[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11112157A - Case for electronic parts, and electronic parts using this, and electrolytic capacitor - Google Patents

Case for electronic parts, and electronic parts using this, and electrolytic capacitor

Info

Publication number
JPH11112157A
JPH11112157A JP9267584A JP26758497A JPH11112157A JP H11112157 A JPH11112157 A JP H11112157A JP 9267584 A JP9267584 A JP 9267584A JP 26758497 A JP26758497 A JP 26758497A JP H11112157 A JPH11112157 A JP H11112157A
Authority
JP
Japan
Prior art keywords
case
base
permeation
electrolytic capacitor
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9267584A
Other languages
Japanese (ja)
Inventor
Tetsuya Tou
哲也 等
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9267584A priority Critical patent/JPH11112157A/en
Publication of JPH11112157A publication Critical patent/JPH11112157A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the permeation of only hydrogen gas, and shut off the permeation of electrolyte, steam, etc., by equipping a part of the case to accommodate each kind of element with a gas permeation part consisting of a ceramic porous body whose average pore specified. SOLUTION: The base 1 of fine ceramics is equipped with a storage 1a, and a case for electronic parts is constituted of the base 1 and a cap 2 entirely made of porous ceramics. Here, it will do to make the cap 2 out of fine ceramics, and also make its one part serve as the gas permeating part of porous ceramics. An electrolytic capacitor is stored in the storage 1a of the base 1, and an electrode terminal for connection is led out to the external terminal at the bottom surface from the through hole of the base 1, and further the cap 2 is joined for sealing to the topside of the base 1 through sheet material such as glass or the like. The communication pore of the porous ceramics is 0.01-2 μm in average diameter, and hydrogen gas permeates it, but it can shut off the permeation of the steam. Accordingly, it can let the hydrogen gas generated at excessive currents go outside, and prevent the permeation of steam from outside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は各種素子を気密封止
するための電子部品用ケースと、これを用いた電子部
品、特に電解コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a case for an electronic component for hermetically sealing various elements, and an electronic component using the case, particularly an electrolytic capacitor.

【0002】[0002]

【従来の技術】電解コンデンサの構造は、図5に示すよ
うに、金属製のケース11内に電解コンデンサ素子15
を配置し、これに接続する電極端子14、14を封口栓
12で保持し、この封口栓12の周囲でケース11をか
しめて固定したものである。また、上記電解コンデンサ
素子15は陽極箔と陰極箔間にクラフト紙を介在させて
巻回し、電解液を含浸したものであり、上記電極端子1
4、14は各陽極箔と陰極箔に接続している。
2. Description of the Related Art As shown in FIG. 5, an electrolytic capacitor has an electrolytic capacitor element 15 in a metal case 11.
Are arranged, and the electrode terminals 14, 14 connected thereto are held by the sealing plug 12, and the case 11 is caulked and fixed around the sealing plug 12. The electrolytic capacitor element 15 is formed by winding kraft paper between an anode foil and a cathode foil and impregnating with an electrolytic solution.
Reference numerals 4 and 14 are connected to each anode foil and cathode foil.

【0003】ところで、この電解コンデンサでは、内部
の電解液や水蒸気が外部に漏れないようにシール性を維
持する必要があるが、その反面、過大電流が流れるとケ
ース11内で水素ガスが発生して内圧が増大し、ケース
11が破損してしまうという問題がある。そこで、発生
した水素ガスは逃がすが、電解液や水蒸気は逃がさない
ような構造が求められている。
In this electrolytic capacitor, it is necessary to maintain the sealing property so that the internal electrolytic solution and water vapor do not leak to the outside. However, when an excessive current flows, hydrogen gas is generated in the case 11. Therefore, there is a problem that the internal pressure increases and the case 11 is damaged. Therefore, there is a demand for a structure that allows the generated hydrogen gas to escape, but not the electrolytic solution or water vapor.

【0004】そのために、例えば上記封口栓12をポリ
サルファイド変成エポキシ樹脂等のガス選択透過樹脂で
形成し、発生する水素ガスのみを外部に放出させること
が行われている。
For this purpose, for example, the sealing plug 12 is formed of a gas selective permeable resin such as a polysulfide-modified epoxy resin, and only the generated hydrogen gas is released to the outside.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のガス
選択透過樹脂からなる封口栓12を用いた電解コンデン
サでは水素ガスの透過速度が遅く、急激なガス発生に対
応できないため、内圧増大によるケース11の破損の恐
れがあった。
However, in the electrolytic capacitor using the sealing plug 12 made of the above-described gas selective permeable resin, the hydrogen gas permeation speed is slow and it is not possible to cope with rapid gas generation. Could be damaged.

