[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11135819A - Compound thin-film solar cell - Google Patents

Compound thin-film solar cell

Info

Publication number
JPH11135819A
JPH11135819A JP9300025A JP30002597A JPH11135819A JP H11135819 A JPH11135819 A JP H11135819A JP 9300025 A JP9300025 A JP 9300025A JP 30002597 A JP30002597 A JP 30002597A JP H11135819 A JPH11135819 A JP H11135819A
Authority
JP
Japan
Prior art keywords
glass
solar cell
weight
substrate
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9300025A
Other languages
Japanese (ja)
Inventor
Shigeo Hayashi
茂生 林
Takayuki Negami
卓之 根上
Junichi Hibino
純一 日比野
Takahiro Wada
隆博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9300025A priority Critical patent/JPH11135819A/en
Publication of JPH11135819A publication Critical patent/JPH11135819A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a solar cell which restrains the thermal deformation and the thermal strain of a substrate in an element formation process and whose reliability is high, and to restrain its production cost in a thin-film photoelectric conversion element, in which a Cu(In, Ga)Se2 -based or CdTe-based compound semiconductor is used as a photoelectric conversion layer. SOLUTION: A glass substrate 11 is used. Since its composition and its manufacturing method are similar to those of a soda lime glass, its production cost is low. The annealing point of the glass substrate 11 is at 620 deg.C, and it is higher than the highest process temperature (550 deg.C) of the formation of a solar cell. In addition, the coefficient of thermal expansion of a glass is at 8×10<-6> / deg.C, and it nearly matches with the coefficient of thermal expansion of a CIGS absorption layer. An Mo electrode 12 is used. A Cu(In,Ga)Se2 thin film 13 is formed through a vapor deposition method. A ZnO film 15 and an ITO transparent conductive film 16 are used. A extraction electrode 17 is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス基板上に形
成されたIb族、IIIb族、VIb族元素を主成分とした光電
変換層を用いた化合物薄膜太陽電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound thin-film solar cell using a photoelectric conversion layer containing a group Ib, group IIIb or group VIb element formed on a glass substrate as a main component.

【0002】[0002]

【従来の技術】カルコパイライト結晶構造を持つIb-III
b-VIb族化合物半導体や立方晶系あるいは六方晶系のIIb
-VIb族化合物半導体は可視から近赤外の波長範囲の光に
対して大きな吸収係数を有しているために、高効率薄膜
太陽電池の材料として期待されている。代表的な例とし
てCu(In,Ga)Se2系(以下CIGS系と記述する)やCdTe系が
あげられる。CIGS系ではアルミナや石英ガラスあるいは
corning社のcorning7059ガラス基板上の薄膜に始まり、
現在ではソーダライムガラス基板上の薄膜太陽電池が主
に研究されている。ソーダライムガラスは、安価である
ことと熱膨張係数がCIS系化合物半導体のそれに近いこ
とから研究が実用化レベルで進められ、高効率の太陽電
池を達成している。また、CdTe系は同じくアルミナや石
英ガラスで研究が始められ、CIGSと同じくソーダライム
ガラスも研究されたが、CIGS系に比べて少しプロセス温
度が高いためにソーダライムは変形が激しく使い物にな
らず、主にcorning7059ガラスを基板とした研究が進め
られ、同じく実用化レベルに達している。
2. Description of the Related Art Ib-III having chalcopyrite crystal structure
Group b-VIb compound semiconductors and cubic or hexagonal IIb
-VIb group compound semiconductors are expected to be used as materials for high-efficiency thin-film solar cells because they have a large absorption coefficient for light in the visible to near-infrared wavelength range. Representative examples include Cu (In, Ga) Se 2 system (hereinafter referred to as CIGS system) and CdTe system. In CIGS system, alumina or quartz glass or
Beginning with a thin film on a corning 7059 glass substrate,
At present, thin film solar cells on soda lime glass substrates are mainly studied. Research on soda-lime glass is inexpensive and its thermal expansion coefficient is close to that of CIS-based compound semiconductors, so research is proceeding at the practical level, and high-efficiency solar cells have been achieved. Also, research on CdTe was started with alumina and quartz glass, and soda lime glass was also studied as with CIGS. Research has mainly been conducted using corning7059 glass as a substrate, and has also reached a practical level.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ソーダ
ライムガラスは軟化温度が低く、CIGS系太陽電池の吸収
層を形成する場合に、基板温度がガラスの軟化点に近い
ことから、熱履歴による変形や、基板を外周のみで支え
ていることによる力の不均一印加による変形などの課題
があった。この問題に対して、一般にcorning7059ガラ
スなどの軟化点の高い無アルカリガラスあるいはアルカ
リが含有量が1%未満の少アルカリガラスが用いられた
が、これらのガラスは、吸収層との熱膨張係数の違いが
大きいことなどから、吸収層などに歪みがかかり、剥離
が頻発したり膜中にボイドが発生するなどの問題が発生
し、最終的に高い効率の太陽電池が得られなかった。
However, soda lime glass has a low softening temperature, and when forming an absorption layer of a CIGS solar cell, the substrate temperature is close to the softening point of the glass. However, there are problems such as deformation due to non-uniform application of force caused by supporting the substrate only at the outer periphery. To address this problem, generally non-alkali glass having a high softening point such as cornering7059 glass or low alkali glass having an alkali content of less than 1% was used.However, these glasses have a thermal expansion coefficient with the absorption layer. Due to the large difference, the absorption layer and the like are distorted, causing problems such as frequent peeling and generation of voids in the film, and a solar cell with high efficiency was not finally obtained.

【0004】CdTe系太陽電池では、ややCIGSよりも形成
温度が高いためにソーダライムガラスは用いられず、主
に軟化点の高いcorning7059ガラスが用いられていた
が、高価であるためにコスト的に不利であるといった難
点があった。
In the case of CdTe-based solar cells, soda-lime glass was not used because the formation temperature was somewhat higher than CIGS. Corning 7059 glass, which has a high softening point, was mainly used. There was a disadvantage that it was disadvantageous.

【0005】ガラスは、加熱されると連続的に粘度が低
下するが、ガラスの熱特性を示す指標となる温度とし
て、歪点と徐冷点と軟化点がある。歪点とはこれ以下の
温度ではガラス中の歪みを除去できない温度であり、徐
冷点とは15分でガラスの内部歪みが除去される温度であ
り、言い換えると外力が加わることで容易に変形が行わ
れる温度である。軟化点は文字通りガラスが何の力も加
えないでも軟化して自重により変形し始める温度であ
る。ガラス基板上のCIGSやCdTeの結晶成長を行
う場合の歪みを問題にする場合に、ガラスの徐冷点が指
標となることがわかってきた。
[0005] Although the viscosity of glass continuously decreases when heated, there are a strain point, an annealing point, and a softening point as temperatures that are indicators of the thermal characteristics of glass. The strain point is a temperature below which the strain in the glass cannot be removed, and the annealing point is the temperature at which the internal strain of the glass is removed in 15 minutes.In other words, it is easily deformed by the application of external force. Is the temperature at which The softening point is literally the temperature at which the glass begins to soften and deform under its own weight without applying any force. It has been found that the slow cooling point of glass serves as an index when considering the distortion in growing a crystal of CIGS or CdTe on a glass substrate.

【0006】本発明はかかる点に鑑み、安価でかつ変形
と熱歪みの少ない太陽電池を得ることを目的とする。
[0006] In view of the above, an object of the present invention is to provide a solar cell which is inexpensive and has little deformation and thermal distortion.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、徐冷点が550℃より高く、かつ前記ガ
ラスの熱膨張係数が6×10-6/℃以上10×10-6/℃以
下であるガラス基板上に設けられたCIGS系化合物あ
るいはCdTeを吸収層とする太陽電池である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has a gradual cooling point higher than 550 ° C. and a glass having a thermal expansion coefficient of at least 6 × 10 −6 / ° C. and at least 10 × 10 6. A solar cell having a CIGS-based compound or CdTe provided on a glass substrate having a temperature of -6 / C or lower as an absorption layer.

