[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11111305A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH11111305A
JPH11111305A JP9270123A JP27012397A JPH11111305A JP H11111305 A JPH11111305 A JP H11111305A JP 9270123 A JP9270123 A JP 9270123A JP 27012397 A JP27012397 A JP 27012397A JP H11111305 A JPH11111305 A JP H11111305A
Authority
JP
Japan
Prior art keywords
catalyst
platinum
fuel cell
anode
rhenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9270123A
Other languages
Japanese (ja)
Inventor
Masaru Yoshitake
優 吉武
Shinji Terasono
真二 寺園
Naoki Yoshida
直樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9270123A priority Critical patent/JPH11111305A/en
Publication of JPH11111305A publication Critical patent/JPH11111305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the resistance to toxicity against carbon monoxide and oxidization activity of methanol by including Pt and Re in an anode catalyst contained in an anode of a gas diffusing electrode, and setting the Re content at a specified ratio. SOLUTION: Content ratio of Re with respect to the total metal in an anode catalyst is set at 1-80 atom %. Pt is preferably included as the alloy with at least one kind of metal to be selected except for Pt from among platinum group elements, Au, Ag, Cr, Fe, Co, Ni, Mo, W, Zn, and Sn. When particle size of the anode catalyst is preferably set at 1-30 nm so as to obtain high activity. As the anodeic catalyst, a catalyst with the catalyst grains carried by a carrier is preferable. As a carrier, a carbon material having conductivity for functioning as a collector and corrosion resistance under the catalyst using condition, for example, conductive carbon black is used. Specific surface area thereof is preferably set at 50-2,000 m<2> /g.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス拡散電極から
なるアノードに含まれるアノード触媒に特徴を有する燃
料電池に関する。
The present invention relates to a fuel cell characterized by an anode catalyst contained in an anode comprising a gas diffusion electrode.

【0002】[0002]

【従来の技術】水素を燃料とする固体高分子型燃料電池
は、電解質としてフッ素樹脂系のイオン交換膜を用いる
ものが代表的なものとして従来より知られており、常温
から作動でき、高出力密度が得られ、原理的に水のみが
生成するという特長を有する。このため、近年のエネル
ギー、地球環境問題への社会的要請の高まりとともに、
電気自動車用電源、定置型電源などとして大きな期待が
寄せられている。
2. Description of the Related Art A polymer electrolyte fuel cell using hydrogen as a fuel has been conventionally known as a typical one using a fluororesin-based ion exchange membrane as an electrolyte. It has the feature that a density is obtained and only water is generated in principle. For this reason, with the increasing social demands for energy and global environmental issues in recent years,
There are great expectations for power sources for electric vehicles and stationary power sources.

【0003】固体高分子型燃料電池では、燃料としてメ
タンやメタノールなどの炭化水素系の原料を水蒸気改質
して得られる水素ガスを使用することが考えられてい
る。例えばメタノール改質反応は、250〜300℃で
Cu−Zn系などの触媒を使って行う反応であり、次式
のように段階的に進行する。 CH3 OH=2H2 +CO−90kJ/mol CO+H2 O=H2 +CO2 +40kJ/mol
In a polymer electrolyte fuel cell, use of hydrogen gas obtained by steam reforming a hydrocarbon-based material such as methane or methanol as a fuel has been considered. For example, the methanol reforming reaction is a reaction performed at 250 to 300 ° C. using a Cu—Zn-based catalyst or the like, and proceeds stepwise as in the following equation. CH 3 OH = 2H 2 + CO -90kJ / mol CO + H 2 O = H 2 + CO 2 + 40kJ / mol

【0004】すなわち、改質装置でメタノールを水蒸気
と反応させ、改質ガス(水素および一酸化炭素)に転化
させ、次いでシフトコンバータでさらに一酸化炭素を水
蒸気とシフト反応させて、水素ガスが主成分となる改質
ガスとし、燃料電池本体のアノードに供給される。
[0004] That is, methanol is reacted with steam in a reformer to convert the gas into reformed gas (hydrogen and carbon monoxide), and then the carbon monoxide is further subjected to a shift reaction with steam in a shift converter, whereby hydrogen gas is mainly converted. The reformed gas is supplied to the anode of the fuel cell body as a component.

【0005】通常、このようなシフト反応を行っても、
得られる水素ガス中に1%程度の一酸化炭素が含まれて
おり、これがアノードに使用される白金系触媒の触媒毒
となる。特に、100℃以下の低温運転を特長とする固
体高分子型燃料電池においては、一酸化炭素の白金触媒
への触媒毒作用が顕著であり、電池特性を大きく低下さ
せる。このような改質ガス中の一酸化炭素の影響を回避
するには、改質装置に一酸化炭素濃度を低減させるため
の機能を組み込むことや、アノードに使用される触媒の
一酸化炭素に対する被毒耐性を向上させることなどが考
えられている。しかし、従来より用いられている白金触
媒や白金合金触媒では、一酸化炭素に対する被毒耐性が
充分ではなかった。
[0005] Usually, even if such a shift reaction is performed,
About 1% of carbon monoxide is contained in the obtained hydrogen gas, which becomes a catalyst poison of the platinum-based catalyst used for the anode. In particular, in a polymer electrolyte fuel cell characterized by a low-temperature operation of 100 ° C. or less, the catalytic poisoning effect of carbon monoxide on the platinum catalyst is remarkable, and the cell characteristics are greatly reduced. In order to avoid the influence of carbon monoxide in the reformed gas, a function for reducing the concentration of carbon monoxide is incorporated in the reformer, or the catalyst used for the anode is exposed to carbon monoxide. It is considered to improve poison resistance. However, conventionally used platinum catalysts and platinum alloy catalysts did not have sufficient poisoning resistance to carbon monoxide.