【0006】また、金属製のケース11と封口栓12と
のかしめによる封止部におけるシール性が不十分であ
り、内部の電解液等が漏れてしまう恐れがあった。
In addition, the sealing performance at the sealing portion by caulking the metal case 11 and the sealing plug 12 is insufficient, and there is a possibility that the electrolyte or the like inside leaks.

【0007】さらに、従来の電解コンデンサは、電極端
子14を備えた構造であり、表面実装することができな
かった。
Further, the conventional electrolytic capacitor has a structure provided with the electrode terminals 14 and cannot be surface-mounted.

【0008】[0008]

【課題を解決するための手段】そこで本発明は、各種素
子を収納するためのケースにおいて、その一部に平均細
孔径が0.01〜2μmのセラミックス多孔質体からな
るガス透過部を備えたことを特徴とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a case for accommodating various elements, in which a part is provided with a gas permeable portion made of a ceramic porous body having an average pore diameter of 0.01 to 2 μm. It is characterized by the following.

【0009】また、本発明は、上記の電子部品用ケース
に各種素子を収納し、これと接続する電極端子をケース
の外部表面に備えて電子部品を構成したことを特徴とす
る。
Further, the present invention is characterized in that various elements are housed in the above-mentioned case for an electronic component, and an electrode terminal connected to this is provided on an outer surface of the case to constitute an electronic component.

【0010】さらに、本発明は、上記の電子部品用ケー
スに電解コンデンサ素子を収納し、これと接続する電極
端子をケースの外部表面に備えて電解コンデンサを構成
したことを特徴とする。
Further, the present invention is characterized in that an electrolytic capacitor element is housed in the above-mentioned case for an electronic component, and an electrode terminal connected thereto is provided on an outer surface of the case to constitute an electrolytic capacitor.

【0011】[0011]

【作用】本発明によれば、電子部品用ケースに平均細孔
径が0.01〜2μmのセラミックス多孔質体からなる
ガス透過部を備えたことによって、電解液や水蒸気は遮
断するとともに、水素ガスを急速に逃がすことができ、
内圧増大による破損の恐れをなくすことができる。
According to the present invention, an electronic component case is provided with a gas permeable portion made of a ceramic porous body having an average pore diameter of 0.01 to 2 μm, so that the electrolytic solution and water vapor are blocked and hydrogen gas is removed. Can escape quickly,
The possibility of breakage due to an increase in internal pressure can be eliminated.

【0012】また、ケース自体をセラミックスで形成す
れば、ガラスやシーラーを用いた気密封止が容易であ
り、さらにケース自体の表面に電極端子を備えれば表面
実装も可能となる。
If the case itself is formed of ceramics, hermetic sealing using glass or a sealer is easy, and if an electrode terminal is provided on the surface of the case itself, surface mounting becomes possible.

【0013】[0013]

【発明の実施の形態】以下本発明の実施形態を図によっ
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1(a)に示す電子部品用ケースは、収
納部1aを備えたベース1とキャップ2から構成され、
上記ベース1は緻密質セラミックスからなり、キャップ
2は全体が多孔質セラミックスで形成されてガス透過部
3を成している。
The electronic component case shown in FIG. 1A is composed of a base 1 having a storage section 1a and a cap 2,
The base 1 is made of dense ceramics, and the cap 2 is entirely made of porous ceramics to form a gas permeable portion 3.

【0015】また、他の実施形態を図1(b)に示すよ
うに、キャップ2を緻密質セラミックスで形成するとと
もに、その一部に多孔質セラミックスからなるガス透過
部3を備えたものでも良い。
In another embodiment, as shown in FIG. 1 (b), the cap 2 may be formed of dense ceramics and a part thereof may be provided with a gas permeable portion 3 made of porous ceramics. .