【0008】前記構成において、SiO2の含有量が40重量
%以上80重量%以下であり、Al2O3の含有量が5重量%以
上15重量%以下であり、Na2O、K2Oの含有量がそれぞれ1
重量%以上15重量%以下であり、MgO、CaO、SrO、BaO、
Zr2Oの含有量がそれぞれ1重量%以上10重量%以下であ
るガラスを用いることが好ましい。
In the above structure, the content of SiO 2 is 40% by weight or more and 80% by weight or less, the content of Al 2 O 3 is 5% by weight or more and 15% by weight or less, and Na 2 O, K 2 O Content of each 1
Not less than 15% by weight and MgO, CaO, SrO, BaO,
It is preferable to use glass having a Zr 2 O content of 1% by weight or more and 10% by weight or less.

【0009】また、前記構成において、SiO2の含有量が
58±10重量%であり、Al2O3、Na2O、K2O、MgO、CaO、Sr
O、BaO、Zr2Oの含有量がそれぞれ7±2、4±1,6±2,2
±1,5±1,7±2,8±2,2±1重量%であるガラスを用
いることがさらに好ましい。
Further, in the above structure, the content of SiO 2 is
58 ± 10% by weight, Al 2 O 3 , Na 2 O, K 2 O, MgO, CaO, Sr
O, BaO, Zr 2 O content of 7 ± 2, 4 ± 1, 6 ± 2, 2 respectively
It is further preferable to use glass having a content of ± 1, 5 ± 1, 7 ± 2, 8 ± 2, 2 ± 1% by weight.

【0010】また、前記構成において、ガラスと吸収層
の熱膨張係数が誤差10%以内で一致することが好まし
い。
Further, in the above structure, it is preferable that the thermal expansion coefficients of the glass and the absorbing layer match within an error of 10% or less.

【0011】[0011]

【発明の実施の形態】以下本発明について詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0012】<発明の実施の形態1>図1に本発明の太陽
電池の構造を示す。いわゆるサブストレート型である。
<First Embodiment of the Invention> FIG. 1 shows the structure of a solar cell according to the present invention. It is a so-called substrate type.

【0013】11はガラス基板である。12はMo電極であ
る。13は蒸着法で形成したCIGS薄膜である。14はCdS、1
5はZnO、16はITO透明導電膜である。17は取り出し電極
である。ガラス基板の徐冷点は、この太陽電池形成のプ
ロセス温度よりも高くなっている。また、吸収層の熱膨
張係数のガラス基板の熱膨張係数に対する比は0.6以上
1.4以下である。
Reference numeral 11 denotes a glass substrate. 12 is a Mo electrode. 13 is a CIGS thin film formed by a vapor deposition method. 14 is CdS, 1
5 is ZnO and 16 is an ITO transparent conductive film. 17 is an extraction electrode. The annealing point of the glass substrate is higher than the process temperature for forming the solar cell. The ratio of the thermal expansion coefficient of the absorption layer to the thermal expansion coefficient of the glass substrate is 0.6 or more.
1.4 or less.

【0014】以下具体的製造方法について記す。 (実施例1)30mm角で厚さが1mmの上記成分のガラス基板
11(徐冷点は620℃)を市販のアルカリ系ガラス洗浄液
で洗浄する。純水でリンス処理後、RFスパッタ法によ
り裏面Mo電極12を約1ミクロン形成する。スパッタガス
は窒素である。以下はこのMo電極の一部をマスクした状
態でプロセスを進める。まず、基板温度を約550℃に上
げた状態で銅、インジウム、ガリウム、金属セレンを同
時に蒸着してCIGS多結晶薄膜13を2ミクロン形成した。
このCIGS膜中のCu,In,Ga,Seの原子数比は1:0.75:
0.25:2であった。この後、ケミカルバスデポジション
法(chemical bath deposition法:CBD法)によ
り、14のCdSを約0.1ミクロン形成した。本実施例の場
合、塩化カドミウムと塩化アンモニウムとチオ尿素とア
ンモニアの約1:10:1:100の混合液を約80℃に熱して
その中に基板上を挿入して結晶化させた。さらにスパッ
タ法により15のZnOと16のITOをそれぞれ約0.1ミクロン
ずつ形成した。このときのスパッタガスは窒素である。
最後にマスクをした状態で取り出し電極の金17を蒸着法
により形成した。ガラス基板の成分はソーダライムガラ
ス(soda lime glass:SLG)に近いが、SrOやBaO、Z
rOなどを含み、徐冷点が一般のソーダライムガラスより
も高く、この太陽電池形成のプロセス温度よりも高くな
っている。その成分を表1に示す。SiO2、 Al2O3、Na
2O、K2O、MgO、CaO、SrO、BaO、Zr2Oの含有量がそれぞ
れ58、7、4,6,2,5,7,8,1重量%である。このよ
うにして形成した太陽電池の歪み量を測定した。図2に
従来例のソーダライムガラスを用いた場合の素子形成前
後の上面図(上側)と側面図(下側)である。(a)は
素子形成前で(b)は素子形成後である。30.0mm角の正
方形基板が素子形成後には短弧28.9mm長弧31.0mm幅29.9
mmの扇形状に変形した。これはプロセス温度が徐冷点を
上回り、内部歪みが緩和されたたために発生した変形で
ある。また、側面から見ると、素子形成後には球を切り
取ったような弧状に変形し、中央部の変位は0.3mmであ
った。これは、30mm角基板の端部でのみ基板を保持して
おり、プロセス温度が徐冷点を越えたために、端部にの
み上向きの力がかかったために発生した変形である。こ
れらの例に対して本発明の太陽電池は、素子形成前後の
基板の変形量はほとんどなく、いずれも30mm角の基板に
対して0.1mm以内であった。この太陽電池においてプロ
セスの最高温度がCIGS蒸着時の550℃であるのに対
し、ガラス基板の徐冷点が620℃と高いことから、全プ
ロセス終了時においても、熱履歴による変形のない素子
が形成される。
Hereinafter, a specific manufacturing method will be described. (Example 1) A glass substrate of the above composition having a thickness of 30 mm and a thickness of 1 mm
11 (annealing point is 620 ° C) is washed with a commercially available alkaline glass washing solution. After rinsing with pure water, the back surface Mo electrode 12 is formed to about 1 μm by RF sputtering. The sputtering gas is nitrogen. Hereinafter, the process proceeds with a part of the Mo electrode masked. First, while the substrate temperature was raised to about 550 ° C., copper, indium, gallium, and metallic selenium were simultaneously vapor-deposited to form a CIGS polycrystalline thin film 13 of 2 μm.
The atomic ratio of Cu, In, Ga, and Se in the CIGS film is 1: 0.75:
0.25: 2. Thereafter, 14 CdS was formed to a thickness of about 0.1 μm by a chemical bath deposition method (CBD method). In the case of this example, a mixture of cadmium chloride, ammonium chloride, thiourea, and ammonia at a ratio of about 1: 10: 1: 100 was heated to about 80 ° C., and the substrate was inserted into the mixture and crystallized. Further, about 15 microns of ZnO and about 16 microns of ITO were respectively formed by sputtering. The sputtering gas at this time is nitrogen.
Finally, with the mask in place, gold 17 as an extraction electrode was formed by an evaporation method. The composition of the glass substrate is similar to soda lime glass (SLG), but SrO, BaO, Z
Including rO, etc., the annealing point is higher than that of general soda lime glass, and higher than the process temperature for forming this solar cell. The components are shown in Table 1. SiO 2 , Al 2 O 3 , Na
The contents of 2 O, K 2 O, MgO, CaO, SrO, BaO, and Zr 2 O are 58, 7, 4, 6, 2 , 5, 7, 8, and 1% by weight, respectively. The amount of distortion of the solar cell thus formed was measured. FIG. 2 shows a top view (upper side) and a side view (lower side) before and after element formation when soda lime glass of a conventional example is used. (A) is before element formation and (b) is after element formation. 30.0mm square substrate is short arc 28.9mm long arc 31.0mm width 29.9 after element formation
Deformed into a fan shape of mm. This is a deformation that occurred because the process temperature exceeded the annealing point and internal strain was relaxed. Also, when viewed from the side, after the element was formed, it was deformed into an arc shape as if a sphere was cut out, and the displacement at the center was 0.3 mm. This is a deformation caused by holding the substrate only at the end of the 30 mm square substrate and applying an upward force only to the end because the process temperature has exceeded the annealing point. In contrast to these examples, in the solar cell of the present invention, there was almost no deformation of the substrate before and after element formation, and all were within 0.1 mm for a 30 mm square substrate. In this solar cell, the maximum temperature of the process is 550 ° C at the time of CIGS deposition, while the annealing point of the glass substrate is as high as 620 ° C. It is formed.