【0006】一方、メタノールを直接燃料として用いる
メタノール燃料電池は、燃料が取り扱いやすく安価であ
ることから家庭用や産業用の比較的小出力規模の電源と
して期待されている。メタノール−酸素燃料電池の理論
出力電圧は、水素燃料のものとほぼ同じ1.2V(25
℃)であり、原理的には同様の特性が期待できる。
On the other hand, a methanol fuel cell using methanol directly as a fuel is expected to be a relatively small-output power source for home use and industrial use because the fuel is easy to handle and inexpensive. The theoretical output voltage of a methanol-oxygen fuel cell is 1.2 V (25
° C), and similar characteristics can be expected in principle.

【0007】このためメタノールのアノードでの酸化反
応については数多く研究されているが、充分な活性を有
するメタノールの酸化触媒は未だ見いだされていない。
例えば、酸化触媒が白金触媒である場合には、メタノー
ル極における陽極酸化反応の過電圧はかなり大きくな
る。そのため、メタノール燃料電池の端子電圧は、空気
極または酸素極における酸素還元反応の過電圧とあいま
って軽負荷状態でも既に低く、さらに出力電流の増加と
ともに低下し、その値は熱力学的データから期待できる
値よりも大幅に小さくなる。
[0007] For this reason, many studies have been made on the oxidation reaction of methanol at the anode, but a methanol oxidation catalyst having sufficient activity has not been found yet.
For example, when the oxidation catalyst is a platinum catalyst, the overvoltage of the anodic oxidation reaction at the methanol electrode becomes considerably large. Therefore, the terminal voltage of the methanol fuel cell is already low even under a light load condition in combination with the overvoltage of the oxygen reduction reaction at the air electrode or the oxygen electrode, and further decreases as the output current increases, and the value can be expected from thermodynamic data. It is much smaller than the value.

【0008】また、従来は導電性のカーボン担体に白金
単独の他に、白金−ルテニウム合金(特開平2−111
440)または白金−スズ合金(特開平2−11445
2)を担持してメタノール酸化活性の向上を図る試みが
なされていた。しかし、このような白金系触媒を大量に
使用してもメタノールの酸化反応は遅く、大電流を取り
出せず、メタノール酸化活性のより優れた触媒の開発が
望まれている。
Conventionally, in addition to platinum alone as a conductive carbon carrier, a platinum-ruthenium alloy (Japanese Unexamined Patent Publication No.
440) or a platinum-tin alloy (JP-A-2-11445)
Attempts have been made to improve the methanol oxidation activity by carrying 2). However, even when such a platinum-based catalyst is used in a large amount, the oxidation reaction of methanol is slow, a large current cannot be taken out, and the development of a catalyst having more excellent methanol oxidation activity is desired.

【0009】また、従来のメタノール燃料電池において
は、供給したメタノールがメタノール極で反応せず、電
解質を通ってそのまま空気極または酸素極に達する、い
わゆるクロスリーク現象が起こり、電極上で酸素と直接
反応して電池性能の低下を引き起こしていた。このよう
なメタノールのクロスリーク量を低減させるためにも、
メタノール酸化活性の優れた触媒の開発が必要とされて
いる。
In the conventional methanol fuel cell, the supplied methanol does not react at the methanol electrode, but reaches the air electrode or the oxygen electrode as it passes through the electrolyte. The reaction caused a decrease in battery performance. In order to reduce the amount of cross leak of methanol,
There is a need to develop a catalyst having excellent methanol oxidation activity.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、一酸
化炭素に対する被毒耐性を向上させた水素燃料の固体高
分子型燃料電池およびメタノールの酸化活性に優れたメ
タノール燃料電池を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a hydrogen fuel solid polymer fuel cell and a methanol fuel cell having excellent methanol oxidation activity with improved poisoning resistance to carbon monoxide. It is in.

【0011】[0011]

【課題を解決するための手段】本発明は、ガス拡散電極
からなるアノードに含まれるアノード触媒が、白金とレ
ニウムとを含有する触媒であって、該触媒中の全金属に
対するレニウムの含有割合が1〜80原子%であること
を特徴とする燃料電池を提供する。
According to the present invention, an anode comprising a gas diffusion electrode is a catalyst containing platinum and rhenium, and the ratio of rhenium to all metals in the catalyst is low. Provided is a fuel cell, which is 1 to 80 atomic%.

【0012】[0012]

【発明の実施の形態】本発明におけるアノード触媒は、
白金とレニウムとを含有する触媒である。レニウムは、
白金との合金として含有されることが好ましいが、酸化
レニウムのような化合物として含有されていてもよい。
なお、レニウムと、白金との合金の構造は特に限定され
ず、固溶体、非晶質合金および金属間化合物など、いず
れの構造でもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The anode catalyst according to the present invention comprises:
It is a catalyst containing platinum and rhenium. Rhenium is
It is preferably contained as an alloy with platinum, but may be contained as a compound such as rhenium oxide.
The structure of the alloy of rhenium and platinum is not particularly limited, and may be any structure such as a solid solution, an amorphous alloy, and an intermetallic compound.

【0013】また、アノード触媒中の全金属に対するレ
ニウムの含有割合は1〜80原子%であり、10〜30
原子%であるのが好ましい。なお、本明細書において、
触媒中のレニウムの含有割合(単位:原子%)は、いず
れも、触媒(ただし担体を除く)を構成する金属元素の
合計におけるレニウムの割合を示す。レニウムの含有割
合が上記範囲外では、水素燃料電池においては触媒を構
成する金属、特に白金の一酸化炭素に対する被毒耐性が
低下し、メタノール燃料電池においては、メタノール酸
化活性が著しく低下する。
The content ratio of rhenium to the total metal in the anode catalyst is 1 to 80 atomic%, and 10 to 30 atomic%.
Preferably it is atomic%. In this specification,
The ratio of rhenium in the catalyst (unit: atomic%) indicates the ratio of rhenium in the total of the metal elements constituting the catalyst (excluding the carrier). If the rhenium content is out of the above range, the resistance to poisoning of metals constituting the catalyst, particularly platinum, to carbon monoxide is reduced in the hydrogen fuel cell, and the methanol oxidation activity is significantly reduced in the methanol fuel cell.