【0016】次に、このケースを用いた電解コンデンサ
ーを図2に示す。図1(a)のケースを用いて、ベース
1の収納部1aに電解コンデンサ素子5を収納し、これ
と接続する電極端子4aをベース1の貫通孔1bから下
面に導出し、この下面の表面に外部端子4bを形成して
ある。さらに、ベース1の上面に、ガラスやシーラー等
のシール材6を介してキャップ2を接合し、封止してあ
る。
Next, an electrolytic capacitor using this case is shown in FIG. Using the case of FIG. 1 (a), the electrolytic capacitor element 5 is housed in the housing part 1a of the base 1, and the electrode terminal 4a connected thereto is led out from the through hole 1b of the base 1 to the lower surface. Are formed with external terminals 4b. Further, the cap 2 is bonded to the upper surface of the base 1 via a sealing material 6 such as glass or a sealer, and sealed.

【0017】上記ガス透過部3を成す多孔質セラミック
スは図3に拡大図を示すように、互いに連する細孔32
を有し、その細孔32の平均径が0.01〜2μmとな
っているため、水素ガスは透過するが、電解液や水蒸気
の透過は遮断することができる。そのため、過大電流が
流れた時に収納部1a内のコンデンサ素子5で発生する
水素ガスはガス透過部3を透過して外部へ逃がすことが
できるとともに、収納部1a内の電解液や水蒸気等を逃
がすことはなく、また外部から水蒸気等が侵入すること
も防止できる。
As shown in the enlarged view of FIG. 3, the porous ceramic constituting the gas permeable portion 3 has pores 32 connected to each other.
Since the average diameter of the pores 32 is 0.01 to 2 μm, hydrogen gas can be transmitted therethrough, but permeation of the electrolytic solution and water vapor can be cut off. Therefore, when an excessive current flows, the hydrogen gas generated in the capacitor element 5 in the storage section 1a can pass through the gas permeable section 3 and escape to the outside, and also allows the electrolyte solution, water vapor and the like in the storage section 1a to escape. In addition, it is possible to prevent water vapor and the like from entering from outside.

【0018】ここで、ガス透過部3を成す多孔質セラミ
ックスの平均細孔径を0.01〜2μmとしたのは、
0.01μm未満では水素ガスの透過速度が極めて遅く
なり、一方2μmを越えると、電解液が漏れてしまうた
めである。
Here, the reason why the average pore diameter of the porous ceramic constituting the gas permeable portion 3 is set to 0.01 to 2 μm is as follows.
If the thickness is less than 0.01 μm, the permeation rate of the hydrogen gas becomes extremely slow, while if it exceeds 2 μm, the electrolyte leaks.

【0019】また、ガス透過部3の気孔率については5
〜40%の範囲とすることが好ましい。これは、気孔率
が5%未満では緻密化してガス透過できず、一方40%
を越えると焼成収縮率が大きく寸法ばらつきが大きくな
るためである。
The porosity of the gas permeable section 3 is 5
It is preferable to set the range to 40%. This is because if the porosity is less than 5%, the porosity becomes too dense to allow gas permeation, while the porosity is less than 40%.
If the ratio exceeds, the firing shrinkage is large and the dimensional variation is large.

【0020】なお、これらの平均細孔径や気孔率につい
ては、水銀圧入法により測定することができる。
The average pore diameter and porosity can be measured by a mercury intrusion method.

【0021】また、上記ガス透過部3を成す多孔質セラ
ミックスの材質は、Al2 3 を主成分とし、4%以下
のSiO2 を含有するアルミナセラミックスを用いる
が、その他に炭化珪素、ジルコン等のセラミックスを用
いることもできる。
The material of the porous ceramics constituting the gas permeable portion 3 is alumina ceramics containing Al 2 O 3 as a main component and containing 4% or less of SiO 2 , but other materials such as silicon carbide, zircon, etc. Ceramics can also be used.

【0022】そして、ガス透過部3を成す多孔質セラミ
ックスを製造する場合は、電融アルミナ等の粒子31を
用い、この粒子31に結合剤を加えて造粒した後、所定
形状に成形し、1000〜1600℃で焼成することに
よって、各粒子31が一部で接合した状態で焼結し、各
粒子31間の隙間を細孔32とすることができる。な
お、この時、各粒子31は球状のものを用いることが好
ましい。
When the porous ceramics constituting the gas permeable portion 3 is manufactured, particles 31 such as fused alumina are used, a binder is added to the particles 31, and the particles 31 are formed into a predetermined shape. By baking at 1000 to 1600 ° C., each particle 31 is sintered in a partially joined state, and a gap between each particle 31 can be formed as a pore 32. At this time, it is preferable to use spherical particles.

