JPH1112100A - Single crystal sic and its production - Google Patents
Single crystal sic and its productionInfo
- Publication number
- JPH1112100A JPH1112100A JP17201797A JP17201797A JPH1112100A JP H1112100 A JPH1112100 A JP H1112100A JP 17201797 A JP17201797 A JP 17201797A JP 17201797 A JP17201797 A JP 17201797A JP H1112100 A JPH1112100 A JP H1112100A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- single crystal
- amorphous
- polycrystalline plate
- crystal substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、単結晶SiCおよ
びその製造方法に関するもので、詳しくは、発光ダイオ
ードやX線光学素子、高温半導体電子素子の基板ウエハ
などとして用いられる単結晶SiCおよびその製造方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal SiC and a method for manufacturing the same, and more particularly, to a single crystal SiC used as a substrate wafer of a light emitting diode, an X-ray optical element, a high-temperature semiconductor electronic element, and a method for manufacturing the same. It is about the method.
【0002】[0002]
【従来の技術】SiC(炭化珪素)は、耐熱性および機
械的強度に優れているだけでなく、放射線にも強く、さ
らに不純物の添加によって電子や正孔の価電子制御が容
易である上、広い禁制帯幅を持つ(因みに、6H型のS
iC単結晶で約3.0eV、4H型のSiC単結晶で
3.26eV)ために、Si(シリコン)やGaAs
(ガリウムヒ素)などの既存の半導体材料では実現する
ことができない大容量、高周波、耐圧、耐環境性を実現
することが可能で、次世代のパワーデバイス用半導体材
料として注目され、かつ期待されている。2. Description of the Related Art SiC (silicon carbide) is not only excellent in heat resistance and mechanical strength, but also resistant to radiation. In addition, it is easy to control valence electrons and holes by adding impurities. Has a wide forbidden band (By the way, 6H type S
about 3.0 eV for an iC single crystal and 3.26 eV for a 4H type SiC single crystal), such as Si (silicon) or GaAs.
(Gallium arsenide) and other materials that can not be realized with existing semiconductor materials, can achieve high capacity, high frequency, withstand voltage and environmental resistance, and are attracting attention and expected as next-generation semiconductor materials for power devices I have.
【0003】ところで、この種のSiC単結晶の成長
(製造)方法として、従来、種結晶を用いた昇華再結晶
法によってSiC単結晶を成長させる方法と、高温度で
の場合はSi(シリコン)基板上に化学気相成長法(C
VD法)を用いてエピタキシャル成長させることにより
立方晶のSiC単結晶(β−SiC)を成長させる方法
とが知られている。Conventionally, as a method of growing (manufacturing) this kind of SiC single crystal, a method of growing a SiC single crystal by a sublimation recrystallization method using a seed crystal, and a method of growing Si (silicon) at a high temperature. Chemical vapor deposition (C)
A method of growing a cubic SiC single crystal (β-SiC) by epitaxial growth using a VD method is known.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記し
た従来の製造方法は共に結晶成長速度が1μm/hr.
と非常に低いだけでなく、昇華再結晶法にあっては、マ
イクロパイプ欠陥と呼ばれ半導体デバイスを作製した際
の漏れ電流等の原因となる結晶の成長方向に貫通する直
径数ミクロンのピンホールが100〜1000/cm2
程度成長結晶中に存在するという問題があり、このこと
が既述のようにSiやGaAsなどの既存の半導体材料
に比べて多くの優れた特徴を有しながらも、その実用化
を阻止する要因になっている。However, both of the above-mentioned conventional manufacturing methods have a crystal growth rate of 1 μm / hr.
Not only is it extremely low, but also in the sublimation recrystallization method, a pinhole with a diameter of several microns penetrates in the crystal growth direction called micropipe defect, which causes leakage current etc. when manufacturing semiconductor devices Is 100 to 1000 / cm 2
There is a problem that it is present in the grown crystal to a certain extent, which is a factor that hinders its practical use, although it has many excellent features as compared with existing semiconductor materials such as Si and GaAs as described above. It has become.