【0014】本発明において、白金は、白金以外の白金
族元素、金、銀、クロム、鉄、コバルト、ニッケル、モ
リブデン、タングステン、亜鉛およびスズからなる群か
ら選ばれる1種以上の金属との合金として含有されるの
が好ましい。安定性、高活性の観点から、白金と、クロ
ム、モリブデン、タングステン、スズから選ばれる1種
以上の金属との合金として含有されるのが特に好まし
い。
In the present invention, platinum is an alloy with at least one metal selected from the group consisting of platinum group elements other than platinum, gold, silver, chromium, iron, cobalt, nickel, molybdenum, tungsten, zinc and tin. It is preferably contained as From the viewpoints of stability and high activity, it is particularly preferable to contain platinum as an alloy of one or more metals selected from chromium, molybdenum, tungsten, and tin.

【0015】上記白金合金の組成は、白金30〜90原
子%、合金化元素(すなわち白金元素以外の元素)10
〜70原子%が好ましく、特には、白金50〜80原子
%、合金化元素20〜50原子%が好ましい。また、合
金化の方法としては、アルゴン、ヘリウム、窒素などの
不活性ガス雰囲気下において600〜900℃の温度で
熱処理を行って合金化を図ることが好ましい。
The composition of the above-mentioned platinum alloy is 30 to 90 atomic% of platinum, 10% of alloying element (ie, element other than platinum element).
Is preferably 70 to 70 atomic%, particularly preferably 50 to 80 atomic% of platinum and 20 to 50 atomic% of alloying element. As a method of alloying, it is preferable to perform heat treatment at a temperature of 600 to 900 ° C. in an atmosphere of an inert gas such as argon, helium, or nitrogen to achieve alloying.

【0016】次に、本発明におけるアノード触媒の製造
方法について説明する。例えば、まず、白金黒、白金合
金黒、または白金か白金合金を担持した担持触媒を、過
レニウム酸アンモニウム、過レニウム酸カリウムまたは
過レニウム酸ナトリウムなどのレニウム化合物を含む水
またはアルコール中に分散した後、蒸発乾固などにより
レニウム化合物を触媒上に析出させた後、か焼し、酸化
レニウム(Re27)を析出させる。次いでこれを水
素雰囲気中で水素還元処理を施すことにより、レニウム
を含有する触媒を製造できる。
Next, a method for producing an anode catalyst according to the present invention will be described. For example, first, a supported catalyst supporting platinum black, platinum alloy black, or platinum or a platinum alloy was dispersed in water or alcohol containing a rhenium compound such as ammonium perrhenate, potassium perrhenate or sodium perrhenate. Thereafter, a rhenium compound is deposited on the catalyst by evaporation to dryness or the like, and then calcined to deposit rhenium oxide (Re 2 O 7 ). Then, this is subjected to a hydrogen reduction treatment in a hydrogen atmosphere to produce a rhenium-containing catalyst.

【0017】アノード触媒の平均粒子径は、高活性を得
るため、1〜30nmであるのが好ましく、2〜5nm
であるのが特に好ましい。本発明の燃料電池は、特に限
定されないが、水素を燃料とする固体高分子型燃料電
池、メタノール燃料電池であるのが好ましい。
The average particle diameter of the anode catalyst is preferably from 1 to 30 nm, and more preferably from 2 to 5 nm in order to obtain high activity.
Is particularly preferred. The fuel cell of the present invention is not particularly limited, but is preferably a polymer electrolyte fuel cell using hydrogen as a fuel, or a methanol fuel cell.

【0018】固体高分子型燃料電池では、高電流密度で
の運転、高いガス拡散性が求められるため、電極層の厚
さを薄くし、電極層内に触媒粒子を分散性よく存在させ
るとともに触媒量を確保することが重要である。白金黒
等を含有する微粉末触媒は、電極層を薄くし触媒を高密
度で使用するのに好適である。
In a polymer electrolyte fuel cell, since operation at a high current density and high gas diffusivity are required, the thickness of the electrode layer is reduced, and the catalyst particles are dispersed in the electrode layer with good dispersibility. It is important to secure the quantity. A fine powder catalyst containing platinum black or the like is suitable for thinning the electrode layer and using the catalyst at a high density.

【0019】また、本発明におけるアノード触媒として
は、導電性の担体に触媒粒子を担持させた触媒が、好ま
しい粒径の触媒粒子を分散性よく得るのに好適である。
担持触媒としては触媒量を確保するため、触媒は担持触
媒全重量中の10〜60重量%、特には20〜40重量
%で担持されているものが好ましい。
Further, as the anode catalyst in the present invention, a catalyst in which catalyst particles are supported on a conductive carrier is suitable for obtaining catalyst particles having a preferable particle size with good dispersibility.
In order to secure a sufficient amount of the supported catalyst, it is preferable that the catalyst is supported at 10 to 60% by weight, particularly 20 to 40% by weight based on the total weight of the supported catalyst.

【0020】上記担持触媒に使用する担体としては、電
極触媒の担体として集電体の機能を果たす導電性と、触
媒使用条件下での耐食性とを有する炭素材料が好まし
い。なかでも、導電性カーボンブラック、アセチレンブ
ラック、グラファイトなどが好適であり、担体の比表面
積は50〜2000m2 /g、特には200〜800m
2 /g、であるものが好ましい。
As the carrier used for the above-mentioned supported catalyst, a carbon material having conductivity which functions as a current collector as a carrier for an electrode catalyst and corrosion resistance under the conditions where the catalyst is used are preferable. Among them, conductive carbon black, acetylene black, graphite and the like are preferable, and the specific surface area of the carrier is 50 to 2000 m 2 / g, particularly 200 to 800 m 2.
2 / g is preferred.