【0023】このようにすれば、ガス透過部3を成す多
孔質セラミックスは、各細孔32が互いに連通した構造
となり、水素ガスを急速に透過させることができる。ま
た、用いる粒子31の一次粒径を変化させることによっ
て細孔32の平均径を自由に調整することができるた
め、所定の平均細孔径を持ったガス透過部3を容易に得
ることができる。例えば、上述したように平均細孔径が
0.01〜2μmの範囲とするためには、用いる粒子3
1の一次粒径を1〜10μmの範囲としておけば良い。
In this manner, the porous ceramic constituting the gas permeable portion 3 has a structure in which the pores 32 communicate with each other, and can rapidly transmit hydrogen gas. Further, since the average diameter of the pores 32 can be freely adjusted by changing the primary particle diameter of the particles 31 used, the gas permeable portion 3 having a predetermined average pore diameter can be easily obtained. For example, as described above, in order for the average pore diameter to be in the range of 0.01 to 2 μm, it is necessary to use particles 3
The primary particle size of 1 may be in the range of 1 to 10 μm.

【0024】一方、ベース1や図1(b)の実施形態に
おけるキャップ2は、緻密質セラミックスで形成する
が、その材質としては、アルミナセラミックスやムライ
ト、フォルステライト、コージライト等を用い、好まし
くはガス透過部3を成す多孔質セラミックスと同種のも
のを用いる。
On the other hand, the base 1 and the cap 2 in the embodiment of FIG. 1 (b) are formed of dense ceramics, and the material thereof is alumina ceramics, mullite, forsterite, cordierite, etc., and is preferably used. The same kind of porous ceramics as the gas permeable portion 3 is used.

【0025】また、図2のように、このベース1の表面
に外部端子4bを形成する場合は、Ag、Pd、W、M
o、Mn等の高融点金属のペーストをベース1上に塗布
して焼成することによって、容易に所定形状の外部端子
4bを形成することができる。そして、この外部端子4
をベース1の下面に形成してあることにより、この下面
を回路基板上に載置して表面実装することができる。
When the external terminals 4b are formed on the surface of the base 1 as shown in FIG. 2, Ag, Pd, W, M
An external terminal 4b having a predetermined shape can be easily formed by applying a paste of a high melting point metal such as o or Mn on the base 1 and firing the paste. And this external terminal 4
Is formed on the lower surface of the base 1 so that the lower surface can be placed on a circuit board and surface-mounted.

【0026】さらに、ケースを構成するベース1とキャ
ップ2がいずれもセラミックスからなるため、ガラスや
シーラー等のシール材6で両者を接合すれば、高いシー
ル性を維持することができ、収納部1aに収納したコン
デンサ素子を安定して保持することができる。
Further, since both the base 1 and the cap 2 constituting the case are made of ceramics, if they are joined together by a sealing material 6 such as glass or a sealer, a high sealing property can be maintained, and the storage portion 1a Can stably hold the capacitor element housed in the housing.

【0027】次に、本発明の他の実施形態を説明する。
図4に示す電子部品は、リレーやスイッチ等の接点を成
す素子23を収納したものであり、その電極端子24を
保持する基体22を上述したセラミックス多孔質体で形
成して、ガス透過部としてある。また、この基体22を
樹脂や金属等の蓋体21で覆って封止してある。上記接
点を成す素子23からは放電によりオゾン等のガスが発
生するが、ガス透過部を成す基体22から良好にガスを
放出できる。
Next, another embodiment of the present invention will be described.
The electronic component shown in FIG. 4 accommodates an element 23 that forms a contact point such as a relay or a switch. The base 22 that holds the electrode terminal 24 is formed of the above-described porous ceramic body, and serves as a gas permeable portion. is there. The base 22 is covered and sealed with a lid 21 made of resin, metal, or the like. A gas such as ozone is generated by the discharge from the element 23 forming the contact, but the gas can be satisfactorily discharged from the base 22 forming the gas permeable portion.