【0015】また、この太陽電池において吸収層である
CIGSの熱膨張係数は8×10-6/℃であり、ガラス基板11
の熱膨張係数(8×10-6/℃)とほぼ同じである。よっ
て熱膨張係数歪みは非常に少ないものとなる。
[0015] In the solar cell, an absorption layer is provided.
The thermal expansion coefficient of CIGS is 8 × 10 -6 / ° C, and the glass substrate 11
Is approximately the same as the thermal expansion coefficient (8 × 10 −6 / ° C.). Therefore, the thermal expansion coefficient distortion is very small.

【0016】このように、本発明によると、変形低減や
変形による素子特性の劣化の低減が可能となる。ひいて
は、歩留まりを向上させ、素子製造のコストを低減する
ことが出来る。また、変形による応力に起因すると考え
られる膜の剥離が従来のソーダライムガラスを用いた場
合が10%程度あったものが、本発明の太陽電池では1%
程度となり、歩留まりの向上が可能となる。
As described above, according to the present invention, it is possible to reduce the deformation and the deterioration of the element characteristics due to the deformation. As a result, the yield can be improved, and the cost of element production can be reduced. In addition, about 10% of the case where the conventional soda lime glass was used for peeling of the film considered to be caused by stress due to deformation was 1% in the solar cell of the present invention.
And the yield can be improved.

【0017】また、この太陽電池の光照射時の電流電圧
特性を図3に示す。素子サイズは1cm角で、光照射条件は
太陽電池の評価に標準的に用いられているAM1.5であ
る。従来の特性とほぼ同じ性能が得られている。
FIG. 3 shows current-voltage characteristics of the solar cell at the time of light irradiation. The element size is 1 cm square, and the light irradiation condition is AM1.5 which is used as a standard for evaluation of solar cells. Almost the same performance as the conventional characteristics is obtained.

【0018】本発明においては30mm角のガラス基板を用
いたが、本発明の効果は基板サイズが大きいほど顕著で
あった。
Although a 30 mm square glass substrate was used in the present invention, the effect of the present invention became more remarkable as the substrate size increased.

【0019】ここで11には表1の成分を持つ徐冷点が620
℃のガラスを用いたが、これ以外でも、SiO2の含有量が
40重量%以上80重量%以下であり、Al2O3の含有量が5重
量%以上15重量%以下であり、Na2O、K2Oの含有量がそ
れぞれ1重量%以上15重量%以下であり、MgO、CaO、Sr
O、BaO、Zr2Oの含有量がそれぞれ1重量%以上10重量%
以下であるガラス上に作製したCIGS系化合物を吸収
層とする太陽電池は、徐冷点が550℃より高く、かつガ
ラスの熱膨張係数が6×10-6/℃以上10×10-6/℃以
下であり、吸収層の熱膨張係数に比較的近いために同様
の変形と歪みの低減効果が見られた。このガラスは、成
分や製法がソーダライムガラスと似ているために、ソー
ダライムガラス製造の技術をそのまま使えるために、基
板製造コストがソーダライムガラス並に低いことが特徴
である。
Here, in FIG. 11, the annealing point having the components shown in Table 1 is 620.
° C glass was used, but other than this, the content of SiO 2
40 wt% or more and 80 wt% or less, the content of Al 2 O 3 is 5 wt% or more and 15 wt% or less, and the content of Na 2 O and K 2 O is 1 wt% or more and 15 wt% or less, respectively. And MgO, CaO, Sr
O, BaO, Zr 2 O content is 1wt% or more and 10wt% respectively
A solar cell having a CIGS-based compound as an absorption layer prepared on a glass having a cooling point higher than 550 ° C. and a thermal expansion coefficient of the glass of 6 × 10 −6 / ° C. or more and 10 × 10 −6 / ° C or lower, and a similar effect of reducing deformation and distortion was observed because the coefficient of thermal expansion was relatively close to the absorption layer. Since this glass is similar in composition and manufacturing method to soda-lime glass, the technique of manufacturing soda-lime glass can be used as it is, and thus the substrate manufacturing cost is as low as soda-lime glass.

【0020】[0020]

【表1】 [Table 1]

【0021】ここで、とくにSiO2の含有量が58±10重量
%であり、Al2O3、Na2O、K2O、MgO、CaO、SrO、BaO、Zr
2Oの含有量がそれぞれ7±2、4±1,6±2,2±1,5±1,
7±2,8±2,2±1重量%であるガラス上に形成したCI
GS系化合物を吸収層とする太陽電池の場合に、ガラス
の徐冷点が600℃以上と高く、かつガラスの熱膨張係数
が約8×10-6/℃となり、CIGS吸収層の熱膨張係数にほ
ぼ一致するために変形と歪みの低減効果が特に大きかっ
た。
Here, the content of SiO 2 is particularly 58 ± 10% by weight, and Al 2 O 3 , Na 2 O, K 2 O, MgO, CaO, SrO, BaO, Zr
2 O content of 7 ± 2, 4 ± 1, 6 ± 2, 2 ± 1, 5 ± 1,
7 ± 2,8 ± 2,2 ± 1 wt% CI formed on glass
In the case of a solar cell having a GS compound as the absorption layer, the annealing point of the glass is as high as 600 ° C. or higher, and the thermal expansion coefficient of the glass is about 8 × 10 −6 / ° C., and the thermal expansion coefficient of the CIGS absorption layer And the effect of reducing deformation and distortion was particularly large.

【0022】ここで、これ以外の成分のガラスでも徐冷
点が550℃より高く、かつガラスの熱膨張係数が6×10
-6/℃以上10×10-6/℃以下であるガラス基板上に形
成したCIGS系化合物を吸収層とする太陽電池の場合
に、変形と歪みの低減効果があった。具体的には実施例
1に用いた基板に対してZr2Oを含まず、SnO2を5%含んだ
基板を用いても同様の効果が見られた。とくにガラスと
吸収層の熱膨張係数が誤差10%以内で一致する場合に
変形の低減効果が大きかった。
Here, the glass of other components has an annealing point higher than 550 ° C. and a thermal expansion coefficient of 6 × 10 5
In the case of a solar cell having a CIGS-based compound formed on a glass substrate having a temperature of -6 / ° C or more and 10 × 10 -6 / ° C or less, there was an effect of reducing deformation and distortion. Specific examples
Similar effects were observed when a substrate containing 5% of SnO 2 without containing Zr 2 O with respect to the substrate used in 1 was obtained. In particular, when the thermal expansion coefficients of the glass and the absorbing layer coincide with each other within an error of 10%, the effect of reducing the deformation was great.