【0021】本発明において上記触媒を使用するアノー
ドを構成するガス拡散電極は、常法にしたがって製造で
き、上記触媒をポリテトラフルオロエチレンなどの疎水
性樹脂結着材で保持することにより得られる。このガス
拡散電極は、多孔質体のシート状とするのが好ましい。
一方、カソードはカーボン担持白金などの触媒をポリテ
トラフルオロエチレンなどの疎水性樹脂結着材で保持し
て得られ、アノードと同様に多孔質のガス拡散電極とす
るのが好ましい。
In the present invention, the gas diffusion electrode constituting the anode using the above catalyst can be produced according to a conventional method, and is obtained by holding the above catalyst with a hydrophobic resin binder such as polytetrafluoroethylene. This gas diffusion electrode is preferably made of a porous sheet.
On the other hand, the cathode is obtained by holding a catalyst such as platinum supported on carbon with a hydrophobic resin binder such as polytetrafluoroethylene, and is preferably a porous gas diffusion electrode like the anode.

【0022】陽イオン交換膜を電解質とする固体高分子
型燃料電池においては、上記のそれぞれのガス拡散電極
とパーフルオロスルホン酸型のイオン交換膜とはホット
プレス法などにより密着させる。必要ならば、上記ガス
拡散電極は、固体高分子電解質を含んでいてもよい。集
電体としては、燃料ガスまたは酸化剤ガスの通路となる
溝が形成された導電性のカーボン板などを使用できる。
In a polymer electrolyte fuel cell using a cation exchange membrane as an electrolyte, each of the above gas diffusion electrodes and a perfluorosulfonic acid type ion exchange membrane are brought into close contact with each other by a hot press method or the like. If necessary, the gas diffusion electrode may include a solid polymer electrolyte. As the current collector, a conductive carbon plate having a groove serving as a passage for the fuel gas or the oxidizing gas can be used.

【0023】[0023]

【実施例】以下、本発明を実施例(例1、3、5、7、
9、11)および比較例(例2、4、6、8、10、1
2)により、さらに詳細に説明する。なお、各触媒の平
均粒子径は粉末X線回折で測定し、各触媒の組成はIC
P発光分析で分析した。
The present invention will now be described with reference to Examples (Examples 1, 3, 5, 7,
9, 11) and Comparative Examples (Examples 2, 4, 6, 8, 10, 1)
This will be described in more detail with reference to 2). The average particle size of each catalyst was measured by powder X-ray diffraction.
Analyzed by P emission analysis.

【0024】「例1」イオン交換水に金属換算で白金量
10gを含む塩化白金酸水溶液と35重量%ホルマリン
水溶液を加え、−10℃に冷却し撹拌した。ここに40
重量%水酸化ナトリウム水溶液を滴下し60℃で1時間
撹拌した。これをろ過洗浄した後、減圧下140℃で6
時間乾燥し白金粒子を得た。白金粒子の平均粒子径は約
2.5nmであった。
"Example 1" An aqueous solution of chloroplatinic acid containing 10 g of platinum in terms of metal and a 35% by weight aqueous solution of formalin were added to ion-exchanged water, cooled to -10 ° C and stirred. Here 40
A weight% aqueous sodium hydroxide solution was added dropwise and the mixture was stirred at 60 ° C. for 1 hour. After filtration and washing, the mixture was heated at 140 ° C under reduced pressure for 6 hours.
After drying for an hour, platinum particles were obtained. The average particle size of the platinum particles was about 2.5 nm.

【0025】この白金粒子1gを200mlのイオン交
換水に分散し、ここに過レニウム酸アンモニウム0.2
gを含む50mlの水溶液を加え撹拌した。次に、水素
化ホウ素ナトリウム0.4gを含む30ml水溶液を滴
下した後、1時間撹拌した。これをろ過洗浄した後、減
圧下140℃で6時間乾燥させた後、3容量%の水素を
含むアルゴン雰囲気の電気炉内にて、700℃で3時間
還元処理を行った。
1 g of the platinum particles was dispersed in 200 ml of ion-exchanged water, and 0.2 g of ammonium perrhenate was added thereto.
50 g of an aqueous solution containing g were added and stirred. Next, a 30 ml aqueous solution containing 0.4 g of sodium borohydride was added dropwise, followed by stirring for 1 hour. This was filtered and washed, dried under reduced pressure at 140 ° C. for 6 hours, and then subjected to a reduction treatment at 700 ° C. for 3 hours in an electric furnace in an argon atmosphere containing 3% by volume of hydrogen.

【0026】得られた触媒の白金とレニウムの組成は白
金90原子%、レニウム10原子%であった。また、こ
の触媒の平均粒子径は4.0nmであった。
The composition of platinum and rhenium in the obtained catalyst was 90 atomic% of platinum and 10 atomic% of rhenium. The average particle size of this catalyst was 4.0 nm.

【0027】「例2」例1で製造した白金粒子をそのま
ま触媒に用いた。
Example 2 The platinum particles produced in Example 1 were used as a catalyst.