【0028】さらに他の実施形態として、図5に示す構
造の電解コンデンサにおいて、封口栓12を上記セラミ
ックス多孔質体で形成することもできる。
As still another embodiment, in the electrolytic capacitor having the structure shown in FIG. 5, the sealing plug 12 may be formed of the above-mentioned porous ceramic body.

【0029】なお、以上の実施形態では電解コンデンサ
や接点素子について述べたが、本発明の電子部品用ケー
スは、これ以外に電気二重層コンデンサ等の各種素子を
収納する用途に用いることができる。
Although the electrolytic capacitor and the contact element have been described in the above embodiments, the electronic component case of the present invention can be used for housing various elements such as an electric double layer capacitor.

【0030】[0030]

【実施例】以下本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0031】本発明実施例として、図2に示す電解コン
デンサを作製した。ベース1はAl2 3 含有量が96
%の緻密質アルミナセラミックスで形成し、その寸法は
7×5×4mmとした。ガス透過部3を兼用するキャッ
プ2は表1に示すような種々の平均細孔径を有する多孔
質アルミナセラミックスで形成し、その寸法は7×5×
1mmとした。上記ベース1の収納部1aにコンデンサ
素子5を収納してエポキシ系のシール材6でキャップ2
を接合して電解コンデンサを得た。
As an example of the present invention, an electrolytic capacitor shown in FIG. 2 was manufactured. Base 1 has an Al 2 O 3 content of 96
% Of dense alumina ceramics, and its dimensions were 7 × 5 × 4 mm. The cap 2 serving also as the gas permeable portion 3 is formed of porous alumina ceramics having various average pore diameters as shown in Table 1, and the size is 7 × 5 ×
1 mm. The capacitor element 5 is housed in the housing part 1a of the base 1 and the cap 2 is sealed with an epoxy-based sealing material 6.
Were joined to obtain an electrolytic capacitor.

【0032】一方、比較例として図5に示す従来の電解
コンデンサを用意した。これらの電解コンデンサを各々
3個ずつ用意し、1A/個、電圧フリーの逆電圧試験を
実施し、水素ガスを発生させて5分経過後の容器の破損
の発生率を調べた。また、内部の電解液の漏れの有無も
調べた。
On the other hand, a conventional electrolytic capacitor shown in FIG. 5 was prepared as a comparative example. Three of each of these electrolytic capacitors were prepared, and a voltage-free reverse voltage test was performed at 1 A / unit, and the rate of occurrence of breakage of the container after 5 minutes from the generation of hydrogen gas was examined. Also, the presence or absence of leakage of the internal electrolyte was examined.

【0033】結果は表1に示すように、図5に示す比較
例の電解コンデンサでは、生じた水素ガスを逃がす速度
が遅いため、破損の発生率が高かった。
As shown in Table 1, the electrolytic capacitor of the comparative example shown in FIG. 5 had a high rate of breakage because the generated hydrogen gas was released at a low speed.

【0034】また、図2に示す本発明の電解コンデンサ
でも、ガス透過部3の平均細孔径が0.01μm未満の
ものでは、水素ガスを逃がしにくいことから破損発生率
が高かった。一方、平均細孔径が2μmを越えるもので
は、電解液の漏れが発生した。
Also, in the electrolytic capacitor of the present invention shown in FIG. 2, when the average pore diameter of the gas permeable portion 3 was less than 0.01 μm, the breakage rate was high because hydrogen gas was hard to escape. On the other hand, when the average pore diameter exceeded 2 μm, leakage of the electrolyte occurred.

【0035】これらに対し、ガス透過部3の平均細孔径
を0.01〜2μmの範囲内とした本発明実施例では、
水素ガスを急速に逃がすことができるため、破損発生率
が低く、また電解液の漏れも生じないことから、極めて
優れた結果であった。
On the other hand, in the embodiment of the present invention in which the average pore diameter of the gas permeable portion 3 is in the range of 0.01 to 2 μm,
Since hydrogen gas can be quickly released, the rate of occurrence of breakage is low, and there is no leakage of the electrolyte, which is an extremely excellent result.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】以上のように本発明によれば、電子部品
を収納するためのセラミックス製ケースであって、その
一部に平均細孔径が0.01〜2μmの多孔質体からな
るガス透過部を備えたことによって、電解液や水蒸気等
は透過させずに、水素ガスのみを透過させることができ
る。
As described above, according to the present invention, there is provided a ceramic case for accommodating an electronic component, wherein a part of the case is formed of a porous material having an average pore diameter of 0.01 to 2 μm. By providing the portion, it is possible to transmit only hydrogen gas without transmitting electrolytic solution or water vapor.