【0005】また、高温CVD法の場合は、基板温度が
1700〜1900℃と高い上に、高純度の還元性雰囲
気を作ることが必要であって、設備的に非常に困難であ
り、さらに、エピタキシャル成長のため成長速度にも自
ずと限界があるという問題があった。In the case of the high temperature CVD method, the substrate temperature is as high as 1700 to 1900 ° C., and it is necessary to create a high-purity reducing atmosphere, which is very difficult in terms of equipment. There is a problem that the growth rate is naturally limited due to the epitaxial growth.
【0006】本発明は上記実情に鑑みてなされたもの
で、マイクロパイプ欠陥等の非常に少ない高品位の単結
晶SiCと、この単結晶SiCの成長速度を上げて該高
品位単結晶を生産性よく製造することができ、半導体材
料としての実用化を可能とする単結晶SiCの製造方法
を提供することを目的としている。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a high-quality single crystal SiC having extremely few micropipe defects and the like, and the productivity of the high-quality single crystal by increasing the growth rate of the single crystal SiC. It is an object of the present invention to provide a method for producing single crystal SiC that can be produced well and can be put to practical use as a semiconductor material.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明に係る単結晶SiCは、α−S
iC単結晶基板と非晶質もしくはβ−SiC多結晶板と
が平滑に研磨された研磨面を介して密着されてなる複合
体を熱処理して上記非晶質もしくはβ−SiC多結晶板
を再結晶化することにより、上記α−SiC単結晶基板
の結晶軸と同方位に配向された単結晶を一体に成長させ
ていることを特徴とするものである。In order to achieve the above object, a single crystal SiC according to the first aspect of the present invention has an α-S
A heat treatment is performed on a composite in which an iC single crystal substrate and an amorphous or β-SiC polycrystalline plate are in close contact with each other via a polished surface that has been polished to be smooth, and the amorphous or β-SiC polycrystalline plate is recycled. By crystallization, a single crystal oriented in the same direction as the crystal axis of the α-SiC single crystal substrate is integrally grown.
【0008】すなわち、α−SiC単結晶基板と非晶質
もしくはβ−SiC多結晶板とを平滑に研磨された表面
で密着させて熱処理することによって、上記非晶質もし
くはβ−SiC多結晶板が再結晶化されてα−SiC単
結晶基板の結晶軸と同方位に配向された単結晶が大きく
一体に成長され、格子欠陥およびマイクロパイプ欠陥の
非常に少ない高品位の単結晶SiCである。More specifically, the amorphous or β-SiC polycrystalline plate is brought into close contact with a smooth polished surface of an α-SiC single crystal substrate and an amorphous or β-SiC polycrystalline plate by heat treatment. Is recrystallized, and a single crystal oriented in the same direction as the crystal axis of the α-SiC single crystal substrate is largely and integrally grown, and is a high-quality single crystal SiC having very few lattice defects and micropipe defects.
【0009】請求項2記載の発明に係る単結晶SiC
は、側面を接して整列配置した複数枚のα−SiC単結
晶基板と非晶質もしくはβ−SiC多結晶板とが平滑に
研磨された研磨面を介して密着されてなる複合体を熱処
理して上記非晶質もしくはβ−SiC多結晶板を再結晶
化することにより、上記α−SiC単結晶基板の結晶軸
と同方位に配向された単結晶を一体に成長させているこ
とを特徴とするものである。The single crystal SiC according to the second aspect of the invention
Heat-treats a composite in which a plurality of α-SiC single-crystal substrates aligned side by side and an amorphous or β-SiC polycrystalline plate are in close contact via a smooth polished surface. Recrystallizing the amorphous or β-SiC polycrystalline plate to grow a single crystal oriented in the same direction as the crystal axis of the α-SiC single crystal substrate. Is what you do.
【0010】この請求項2記載の発明によれば、側面を
接して整列配置した複数枚のα−SiC単結晶基板と非
晶質もしくはβ−SiC多結晶板とを平滑に研磨された
表面で密着されて熱処理を繰り返すことにより、上記請
求項1記載の発明と同様に、格子欠陥およびマイクロパ
イプ欠陥が非常に少ない高品位で、かつ側面同士が融着
一体化された大きな面積の単結晶SiCである。According to the second aspect of the present invention, a plurality of α-SiC single-crystal substrates and an amorphous or β-SiC polycrystalline plate, which are arranged side by side in contact with each other, are polished on a smooth polished surface. By repeating the heat treatment in close contact, a single-crystal SiC having a high quality with very few lattice defects and micropipe defects and a large area where the side surfaces are fused and integrated as in the first aspect of the present invention. It is.