【0028】「例3」E−TEK社製の担持率30重量
%のPt/C(本明細書においてPt/Cはカーボン担
体に担持された白金触媒を示す、なおこのカーボン担体
の比表面積は約250m2 /gである)5gを、イオン
交換水に分散し、ここにレニウム量として1.5gを含
む過レニウム酸アンモニウムを加え、撹拌下、蒸発乾固
させた。これを電気炉内で650℃にて2時間か焼した
後、3容量%の水素を含むアルゴン雰囲気に保ち、60
0℃で3時間熱処理を行った。得られた触媒の白金とレ
ニウムの組成は白金75原子%、レニウム25原子%で
あった。また、この触媒の平均粒子径は4.5nmであ
った。
Example 3 Pt / C with a loading of 30% by weight manufactured by E-TEK (Pt / C in the present specification indicates a platinum catalyst supported on a carbon support. The specific surface area of the carbon support is 5 g (approximately 250 m 2 / g) was dispersed in ion-exchanged water, and ammonium perrhenate containing 1.5 g as a rhenium amount was added thereto, and the mixture was evaporated to dryness with stirring. This was calcined at 650 ° C. for 2 hours in an electric furnace, and then maintained in an argon atmosphere containing 3% by volume of hydrogen.
Heat treatment was performed at 0 ° C. for 3 hours. The composition of platinum and rhenium in the obtained catalyst was 75 atomic% of platinum and 25 atomic% of rhenium. The average particle size of this catalyst was 4.5 nm.

【0029】「例4」例3で使用した担持率30重量%
のPt/Cをそのまま触媒に用いた。
"Example 4" 30% by weight of loading used in Example 3
Of Pt / C was used for the catalyst as it was.

【0030】「例5」カーボンブラック担体(キャボッ
ト社製品名:バルカンXC−72R)10gをイオン交
換水に分散し、ここに白金量として3gを含む塩化白金
酸水溶液800mlとルテニウム量として1.5gを含
む塩化ルテニウム、および35重量%ホルマリン水溶液
10mlを加え、−10℃に冷却し撹拌した。これに4
0重量%水酸化ナトリウム水溶液を滴下し1時間還流を
行った。これをろ過洗浄した後、減圧下140℃で5時
間乾燥した後、アルゴン雰囲気の電気炉内にて650℃
で3時間熱処理を行い、白金−ルテニウム合金担持触媒
を得た。この担持触媒の平均粒子径は約3.0nmであ
った。
Example 5 10 g of a carbon black carrier (Cabot Corporation product name: Vulcan XC-72R) was dispersed in ion-exchanged water, 800 ml of an aqueous chloroplatinic acid solution containing 3 g of platinum and 1.5 g of ruthenium. Was added, and 10 ml of a 35% by weight aqueous solution of formalin was added, and the mixture was cooled to −10 ° C. and stirred. This is 4
A 0% by weight aqueous solution of sodium hydroxide was added dropwise and refluxed for 1 hour. This was filtered and washed, dried under reduced pressure at 140 ° C. for 5 hours, and then placed at 650 ° C. in an electric furnace under an argon atmosphere.
For 3 hours to obtain a platinum-ruthenium alloy-supported catalyst. The average particle size of the supported catalyst was about 3.0 nm.

【0031】この担持触媒1gを200mlのイオン交
換水に分散し、ここに過レニウム酸アンモニウム0.3
gを含む50mlの水溶液を加え撹拌した。次に、水素
化ホウ素ナトリウム0.4gを含む30ml水溶液を滴
下した後、1時間撹拌した。これをろ過洗浄した後、減
圧下140℃で6時間乾燥させた後、3容量%の水素を
含むアルゴン雰囲気の電気炉内にて、680℃で3時間
還元処理を行った。
1 g of the supported catalyst was dispersed in 200 ml of ion-exchanged water, and 0.3 g of ammonium perrhenate was added thereto.
50 g of an aqueous solution containing g were added and stirred. Next, a 30 ml aqueous solution containing 0.4 g of sodium borohydride was added dropwise, followed by stirring for 1 hour. This was filtered and washed, dried under reduced pressure at 140 ° C. for 6 hours, and then subjected to a reduction treatment at 680 ° C. for 3 hours in an electric furnace in an argon atmosphere containing 3% by volume of hydrogen.

【0032】得られた担持触媒の金属中の白金、ルテニ
ウムおよびレニウムの組成は白金50原子%、ルテニウ
ム40原子%、レニウム10原子%であった。また、こ
の担持触媒の平均粒子径は4.5nmであった。
The composition of platinum, ruthenium and rhenium in the metal of the obtained supported catalyst was 50 atomic% of platinum, 40 atomic% of ruthenium and 10 atomic% of rhenium. The average particle size of the supported catalyst was 4.5 nm.

【0033】「例6」例5で製造した白金−ルテニウム
合金担持触媒を用いた。
Example 6 The platinum-ruthenium alloy supported catalyst prepared in Example 5 was used.

【0034】「例7」E−TEK社製の30重量%Pt
/Cを2gイオン交換水に分散し、撹拌しながら希NH
4 OH水でpHを8に調整した。ここにクロム量として
0.15gを含む硝酸クロムを添加し、約2時間撹拌し
た後、ろ過を行い、減圧下140℃で6時間乾燥させ
た。次いで、電気炉内部を3容量%の水素を含むアルゴ
ン雰囲気下に保ち、700℃で2時間熱処理を行い、白
金−クロム合金担持触媒を得た。この担持触媒の平均粒
子径は約3.5nmであった。
Example 7 30 wt% Pt manufactured by E-TEK
/ C in 2 g of ion-exchanged water and dilute NH
The pH was adjusted to 8 with 4 OH water. Chromium nitrate containing 0.15 g of chromium was added thereto, stirred for about 2 hours, filtered, and dried at 140 ° C. under reduced pressure for 6 hours. Next, the inside of the electric furnace was kept in an argon atmosphere containing 3% by volume of hydrogen and heat-treated at 700 ° C. for 2 hours to obtain a platinum-chromium alloy-supported catalyst. The average particle size of this supported catalyst was about 3.5 nm.

