に対し
て垂直な方向に所定寸法だけ磨耗しているか否かを判断
することによって行う。あるいは、図10に示すよう
に、参照レ−ル断面形状に対して基準値だけ磨耗した状
態の基準レ−ル断面形状を予め求めておき、測定したレ
−ル断面形状が基準レ−ル断面形状と交差するか否を判
断することによって行う。When the wear state of the rail is output in the form shown in FIGS. 9B and 9C, it is difficult to determine whether or not the amount of wear of the rail has reached a reference value. Therefore,
When outputting the shape of the cross section perpendicular to the longitudinal direction of the rail shown in FIGS. 9b and 9c (cross-sectional wear state) and the cross-sectional shape of the rail in the nominal direction (wavy wear state), When the reference cross-sectional shape of the rail indicating the state of wear to be replaced and the reference wear level of the rail are output together, it is easy to determine whether the amount of wear of the rail has reached the reference value. Can be.
Further, if the processing means determines whether or not the rail wear amount has reached the reference value, it is not necessary to determine whether or not the rail wear amount has reached the reference value. This process is performed, for example, by determining whether or not the wear is worn by a predetermined dimension in a direction perpendicular to the tangent to the reference rail cross-sectional shape in a state where there is no wear. Alternatively, as shown in FIG. 10, a reference rail cross-sectional shape in a state where the reference rail cross-sectional shape is worn by a reference value with respect to the reference rail cross-sectional shape is obtained in advance, and the measured rail cross-sectional shape is used as the reference rail cross-sectional shape. This is performed by determining whether or not they intersect with the shape.
【0017】以上の実施の形態では、光源16、17、
カメラ18等を用いてレ−ルの方向ベクトルを測定した
が、これ以外の種々の手段や方法を用いてレ−ルの方向
ベクトルを測定することができる。また、レ−ルの2箇
所の基準部分の基準点の座標に基づいてレ−ルの方向ベ
クトルを測定したが、1箇所の基準部分の撮像情報に基
づいてレ−ルの方向ベクトルを測定することもできる。
また、レ−ルの測定部分の撮像情報を得るための光源1
4、カメラ15、レ−ルの基準部分の撮像情報を得るた
めの光源16、17、カメラ18、処理手段によって、
場合によっては記憶手段も含めてレ−ルの断面形状測定
装置を構成したが、レ−ルの測定部分の撮像情報を得る
ための光源14、カメラ15、レ−ルの基準部分の撮像
情報を得るための光源16、17、カメラ18、記憶手
段等によってレ−ルの断面形状測定用のデ−タを測定す
るレ−ルの断面形状測定用デ−タ測定装置として構成す
ることもできる。また、平面光を照射する光源及び平面
光が照射されている部分を撮像するカメラをレ−ルの測
定部分、基準部分毎に設けたが、共通の光源を用いた
り、共通のカメラを用いる等光源及びカメラの数や設置
位置等は種々変更可能である。また、レ−ルの磨耗状態
測定に用いたが、本発明はレ−ルの磨耗状態の測定以外
の目的にも用いることができる。In the above embodiment, the light sources 16, 17,
Although the rail direction vector is measured using the camera 18 and the like, the rail direction vector can be measured using various other means and methods. Although the rail direction vector is measured based on the coordinates of the reference points of the two reference portions of the rail, the rail direction vector is measured based on the imaging information of one reference portion. You can also.
Further, a light source 1 for obtaining imaging information of a rail measurement portion.
4, a camera 15, light sources 16, 17 for obtaining imaging information of a reference portion of the rail, a camera 18, and processing means,
In some cases, the rail cross-section shape measuring device is configured including the storage means. However, the light source 14, the camera 15, and the imaging information of the reference portion of the rail are used to obtain the imaging information of the rail measurement portion. It can also be configured as a rail cross-section shape measurement data measuring device for measuring rail cross-section shape measurement data by the light sources 16, 17, the camera 18, the storage means and the like. In addition, a light source for irradiating plane light and a camera for capturing an image of a portion irradiated with plane light are provided for each of the rail measurement part and the reference part. However, a common light source or a common camera is used. The number of light sources and cameras, the installation positions, and the like can be variously changed. Although the present invention is used for measuring the state of wear of the rail, the present invention can be used for purposes other than the measurement of the state of wear of the rail.
【0018】[0018]
【発明の効果】以上説明したように、請求項1に記載の
レ−ルの断面形状測定方法、請求項2に記載のレ−ルの
断面形状測定装置を用いれば、高速で走行しながらレ−
ルの断面形状測定用のデ−タを得ることができるととも
に、このデ−タに基づいて高精度にレ−ルの断面の形状
を測定することができる。また、請求項3に記載のレ−
ルの断面形状測定装置を用いれば、簡単な構成で、高速
で走行しながらレ−ルの断面形状測定用のデ−タを得る
ことができるとともに、このデ−タに基づいて高精度に
レ−ルの長手方向に直角な断面の形状を測定することが
できる。また、請求項4に記載のレ−ルの断面形状測定
装置を用いれば、簡単な構成で、高速で走行しながらレ
−ルの断面形状測定用のデ−タを得ることができるとと
もに、このデ−タに基づいて高精度にレ−ルの長手方向
の断面の形状を測定することができる。また、請求項5
に記載のレ−ルの断面形状測定装置を用いれば、容易に
レ−ルの方向ベクトルを測定することができる。また、
請求項6に記載のレ−ルの断面形状測定用デ−タ測定装
置を用いれば、簡単な構成で、高速で走行しながらレ−
ルの断面形状測定用デ−タを測定することができる。As described above, the rail cross-sectional shape measuring method according to the first aspect and the rail cross-sectional shape measuring apparatus according to the second aspect use the rail while traveling at high speed. −
It is possible to obtain data for measuring the sectional shape of the rail, and to measure the sectional shape of the rail with high accuracy based on the data. The laser according to claim 3.
By using the device for measuring the cross-sectional shape of a rail, it is possible to obtain data for measuring the cross-sectional shape of the rail while traveling at a high speed with a simple configuration, and to obtain a rail with high accuracy based on this data. The shape of the cross section perpendicular to the longitudinal direction of the rule can be measured. In addition, by using the rail cross-sectional shape measuring device according to the fourth aspect, it is possible to obtain data for measuring the rail cross-sectional shape while traveling at high speed with a simple configuration. The profile of the rail in the longitudinal direction can be measured with high accuracy based on the data. Claim 5
The rail direction vector can be easily measured by using the rail sectional shape measuring device described in (1). Also,
According to the data measuring device for measuring a sectional shape of a rail according to the sixth aspect, the rail can be moved at a high speed with a simple structure.
Can be used to measure the data for measuring the sectional shape of the tool.
【図1】レ−ルの磨耗状態を示す図である。FIG. 1 is a view showing a worn state of a rail.
【図2】光源パラメ−タ及びカメラパラメ−タを求める
方法を説明するための図である。FIG. 2 is a diagram for explaining a method for obtaining a light source parameter and a camera parameter.
【図3】光源、カメラを車両に取り付けた状態を示す図
である。FIG. 3 is a diagram showing a state where a light source and a camera are attached to a vehicle.
【図4】図3を矢印P方向から見た図である。FIG. 4 is a view of FIG. 3 as viewed from an arrow P direction.
【図5】レ−ルの測定部分の撮像情報を得るための測定
機器の配置図であるFIG. 5 is a layout diagram of measuring equipment for obtaining imaging information of a rail measurement part.
【図6】レ−ルの測定部分の撮像情報及び断面形状を示
す図である。FIG. 6 is a diagram showing imaging information and a cross-sectional shape of a measurement portion of the rail.
【図7】レ−ルの基準部分の撮像情報を得るための測定
機器の配置図である。FIG. 7 is a layout diagram of measuring instruments for obtaining imaging information of a reference portion of the rail.
【図8】レ−ルの基準部分の撮像情報を示す図である。FIG. 8 is a diagram showing imaging information of a reference portion of the rail.
【図9】レ−ルの長手方向の複数の測定部分の断面形状
を示す図である。FIG. 9 is a diagram showing a cross-sectional shape of a plurality of measurement portions in a longitudinal direction of the rail.
【図10】レ−ルの磨耗状態を判断する処理を説明する
ための図である。FIG. 10 is a diagram for explaining a process of determining a worn state of the rail.
1 レ−ル 10 車両 12 基台 14、15、16 光源 15、16、17 カメラ(撮像手段) 1 rail 10 vehicle 12 base 14, 15, 16 light source 15, 16, 17 camera (imaging means)
Claims (6)
分の撮像情報及び前記レ−ルの方向ベクトルに基づいて
前記レ−ルの測定部分の断面の形状を測定するレ−ルの
断面形状測定方法。1. A rail for measuring a cross-sectional shape of a measurement portion of a rail based on imaging information of a measurement portion of the rail irradiated with plane light and a direction vector of the rail. Cross section shape measurement method.
源と、前記光源からの平面光が照射されているレ−ルの
測定部分の撮像情報を出力する撮像手段と、前記レ−ル
の方向ベクトルを測定する方向ベクトル測定手段とを備
え、前記撮像手段からのレ−ルの測定部分の撮像情報及
び前記方向ベクトル測定手段からのレ−ルの方向ベクト
ルに基づいて前記レ−ルの測定部分の断面の形状を測定
するレ−ルの断面形状測定装置。2. A light source for irradiating plane light to a measurement part of the rail, an imaging means for outputting imaging information of a measurement part of the rail to which the plane light from the light source is irradiated, and the rail. Direction vector measuring means for measuring a direction vector of the rail, and the rail based on image information of a rail measurement portion from the image capturing means and a direction vector of the rail from the direction vector measuring means. A rail cross-section shape measuring device for measuring the cross-sectional shape of the measuring portion.
1の光源と、前記第1の光源からの平面光が照射されて
いるレ−ルの測定部分の撮像情報を出力する第1の撮像
手段と、前記レ−ルの基準部分に平面光を照射する第2
の光源と、前記第2の光源からの平面光が照射されてい
るレ−ルの基準部分の撮像情報を出力する第2の撮像手
段とを備え、前記第2の撮像手段からのレ−ルの基準部
分の撮像情報に基づいてレ−ルの方向ベクトルを測定
し、さらに前記第1の撮像手段からのレ−ルの測定部分
の撮像情報及び前記レ−ルの方向ベクトルに基づいて前
記レ−ルの測定部分のレ−ルの長手方向に直角な断面の
形状を測定するレ−ルの断面形状測定装置。3. A first light source for irradiating plane light to a measurement portion of the rail, and a second light source for outputting imaging information of the measurement portion of the rail to which the plane light from the first light source is irradiated. A second imaging means for irradiating plane light to a reference portion of the rail;
A light source, and second imaging means for outputting imaging information of a reference portion of the rail irradiated with the plane light from the second light source, and the rail from the second imaging means. The direction vector of the rail is measured based on the imaging information of the reference portion, and the rail is further measured based on the imaging information of the measurement portion of the rail from the first imaging means and the direction vector of the rail. A rail cross-section shape measuring device for measuring the cross-sectional shape of the rail at the section perpendicular to the longitudinal direction of the rail;
1の光源と、前記第1の光源からの平面光が照射されて
いるレ−ルの測定部分の撮像情報を出力する第1の撮像
手段と、前記レ−ルの基準部分に平面光を照射する第2
の光源と、前記第2の光源からの平面光が照射されてい
るレ−ルの基準部分の撮像情報を出力する第2の撮像手
段とを備え、前記第2の撮像手段から出力されるレ−ル
の長手方向に沿った複数箇所の基準部分の撮像情報に基
づいて前記複数箇所のレ−ルの方向ベクトルを測定し、
さらに前記第1の撮像手段から出力されるレ−ルの長手
方向に沿った複数箇所の測定部分の撮像情報及び前記複
数箇所のレ−ルの方向ベクトルに基づいて前記レ−ルの
測定部分のレ−ルの長手方向の断面の形状を測定するレ
−ルの断面形状測定装置。4. A first light source for irradiating plane light to a measurement part of the rail, and a second light source for outputting imaging information of the measurement part of the rail to which the plane light from the first light source is irradiated. A second imaging means for irradiating plane light to a reference portion of the rail;
Light source, and second imaging means for outputting imaging information of a reference portion of the rail irradiated with the plane light from the second light source, and the laser output from the second imaging means. Measuring direction vectors of the plurality of rails based on imaging information of a plurality of reference portions along the longitudinal direction of the rail,
Further, based on the imaging information of a plurality of measurement portions along the longitudinal direction of the rail output from the first imaging means and the direction vector of the rail at the plurality of portions, the measurement portion of the rail is measured. A rail cross-section shape measuring device for measuring the cross-sectional shape of a rail in the longitudinal direction.
所の基準部分に平面光を照射する光源を用い、前記第2
の撮像手段として前記第2の撮像手段からのレ−ルの平
面光が照射されているレ−ルの各基準部分の撮像情報を
出力する撮像手段を用い、前記第2の撮像手段からの撮
像情報に基づいてレ−ルの各基準部分の基準点の座標を
測定し、前記各基準部分の基準点の座標に基づいて前記
複数箇所のレ−ルの方向ベクトルを測定する請求項3ま
たは4に記載のレ−ルの断面形状測定装置。5. A light source for irradiating plane light to two reference portions of the rail as the second light source,
The imaging means for outputting the imaging information of each reference portion of the rail irradiated with the plane light of the rail from the second imaging means, and the imaging from the second imaging means. 5. The method according to claim 3, wherein coordinates of reference points of each reference portion of the rail are measured based on the information, and direction vectors of the plurality of rails are measured based on coordinates of reference points of each reference portion. 2. A rail cross-section shape measuring apparatus according to claim 1.
1の光源と、前記第1の光源からの平面光が照射されて
いるレ−ルの測定部分の撮像情報を出力する第1の撮像
手段と、前記レ−ルの基準部分に平面光を照射する第2
の光源と、前記第2の光源からの平面光が照射されてい
るレ−ルの基準部分の撮像情報を出力する第2の撮像手
段と、前記第1の撮像手段及び前記第2の撮像手段から
の撮像情報を記憶する記憶手段とを備えるレ−ルの断面
形状測定用デ−タ測定装置。6. A first light source for irradiating plane light to a measurement portion of the rail, and a second light source for outputting imaging information of the measurement portion of the rail to which the plane light from the first light source is irradiated. A second imaging means for irradiating plane light to a reference portion of the rail;
Light source, second image pickup means for outputting image pickup information of a reference portion of the rail irradiated with the plane light from the second light source, the first image pickup means and the second image pickup means A data measuring device for measuring the cross-sectional shape of a rail, comprising: storage means for storing imaging information from the rail.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30292697A JPH11142124A (en) | 1997-11-05 | 1997-11-05 | Method and equipment for measuring sectional shape of rail |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30292697A JPH11142124A (en) | 1997-11-05 | 1997-11-05 | Method and equipment for measuring sectional shape of rail |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11142124A true JPH11142124A (en) | 1999-05-28 |
Family
ID=17914799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30292697A Pending JPH11142124A (en) | 1997-11-05 | 1997-11-05 | Method and equipment for measuring sectional shape of rail |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11142124A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001304824A (en) * | 2000-04-19 | 2001-10-31 | Tokimec Inc | Portable rail section measuring apparatus |
CN102030016A (en) * | 2010-11-03 | 2011-04-27 | 西南交通大学 | Structured light vision-based track irregularity state detection method |
WO2013099612A1 (en) * | 2011-12-28 | 2013-07-04 | 川崎重工業株式会社 | Displacement detection device for railroad rail |
JP2017524145A (en) * | 2014-07-25 | 2017-08-24 | ジェネラル インピアンティ ソシエタ レスポンサビリタ リミタータGeneral Impianti S.R.L. | Method for obtaining data on the upper profile of a railroad track or switch element |
JP6440891B1 (en) * | 2018-07-17 | 2018-12-19 | 菱栄工機株式会社 | Inspection system and inspection method |
CN116392614A (en) * | 2023-06-09 | 2023-07-07 | 至善时代智能科技(北京)有限公司 | Ultraviolet sterilization effect determining method |
-
1997
- 1997-11-05 JP JP30292697A patent/JPH11142124A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001304824A (en) * | 2000-04-19 | 2001-10-31 | Tokimec Inc | Portable rail section measuring apparatus |
CN102030016A (en) * | 2010-11-03 | 2011-04-27 | 西南交通大学 | Structured light vision-based track irregularity state detection method |
WO2013099612A1 (en) * | 2011-12-28 | 2013-07-04 | 川崎重工業株式会社 | Displacement detection device for railroad rail |
JP2013136352A (en) * | 2011-12-28 | 2013-07-11 | Kawasaki Heavy Ind Ltd | Displacement detection device for railroad rail |
CN104024081A (en) * | 2011-12-28 | 2014-09-03 | 川崎重工业株式会社 | Displacement detection device for railroad rail |
US9205850B2 (en) | 2011-12-28 | 2015-12-08 | Kawasaki Jukogyo Kabushiki Kaisha | Displacement detecting apparatus for railroad rails |
JP2017524145A (en) * | 2014-07-25 | 2017-08-24 | ジェネラル インピアンティ ソシエタ レスポンサビリタ リミタータGeneral Impianti S.R.L. | Method for obtaining data on the upper profile of a railroad track or switch element |
JP6440891B1 (en) * | 2018-07-17 | 2018-12-19 | 菱栄工機株式会社 | Inspection system and inspection method |
JP2020011799A (en) * | 2018-07-17 | 2020-01-23 | 菱栄工機株式会社 | Inspection system and inspection method |
CN116392614A (en) * | 2023-06-09 | 2023-07-07 | 至善时代智能科技(北京)有限公司 | Ultraviolet sterilization effect determining method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10812694B2 (en) | Real-time inspection guidance of triangulation scanner | |
JP4445959B2 (en) | Non-contact dynamic detection method of solid contour shape | |
JP2019518209A (en) | Tread depth measurement | |
JP5698285B2 (en) | Overhead wire position measuring apparatus and method | |
EP1766326B1 (en) | Optical method of determining a dimension or orientation of a moving object | |
CN108778889A (en) | Method and measuring system for detecting the fixed point by track | |
EA039709B1 (en) | Rail vehicle and method for surveying a track section | |
CN102749061A (en) | Steel rail abrasion measuring method based on dynamic template | |
JP6159177B2 (en) | Overhead wire position measuring apparatus and method | |
CN108362228A (en) | A kind of hybrid three-dimensional measuring apparatus of finishing tool grating and measurement method based on double ray machines | |
JP2021513481A (en) | A method for locating points of interest or lines on railroad tracks, positioning and driving intervention machines on railroad tracks. | |
EP2047210B1 (en) | Optical profile scanning | |
JP5383853B2 (en) | Tool shape measuring apparatus and tool shape measuring method | |
JP2010136563A (en) | Device and method for inspecting pantograph type current collector | |
JPH11142124A (en) | Method and equipment for measuring sectional shape of rail | |
JP6575087B2 (en) | Trolley wire wear measuring device | |
JP5001521B2 (en) | Tool shape measuring device | |
JP2007093412A (en) | Three-dimensional shape measuring device | |
JPH05164519A (en) | Measuring instrument for three-dimensional shape of structure surrounding railroad track | |
JP2019015631A (en) | Three-dimensional measuring device | |
JP3065367B2 (en) | Shape measurement device for structures around railway tracks | |
JPH08178642A (en) | Surveying device for railway | |
KR101833055B1 (en) | 3-dimensional measuring system | |
KR20020037778A (en) | Three-Dimensional Shape Measuring Method | |
JPH07324913A (en) | Measuring method of dimension |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060317 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060815 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20061212 Free format text: JAPANESE INTERMEDIATE CODE: A02 |