【0023】ここで、本実施例ではサブストレート型の
CIGS系太陽電池について説明したが、このほかガラ
ス基板の構成位置が違ういわゆるスーパーストレート型
でも同様の効果が見られた。
In this embodiment, the substrate type CIGS solar cell has been described. However, a similar effect can be obtained also in a so-called superstrate type in which the glass substrate has a different position.

【0024】<発明の実施の形態2>図4に本発明の太陽
電池の構造を示す。いわゆるスーパーストレート型であ
る。
<Embodiment 2> FIG. 4 shows the structure of a solar cell according to the present invention. It is a so-called super straight type.

【0025】41はガラス基板である。その成分は実施例
1に用いたガラス基板と同じである42はフッソ添加SnO2透明
導電膜、43はn型CdSであり、44はp型CdTeである。45は
カーボン電極、46は取り出し電極の銀である。47は同じ
く取り出し電極のAg-In電極である。実施の形態1と同様
に、ガラス基板の徐冷点は、この太陽電池形成のプロセ
ス温度よりも高くなっている。また、吸収層の熱膨張係
数のガラス基板の熱膨張係数に対する比は0.6以上1.4以
下である。
Reference numeral 41 denotes a glass substrate. The components are examples
42, which is the same as the glass substrate used in 1, is a fluorine-doped SnO 2 transparent conductive film, 43 is n-type CdS, and 44 is p-type CdTe. 45 is a carbon electrode, and 46 is silver as an extraction electrode. Numeral 47 denotes an Ag-In electrode as a take-out electrode. As in Embodiment 1, the annealing point of the glass substrate is higher than the process temperature for forming the solar cell. The ratio of the coefficient of thermal expansion of the absorbing layer to the coefficient of thermal expansion of the glass substrate is 0.6 or more and 1.4 or less.

【0026】以下具体的製造方法について記す。 (実施例2)30mm角で厚さが1mmの上記成分のガラス基板
41(徐冷点は620℃)を実施例1と同じアルカリ系ガラス
洗浄液で洗浄する。リンス処理後、RFスパッタ法によ
り42のフッソ添加SnO2を約0.5ミクロン形成した。スパッタ
ガスはフッ素を5%含んだ窒素ガスである。以下このSnO
2の一部をマスクした状態でプロセスを進める。まず、
CBD法により、43のCdSを約0.1ミクロン形成した。本
実施例の場合、塩化カドミウムと塩化アンモニウムとチ
オ尿素とアンモニアの約1:10:1:100の混合液を約80
℃に熱してその中に基板上を挿入しn型CdSを結晶化
させた。次に近接昇華法で44のp型CdTeを4ミクロン形
成した。このときの基板温度、原料温度、真空度はそれ
ぞれ600℃、680℃、100Torrであった。次にカーボン45
をEB蒸着し、最後にマスクを取り替えてAg電極46とAg
-In電極47をEB蒸着した。
Hereinafter, a specific manufacturing method will be described. (Example 2) A glass substrate of the above composition having a thickness of 30 mm square and a thickness of 1 mm
41 (annealing point: 620 ° C.) is washed with the same alkaline glass washing solution as in Example 1. After the rinsing treatment, 42 fluorine-containing SnO 2 of about 0.5 μm was formed by RF sputtering. The sputtering gas is a nitrogen gas containing 5% of fluorine. Below this SnO
The process proceeds with part of 2 masked. First,
By CBD method, 43 CdS was formed to about 0.1 μm. In the case of this embodiment, a mixture of cadmium chloride, ammonium chloride, thiourea, and ammonia at a ratio of about 1: 10: 1: 100 is used for about 80 hours.
The substrate was inserted into the substrate by heating to ℃ to crystallize n-type CdS. Next, 44 μm of p-type CdTe was formed to 4 μm by proximity sublimation. At this time, the substrate temperature, the raw material temperature, and the degree of vacuum were 600 ° C., 680 ° C., and 100 Torr, respectively. Then carbon 45
Is deposited by EB, and finally, the mask is replaced and the Ag electrode 46 and the Ag
-In electrode 47 was EB deposited.

【0027】このようにして形成した太陽電池セルの歪
み量を測定した。従来のCorning7059ガラスを用いた場
合、素子形成前後の上から見た素子の変形量と横から見
た変形量は、30mm角基板の場合にそれぞれ0.1mm以下で
あったのに対し、本発明の太陽電池素子も同様に変形量
は0.1mm以内であった。corning7059ガラスに対し、本組
成のガラスの単価は約1/10であり、本発明によるとコス
トを低減することが出来る。
The amount of distortion of the solar cell thus formed was measured. When the conventional Corning 7059 glass was used, the deformation amount of the element viewed from above and before and after the element formation and the deformation amount viewed from the side were 0.1 mm or less in the case of a 30 mm square substrate, whereas the present invention Similarly, the amount of deformation of the solar cell element was within 0.1 mm. The unit price of glass of the present composition is about 1/10 that of corning7059 glass, and the cost can be reduced according to the present invention.

【0028】また、この太陽電池セルの光照射時の電流
電圧特性を図5に示す。素子サイズは1cm角で、光照射条
件は太陽電池の評価に標準的に用いられているAM1.5で
ある。従来の特性とほぼ同じ性能が得られている。
FIG. 5 shows current-voltage characteristics of the solar cell at the time of light irradiation. The element size is 1 cm square, and the light irradiation condition is AM1.5 which is used as a standard for evaluation of solar cells. Almost the same performance as the conventional characteristics is obtained.

【0029】この太陽電池においてプロセスの最高温度
がCdTe膜形成時の600℃であるのに対し、ガラス基板の
徐冷点が620℃と高いことから、全プロセス終了時にお
いても、熱履歴による変形のない素子が形成される。ま
た、この太陽電池において吸収層であるCdTeの熱膨張係
数は5×10-6/℃であり、ガラス基板41の熱膨張係数(8
×10-6/℃)に対して約0.6となっている。このことか
ら、熱膨張係数歪みも比較的少なく、素子に与える影響
も少ない。このガラスは、成分や製法がソーダライムガ
ラスと似ているために、ソーダライムガラス製造の技術
をそのまま使えるために、基板製造コストがソーダライ
ムガラス並に低いことが特徴である。
In this solar cell, the maximum temperature of the process is 600 ° C. during the formation of the CdTe film, whereas the annealing temperature of the glass substrate is as high as 620 ° C. A device having no defect is formed. In this solar cell, the thermal expansion coefficient of CdTe as the absorption layer is 5 × 10 −6 / ° C., and the thermal expansion coefficient of the glass substrate 41 (8
× 10 −6 / ° C). For this reason, the thermal expansion coefficient distortion is relatively small, and the influence on the element is small. Since this glass is similar in composition and manufacturing method to soda-lime glass, the technique of manufacturing soda-lime glass can be used as it is, and thus the substrate manufacturing cost is as low as soda-lime glass.

【0030】このように、本発明によると、変形や歪み
による素子特性の劣化を抑えつつ、安価な基板でcornin
g7059同様の素子特性が得られることから、素子製造コ
ストを低減することが出来る。
As described above, according to the present invention, it is possible to suppress the deterioration of the device characteristics due to the deformation and the distortion, and to use the inexpensive substrate for the cornin.
Since element characteristics similar to those of g7059 can be obtained, element manufacturing costs can be reduced.

【0031】本発明においては30mm角のガラス基板を用
いたが、本発明の効果は基板サイズが大きいほど顕著で
あった。
Although a 30 mm square glass substrate was used in the present invention, the effect of the present invention became more remarkable as the substrate size increased.

【0032】ここで41には表1の成分を持つガラスを用
いたが、これ以外でも、SiO2の含有量が40重量%以上80
重量%以下であり、Al2O3の含有量が5重量%以上15重量
%以下であり、Na2O、K2Oの含有量がそれぞれ1重量%以
上15重量%以下であり、MgO、CaO、SrO、BaO、Zr2Oの含
有量がをそれぞれ1重量%以上10重量%以下であるガラ
ス上に作製したCdTe系化合物を吸収層とする太陽電池
は、徐冷点が550℃より高くプロセス温度に比肩でき、
かつガラスの熱膨張係数が6×10-6/℃以上10×10-6
/℃以下であり、CdTe膜の熱膨張係数と比較的近いため
に同様に変形と歪みを抑えつつ製造コストを低減する効
果が見られた。
Here, glass having the components shown in Table 1 was used for 41, but other than this, the content of SiO 2 was 40% by weight or more and 80% or more.
% By weight, the content of Al 2 O 3 is 5% by weight or more and 15% by weight or less, the content of Na 2 O and K 2 O is 1% by weight or more and 15% by weight or less, respectively, MgO, CaO, SrO, BaO, solar cell using CdTe-based compound formed on a glass and the absorbent layer is that not more than 10 wt%, respectively 1 wt% or more the content of Zr 2 O is anneal points higher than 550 ° C. Comparable to process temperature,
And the coefficient of thermal expansion of the glass is 6 × 10 −6 / ° C. or more and 10 × 10 −6.
/ ° C. or less, which is relatively close to the coefficient of thermal expansion of the CdTe film, so that the effect of reducing the manufacturing cost while similarly suppressing the deformation and distortion was observed.

【0033】ここで、とくにSiO2の含有量が58±10重量
%であり、Al2O3、Na2O、K2O、MgO、CaO、SrO、BaO、Zr
2Oの含有量がそれぞれ7±2、4±1,6±2,2±1,5±1,
7±2,8±2,2±1重量%であるガラス基板上に形成した
CdTe系化合物を吸収層とする太陽電池の場合に、ガラス
の徐冷点が600℃以上と高く、かつガラスの熱膨張係数
が約8×10-6/℃となりCdTe膜の熱膨張係数に比較的近
いために、変形と歪みを抑えつつ製造コストを低減する
効果が大きかった。
Here, the content of SiO 2 is particularly 58 ± 10% by weight, and Al 2 O 3 , Na 2 O, K 2 O, MgO, CaO, SrO, BaO, Zr
2 O content of 7 ± 2, 4 ± 1, 6 ± 2, 2 ± 1, 5 ± 1,
7 ± 2,8 ± 2,2 ± 1% by weight formed on glass substrate
In the case of a solar cell using a CdTe-based compound as the absorption layer, the annealing point of the glass is as high as 600 ° C or higher, and the coefficient of thermal expansion of the glass is about 8 × 10 -6 / ° C. Compared to the coefficient of thermal expansion of the CdTe film Because of their closeness, the effect of reducing manufacturing costs while suppressing deformation and distortion was significant.

【0034】ここで、これ以外の成分のガラスでも徐冷
点が550℃より高く、かつガラスの熱膨張係数が6×10
-6/℃以上10×10-6/℃以下であるガラス基板上に形
成したCdTe系化合物を吸収層とする太陽電池の場合に、
変形と歪みを抑えつつ製造コストを低減する効果があっ
た。具体的には実施例1に用いた基板に対してZr2Oを含
まず、SnO2を5%含んだ基板を用いても同様の効果が見
られた。とくにガラスと吸収層の熱膨張係数が誤差10
%以内で一致するガ場合に変形の低減効果が大きかっ
た。
Here, the glass of other components has an annealing point higher than 550 ° C. and a thermal expansion coefficient of 6 × 10 5
In the case of a solar cell having a CdTe-based compound formed on a glass substrate having a temperature of -6 / ° C or more and 10 × 10 -6 / ° C or less,
This has the effect of reducing manufacturing costs while suppressing deformation and distortion. Specifically, the same effect was observed when a substrate containing 5% of SnO 2 without containing Zr 2 O with respect to the substrate used in Example 1. In particular, the thermal expansion coefficient of the glass and the absorption layer is
%, The effect of reducing deformation was large.

【0035】ここで、本実施例ではスーパーストレート
型のCdTe系太陽電池について説明したが、このほかガラ
ス基板の構成位置が違うサブストレート型でも同様の効
果が見られた。
In this embodiment, the superstrate type CdTe-based solar cell has been described. However, the same effect can be obtained also in the case of a substrate type having a different position of the glass substrate.

【0036】[0036]

【発明の効果】以上の発明の実施の形態で説明したよう
に、本発明は以下のような有利な効果がある。
As described in the above embodiments, the present invention has the following advantageous effects.

【0037】ガラス基板上に設けられた銅−インジウム
・ガリウム−セレン系化合物あるいはカドミウムテルル
を吸収層とする太陽電池において、ガラスの徐冷点が55
0℃より高く、かつガラスの熱膨張係数にが6×10-6
℃以上10×10-6/℃以下であることにより、熱履歴に
よる基板の変形や熱膨張係数差による薄膜への歪みの発
生が抑えることが出来る。ひいては歩留まりが向上する
とともに、基板製造コストを低く抑えることが出来るた
めに、素子製造コストの低減が可能になるという効果が
ある。
In a solar cell provided on a glass substrate and having a copper-indium-gallium-selenium compound or cadmium tellurium as an absorption layer, the glass has an annealing point of 55
Higher than 0 ° C and the thermal expansion coefficient of glass is 6 × 10 -6 /
When the temperature is not less than 10 ° C./° C. and not more than 10 × 10 −6 / ° C., deformation of the substrate due to thermal history and distortion of the thin film due to a difference in thermal expansion coefficient can be suppressed. As a result, the yield is improved, and the substrate manufacturing cost can be kept low. Therefore, there is an effect that the element manufacturing cost can be reduced.

【0038】ここで、SiO2の含有量が40重量%以上80重
量%以下であり、Al2O3の含有量が5重量%以上15重量%
以下であり、Na2O、K2Oの含有量がそれぞれ1重量%以上
15重量%以下であり、MgO、CaO、SrO、BaO、Zr2Oの含有
量がそれぞれ1重量%以上10重量%以下であることによ
り、徐冷点が550℃より高く、ガラスの熱膨張係数にが
6×10-6/℃以上10×10-6/℃以下となるために上記
の効果が大きい。
Here, the content of SiO 2 is from 40% by weight to 80% by weight, and the content of Al 2 O 3 is from 5% by weight to 15% by weight.
And the content of Na 2 O and K 2 O is 1% by weight or more, respectively.
15% by weight or less, MgO, CaO, SrO, BaO, and Zr 2 O content of 1% by weight or more and 10% by weight or less, respectively, the annealing point is higher than 550 ° C, and the thermal expansion coefficient of glass The above effect is large because the temperature is 6 × 10 −6 / ° C. or more and 10 × 10 −6 / ° C. or less.