【0035】次に、白金粒子の代わりにこの白金−クロ
ム合金担持触媒を用いたこと以外は例1と同様にして、
白金−クロム合金にレニウムを含有させた担持触媒を得
た。得られた担持触媒の金属中の白金、クロムおよびレ
ニウムの組成は白金50原子%、クロム40原子%、レ
ニウム10原子%であった。また、この担持触媒の平均
粒子径は4.8nmであった。
Next, in the same manner as in Example 1 except that this platinum-chromium alloy-supported catalyst was used instead of the platinum particles,
A supported catalyst in which rhenium was contained in a platinum-chromium alloy was obtained. The composition of platinum, chromium and rhenium in the metal of the obtained supported catalyst was 50 atomic% of platinum, 40 atomic% of chromium, and 10 atomic% of rhenium. The average particle size of this supported catalyst was 4.8 nm.

【0036】「例8」例7で製造した白金−クロム合金
担持触媒を用いた。
Example 8 The catalyst supported on the platinum-chromium alloy prepared in Example 7 was used.

【0037】「例9」E−TEK社製の30重量%Pt
/Cを2gイオン交換水に分散し、撹拌しながらスズ量
として0.28gを含む塩化第一スズ(SnCl2 )の
水溶液を添加した。ここに0.5gの水素化ホウ素ナト
リウムの30ml水溶液を滴下した後、1時間撹拌し
た。これをろ過洗浄した後、減圧下140℃で6時間乾
燥させた。次いで、電気炉内部を3容量%の水素を含む
アルゴン雰囲気下に保ち、700℃で2時間熱処理を行
い、白金−スズ合金担持触媒を得た。この担持触媒の平
均粒子径は約3.2nmであった。
Example 9 30 wt% Pt manufactured by E-TEK
/ C was dispersed in ion-exchanged water, and an aqueous solution of stannous chloride (SnCl 2 ) containing 0.28 g of tin was added with stirring. A 30 ml aqueous solution of 0.5 g of sodium borohydride was added dropwise thereto, and the mixture was stirred for 1 hour. After filtering and washing this, it was dried at 140 ° C. under reduced pressure for 6 hours. Next, the inside of the electric furnace was kept in an argon atmosphere containing 3% by volume of hydrogen and heat-treated at 700 ° C. for 2 hours to obtain a platinum-tin alloy supported catalyst. The average particle size of this supported catalyst was about 3.2 nm.

【0038】次に、白金粒子の代わりにこの白金−スズ
合金担持触媒を用いたこと以外は例1と同様にして、白
金−スズ合金担持触媒にレニウムを含有させた。得られ
た担持触媒の金属中の白金、スズおよびレニウムの組成
は白金50原子%、スズ40原子%、レニウム10原子
%であった。また、この担持触媒の平均粒子径は5.1
nmであった。
Next, rhenium was contained in the platinum-tin alloy supported catalyst in the same manner as in Example 1 except that this platinum-tin alloy supported catalyst was used instead of the platinum particles. The composition of platinum, tin and rhenium in the metal of the obtained supported catalyst was 50 atomic% of platinum, 40 atomic% of tin and 10 atomic% of rhenium. The average particle size of the supported catalyst was 5.1.
nm.

【0039】「例10」例9で製造した白金−スズ合金
担持触媒を用いた。
"Example 10" The platinum-tin alloy supported catalyst produced in Example 9 was used.

【0040】「例11」E−TEK社製の30重量%P
t/Cを2gイオン交換水に分散し、撹拌しながらモリ
ブデン量として0.3gを含むモリブデン酸カリウムの
水溶液を添加した。ここに0.5gの水素化ホウ素ナト
リウムの30ml水溶液を滴下した後、1時間撹拌し
た。これをろ過洗浄した後、減圧下140℃で6時間乾
燥させた。次いで、電気炉内部を3容量%の水素を含む
アルゴン雰囲気下に保ち、700℃で2時間熱処理を行
い、白金−モリブデン合金担持触媒を得た。この担持触
媒の平均粒子径は約3.7nmであった。
Example 11 30% by weight of P manufactured by E-TEK
2 g of t / C was dispersed in ion-exchanged water, and an aqueous solution of potassium molybdate containing 0.3 g of molybdenum was added with stirring. A 30 ml aqueous solution of 0.5 g of sodium borohydride was added dropwise thereto, and the mixture was stirred for 1 hour. After filtering and washing this, it was dried at 140 ° C. under reduced pressure for 6 hours. Next, the inside of the electric furnace was kept under an argon atmosphere containing 3% by volume of hydrogen and heat-treated at 700 ° C. for 2 hours to obtain a platinum-molybdenum alloy-supported catalyst. The average particle size of the supported catalyst was about 3.7 nm.

【0041】次に、白金粒子の代わりにこの白金−モリ
ブデン合金担持触媒を用いたこと、および過レニウム酸
アンモニウムを0.6g使用したこと以外は例1と同様
にして、白金−モリブデン合金担持触媒にレニウムを含
有させた。得られた担持触媒の金属中の白金、モリブデ
ンおよびレニウムの組成は白金40原子%、モリブデン
30原子%、レニウム30原子%であった。また、この
担持触媒の平均粒子径は4.8nmであった。
Next, a platinum-molybdenum alloy-supported catalyst was prepared in the same manner as in Example 1, except that the platinum-molybdenum alloy-supported catalyst was used instead of the platinum particles, and that 0.6 g of ammonium perrhenate was used. Contained rhenium. The composition of platinum, molybdenum and rhenium in the metal of the obtained supported catalyst was 40 atomic% of platinum, 30 atomic% of molybdenum and 30 atomic% of rhenium. The average particle size of this supported catalyst was 4.8 nm.

【0042】「例12」例11で製造した白金−モリブ
デン合金担持触媒を用いた。
Example 12 The platinum-molybdenum alloy-supported catalyst produced in Example 11 was used.