【0011】また、請求項3記載の発明に係る単結晶S
iCの製造方法は、α−SiC単結晶基板の表面及び非
晶質もしくはβ−SiC多結晶板の少なくとも一面を平
滑に研磨して、それら研磨面を介してα−SiC単結晶
基板と非晶質もしくはβ−SiC多結晶板とを密着させ
た後、その複合体を熱処理することにより上記非晶質も
しくはβ−SiC多結晶板を再結晶化して上記α−Si
C単結晶基板の結晶軸と同方位に配向された単結晶を一
体に育成することを特徴とするものであって、請求項1
記載の発明でいうところの格子欠陥およびマイクロパイ
プ欠陥の非常に少ない高品位の単結晶SiCを容易に、
かつ効率よく育成させて、単結晶SiCを工業的規模で
安定に製造し供給することが可能である。Further, the single crystal S according to the third aspect of the present invention.
The method for producing iC is such that a surface of an α-SiC single crystal substrate and at least one surface of an amorphous or β-SiC polycrystalline plate are polished smoothly, and an α-SiC single crystal substrate and an amorphous After the amorphous or β-SiC polycrystalline plate is brought into close contact with the amorphous or β-SiC polycrystalline plate, the composite is heat-treated to recrystallize the amorphous or β-SiC polycrystalline plate to
2. The method according to claim 1, wherein a single crystal oriented in the same direction as the crystal axis of the C single crystal substrate is grown integrally.
A high-quality single-crystal SiC having very few lattice defects and micropipe defects in the described invention can be easily prepared.
Moreover, it is possible to stably produce and supply single-crystal SiC on an industrial scale by efficiently growing.
【0012】また、請求項4記載の発明に係る単結晶S
iCの製造方法は、側面を接して整列配置した複数枚の
α−SiC単結晶基板の表面及び非晶質もしくはβ−S
iC多結晶板の少なくとも一面を平滑に研磨して、それ
ら研磨面を介してα−SiC単結晶基板と非晶質もしく
はβ−SiC多結晶板とを密着させた後、その複合体を
熱処理することにより上記非晶質もしくはβ−SiC多
結晶板を再結晶化して上記α−SiC単結晶基板の結晶
軸と同方位に配向された単結晶を一体に育成することを
特徴とするものであり、請求項2記載の発明でいうとこ
ろの格子欠陥およびマイクロパイプ欠陥が非常に少ない
高品位で、かつ大きな面積の単結晶SiCを工業的規模
で安定に製造し供給することが可能である。Further, the single crystal S according to the fourth aspect of the present invention.
The manufacturing method of iC is based on the method of forming a surface of a plurality of α-SiC single crystal substrates arranged side by side and an amorphous or β-S
After at least one surface of the iC polycrystalline plate is polished smoothly and the α-SiC single crystal substrate and the amorphous or β-SiC polycrystalline plate are brought into close contact with each other through the polished surfaces, the composite is heat-treated. Thereby recrystallizing the amorphous or β-SiC polycrystal plate to integrally grow a single crystal oriented in the same direction as the crystal axis of the α-SiC single crystal substrate. It is possible to stably produce and supply high-quality, large-area, single-crystal SiC on an industrial scale with very few lattice defects and micropipe defects as referred to in the second aspect of the present invention.