【0039】またここで、ガラス中のSiO2の含有量が58
±10重量%であり、Al2O3、Na2O、K 2O、MgO、CaO、Sr
O、BaO、Zr2Oの含有量がそれぞれ7±2、4±1,6±2,2
±1,5±1,7±2,8±2,2±1重量%である場合に徐冷
点が600℃以上であるとともに、ガラスの熱膨張係数が
7×10-6/℃以上9×10-6/℃以下となり、CIGSの熱膨
張係数とほぼ同じになることから上記の効果が非常に大
きい。
Here, the SiO 2 in the glassTwoContent of 58
± 10% by weight, AlTwoOThree, NaTwoOK TwoO, MgO, CaO, Sr
O, BaO, ZrTwoO content is 7 ± 2, 4 ± 1, 6 ± 2, 2 respectively
Slow cooling when ± 1, 5 ± 1, 7 ± 2, 8 ± 2, 2 ± 1% by weight
Is 600 ° C or higher and the coefficient of thermal expansion of the glass is
7 × 10-6/ ℃ or more 9 × 10-6/ ° C or lower and CIGS thermal expansion
The above effect is very large because the
Good.

【0040】またここで、ガラスと吸収層の熱膨張係数
が誤差10%以内で一致する場合に熱歪みを抑える効果が
大きい。
Here, when the coefficients of thermal expansion of the glass and the absorbing layer match within an error of 10% or less, the effect of suppressing thermal distortion is great.

【0041】以上のように、本発明は、CIGS系ある
いはCdTe系太陽電池を得るに際し、熱履歴による基板の
変形を抑えるとともに、熱膨張係数差による歪みを抑
え、なおかつ安価な製造コストを達成することが可能で
あり、実用的に非常に有用である。
As described above, according to the present invention, when obtaining a CIGS or CdTe solar cell, the deformation of the substrate due to the thermal history, the distortion due to the difference in the coefficient of thermal expansion, and the low manufacturing cost are achieved. It is possible and practically very useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCIGS系太陽電池の構造図FIG. 1 is a structural diagram of a CIGS solar cell of the present invention.

【図2】本発明のCIGS系太陽電池の素子形成前後の変形
の図
FIG. 2 is a diagram of deformation of a CIGS solar cell of the present invention before and after element formation.

【図3】本発明と従来例のCIGS系太陽電池の光照射時の
電流電圧特性を示す図
FIG. 3 is a diagram showing current-voltage characteristics during light irradiation of the CIGS solar cells of the present invention and a conventional example.

【図4】本発明のCdTe系太陽電池の構造図FIG. 4 is a structural diagram of a CdTe-based solar cell of the present invention.

【図5】本発明と従来例のCdTe系太陽電池の光照射時の
電流電圧特性を示す図
FIG. 5 is a diagram showing current-voltage characteristics of a CdTe-based solar cell of the present invention and a conventional example during light irradiation.

【符号の説明】[Explanation of symbols]

11 ガラス基板(成分は表1) 12 Mo電極 13 Cu(In,Ga)Se2薄膜 14 CdS 15 ZnO 16 ITO透明導電膜 17 取り出し電極(Au) 41 ガラス基板(成分は表1) 42 フッソ添加SnO2透明導電膜 43 n型CdS 44 p型CdTe 45 カーボン電極 46 取り出し電極(Ag) 47 取り出し電極(Ag-In)11 glass substrate (component Table 1) 12 Mo electrode 13 Cu (In, Ga) Se 2 thin film 14 CdS 15 ZnO 16 ITO transparent conductive film 17 extraction electrode (Au) 41 glass substrate (component Table 1) 42 fluorine added SnO 2 Transparent conductive film 43 n-type CdS 44 p-type CdTe 45 carbon electrode 46 extraction electrode (Ag) 47 extraction electrode (Ag-In)

フロントページの続き (72)発明者 和田 隆博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continuation of the front page (72) Inventor Takahiro Wada 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板上に設けられた銅−インジウ
ム・ガリウム−セレン系化合物あるいはカドミウムテル
ルを吸収層とする太陽電池において、前記ガラスの徐冷
点が550℃より高く、かつ前記ガラスの熱膨張係数が6×
10-6/℃以上10×10-6/℃以下である化合物薄膜太陽電
池。
1. A solar cell having a copper-indium-gallium-selenium compound or cadmium tellurium as an absorption layer provided on a glass substrate, wherein the glass has an annealing point higher than 550 ° C. Expansion coefficient is 6 ×
10 -6 / ° C. or higher 10 × 10 -6 / ℃ or less compound thin film solar cell.
【請求項2】 SiO2の含有量が40重量%以上80重量%以
下であり、Al2O3の含有量が5重量%以上15重量%以下で
あり、Na2O、K2Oの含有量がそれぞれ1重量%以上15重量
%以下であり、MgO、CaO、SrO、BaO、Zr2Oの含有量がそ
れぞれ1重量%以上10重量%以下であるガラスを用いた
請求項1記載の化合物薄膜太陽電池。
2. The content of SiO 2 is 40% by weight or more and 80% by weight or less, the content of Al 2 O 3 is 5% by weight or more and 15% by weight or less, and the content of Na 2 O and K 2 O is 2. 2. The compound according to claim 1, wherein the glass is used in an amount of 1% by weight or more and 15% by weight or less, and a content of each of MgO, CaO, SrO, BaO, and Zr2O is 1% by weight or more and 10% by weight or less. Thin-film solar cells.
【請求項3】 SiO2の含有量が58±10重量%であり、Al
2O3、Na2O、K2O、MgO、CaO、SrO、BaO、Zr2Oの含有量が
それぞれ7±2、4±1,6±2,2±1,5±1,7±2,8±2,
2±1重量%であるガラスを用いた請求項1記載の化合物
薄膜太陽電池。
3. The composition according to claim 1, wherein the content of SiO 2 is 58 ± 10% by weight,
The contents of 2 O 3 , Na 2 O, K 2 O, MgO, CaO, SrO, BaO, and Zr 2 O are respectively 7 ± 2, 4 ± 1, 6 ± 2, 2 ± 1, 5 ± 1, 7 ± 2, 8 ± 2,
2. The compound thin film solar cell according to claim 1, wherein the glass is 2 ± 1% by weight.
【請求項4】 ガラスと吸収層の熱膨張係数が誤差10
%以内で一致する請求項1記載の化合物薄膜太陽電池。
4. The method according to claim 1, wherein the coefficient of thermal expansion of the glass and the absorption layer is 10
2. The compound thin-film solar cell according to claim 1, wherein the coincidence is within%.
JP9300025A 1997-10-31 1997-10-31 Compound thin-film solar cell Withdrawn JPH11135819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9300025A JPH11135819A (en) 1997-10-31 1997-10-31 Compound thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9300025A JPH11135819A (en) 1997-10-31 1997-10-31 Compound thin-film solar cell

Publications (1)

Publication Number Publication Date
JPH11135819A true JPH11135819A (en) 1999-05-21

Family

ID=17879810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9300025A Withdrawn JPH11135819A (en) 1997-10-31 1997-10-31 Compound thin-film solar cell

Country Status (1)

Country Link
JP (1) JPH11135819A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011333A1 (en) * 2007-07-13 2009-01-22 Omron Corporation Cis solar cell and method for manufacturing the cis solar cell
WO2009154314A1 (en) * 2008-06-17 2009-12-23 日本電気硝子株式会社 Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
JP2010028068A (en) * 2008-06-17 2010-02-04 Nippon Electric Glass Co Ltd Glass substrate with conductive film for solar cell
JP2010073551A (en) * 2008-09-19 2010-04-02 Nippon Electric Glass Co Ltd Substrate for dye-sensitized solar cell, and oxide semiconductor electrode for dye-sensitized solar cell
WO2010050591A1 (en) 2008-10-31 2010-05-06 旭硝子株式会社 Solar cell
DE102009050987B3 (en) * 2009-05-12 2010-10-07 Schott Ag Planar, curved, spherical or cylindrical shaped thin film solar cell comprises sodium oxide-containing multicomponent substrate glass, which consists of barium oxide, calcium oxide, strontium oxide and zinc oxide
DE102009050988B3 (en) * 2009-05-12 2010-11-04 Schott Ag Thin film solar cell
WO2010138698A2 (en) * 2009-05-29 2010-12-02 Corning Incorporated Fusion formable sodium containing glass
WO2010150864A1 (en) * 2009-06-23 2010-12-29 昭和シェル石油株式会社 Cis-based thin film solar cell
WO2011011667A1 (en) * 2009-07-24 2011-01-27 Corning Incorporated Fusion formable silica and sodium containing glasses
WO2011049146A1 (en) 2009-10-20 2011-04-28 旭硝子株式会社 Glass sheet for cu-in-ga-se solar cells, and solar cells using same
WO2011074685A1 (en) * 2009-12-16 2011-06-23 昭和シェル石油株式会社 Process for production of cis-based thin-film solar cell
EP2383793A1 (en) 2010-04-28 2011-11-02 Asahi Glass Company, Limited Solar cell
WO2011152414A1 (en) 2010-06-03 2011-12-08 旭硝子株式会社 Glass substrate and method for producing same
EP2394969A2 (en) 2010-06-10 2011-12-14 Schott Ag Use of glasses for photovoltaic applications
WO2012014854A1 (en) * 2010-07-26 2012-02-02 旭硝子株式会社 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR BATTERY, AND SOLAR BATTERY USING SAME
JP2012124524A (en) * 2012-02-22 2012-06-28 Showa Shell Sekiyu Kk Manufacturing method of cis-based thin film solar cell
WO2012055860A3 (en) * 2010-10-26 2012-07-19 Schott Ag Transparent layer composite assemblies
JP2012184165A (en) * 2012-06-22 2012-09-27 Nippon Electric Glass Co Ltd Glass substrate for solar cell
WO2012153634A1 (en) 2011-05-10 2012-11-15 日本電気硝子株式会社 Glass plate for thin film solar cell
JP2012229157A (en) * 2012-06-22 2012-11-22 Nippon Electric Glass Co Ltd Glass substrate for solar cell
JP2013063910A (en) * 2012-12-25 2013-04-11 Nippon Electric Glass Co Ltd Glass substrate for solar cell
JP2013518021A (en) * 2010-01-29 2013-05-20 ショット アクチエンゲゼルシャフト Photocell with substrate glass made from aluminosilicate glass
US8445394B2 (en) 2008-10-06 2013-05-21 Corning Incorporated Intermediate thermal expansion coefficient glass
WO2013108790A1 (en) * 2012-01-20 2013-07-25 旭硝子株式会社 Cu-In-Ga-Se SOLAR-CELL GLASS SUBSTRATE AND SOLAR CELL USING SAME
KR20140021559A (en) * 2011-03-15 2014-02-20 쌩-고벵 글래스 프랑스 Substrate for a photovoltaic cell
JP2014037346A (en) * 2013-09-13 2014-02-27 Nippon Electric Glass Co Ltd Glass substrate for solar cell
KR20140064713A (en) * 2011-03-09 2014-05-28 쌩-고벵 글래스 프랑스 Substrate for a photovoltaic cell
CN104080749A (en) * 2012-01-25 2014-10-01 旭硝子株式会社 Glass substrate for Cu-In-Ga-Se solar cells, and solar cell using same
US8871348B2 (en) 2009-07-24 2014-10-28 Nippon Electric Glass Co. Ltd. Glass substrate with conductive film for solar cell
US8975199B2 (en) 2011-08-12 2015-03-10 Corsam Technologies Llc Fusion formable alkali-free intermediate thermal expansion coefficient glass
EP2881998A3 (en) * 2013-11-12 2015-07-15 Anton Naebauer PV module with particularly high resistance to degradation from parasitic electrical currents
US9156723B2 (en) 2009-08-14 2015-10-13 Nippon Sheet Glass Company, Limited Glass substrate
US9371247B2 (en) 2009-05-29 2016-06-21 Corsam Technologies Llc Fusion formable sodium free glass
US9512030B2 (en) 2012-02-29 2016-12-06 Corning Incorporated High CTE potassium borosilicate core glasses and glass articles comprising the same
US9701567B2 (en) 2013-04-29 2017-07-11 Corning Incorporated Photovoltaic module package
US10308545B2 (en) 2010-10-26 2019-06-04 Schott Ag Highly refractive thin glasses
US10343946B2 (en) 2010-10-26 2019-07-09 Schott Ag Highly refractive thin glasses