【0043】[評価結果1]イオン交換膜として厚さ8
0μmのパーフルオロカーボンスルホン酸型イオン交換
膜(旭硝子社製品名:フレミオン膜)を使用し、白金量
が見かけ表面積あたり0.8mg/cm2 であり電極有
効面積が10cm2 であるガス拡散電極(E−TEK社
製)をカソード電極とし、例1〜12で得られた合金触
媒を白金量が見かけ表面積あたり0.5mg/cm2
なるように作製した電極有効面積が10cm2 のガス拡
散電極をアノード電極とし、ホットプレス法で膜−電極
の接合体を作製した。
[Evaluation Result 1] The thickness of the ion exchange membrane was 8
0μm of perfluorocarbon sulfonic acid type ion-exchange membrane (Asahi Glass Co. Product name: Flemion membranes) using a surface area per 0.8 mg / cm 2 platinum amount apparently effective electrode area is 10 cm 2 gas diffusion electrodes (E A gas diffusion electrode having an electrode effective area of 10 cm 2 was prepared by using the alloy catalysts obtained in Examples 1 to 12 so that the amount of platinum became 0.5 mg / cm 2 per apparent surface area. As an anode, a membrane-electrode assembly was produced by a hot press method.

【0044】この接合体を測定用セルに組み込み、酸化
剤ガスとして空気を用い、燃料ガスとして、a)純水
素、b)10ppmの一酸化炭素を含有する水素、c)
100ppmの一酸化炭素を含有する水素、の3通りの
水素を用い、1気圧、セル温度70℃で発電試験を行っ
た。表1中欄に電流密度400mA/cm2 でのセル電
圧を示す。
This assembly was assembled in a measuring cell, and air was used as an oxidizing gas, a) pure hydrogen was used as a fuel gas, b) hydrogen containing 10 ppm of carbon monoxide, c) was used.
A power generation test was performed at 1 atmosphere and a cell temperature of 70 ° C. using three types of hydrogen, hydrogen containing 100 ppm of carbon monoxide. The cell voltage at a current density of 400 mA / cm 2 is shown in the middle column of Table 1.

【0045】[評価結果2]評価結果1で作製した膜−
電極の接合体を用いて、メタノール燃料電池用半電池に
組み込んで、1気圧、80℃でメタノール酸化反応の電
極電位を測定した。表1右欄に、メタノール極の0.4
Vでの比活性度(単位:mg/Pt)と、電流密度50
mA/cm2 でのメタノール極電位(オーム損を控除し
たiRフリー電位、単位:mV)を示す(対水素電極基
準)。
[Evaluation Result 2] Film prepared in Evaluation Result 1
The electrode assembly was assembled into a half-cell for a methanol fuel cell using the electrode assembly, and the electrode potential of the methanol oxidation reaction was measured at 1 atm and 80 ° C. In the right column of Table 1, 0.4 of the methanol electrode is shown.
Specific activity (unit: mg / Pt) at V and current density 50
Shows the methanol electrode potential at mA / cm 2 (iR free potential minus ohmic loss, unit: mV) (based on hydrogen electrode).

【0046】これらの結果から、アノードにレニウム含
有の白金合金触媒を用いることにより一酸化炭素被毒耐
性が向上すること、および、本発明のレニウム含有の白
金合金触媒を用いることによりメタノール酸化活性が向
上することがわかる。
From these results, it can be seen that the use of a rhenium-containing platinum alloy catalyst for the anode improves the carbon monoxide poisoning resistance, and that the use of the rhenium-containing platinum alloy catalyst of the present invention improves the methanol oxidation activity. It turns out that it improves.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】白金とレニウムとを含有する触媒であっ
て該触媒中の全金属に対するレニウムの含有割合が1〜
80原子%である触媒をアノードに用いることにより、
固体高分子型燃料電池においてはアノードにおける一酸
化炭素耐被毒性が向上し、、メタノール燃料電池におい
てはアノードにおけるメタノール酸化活性が向上する。
According to the present invention, there is provided a catalyst containing platinum and rhenium, wherein the content ratio of rhenium to all metals in the catalyst is 1 to 5.
By using a catalyst that is 80 atomic% for the anode,
In a polymer electrolyte fuel cell, the carbon monoxide resistance at the anode is improved, and in a methanol fuel cell, the methanol oxidation activity at the anode is improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガス拡散電極からなるアノードに含まれる
アノード触媒が、白金とレニウムとを含有する触媒であ
って、該触媒中の全金属に対するレニウムの含有割合が
1〜80原子%であることを特徴とする燃料電池。
An anode catalyst contained in an anode comprising a gas diffusion electrode is a catalyst containing platinum and rhenium, and a content ratio of rhenium to all metals in the catalyst is 1 to 80 atomic%. A fuel cell, characterized by:
【請求項2】白金が、白金以外の白金族元素、金、銀、
クロム、鉄、コバルト、ニッケル、モリブデン、タング
ステン、亜鉛およびスズからなる群から選ばれる1種以
上の金属との合金として含有される請求項1記載の燃料
電池。
2. Platinum is a platinum group element other than platinum, gold, silver,
The fuel cell according to claim 1, which is contained as an alloy with one or more metals selected from the group consisting of chromium, iron, cobalt, nickel, molybdenum, tungsten, zinc, and tin.
【請求項3】上記アノード触媒の平均粒子径が、1〜3
0nmである請求項1または2記載の燃料電池。
3. The anode catalyst has an average particle diameter of 1 to 3.
3. The fuel cell according to claim 1, wherein the thickness is 0 nm.
【請求項4】上記アノード触媒が、比表面積50〜20
00m2 /gの導電性の担体上に担持されてなる請求項
1、2または3記載の燃料電池。
4. The method according to claim 1, wherein the anode catalyst has a specific surface area of 50 to 20.
4. The fuel cell according to claim 1, wherein the fuel cell is supported on a conductive support of 00 m 2 / g.
JP9270123A 1997-10-02 1997-10-02 Fuel cell Pending JPH11111305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9270123A JPH11111305A (en) 1997-10-02 1997-10-02 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9270123A JPH11111305A (en) 1997-10-02 1997-10-02 Fuel cell