【0013】さらに、請求項5、6に記載の発明に係る
単結晶SiC及びその製造方法は、請求項1ないし4記
載の発明における複合体の熱処理を、1850℃以上の
高温下で、かつSiCの飽和蒸気圧またはその近傍の雰
囲気中で行なうものであり、高品位の単結晶SiCを設
備的にも非常に容易に製造することが可能である。Further, in the single crystal SiC according to the fifth and sixth aspects of the present invention and the method for producing the same, the heat treatment of the composite according to the first to fourth aspects can be carried out at a high temperature of 1850 ° C. This is carried out in an atmosphere at or near the saturated vapor pressure, and high-quality single-crystal SiC can be produced very easily even in terms of equipment.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1は本発明に係る単結晶Si
Cの熱処理前の状態を示す模式図であり、同図におい
て、1は六方晶系(6H型、4H型)のα−SiC単結
晶基板で、該α−SiC単結晶基板1は昇華法あるいは
アチソン法により製作され、その表面1aは平滑に研磨
されている。2は1300〜1900℃の範囲の熱CV
D法により別途製作された立方晶系のβ−SiC多結晶
板で、その一面2aは平滑に研磨されており、このβ−
SiC多結晶板2と上記α−SiC単結晶基板1とをそ
れぞれの研磨表面2a,1aを介して密着させて、結晶
形態の互いに異なる結晶面が接して直線状の明瞭な界面
3を有する複合体Mが形成されている。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows single crystal Si according to the present invention.
FIG. 1 is a schematic diagram showing a state before heat treatment of C, in which 1 is a hexagonal (6H type, 4H type) α-SiC single crystal substrate, and the α-SiC single crystal substrate 1 is a sublimation method or It is manufactured by the Acheson method, and its surface 1a is polished smoothly. 2 is a heat CV in the range of 1300 to 1900 ° C.
A cubic β-SiC polycrystalline plate separately manufactured by the method D, the one surface 2a of which is polished smoothly.
The SiC polycrystal plate 2 and the α-SiC single crystal substrate 1 are adhered to each other through the respective polished surfaces 2 a, 1 a, so that crystal faces of different crystal forms come into contact with each other and have a clear linear interface 3. A body M is formed.
【0015】この後、上記複合体Mの全体を、1850
℃以上、好ましくは2200〜2400℃の範囲の温度
で、かつSiC飽和蒸気圧の雰囲気に8時間程度保持さ
せて熱処理することにより、上記β−SiC多結晶板2
が再結晶化されて図2に示すように、このβ−SiC多
結晶板2が上記α−SiC単結晶基板1の結晶軸と同方
位に配向された単結晶部分2´となり、この単結晶部分
2´が上記基板1の単結晶と一体化して大きな単結晶が
育成される。なお、熱処理後、熱処理前に明瞭に現れて
いた界面3は融合されて一体となり、消失している。After that, the whole of the above-mentioned complex M was
C. or higher, preferably in the range of 2200 to 2400 ° C., and heat-treated while being kept in an atmosphere of SiC saturated vapor pressure for about 8 hours, thereby obtaining the β-SiC polycrystalline plate 2.
Is recrystallized, as shown in FIG. 2, the β-SiC polycrystalline plate 2 becomes a single crystal portion 2 ′ oriented in the same direction as the crystal axis of the α-SiC single crystal substrate 1. The portion 2 'is integrated with the single crystal of the substrate 1 to grow a large single crystal. After the heat treatment, the interface 3 that clearly appeared before the heat treatment is fused and integrated and disappears.
【0016】上記のように、平滑に研磨された面1a,
2aを介して密着されたα−SiC単結晶基板1とβ−
SiC多結晶板2とからなる複合体Mに熱処理を施すこ
とにより、上記界面3にある種の固相エピタキシャル成
長を生じさせて、マイクロパイプ欠陥を全く含まず、そ
の他の格子欠陥もほとんどない(1cm2 あたり10以
下)高品位の単結晶SiCを生産性よく製造することが
できる。また、β−SiC多結晶板2におけるα型結晶
への相変態に用いたα−SiC単結晶基板1を研磨また
は切除すれば、電子素子用の高品位ウェハを得ることが
できる。As described above, the surfaces 1a,
Α-SiC single crystal substrate 1 and β-SiC
By subjecting the composite M composed of the SiC polycrystalline plate 2 to a heat treatment, a certain kind of solid phase epitaxial growth occurs at the interface 3 so as to contain no micropipe defects and almost no other lattice defects (1 cm). ( 10 or less per 2 ) High-quality single-crystal SiC can be manufactured with high productivity. Further, if the α-SiC single crystal substrate 1 used for the phase transformation to the α-type crystal in the β-SiC polycrystalline plate 2 is polished or cut off, a high-quality wafer for electronic devices can be obtained.