【0038】また本発明は、上記の電子部品用ケースに
コンデンサ素子を収納し、これと接続する電極端子をケ
ースの外部表面に備えて電解コンデンサを構成したこと
によって、過大電流が流れた場合に生じる水素ガスを急
速に逃がすことができ、内圧増大によるケースの破損を
防止できる。しかも、内部の電解液や水蒸気の漏れは遮
断できることにより、コンデンサ素子を安定して保持す
ることができる。
Further, the present invention provides an electrolytic capacitor in which a capacitor element is housed in the above-mentioned case for an electronic component, and an electrode terminal connected to the capacitor element is provided on an outer surface of the case, so that an excessive current flows. The generated hydrogen gas can be quickly released, and damage to the case due to an increase in internal pressure can be prevented. In addition, since leakage of the internal electrolyte and water vapor can be shut off, the capacitor element can be stably held.

【0039】さらに、ケースをセラミックスで形成して
あり、その表面に電極端子を備えることによって、回路
基板上に表面実装することも可能となる。
Further, since the case is formed of ceramics and provided with electrode terminals on its surface, it can be surface-mounted on a circuit board.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)(b)は本発明の電子部品用ケースを示
す分解斜視図である。
FIGS. 1A and 1B are exploded perspective views showing an electronic component case of the present invention.

【図2】本発明の電解コンデンサを示す断面図である。FIG. 2 is a sectional view showing an electrolytic capacitor of the present invention.

【図3】本発明の電子部品用ケースのガス透過部の拡大
図である。
FIG. 3 is an enlarged view of a gas permeable portion of the electronic component case of the present invention.

【図4】本発明の電子部品用ケースの他の実施形態を示
す断面図である。
FIG. 4 is a sectional view showing another embodiment of the electronic component case of the present invention.

【図5】従来の電解コンデンサを示す断面図である。FIG. 5 is a sectional view showing a conventional electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1:ベース 1a:収納部 2:キャップ 3:ガス透過部 4a:電極端子 4b:外部端子 5:コンデンサ素子 6:シール材 1: Base 1a: Storage section 2: Cap 3: Gas permeable section 4a: Electrode terminal 4b: External terminal 5: Capacitor element 6: Seal material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】各種素子の収納部を有するとともに、その
一部に平均細孔径が0.01〜2μmのセラミックス多
孔質体からなるガス透過部を備えたことを特徴とする電
子部品用ケース。
1. A case for an electronic component, comprising a housing portion for various elements, and a gas permeable portion made of a ceramic porous body having an average pore diameter of 0.01 to 2 μm in a part thereof.
【請求項2】請求項1記載の電子部品用ケースに各種素
子を収納し、これと接続する外部端子を上記ケースの外
部表面に備えたことを特徴とする電子部品。
2. An electronic component, wherein various elements are housed in the electronic component case according to claim 1, and external terminals connected to the various components are provided on the outer surface of the case.
【請求項3】請求項1記載の電子部品用ケースにコンデ
ンサ素子を収納し、これと接続する外部端子を上記ケー
スの外部表面に備えたことを特徴とする電解コンデン
サ。
3. An electrolytic capacitor, wherein a capacitor element is housed in the electronic component case according to claim 1, and an external terminal connected to the capacitor element is provided on an outer surface of the case.
JP9267584A 1997-09-30 1997-09-30 Case for electronic parts, and electronic parts using this, and electrolytic capacitor Withdrawn JPH11112157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9267584A JPH11112157A (en) 1997-09-30 1997-09-30 Case for electronic parts, and electronic parts using this, and electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9267584A JPH11112157A (en) 1997-09-30 1997-09-30 Case for electronic parts, and electronic parts using this, and electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH11112157A true JPH11112157A (en) 1999-04-23