Publications (1)

Publication Number Publication Date
JPH11111305A true JPH11111305A (en) 1999-04-23

Family

ID=17481879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9270123A Pending JPH11111305A (en) 1997-10-02 1997-10-02 Fuel cell

Country Status (1)

Country Link
JP (1) JPH11111305A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100374A (en) * 2000-07-21 2002-04-05 Japan Storage Battery Co Ltd Electrode for fuel cell and its manufacturing method
WO2006057080A1 (en) * 2004-11-25 2006-06-01 Ricoh Company, Ltd. Electrode catalyst, method for preparation thereof, direct alcohol fuel cell
JP2007287414A (en) * 2006-04-14 2007-11-01 Toyota Motor Corp Membrane electrode assembly for fuel cell and its manufacturing method
GB2436509B (en) * 2005-01-12 2009-05-27 Toyota Eng & Mfg North America Photocatalytic methods for preparation of electrocatalyst materials
JPWO2011036834A1 (en) * 2009-09-28 2013-02-14 パナソニック株式会社 Direct oxidation fuel cell
US10186711B2 (en) 2005-01-12 2019-01-22 Toyota Motor Engineering & Manufacturing North America, Inc. Photocatalytic methods for preparation of electrocatalyst materials
CN114045465A (en) * 2021-11-10 2022-02-15 成都大学 Pt-loaded methanol oxidation composite electrode of amorphous CrCoNi alloy film and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100374A (en) * 2000-07-21 2002-04-05 Japan Storage Battery Co Ltd Electrode for fuel cell and its manufacturing method
WO2006057080A1 (en) * 2004-11-25 2006-06-01 Ricoh Company, Ltd. Electrode catalyst, method for preparation thereof, direct alcohol fuel cell
JP2006179445A (en) * 2004-11-25 2006-07-06 Ricoh Co Ltd Electrode catalyst, method for manufacturing the same, and direct alcohol fuel cell
KR100818816B1 (en) * 2004-11-25 2008-04-02 가부시키가이샤 리코 Electrode catalyst, method for preparation thereof, direct alcohol fuel cell
US8541146B2 (en) 2005-01-12 2013-09-24 Toyota Motor Engineering & Manufacturing North America, Inc. Photocatalytic methods for preparation of electrocatalyst materials
US10186711B2 (en) 2005-01-12 2019-01-22 Toyota Motor Engineering & Manufacturing North America, Inc. Photocatalytic methods for preparation of electrocatalyst materials
GB2436509B (en) * 2005-01-12 2009-05-27 Toyota Eng & Mfg North America Photocatalytic methods for preparation of electrocatalyst materials
US10115991B2 (en) 2006-04-14 2018-10-30 Toyota Jidosha Kabushiki Kaisha Fuel cell membrane-electrode assembly and production method therefor
US8906574B2 (en) 2006-04-14 2014-12-09 Toyota Jidosha Kabushiki Kaisha Fuel cell membrane-electrode assembly and production method therefor
JP2007287414A (en) * 2006-04-14 2007-11-01 Toyota Motor Corp Membrane electrode assembly for fuel cell and its manufacturing method
JPWO2011036834A1 (en) * 2009-09-28 2013-02-14 パナソニック株式会社 Direct oxidation fuel cell
CN114045465A (en) * 2021-11-10 2022-02-15 成都大学 Pt-loaded methanol oxidation composite electrode of amorphous CrCoNi alloy film and preparation method thereof
CN114045465B (en) * 2021-11-10 2023-07-04 成都大学 Methanol oxidation composite electrode with Pt supported by amorphous CrCoNi alloy film and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4541458B2 (en) Solid polymer fuel cell
US6649300B2 (en) Electrode catalyst and electrochemical devices using the same
JP4401059B2 (en) Process for preparing anode catalyst for fuel cell and anode catalyst prepared using the process
US6183894B1 (en) Electrocatalyst for alcohol oxidation in fuel cells
JP2002532833A (en) Electrode structure
JP5037338B2 (en) Ruthenium-rhodium alloy electrocatalyst and fuel cell including the same
JP4575268B2 (en) Catalyst, electrode for fuel cell fuel electrode, and fuel cell
US6663998B2 (en) Anode catalyst materials for use in fuel cells
JP5489740B2 (en) Method for producing ternary electrode catalyst for fuel cell, and polymer electrolyte fuel cell using the same
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
JP5015489B2 (en) Fuel cell electrode catalyst and fuel cell
US20090047568A1 (en) Electrode catalyst for fuel and fuel cell
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
WO2018047188A1 (en) A bimetallic catalyst and fuel for use in a direct dimethyl ether fuel cell
JPH11111305A (en) Fuel cell
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
Neto et al. Electro-oxidation of ethylene glycol on PtSn/C and PtSnNi/C electrocatalysts
Rocco et al. Synthesis of PtCo/ZSM-5/C electrocatalyst and electrochemical activity
JP2005251455A (en) Catalyst for fuel cell, manufacturing method of the same, electrode, and direct methanol type fuel cell
JP3555370B2 (en) Methanol fuel cell
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
JPH10302810A (en) Solid polymeric fuel cell
JP2002159866A (en) Method for preparing alloy catalyst and method for producing solid polymer-type fuel cell
Huang et al. Enhanced electrochemical activity for ethanol oxidation on the carbon-supported Pt 3 Te nanocatalysts by addition of Ru
JP2009117253A (en) Electrode catalyst for fuel cell, manufacturing method thereof, and solid polymer fuel cell using the same