【0017】なお、上記α−SiC単結晶基板1として
は、6H型のもの、4H型のもののいずれを使用しても
よく、また、上記β−SiC多結晶板2に代えて、高純
度(1014atm /cm3 以下)の非晶質板を使用しても
上記と同様な高品位の単結晶SiCを得ることが可能で
ある。さらに、上記α−SiC単結晶基板1の複数個の
表面を平滑に研磨して図3に示すように、隣接するα−
SiC単結晶基板1,1の側面が密接するように整列配
置し、この整列配置させた研磨面の上に、非晶質もしく
はβ−SiC多結晶板2の研磨面を密着させた後、上記
のように熱処理することにより上記非晶質もしくはβ−
SiC多結晶板を再結晶化して上記α−SiC単結晶基
板の結晶軸と同方位に配向された単結晶を一体に育成す
るとともに、隣接するα−SiC単結晶基板1,1同士
の密接側面1bは融着一体化され、このような処理を繰
り返すことによって大きな面積の単結晶SiCを得るこ
とも可能である。As the α-SiC single crystal substrate 1, any of a 6H type and a 4H type may be used. In place of the β-SiC polycrystalline plate 2, a high purity ( Even if an amorphous plate of 10 14 atm / cm 3 or less is used, it is possible to obtain the same high-quality single-crystal SiC as described above. Further, a plurality of surfaces of the α-SiC single crystal substrate 1 are polished smoothly, and as shown in FIG.
After arranging the side surfaces of the SiC single crystal substrates 1 and 1 so as to be in close contact with each other, and bringing the polished surface of the amorphous or β-SiC polycrystalline plate 2 into close contact with the aligned polished surface, The amorphous or β-
The SiC polycrystalline plate is recrystallized to integrally grow a single crystal oriented in the same direction as the crystal axis of the α-SiC single crystal substrate, and a close side surface between adjacent α-SiC single crystal substrates 1, 1 1b is integrated by fusion, and by repeating such processing, it is also possible to obtain single-crystal SiC having a large area.
【0018】[0018]
【発明の効果】以上のように、請求項1記載の発明によ
れば、α−SiC単結晶基板と非晶質もしくはβ−Si
C多結晶板材とを平滑に研磨された表面で密着させて熱
処理することで、非晶質もしくはβ−SiC多結晶板材
の再結晶化によりα−SiC単結晶基板の結晶軸と同方
位に配向された単結晶を大きく一体に固相成長させて格
子欠陥およびマイクロパイプ欠陥の非常に少ない高品位
の単結晶となっており、これによって、Si(シリコ
ン)やGaAs(ガリウムヒ素)などの既存の半導体材
料に比べて大容量、高周波、耐圧、耐環境性に優れパワ
ーデバイス用半導体材料として期待されている単結晶S
iCの実用化を可能とすることができるという効果を奏
し、特に、請求項2記載の発明によれば、高品位でかつ
大面積の単結晶SiCを得ることができるという効果を
奏する。As described above, according to the first aspect of the present invention, an α-SiC single crystal substrate and an amorphous or β-Si
Amorphous or β-SiC polycrystalline plate is recrystallized by adhering it to the C polycrystalline plate on the smooth polished surface and heat-treated, and oriented in the same direction as the crystal axis of the α-SiC single crystal substrate The single crystal thus grown is solid-phase-grown largely into a high-quality single crystal with very few lattice defects and micropipe defects, which allows existing single crystals such as Si (silicon) and GaAs (gallium arsenide) to be formed. Single crystal S which is superior to semiconductor materials in large capacity, high frequency, withstand voltage and environmental resistance and is expected as a semiconductor material for power devices
The present invention has the effect of enabling the practical use of iC, and in particular, according to the second aspect of the invention, has the effect of obtaining high-quality and large-area single-crystal SiC.
【0019】また、請求項3記載の発明によれば、上記
請求項1記載の発明でいうところの格子欠陥およびマイ
クロパイプ欠陥の非常に少ない高品位の単結晶SiCを
容易に、かつ効率よく成長させて面積的にも量的にも十
分に確保し、半導体材料として工業的規模で安定よく供
給することができるという効果を奏し、特に、請求項4
記載の発明によれば、高品位でかつ所望の大きさ(面
積)の単結晶SiCを容易に、かつ効率よく成長させて
大型の半導体材料として工業的規模で安定よく供給する
ことができるという効果を奏する。According to the third aspect of the present invention, high-quality single-crystal SiC having very few lattice defects and micropipe defects according to the first aspect of the present invention can be easily and efficiently grown. In this way, it is possible to secure a sufficient area and quantity and to supply the semiconductor material stably on an industrial scale.
