[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1113763A - Magnetic levitation device - Google Patents

Magnetic levitation device

Info

Publication number
JPH1113763A
JPH1113763A JP9172298A JP17229897A JPH1113763A JP H1113763 A JPH1113763 A JP H1113763A JP 9172298 A JP9172298 A JP 9172298A JP 17229897 A JP17229897 A JP 17229897A JP H1113763 A JPH1113763 A JP H1113763A
Authority
JP
Japan
Prior art keywords
electromagnets
current
circuit
drive signal
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9172298A
Other languages
Japanese (ja)
Other versions
JP4144046B2 (en
Inventor
Yoshihiro Nagano
善宏 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17229897A priority Critical patent/JP4144046B2/en
Publication of JPH1113763A publication Critical patent/JPH1113763A/en
Application granted granted Critical
Publication of JP4144046B2 publication Critical patent/JP4144046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent control from falling into the unstable state by constituting a drive circuit in which electromagnetic current for feedback control is let flow into a pair of electromagnets so that output overlapped a constant offset current on AC component corresponding to a drive signal for feedback control is generated. SOLUTION: When a magnetic levitation device is operated, a drive signal S in made by a feedback circuit 5 in a drive circuit 3, the drive signal to which bias is added, is converted to electromagnetic current 1a by a V/I conversion circuit 6 so as to input it to an electromagnet 2a. Meanwhile, a signal added with bias after inverting the drive signal S by an inversion circuit 5a is input to an electromagnet 2b as electromagnetic current 1b by the V/I conversion circuit 6. In this case, an offset adding means 7 is provided between a bias point and the V/I conversion circuit 6, the offset is decided so that the electromagnetic current is larger than zero and smaller than bias current. Hereby the electromagnets 2a, 2b can always be effectively functioned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種の磁気浮上装
置に関するものである。
[0001] The present invention relates to various magnetic levitation devices.

【0002】[0002]

【従来の技術】この種の磁気浮上装置として、常電導に
よる吸引形磁気浮上タイプのものがある。図6はこれを
模式的に示すものであって、磁性体1と、この磁性体1
を挟んで対向位置に配設される一対の電磁石2a、2b
と、これらの電磁石2a、2bにフィードバック制御用
の電磁石電流Ia、Ibを入力する駆動回路3とを具備
してなる。そして、前記一対の電磁石2a、2bによっ
て磁性体1を逆方向に吸引し合うことで、該磁性体1の
浮上を実現するようにしている。
2. Description of the Related Art As a magnetic levitation device of this type, there is a magnetic levitation type suction device using normal conduction. FIG. 6 schematically shows this, in which the magnetic body 1 and the magnetic body 1
A pair of electromagnets 2a, 2b disposed at opposing positions with respect to
And a drive circuit 3 for inputting electromagnet currents Ia and Ib for feedback control to these electromagnets 2a and 2b. Then, the magnetic body 1 is attracted to each other by the pair of electromagnets 2a and 2b in opposite directions, thereby realizing the floating of the magnetic body 1.

【0003】ところで、従来の駆動回路3は、磁性体1
の浮上位置を検出するセンサ回路4からの検出信号に基
づきフィードバック回路5にて該磁性体1の位置変位を
修正するための駆動信号Sを作り、この駆動信号Sにバ
イアスを加えたものをV/I変換回路6で電磁石電流I
aにして一方の電磁石2aにそのまま入力するととも
に、前記駆動信号Sを反転回路5aで反転後にこれにバ
イアスを加えたものをV/I変換回路6で電磁石電流I
bとして他方の電磁石2bに入力するように構成されて
いる。その際、この種の駆動回路3は各部がトランジス
タ等の整流素子からなる点、駆動信号Sが負の領域では
電磁石2のゲインが逆になり制御が不安定になる点など
の理由から、図7に破線で示すように負の電磁石電流I
a、Ibは実際には電磁石2a、2bに流れない(或い
は流さない)構成になっている。駆動信号Sが零を中心
とした一定範囲内では両方の電磁石2a、2bが動作
し、これ以外の範囲では何れか一方の電磁石2にのみ正
の電流Ia又はIbが流れ、吸引が行われるようになっ
ている。
The conventional driving circuit 3 is composed of a magnetic material 1
A feedback signal 5 is used to generate a drive signal S for correcting the displacement of the magnetic body 1 based on a detection signal from the sensor circuit 4 for detecting the flying position of the magnetic sensor 1. / I conversion circuit 6 generates an electromagnetic current I
a, which is directly input to one of the electromagnets 2a, the drive signal S is inverted by an inverting circuit 5a, and a bias is applied thereto.
It is configured to input as b to the other electromagnet 2b. At this time, the drive circuit 3 of this type has a structure in which each part is formed of a rectifying element such as a transistor, and in a region where the drive signal S is negative, the gain of the electromagnet 2 is reversed and the control becomes unstable. As shown by the broken line in FIG.
a and Ib are configured not to actually flow (or not flow) to the electromagnets 2a and 2b. When the drive signal S is within a certain range centered on zero, both electromagnets 2a and 2b operate, and in the other range, the positive current Ia or Ib flows only to one of the electromagnets 2 and the attraction is performed. It has become.