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011333A1 (en) * 2007-07-13 2009-01-22 Omron Corporation Cis solar cell and method for manufacturing the cis solar cell
US8575476B2 (en) 2007-07-13 2013-11-05 Omron Corporation CIS solar cell and method for manufacturing the same
WO2009154314A1 (en) * 2008-06-17 2009-12-23 日本電気硝子株式会社 Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
JP2010028068A (en) * 2008-06-17 2010-02-04 Nippon Electric Glass Co Ltd Glass substrate with conductive film for solar cell
JP2010073551A (en) * 2008-09-19 2010-04-02 Nippon Electric Glass Co Ltd Substrate for dye-sensitized solar cell, and oxide semiconductor electrode for dye-sensitized solar cell
US10196297B2 (en) 2008-10-06 2019-02-05 Corning, Incorporated Intermediate thermal expansion coefficient glass
US8445394B2 (en) 2008-10-06 2013-05-21 Corning Incorporated Intermediate thermal expansion coefficient glass
US9266769B2 (en) 2008-10-06 2016-02-23 Corsam Technologies Llc Intermediate thermal expansion coefficient glass
WO2010050591A1 (en) 2008-10-31 2010-05-06 旭硝子株式会社 Solar cell
JP2010267965A (en) * 2009-05-12 2010-11-25 Schott Ag Thin film solar cell
DE102009050987B3 (en) * 2009-05-12 2010-10-07 Schott Ag Planar, curved, spherical or cylindrical shaped thin film solar cell comprises sodium oxide-containing multicomponent substrate glass, which consists of barium oxide, calcium oxide, strontium oxide and zinc oxide
WO2010130359A1 (en) * 2009-05-12 2010-11-18 Schott Ag Thin-film solar cell and method for producing a thin-film solar cell
DE102009050988B3 (en) * 2009-05-12 2010-11-04 Schott Ag Thin film solar cell
JP2017114762A (en) * 2009-05-29 2017-06-29 コルサム テクノロジーズ エルエルシーCorsam Technologies Llc Fusion-formable sodium-containing glass
WO2010138698A3 (en) * 2009-05-29 2011-01-20 Corning Incorporated Fusion formable sodium containing glass
WO2010138698A2 (en) * 2009-05-29 2010-12-02 Corning Incorporated Fusion formable sodium containing glass
US10173919B2 (en) 2009-05-29 2019-01-08 Corsam Technologies Llc Fusion formable sodium free glass
US9637408B2 (en) 2009-05-29 2017-05-02 Corsam Technologies Llc Fusion formable sodium containing glass
JP2012528071A (en) * 2009-05-29 2012-11-12 コーニング インコーポレイテッド Fusion moldable sodium-containing glass
US9371247B2 (en) 2009-05-29 2016-06-21 Corsam Technologies Llc Fusion formable sodium free glass
JP2011009287A (en) * 2009-06-23 2011-01-13 Showa Shell Sekiyu Kk Cis-based thin film solar cell
WO2010150864A1 (en) * 2009-06-23 2010-12-29 昭和シェル石油株式会社 Cis-based thin film solar cell
DE112010002687T5 (en) 2009-06-23 2012-11-08 Showa Shell Sekiyu K.K. Thin film solar cell based on CIS
US20120118384A1 (en) * 2009-06-23 2012-05-17 Showa Shell Sekiyu K.K. Cis-based thin film solar cell
US8871348B2 (en) 2009-07-24 2014-10-28 Nippon Electric Glass Co. Ltd. Glass substrate with conductive film for solar cell
US9530910B2 (en) 2009-07-24 2016-12-27 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
US8647995B2 (en) 2009-07-24 2014-02-11 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
WO2011011667A1 (en) * 2009-07-24 2011-01-27 Corning Incorporated Fusion formable silica and sodium containing glasses
US9156723B2 (en) 2009-08-14 2015-10-13 Nippon Sheet Glass Company, Limited Glass substrate
WO2011049146A1 (en) 2009-10-20 2011-04-28 旭硝子株式会社 Glass sheet for cu-in-ga-se solar cells, and solar cells using same
US8501519B2 (en) 2009-12-16 2013-08-06 Showa Shell Sekiyu K.K. Method of production of CIS-based thin film solar cell
JP2011129631A (en) * 2009-12-16 2011-06-30 Showa Shell Sekiyu Kk Method of manufacturing cis thin film solar cell
DE112010004876T5 (en) 2009-12-16 2013-01-10 Showa Shell Sekiyu K.K. Process for producing a CIS-based thin-film solar cell
WO2011074685A1 (en) * 2009-12-16 2011-06-23 昭和シェル石油株式会社 Process for production of cis-based thin-film solar cell
JP2013518021A (en) * 2010-01-29 2013-05-20 ショット アクチエンゲゼルシャフト Photocell with substrate glass made from aluminosilicate glass
US9023745B2 (en) 2010-01-29 2015-05-05 Schott Ag Photovoltaic cell having a substrate glass made of aluminosilicate glass
EP2383793A1 (en) 2010-04-28 2011-11-02 Asahi Glass Company, Limited Solar cell
US8921245B2 (en) 2010-06-03 2014-12-30 Asahi Glass Company, Limited Glass substrate and method for manufacturing same
WO2011152414A1 (en) 2010-06-03 2011-12-08 旭硝子株式会社 Glass substrate and method for producing same
DE102010023366B4 (en) * 2010-06-10 2017-09-21 Schott Ag Use of glasses for photovoltaic applications
EP2394969A2 (en) 2010-06-10 2011-12-14 Schott Ag Use of glasses for photovoltaic applications
DE102010023366A1 (en) 2010-06-10 2011-12-15 Schott Ag Use of glasses for photovoltaic applications
US8895463B2 (en) 2010-07-26 2014-11-25 Asahi Glass Company, Limited Glass substrate for Cu-In-Ga-Se solar cell and solar cell using same
WO2012014854A1 (en) * 2010-07-26 2012-02-02 旭硝子株式会社 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR BATTERY, AND SOLAR BATTERY USING SAME
US10308545B2 (en) 2010-10-26 2019-06-04 Schott Ag Highly refractive thin glasses
WO2012055860A3 (en) * 2010-10-26 2012-07-19 Schott Ag Transparent layer composite assemblies
US10343946B2 (en) 2010-10-26 2019-07-09 Schott Ag Highly refractive thin glasses
KR20140064713A (en) * 2011-03-09 2014-05-28 쌩-고벵 글래스 프랑스 Substrate for a photovoltaic cell
KR20140021559A (en) * 2011-03-15 2014-02-20 쌩-고벵 글래스 프랑스 Substrate for a photovoltaic cell
US9133052B2 (en) 2011-05-10 2015-09-15 Nippon Electric Glass Co., Ltd. Glass plate for thin film solar cell
WO2012153634A1 (en) 2011-05-10 2012-11-15 日本電気硝子株式会社 Glass plate for thin film solar cell
US9643883B2 (en) 2011-08-12 2017-05-09 Corsam Technologies Llc Fusion formable alkali-free intermediate thermal expansion coefficient glass
US8975199B2 (en) 2011-08-12 2015-03-10 Corsam Technologies Llc Fusion formable alkali-free intermediate thermal expansion coefficient glass
JPWO2013108790A1 (en) * 2012-01-20 2015-05-11 旭硝子株式会社 Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
WO2013108790A1 (en) * 2012-01-20 2013-07-25 旭硝子株式会社 Cu-In-Ga-Se SOLAR-CELL GLASS SUBSTRATE AND SOLAR CELL USING SAME
CN104080749A (en) * 2012-01-25 2014-10-01 旭硝子株式会社 Glass substrate for Cu-In-Ga-Se solar cells, and solar cell using same
JP2012124524A (en) * 2012-02-22 2012-06-28 Showa Shell Sekiyu Kk Manufacturing method of cis-based thin film solar cell
US9512030B2 (en) 2012-02-29 2016-12-06 Corning Incorporated High CTE potassium borosilicate core glasses and glass articles comprising the same
JP2012229157A (en) * 2012-06-22 2012-11-22 Nippon Electric Glass Co Ltd Glass substrate for solar cell
JP2012184165A (en) * 2012-06-22 2012-09-27 Nippon Electric Glass Co Ltd Glass substrate for solar cell
JP2013063910A (en) * 2012-12-25 2013-04-11 Nippon Electric Glass Co Ltd Glass substrate for solar cell
US9701567B2 (en) 2013-04-29 2017-07-11 Corning Incorporated Photovoltaic module package
US10407338B2 (en) 2013-04-29 2019-09-10 Corning Incorporated Photovoltaic module package
JP2014037346A (en) * 2013-09-13 2014-02-27 Nippon Electric Glass Co Ltd Glass substrate for solar cell
EP2881998A3 (en) * 2013-11-12 2015-07-15 Anton Naebauer PV module with particularly high resistance to degradation from parasitic electrical currents

Similar Documents

Publication Publication Date Title
JPH11135819A (en) Compound thin-film solar cell
JP5748787B2 (en) Solar cell and manufacturing method thereof
US6137048A (en) Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby
US6169246B1 (en) Photovoltaic devices comprising zinc stannate buffer layer and method for making
CN101002335B (en) Solar cell and method for preparing light-absorbing layer of said solar cell
JP4012957B2 (en) Method for producing compound thin film solar cell
JP5450294B2 (en) CIGS solar cell and manufacturing method thereof
US20120132268A1 (en) Electrode, photovoltaic device, and method of making
JPH11274534A (en) I-iii-vi compound semiconductor and thin film solar cell using the same
KR20120125269A (en) Method for producing a structured tco protective coating
JP2001044464A (en) METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL
CN111403558B (en) High-efficiency flexible laminated thin-film solar cell and preparation method thereof
JP2003008039A (en) Method for manufacturing compound solar battery
JP2000012883A (en) Manufacture of solar cell
TWI751520B (en) Pn junction and preparation method and use thereof
CN103515479A (en) Method of processing a semiconductor assembly
JPH10226598A (en) Transparent conductive titanium oxide film and its production
KR20110012552A (en) Method of manufacturing thin film solar cell
CN112259623A (en) Method for improving crystallinity of light absorption layer of Copper Indium Gallium Selenide (CIGS) thin-film solar cell
CN111129207B (en) Cadmium stannate transparent conductive film, cadmium telluride cell preparation method and thin film solar cell
JPH11204810A (en) Compd. semiconductor solar cell
JPH08195501A (en) Ib-iiib-vib compound semiconductor
CN109768102A (en) A kind of silicon/crystalline silicon heterogenous joint solar cell and preparation method thereof
JP2005086167A (en) Solar cell and its manufacturing method
JPH11189436A (en) Transparent electrode substrate, its preparation and production of photoelectromotive force element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040916

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060515