According to the described invention, it is possible to easily and efficiently grow high-quality single crystal SiC having a desired size (area) and supply it stably on an industrial scale as a large-sized semiconductor material. To play.
【0020】さらに、請求項5、6に記載の発明によれ
ば、高品位の単結晶SiCを設備的にも非常に容易に製
造し、コストの低減を図ることができる。Further, according to the fifth and sixth aspects of the present invention, high-quality single-crystal SiC can be manufactured very easily in terms of equipment, and the cost can be reduced.
【図1】本発明に係る単結晶SiCの熱処理前の状態を
示す模式図である。FIG. 1 is a schematic diagram showing a state before heat treatment of single crystal SiC according to the present invention.
【図2】本発明に係る単結晶SiCの熱処理後の状態を
示す模式図である。FIG. 2 is a schematic diagram showing a state after heat treatment of single crystal SiC according to the present invention.
【図3】大面積の単結晶SiCの製造方法を説明する概
略図である。FIG. 3 is a schematic diagram illustrating a method for producing a large-area single-crystal SiC.
1 α−SiC単結晶基板 2 β−SiC多結晶板 1a,2a 平滑な研磨面 M 複合体 Reference Signs List 1 α-SiC single crystal substrate 2 β-SiC polycrystalline plate 1a, 2a Smooth polished surface M composite
Claims (6)
β−SiC多結晶板とが平滑に研磨された研磨面を介し
て密着されてなる複合体を熱処理して上記非晶質もしく
はβ−SiC多結晶板を再結晶化することにより、上記
α−SiC単結晶基板の結晶軸と同方位に配向された単
結晶を一体に成長させている単結晶SiC。1. A composite comprising an α-SiC single crystal substrate and an amorphous or β-SiC polycrystalline plate adhered to each other through a smooth polished surface, and heat-treating the composite. A single crystal SiC in which a single crystal oriented in the same direction as the crystal axis of the α-SiC single crystal substrate is integrally grown by recrystallizing a SiC polycrystalline plate.
SiC単結晶基板と非晶質もしくはβ−SiC多結晶板
とが平滑に研磨された研磨面を介して密着されてなる複
合体を熱処理して上記非晶質もしくはβ−SiC多結晶
板を再結晶化することにより、上記α−SiC単結晶基
板の結晶軸と同方位に配向された単結晶を一体に成長さ
せている単結晶SiC。2. A plurality of α-sheets arranged side by side and in contact with each other.
A heat treatment is performed on a composite body in which a SiC single crystal substrate and an amorphous or β-SiC polycrystalline plate are in close contact with each other via a polished surface that has been polished smoothly, and the amorphous or β-SiC polycrystalline plate is recycled. A single crystal SiC in which a single crystal oriented in the same direction as the crystal axis of the α-SiC single crystal substrate is integrally grown by crystallization.
もしくはβ−SiC多結晶板の少なくとも一面を平滑に
研磨して、それら研磨面を介してα−SiC単結晶基板
と非晶質もしくはβ−SiC多結晶板とを密着させた
後、 その複合体を熱処理することにより上記非晶質もしくは
β−SiC多結晶板を再結晶化して上記α−SiC単結
晶基板の結晶軸と同方位に配向された単結晶を一体に育
成することを特徴とする単結晶SiCの製造方法。3. The surface of an α-SiC single crystal substrate and at least one surface of an amorphous or β-SiC polycrystal plate are polished smoothly, and the α-SiC single crystal substrate and the amorphous Alternatively, after the β-SiC polycrystalline plate is brought into close contact with the polycrystalline plate, the composite is subjected to a heat treatment to recrystallize the amorphous or β-SiC polycrystalline plate to be in the same direction as the crystal axis of the α-SiC single crystal substrate. A method for producing single-crystal SiC, wherein single-crystals oriented at different positions are grown together.