Family

ID=17446803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9267584A Withdrawn JPH11112157A (en) 1997-09-30 1997-09-30 Case for electronic parts, and electronic parts using this, and electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH11112157A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2461765A (en) * 2008-04-01 2010-01-20 Avx Corp Hermetically sealed ceramic housing for an electrolytic capacitor
KR101057909B1 (en) * 2005-09-20 2011-08-19 로베르트 보쉬 게엠베하 Method of assembly of components and component devices
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9214285B2 (en) 2012-04-11 2015-12-15 Avx Corporation Solid electrolytic capacitor with enhanced mechanical stability under extreme conditions
US9324503B2 (en) 2013-03-15 2016-04-26 Avx Corporation Solid electrolytic capacitor
US9472350B2 (en) 2013-05-13 2016-10-18 Avx Corporation Solid electrolytic capacitor containing a multi-layered adhesion coating
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US9824826B2 (en) 2013-05-13 2017-11-21 Avx Corporation Solid electrolytic capacitor containing conductive polymer particles
US9865401B2 (en) 2012-08-30 2018-01-09 Avx Corporation Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
US9892862B2 (en) 2013-05-13 2018-02-13 Avx Corporation Solid electrolytic capacitor containing a pre-coat layer
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101057909B1 (en) * 2005-09-20 2011-08-19 로베르트 보쉬 게엠베하 Method of assembly of components and component devices
US8094434B2 (en) 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
GB2461765B (en) * 2008-04-01 2012-06-20 Avx Corp Hermetically sealed capacitor assembly
GB2461765A (en) * 2008-04-01 2010-01-20 Avx Corp Hermetically sealed ceramic housing for an electrolytic capacitor
US8576544B2 (en) 2008-04-01 2013-11-05 Avx Corporation Hermetically sealed capacitor assembly
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US9224541B2 (en) 2010-11-01 2015-12-29 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9508492B2 (en) 2011-04-07 2016-11-29 Avx Corporation Manganese oxide capacitor for use in extreme environments
US10658123B2 (en) 2011-04-07 2020-05-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US10014120B2 (en) 2011-04-07 2018-07-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9214285B2 (en) 2012-04-11 2015-12-15 Avx Corporation Solid electrolytic capacitor with enhanced mechanical stability under extreme conditions
US9865401B2 (en) 2012-08-30 2018-01-09 Avx Corporation Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
US9324503B2 (en) 2013-03-15 2016-04-26 Avx Corporation Solid electrolytic capacitor
US9472350B2 (en) 2013-05-13 2016-10-18 Avx Corporation Solid electrolytic capacitor containing a multi-layered adhesion coating
US9892862B2 (en) 2013-05-13 2018-02-13 Avx Corporation Solid electrolytic capacitor containing a pre-coat layer
US9824826B2 (en) 2013-05-13 2017-11-21 Avx Corporation Solid electrolytic capacitor containing conductive polymer particles
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing

Similar Documents

Publication Publication Date Title
JPH11112157A (en) Case for electronic parts, and electronic parts using this, and electrolytic capacitor
US3652902A (en) Electrochemical double layer capacitor
JP6215729B2 (en) Electrolytic capacitor with toxic substance sorption means
JPH10312936A (en) Enclosed and sealed capacitor
JP2006278875A (en) Solid electrolytic capacitor
US4264943A (en) Hollow cored capacitor
JP2007273699A (en) Electric double layer capacitor
JP2001015391A (en) Electrolytic capacitor
JP2008085084A (en) Electric double layer capacitor
JP3886662B2 (en) Case for electronic parts and electronic parts and electrolytic capacitors using the same
US20070182379A1 (en) Container, Battery or Electric Double Layer Capacitor Using the Same, and Electronic Device
TW478229B (en) Chip type surge absorbing device and its manufacturing method
EP0269867B1 (en) Electrochemical cell with container support
JPS6076114A (en) Electrolytic condenser
EP0269866A2 (en) Electrochemical cell with interlocking anode
JP5304998B2 (en) Surge absorber and manufacturing method thereof
CN115885403A (en) Lithium ion battery and method for manufacturing same
JPS58214271A (en) Enclosed battery
JP3825352B2 (en) Circuit board
EP0269865A2 (en) Electrochemical cell with disc activator
JPH0992584A (en) Liquid leakage prevention structure for electrolytic capacitors
JPH07245878A (en) Chip type surge absorber using micro-gap method
JP2000340920A (en) Circuit board and integrated circuit device
JP4239421B2 (en) Surge absorber manufacturing method and surge absorber
JPH01209718A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050221