【0004】[0004]

【発明が解決しようとする課題】ところが、このような
構成では、重力などの片荷重が大きく掛かった状態では
電磁石2a又は2bの一方のみしか駆動することができ
ない。このため、両方の電磁石2a、2bを有効利用し
えないため制御の効率も半減したものにならざるを得な
い。
However, in such a configuration, only one of the electromagnets 2a or 2b can be driven in a state where a large one-side load such as gravity is applied. For this reason, since both electromagnets 2a and 2b cannot be used effectively, the control efficiency must be reduced by half.

【0005】加えて、磁気軸受用電磁石とセンサ用電磁
石が実際には略同一構造である点に鑑みて、近時、前記
センサ回路4を、磁気軸受用電磁石2a、2bへの入力
電流からセンサ情報を取り出し得るようにしたいわゆる
センサレス形磁気軸受なるものも開発されているが、こ
のようなものにおいても、電磁石2a、2bへの電磁石
電流Ia又はIbが零になる領域では、それらの電磁石
2a、2bからのセンサ情報がなくなり、浮上位置を正
しく読めなくなるので、系が不安定になるという問題も
ある。
In addition, in view of the fact that the electromagnets for magnetic bearings and the electromagnets for sensors actually have substantially the same structure, the sensor circuit 4 has recently been used to detect the sensor current from the input currents to the electromagnets 2a and 2b for magnetic bearings. A so-called sensorless type magnetic bearing capable of extracting information has also been developed, but even in such a case, in a region where the electromagnet current Ia or Ib to the electromagnets 2a and 2b becomes zero, the electromagnets 2a Since the sensor information from the sensors 2b and 2b is lost and the flying position cannot be read correctly, there is also a problem that the system becomes unstable.

【0006】[0006]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明は、従来ならば電流が零になるような負
の駆動信号が入っても、電磁石に流れる電流を常に零よ
り大きな一定値に保ち、その電流に駆動信号に基づく交
流成分を乗せて当該電磁石を駆動するように構成するこ
ととしている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to reduce the current flowing through the electromagnet from zero even when a negative drive signal is input so that the current becomes zero. The electromagnet is driven by maintaining a large constant value and applying an AC component based on the drive signal to the current.

【0007】このように構成すれば、駆動信号が零を中
心とした一定範囲を越えても電磁石電流の何れが零にな
ることもなく、オフセット電流に駆動信号による交流成
分が重畳して伝えられるため、双方の電磁石を常に有効
に機能させることができる。また、センサレスの場合に
は、両方の電磁石からセンサ情報を得ることができるた
め、浮上位置を正しく読むことが可能となる。
With this configuration, even if the drive signal exceeds a certain range centered on zero, none of the electromagnet currents becomes zero, and the AC component of the drive signal is superimposed on the offset current and transmitted. Therefore, both electromagnets can always function effectively. Also, in the case of sensorless, since the sensor information can be obtained from both electromagnets, it is possible to read the flying position correctly.

【0008】[0008]

【実施例】以下、本発明の一実施例を、図1〜図5を参
照して説明する。図1に、この実施例の磁気浮上装置が
磁気軸受として適用されるターボ分子ポンプを示す。こ
のターボ分子ポンプは、ケーシング11内にロータシャ
フト12に支持させてロータ13を配設し、ロータ13
とケーシング11の内周との間にタービン翼列14を構
成して、ロータ13の回転に伴い吸気口15から吸入し
た気体をタービン翼列14で叩き飛ばし、排気口16よ
り強制排気するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a turbo molecular pump to which the magnetic levitation device of this embodiment is applied as a magnetic bearing. In this turbo molecular pump, a rotor 13 is provided in a casing 11 while being supported by a rotor shaft 12.
A turbine cascade 14 is formed between the turbine blade cascade 14 and the inner periphery of the casing 11, and the gas sucked in from the intake port 15 with the rotation of the rotor 13 is blown off by the turbine cascade 14 and is forcibly exhausted from the exhaust port 16. is there.

【0009】しかして、本実施例は、前記ロータシャフ
ト12をラジアル方向に浮上支持するラジアル軸受用の
磁気浮上装置XおよびYと、前記ロータシャフト12を
スラスト方向に浮上支持するスラスト軸受用の磁気浮上
装置Zとを設けている。ラジアル軸受用の磁気浮上装置
Xは、ロータシャフト12の外周の少なくとも一部を磁
性体1とする一方、ケーシング2の内周に2軸方向に各
対をなして電磁石2a、2bを対向配置し、これらの電
磁石2a、2bに図2に示す駆動回路3からフィードバ
ック制御用の電流Ia、Ibを入力することによって、
ロータシャフト12をラジアル方向に浮上支持するもの
である。また、スラスト軸受用の磁気浮上装置Zは、ロ
ータシャフト12にスラストランナ12aを固設してこ
のスラストランナ12aの少なくとも一部を磁性体1と
する一方、ケーシング11内の対向位置に一対に電磁石
2a、2bを配設し、それらの電磁石2a、2bに駆動
回路3からフィードバック制御用の電流Ia、Ibを入
力することによって、ロータシャフト12をスラスト方
向に浮上支持するものである。
In this embodiment, the magnetic levitation devices X and Y for the radial bearing for floatingly supporting the rotor shaft 12 in the radial direction, and the magnetic levitation devices for the thrust bearing for floatingly supporting the rotor shaft 12 in the thrust direction. A levitation device Z is provided. The magnetic levitation device X for a radial bearing has at least a part of the outer periphery of the rotor shaft 12 as the magnetic body 1 and the electromagnets 2a, 2b facing each other on the inner periphery of the casing 2 in two axial directions. By inputting currents Ia and Ib for feedback control from the drive circuit 3 shown in FIG. 2 to these electromagnets 2a and 2b,
The rotor shaft 12 is supported by floating in the radial direction. A magnetic levitation device Z for a thrust bearing has a thrust runner 12a fixed to the rotor shaft 12 and at least a part of the thrust runner 12a is used as the magnetic body 1. The rotor shafts 12a and 2b are floated and supported in the thrust direction by inputting feedback control currents Ia and Ib from the drive circuit 3 to the electromagnets 2a and 2b.

【0010】以下、スラスト軸受用の磁気浮上装置に代
表して、その駆動回路3の構成を詳述する。この駆動回
路3は、基本的には図8に示したと概ね同様であるが、
バイアス点とV/I変換回路6との間にオフセット付加
手段7を設けた点を構成上の相違点としているものであ
る。このオフセット付加手段7は、図3に示すように、
駆動信号SをそのままV/I変換回路6に入力するライ
ンと、駆動信号Sを折れ線回路71及びローパスフィル
タ72を介してV/I変換回路6に入力するラインとを
並列に設けたもので、図4はそのうちの折れ線回路71
の入出力特性を示している。オフセットは、これによる
電磁石電流が零より大きくバイアス電流より小さくなる
ように定める。また、ローパスフィルタ72のカットオ
フ周波数は、磁気浮上のフィードバック特性に影響する
周波数より十分低くする。
Hereinafter, the configuration of the drive circuit 3 of the magnetic levitation device for a thrust bearing will be described in detail. This drive circuit 3 is basically basically the same as that shown in FIG.
The difference between the bias point and the V / I conversion circuit 6 is that an offset adding means 7 is provided. This offset adding means 7 is, as shown in FIG.
A line for directly inputting the drive signal S to the V / I conversion circuit 6 and a line for inputting the drive signal S to the V / I conversion circuit 6 via the polygonal line circuit 71 and the low-pass filter 72 are provided in parallel. FIG. 4 shows a broken line circuit 71 of FIG.
5 shows the input / output characteristics. The offset is determined so that the resulting electromagnet current is greater than zero and less than the bias current. The cut-off frequency of the low-pass filter 72 is set sufficiently lower than the frequency that affects the magnetic levitation feedback characteristics.

【0011】本実施例による入出力特性を図5に示す。
直流的には、従来は電流が零となる部分が折れ線回路7
1によって持ち上げられ、最低でも一定のオフセット電
流が流れるようになっている。交流的には、折れ線回路
71を出た後のローパスフィルタ72によって交流成分
がカットされ、トータルとしての交流成分は残るので、
図中網掛けで示す範囲で電流値が変化し、駆動信号Sに
対応する交流成分が電磁石2a、2bに伝わることとな
る。
FIG. 5 shows input / output characteristics according to this embodiment.
Conventionally, the portion where the current becomes zero is a broken line circuit 7.
1 so that at least a constant offset current flows. In terms of AC, the AC component is cut by the low-pass filter 72 after exiting the polygonal line circuit 71, and the AC component as a whole remains.
In the figure, the current value changes in the shaded range, and an AC component corresponding to the drive signal S is transmitted to the electromagnets 2a and 2b.

【0012】したがって、このように構成すれば、駆動
信号Sが零を中心とした一定範囲を越えても電磁石電流
Ia又はIbの何れも零になることがなく、オフセット
電流を利用して駆動信号Sによる交流成分を有効に伝え
ることができる。このため、双方の電磁石2a、2bを
常に有効に機能させることが可能となる。また、センサ
レスの場合にも、常に両方の電磁石2a、2bからセン
サ情報を得ることができるため、ロータシャフト12の
浮上位置を正しく読むことが可能となる。
Therefore, according to this structure, even if the drive signal S exceeds a certain range centered at zero, neither the electromagnet current Ia nor Ib becomes zero, and the drive signal S utilizes the offset signal to make use of the offset current. The AC component by S can be effectively transmitted. Therefore, both electromagnets 2a and 2b can always function effectively. Further, even in the case of the sensorless type, since the sensor information can always be obtained from both the electromagnets 2a and 2b, it is possible to correctly read the floating position of the rotor shaft 12.

【0013】なお、各部の具体的な構成は、上述した実
施例のみに限定されるものではなく、本発明の趣旨を逸
脱しない範囲で種々変形が可能である。例えば、折れ線
回路とローパスフィルタの配列を前後逆にしても同様に
機能させることができる。
The specific configuration of each part is not limited to only the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the same function can be obtained even if the arrangement of the broken line circuit and the low-pass filter is reversed.

【0014】[0014]

【発明の効果】本発明は、以上説明した構成であるか
ら、双方の電磁石に常に有効に電磁石電流を供給してそ
れらの電磁石を機能させることができる。このため、従
来に比べて磁性体或いはこの磁性体を付帯した回転体等
の支持を安定して高い効率で行うことが可能となる。特
に、センサレスの磁気浮上の場合、電磁石電流から常に
有効に位置情報を得ることができるので、センサ信号が
とぎれて制御が不安定な状態に陥るという不都合を確実
に解消することが可能となる。
According to the present invention having the above-described structure, it is possible to always effectively supply an electromagnet current to both electromagnets to make them function. For this reason, it becomes possible to stably support the magnetic body or the rotating body attached to the magnetic body with high efficiency as compared with the related art. In particular, in the case of sensorless magnetic levitation, since position information can always be obtained effectively from the electromagnet current, it is possible to reliably eliminate the disadvantage that the sensor signal is interrupted and control is unstable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を適用したターボ分子ポンプ
の概略的な断面図。
FIG. 1 is a schematic sectional view of a turbo-molecular pump to which an embodiment of the present invention is applied.

【図2】同実施例で用いた磁気浮上装置のブロック図。FIG. 2 is a block diagram of a magnetic levitation device used in the embodiment.

【図3】図2の要部詳細図。FIG. 3 is a detailed view of a main part of FIG. 2;

【図4】同実施例における折れ線回路の入出力特性を示
すグラフ。
FIG. 4 is a graph showing input / output characteristics of the polygonal circuit in the embodiment.

【図5】同実施例における磁気浮上装置全体の入出力特
性を示すグラフ。
FIG. 5 is a graph showing the input / output characteristics of the entire magnetic levitation device in the example.

【図6】磁気浮上装置の従来例を示すブロック図。FIG. 6 is a block diagram showing a conventional example of a magnetic levitation device.

【図7】同従来例における磁気浮上装置全体の入出力特
性を示すグラフ。
FIG. 7 is a graph showing input / output characteristics of the entire magnetic levitation device in the conventional example.

【符号の説明】[Explanation of symbols]

1…磁性体 2a、2b…電磁石 3…駆動回路 12…ロータシャフト Ia、Ib…電磁石電流 S…駆動信号 X、Y、Z…磁気浮上装置 DESCRIPTION OF SYMBOLS 1 ... Magnetic body 2a, 2b ... Electromagnet 3 ... Drive circuit 12 ... Rotor shaft Ia, Ib ... Electromagnet current S ... Drive signal X, Y, Z ... Magnetic levitation device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】磁性体と、この磁性体を挟んで対向位置に
配設される一対の電磁石と、これらの電磁石にフィード
バック制御用の電磁石電流を入力する駆動回路とを具備
してなり、前記一対の電磁石によって磁性体を浮上支持
するようにした磁気浮上装置において、 前記駆動回路を、最低でも一定のオフセット電流とフィ
ードバック制御用の駆動信号に対応する交流成分とを重
畳させた電磁石電流を各電磁石に入力し得るように構成
してなることを特徴とする磁気浮上装置。
An electromagnet includes a magnetic body, a pair of electromagnets disposed at opposing positions across the magnetic body, and a drive circuit for inputting an electromagnet current for feedback control to the electromagnets. In a magnetic levitation device configured to levitate and support a magnetic body by a pair of electromagnets, the drive circuit may include an electromagnet current obtained by superimposing at least a constant offset current and an AC component corresponding to a drive signal for feedback control. A magnetic levitation device characterized by being configured to be able to input to an electromagnet.
JP17229897A 1997-06-27 1997-06-27 Magnetic levitation device Expired - Lifetime JP4144046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17229897A JP4144046B2 (en) 1997-06-27 1997-06-27 Magnetic levitation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17229897A JP4144046B2 (en) 1997-06-27 1997-06-27 Magnetic levitation device

Publications (2)

Publication Number Publication Date
JPH1113763A true JPH1113763A (en) 1999-01-22
JP4144046B2 JP4144046B2 (en) 2008-09-03

Family

ID=15939342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17229897A Expired - Lifetime JP4144046B2 (en) 1997-06-27 1997-06-27 Magnetic levitation device

Country Status (1)

Country Link
JP (1) JP4144046B2 (en)

Also Published As

Publication number Publication date
JP4144046B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
US5350283A (en) Clean pump
JP3215842B2 (en) Magnetic bearing protection device and turbo molecular pump
US5667363A (en) Magnetically supported friction pump
US11015609B2 (en) Magnetic levitation control device and vacuum pump
JP3463218B2 (en) Magnetic bearing device
JP6801481B2 (en) Magnetic bearing equipment and vacuum pump
Asama et al. A novel concept of a single-drive bearingless motor
JPH1113763A (en) Magnetic levitation device
JP4136385B2 (en) Magnetic bearing type turbo molecular pump
JPH1137155A (en) Magnetic bearing and control system thereof
JPH0414A (en) Vacuum pump
JPS5879695A (en) Axial molecular pump
JP3600261B2 (en) Magnetic bearing device
JPH048911A (en) Magnetic bearing device
JP5309876B2 (en) Vacuum pump
JPS6399742A (en) Magnetic bearing integrating type motor
JP2002174199A (en) Bearing device for laser oscillator blower
JP2019190304A (en) Vacuum pump, and control device of vacuum pump
Crane Magnetic bearings for high speed turbo molecular pumps
JPH02163497A (en) Turbo-molecular pump
JP2000283088A (en) Turbo-molecule pump
JP2004270778A (en) Magnetic bearing device
JP2546997B2 (en) Non-contact support method
JP2002174198A (en) Bearing device for laser oscillator blower
JP2519537Y2 (en) Magnetic bearing control circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

EXPY Cancellation because of completion of term