SiC単結晶基板の表面及び非晶質もしくはβ−SiC
多結晶板の少なくとも一面を平滑に研磨して、それら研
磨面を介してα−SiC単結晶基板と非晶質もしくはβ
−SiC多結晶板とを密着させた後、 その複合体を熱処理することにより上記非晶質もしくは
β−SiC多結晶板を再結晶化して上記α−SiC単結
晶基板の結晶軸と同方位に配向された単結晶を一体に育
成することを特徴とする単結晶SiCの製造方法。4. A plurality of α-lines arranged side by side in contact with each other.
Surface of SiC single crystal substrate and amorphous or β-SiC
At least one surface of the polycrystalline plate is polished smoothly, and the α-SiC single crystal substrate and the amorphous or β
After adhering to the SiC polycrystalline plate, the complex is heat-treated to recrystallize the amorphous or β-SiC polycrystalline plate to have the same orientation as the crystal axis of the α-SiC single crystal substrate. A method for producing single-crystal SiC, wherein an oriented single crystal is grown integrally.
で、かつSiCの飽和蒸気圧またはその近傍の雰囲気中
で行なわれている請求項1または2に記載の単結晶Si
C。5. The single-crystal Si according to claim 1, wherein the heat treatment is performed at a high temperature of 1850 ° C. or higher and in an atmosphere at or near the saturated vapor pressure of SiC.
C.
で、かつSiCの飽和蒸気圧またはその近傍の雰囲気中
で行なわれる請求項3または4に記載の単結晶SiCの
製造方法。6. The method for producing single-crystal SiC according to claim 3, wherein the heat treatment is performed at a high temperature of 1850 ° C. or higher and in an atmosphere at or near the saturated vapor pressure of SiC.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17201797A JP3254557B2 (en) | 1997-06-27 | 1997-06-27 | Single crystal SiC and method for producing the same |
EP98928638A EP0922792A4 (en) | 1997-06-27 | 1998-06-23 | SINGLE CRYSTAL SiC AND PROCESS FOR PREPARING THE SAME |
RU99106418/12A RU2160329C1 (en) | 1997-06-27 | 1998-06-23 | Sic single crystal and method of its production |
US09/147,621 US6153166A (en) | 1997-06-27 | 1998-06-23 | Single crystal SIC and a method of producing the same |
CN98800898A CN1231003A (en) | 1997-06-27 | 1998-06-23 | Single crystal SiC and process for preparing the same |
CA002263339A CA2263339C (en) | 1997-06-27 | 1998-06-23 | Single crystal sic and process for preparing the same |
PCT/JP1998/002798 WO1999000538A1 (en) | 1997-06-27 | 1998-06-23 | SINGLE CRYSTAL SiC AND PROCESS FOR PREPARING THE SAME |
KR1019997001108A KR100287792B1 (en) | 1997-06-27 | 1999-02-10 | SINGLE CRYSTAL SiC AND PROCESS FOR PREPARING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17201797A JP3254557B2 (en) | 1997-06-27 | 1997-06-27 | Single crystal SiC and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1112100A true JPH1112100A (en) | 1999-01-19 |
JP3254557B2 JP3254557B2 (en) | 2002-02-12 |
Family
ID=15933989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17201797A Expired - Fee Related JP3254557B2 (en) | 1997-06-27 | 1997-06-27 | Single crystal SiC and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3254557B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0964081A2 (en) * | 1998-04-13 | 1999-12-15 | Nippon Pillar Packing Co. Ltd. | Single crystal SiC and a method of producing the same |
WO2001009412A1 (en) * | 1999-07-30 | 2001-02-08 | Nippon Pillar Packing Co., Ltd. | Material for raising single crystal sic and method of preparing single crystal sic |
JP2003221300A (en) * | 2002-01-29 | 2003-08-05 | Kyocera Corp | Method for producing single crystal silicon carbide member |
WO2011096109A1 (en) * | 2010-02-05 | 2011-08-11 | 住友電気工業株式会社 | Method for producing silicon carbide substrate |
JP4848495B2 (en) * | 2001-06-04 | 2011-12-28 | 学校法人関西学院 | Single crystal silicon carbide and method for producing the same |
WO2011161976A1 (en) * | 2010-06-21 | 2011-12-29 | 住友電気工業株式会社 | Silicon carbide substrate manufacturing method and manufacturing device |
WO2013054580A1 (en) * | 2011-10-13 | 2013-04-18 | 住友電気工業株式会社 | Silicon carbide substrate, silicon carbide semiconductor device, method for manufacturing silicon carbide substrate, and method for manufacturing silicon carbide semiconductor device |
-
1997
- 1997-06-27 JP JP17201797A patent/JP3254557B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0964081A2 (en) * | 1998-04-13 | 1999-12-15 | Nippon Pillar Packing Co. Ltd. | Single crystal SiC and a method of producing the same |
EP0964081A3 (en) * | 1998-04-13 | 2000-01-19 | Nippon Pillar Packing Co. Ltd. | Single crystal SiC and a method of producing the same |
WO2001009412A1 (en) * | 1999-07-30 | 2001-02-08 | Nippon Pillar Packing Co., Ltd. | Material for raising single crystal sic and method of preparing single crystal sic |
US6436186B1 (en) | 1999-07-30 | 2002-08-20 | Nissin Electric Co., Ltd. | Material for raising single crystal SiC and method of preparing single crystal SiC |
JP4848495B2 (en) * | 2001-06-04 | 2011-12-28 | 学校法人関西学院 | Single crystal silicon carbide and method for producing the same |
JP2003221300A (en) * | 2002-01-29 | 2003-08-05 | Kyocera Corp | Method for producing single crystal silicon carbide member |
WO2011096109A1 (en) * | 2010-02-05 | 2011-08-11 | 住友電気工業株式会社 | Method for producing silicon carbide substrate |
EP2532773A1 (en) * | 2010-02-05 | 2012-12-12 | Sumitomo Electric Industries, Ltd. | Method for producing silicon carbide substrate |
US8435866B2 (en) | 2010-02-05 | 2013-05-07 | Sumitomo Electric Industries, Ltd. | Method for manufacturing silicon carbide substrate |
EP2532773A4 (en) * | 2010-02-05 | 2013-12-11 | Sumitomo Electric Industries | Method for producing silicon carbide substrate |
WO2011161976A1 (en) * | 2010-06-21 | 2011-12-29 | 住友電気工業株式会社 | Silicon carbide substrate manufacturing method and manufacturing device |
WO2013054580A1 (en) * | 2011-10-13 | 2013-04-18 | 住友電気工業株式会社 | Silicon carbide substrate, silicon carbide semiconductor device, method for manufacturing silicon carbide substrate, and method for manufacturing silicon carbide semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP3254557B2 (en) | 2002-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2263339C (en) | Single crystal sic and process for preparing the same | |
US6053973A (en) | Single crystal SiC and a method of producing the same | |
JP3003027B2 (en) | Single crystal SiC and method for producing the same | |
JP3254559B2 (en) | Single crystal SiC and method for producing the same | |
EP0921214B1 (en) | Single crystal silicon carbide and process for preparing the same | |
JP2884085B1 (en) | Single crystal SiC and method for producing the same | |
JP3248071B2 (en) | Single crystal SiC | |
JP3254557B2 (en) | Single crystal SiC and method for producing the same | |
US6143267A (en) | Single crystal SiC and a method of producing the same | |
JP3043690B2 (en) | Single crystal SiC and method for producing the same | |
JPH11228296A (en) | Single crystal silicon carbide and its production | |
JP2000001399A (en) | SINGLE CRYSTAL SiC AND ITS PRODUCTION | |
JP2936481B1 (en) | Single crystal SiC and method for producing the same | |
JP3087030B2 (en) | SiC composite, method for producing the same, and single crystal SiC | |
JP2939615B2 (en) | Single crystal SiC and method for producing the same | |
JP2964080B1 (en) | Single crystal SiC and method for producing the same | |
JP2917149B1 (en) | Single crystal SiC and method for producing the same | |
JP3043687B2 (en) | Single crystal SiC and method for producing the same | |
JPH11147793A (en) | Single crystal silicon carbide and its production | |
JP2001220297A (en) | SINGLE CRYSTAL SiC AND METHOD FOR GROWING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20081130 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20081130 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20111130 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121130 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131130 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |