JPH11118709A - Optical heterodyne method spectrophotometer - Google Patents
Optical heterodyne method spectrophotometerInfo
- Publication number
- JPH11118709A JPH11118709A JP27605797A JP27605797A JPH11118709A JP H11118709 A JPH11118709 A JP H11118709A JP 27605797 A JP27605797 A JP 27605797A JP 27605797 A JP27605797 A JP 27605797A JP H11118709 A JPH11118709 A JP H11118709A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical heterodyne
- wavelength
- signal
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title abstract description 6
- 230000031700 light absorption Effects 0.000 claims abstract description 22
- 239000000470 constituent Substances 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光ヘテロダイン法
により被測定体の成分の光吸収特性を分析し成分の濃度
を測定する装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for analyzing a light absorption characteristic of a component of an object to be measured by an optical heterodyne method and measuring the concentration of the component.
【0002】[0002]
【従来の技術】従来、光ヘテロダイン法により被測定体
の成分の光吸収特性を分析し成分の濃度を測定する光ヘ
テロダイン法分光分析装置は、被測定体を通過させる信
号光と被測定体を通過させない参照光それぞれを変調
し、光ヘテロダインビ−トを得るために超音波で変調駆
動される音響光学変調器が用いられる。音響光学変調器
の回折角は、光源から発光される光の波長が変化する
と、波長変化に伴って大きく変化し、正確な光ヘテロダ
インビ−トを得ることが困難になり、濃度測定が困難に
なるため、光源から発光される光の波長を一定にしてお
り、音響光学変調器はこの波長に対応した超音波の一定
の駆動周波数、即ち一定の変調周波数で駆動される。2. Description of the Related Art Conventionally, an optical heterodyne spectroscopic analyzer for analyzing the optical absorption characteristics of components of an object to be measured by an optical heterodyne method and measuring the concentration of the components has been known. An acousto-optic modulator driven by modulation by an ultrasonic wave is used to modulate each of the reference beams not to be passed and to obtain an optical heterodyne beat. When the wavelength of the light emitted from the light source changes, the diffraction angle of the acousto-optic modulator changes greatly with the change in the wavelength, making it difficult to obtain an accurate optical heterodyne beat and making the concentration measurement difficult. Therefore, the wavelength of light emitted from the light source is fixed, and the acousto-optic modulator is driven at a constant driving frequency of the ultrasonic wave corresponding to this wavelength, that is, a constant modulation frequency.
【0003】[0003]
【発明が解決しようとする課題】一般に生体等の被測定
体には複数の成分が混在しており、それぞれの成分に最
も吸収され易い光の波長が異なるため、被測定体中の複
数の成分の光吸収特性を分析し濃度を測定するためには
光源から発光される光の波長を各成分毎に変化させ、更
に音響光学変調器の回折角を変化させないために波長の
変化に対応して音響光学変調器の変調周波数を変える必
要がある。しかしながら、上記従来の光ヘテロダイン法
分光分析装置は、光源から発光される光の波長と音響光
学変調器の変調周波数とは一定であるため、被測定体中
の複数の成分の光吸収特性を分析し濃度を測定すること
は出来ない。Generally, a plurality of components are mixed in an object such as a living body, and the wavelength of light which is most easily absorbed by each component is different. In order to analyze the light absorption characteristics and measure the concentration, the wavelength of the light emitted from the light source is changed for each component, and in order to keep the diffraction angle of the acousto-optic modulator unchanged, It is necessary to change the modulation frequency of the acousto-optic modulator. However, in the conventional optical heterodyne spectroscopic analyzer, since the wavelength of light emitted from the light source and the modulation frequency of the acousto-optic modulator are constant, the optical absorption characteristics of a plurality of components in the measured object are analyzed. The concentration cannot be measured.
【0004】そこで本発明では、被測定体中の複数の成
分の光吸収特性を分析し濃度を測定することが可能な光
ヘテロダイン法分光分析装置を提供することを解決すべ
き課題とする。Accordingly, an object of the present invention is to provide an optical heterodyne spectroscopic analyzer capable of analyzing the light absorption characteristics of a plurality of components in a measured object and measuring the concentration.
【0005】[0005]
【課題を解決するための手段】請求項1の発明は、波長
可変の光を発光する光源と、前記光源から発光される前
記光の波長を可変制御する制御手段と、前記光源から発
光された前記光を被測定体を通過させる信号光と前記被
測定体を通過させない参照光とに分割する手段と、前記
制御手段により前記光の波長が変化されたとき前記信号
光及び前記参照光それぞれの回折角を変化させない周波
数で前記信号光を変調した変調信号光と前記参照光を変
調した変調参照光とを生成する手段と、前記被測定体を
通過させた前記変調信号光と前記被測定体を通過させな
い前記変調参照光とを合波して光ヘテロダインビ−トを
得る手段と、前記光ヘテロダインビ−トを光電変換して
光ヘテロダインビ−ト電気信号を得る手段と、前記制御
手段から出力された波長対応信号と前記光ヘテロダイン
ビ−ト電気信号とに基づいて前記被測定体の成分の光吸
収特性を分析し濃度を測定する手段とを備えることであ
る。According to a first aspect of the present invention, there is provided a light source for emitting light having a variable wavelength, control means for variably controlling the wavelength of the light emitted from the light source, and light emitted from the light source. Means for dividing the light into signal light that passes through the object to be measured and reference light that does not pass through the object to be measured, and when the wavelength of the light is changed by the control unit, the signal light and the reference light, respectively. Means for generating a modulated signal light that modulates the signal light at a frequency that does not change the diffraction angle and a modulated reference light that modulates the reference light, the modulated signal light that has passed through the DUT and the DUT Means for obtaining an optical heterodyne beat by multiplexing the modulated reference light which does not pass through, means for obtaining an optical heterodyne beat electrical signal by photoelectrically converting the optical heterodyne beat, and the control means. Output Wavelength corresponding signal to the optical heterodyne bi - said on the basis of the preparative electric signal by providing the means for measuring the analyzed concentration of light-absorbing properties of the component of the object to be measured.
【0006】請求項2の発明は、請求項1の光ヘテロダ
イン法分光分析装置において、前記制御手段は、前記光
源の光の波長を段階的に変化させるとともに、波長変化
に対応して前記信号光と参照光それぞれの変調周波数を
変化させることである。According to a second aspect of the present invention, in the optical heterodyne spectroscopic analyzer of the first aspect, the control means changes the wavelength of the light of the light source in a stepwise manner, and the signal light corresponds to the wavelength change. And changing the modulation frequency of the reference light.
【0007】請求項3の発明は、請求項1又は2の光ヘ
テロダイン法分光分析装置において、前記光ヘテロダイ
ンビ−トを均等に2分割する手段と、2分割されたそれ
ぞれの光ヘテロダインビ−トを光電変換して得られたそ
れぞれの光ヘテロダインビ−ト電気信号を差動演算する
手段とを設けることである。According to a third aspect of the present invention, there is provided the optical heterodyne spectrometer according to the first or second aspect, wherein the optical heterodyne beat is divided into two equal parts, and each of the two divided optical heterodyne beats is provided. And means for performing a differential operation on each of the optical heterodyne beat electric signals obtained by photoelectrically converting the signals.
【0008】請求項1の発明によれば、光源からの光の
波長を被測定体中の測定目的の成分それぞれの光吸収特
性に対応して変化させるとともに、信号光と参照光それ
ぞれの回折角が変化しないような周波数で信号光と参照
光を変調することができるため、光ヘテロダイン法によ
り得られた光ヘテロダインビ−トを光電変換した光ヘテ
ロダインビ−ト電気信号に基づいて被測定体の成分それ
ぞれの光吸収特性を分析し濃度を測定することができ
る。According to the first aspect of the present invention, the wavelength of the light from the light source is changed in accordance with the light absorption characteristics of each of the components to be measured in the object to be measured, and the diffraction angles of the signal light and the reference light, respectively. Since the signal light and the reference light can be modulated at a frequency at which the optical signal does not change, the measurement of the DUT is performed based on the optical heterodyne beat electric signal obtained by photoelectrically converting the optical heterodyne beat obtained by the optical heterodyne method. The light absorption characteristics of each component can be analyzed to determine the concentration.
【0009】請求項2の発明によれば、光源からの光の
波長を段階的に変化させることができるため、被測定体
中の成分それぞれの各波長に対する光吸収特性を分析し
濃度を測定することができる。According to the second aspect of the present invention, the wavelength of the light from the light source can be changed in a stepwise manner, so that the light absorption characteristics of each component in the object to be measured for each wavelength are analyzed to measure the concentration. be able to.
【0010】請求項3の発明によれば、光源からの光の
振幅が時間的に変動しても光の振幅成分を除去すること
ができるため、被測定体中の成分それぞれの光吸収特性
を分析し濃度を正確に測定することができる。According to the third aspect of the invention, even if the amplitude of the light from the light source fluctuates with time, the amplitude component of the light can be removed. It can be analyzed and the concentration can be measured accurately.
【0011】[0011]
【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。図1は、実施の形態の光ヘテロダイン法分
光分析装置の全体的な構成を示したブロック図である。
以下、光ヘテロダイン法分光分析装置の構成を作用とと
もに説明する。図1に示すように、光ヘテロダイン法分
光分析装置には、波長が可変のスペクトル光Pを発光す
る波長可変レ−ザから成る光源(LD)1が設けられて
いる。光源(LD)1は、この光ヘテロダイン法分光分
析装置を全体的に制御するコントロ−ラ15と接続され
ており、コントロ−ラ15からの波長制御信号に基づい
た波長のスペクトル光Pを発光するように構成されてい
る。上記コントロ−ラ15から出力される波長制御信号
は、光源1から発光されるスペクトル光Pの波長を連続
的に、あるいは段階的に変化させるものである。Next, an embodiment of the present invention will be described. FIG. 1 is a block diagram illustrating an overall configuration of an optical heterodyne spectroscopic analyzer according to an embodiment.
Hereinafter, the configuration of the optical heterodyne spectrometer will be described together with its operation. As shown in FIG. 1, the optical heterodyne spectroscopic analyzer is provided with a light source (LD) 1 composed of a wavelength variable laser that emits a spectrum light P having a variable wavelength. The light source (LD) 1 is connected to a controller 15 that controls the entire optical heterodyne spectroscopic analyzer, and emits a spectrum light P having a wavelength based on a wavelength control signal from the controller 15. It is configured as follows. The wavelength control signal output from the controller 15 changes the wavelength of the spectrum light P emitted from the light source 1 continuously or stepwise.
【0012】光源1から発光されたスペクトル光Pは、
ビ−ムスプリッタ2に入射され、ビ−ムスプリッタ2に
おいて光P1,P2に分割される。尚、上記光P1は後
述の被測定体Sを通過させる信号光となり、光P2は被
測定体Sを通過させない参照光となる。また、この信号
光P1は音響光学変調器(AOM1)3に入射され、参
照光P2は音響光学変調器(AOM2)4に入射され
る。The spectral light P emitted from the light source 1 is
The light is incident on the beam splitter 2 and split into light beams P1 and P2 in the beam splitter 2. The light P1 is signal light that passes through the object S to be described later, and the light P2 is reference light that does not pass through the object S. The signal light P1 is incident on the acousto-optic modulator (AOM1) 3, and the reference light P2 is incident on the acousto-optic modulator (AOM2) 4.
【0013】上記音響光学変調器(AOM1)3は、超
音波発振器(OSC1)5と接続されており、音響光学
変調器(AOM2)4は、超音波発振器(OSC2)6
と接続されている。超音波発振器(OSC1)5及び超
音波発振器(OSC2)6はコントロ−ラ15と接続さ
れており、コントロ−ラ15から超音波発振器(OSC
1)5及び超音波発振器(OSC2)6それぞれに出力
される発振周波数制御信号に基づいた周波数f1,f2
の超音波を発振する。The acousto-optic modulator (AOM1) 3 is connected to an ultrasonic oscillator (OSC1) 5, and the acousto-optic modulator (AOM2) 4 is connected to an ultrasonic oscillator (OSC2) 6
Is connected to The ultrasonic oscillator (OSC1) 5 and the ultrasonic oscillator (OSC2) 6 are connected to the controller 15, and the controller 15 outputs the ultrasonic oscillator (OSC1).
1) The frequencies f1 and f2 based on the oscillation frequency control signals output to 5 and the ultrasonic oscillator (OSC2) 6, respectively.
Oscillates ultrasonic waves.
【0014】前記音響光学変調器(AOM1)3に入射
された信号光P1は、超音波発振器(OSC1)5で発
振された周波数f1の超音波で変調され、変調信号光P
3となる。また、前記音響光学変調器(AOM2)4に
入射された参照光P2は、超音波発振器(OSC2)6
で発振された周波数f2の超音波で変調され、変調参照
光P4となる。The signal light P1 incident on the acousto-optic modulator (AOM1) 3 is modulated by ultrasonic waves having a frequency f1 oscillated by an ultrasonic oscillator (OSC1) 5, and the modulated signal light P
It becomes 3. The reference light P2 incident on the acousto-optic modulator (AOM2) 4 is an ultrasonic oscillator (OSC2) 6
Is modulated by the ultrasonic wave of the frequency f2 oscillated at the above, and becomes the modulated reference light P4.
【0015】変調信号光P3はミラ−7で90度反射さ
れたあと、被測定体S(例えば人の指、牛乳、脱脂粉乳
等)に入射され、透過した変調信号光PSとなってノン
ポラライゼ−ションタイプのビ−ムスプリッタ9に入射
される。また、変調参照光P4はミラ−8で90度反射
されたあと、ノンポラライゼ−ションタイプのビ−ムス
プリッタ9に入射される。After the modulated signal light P3 is reflected by the mirror 7 at 90 degrees, the modulated signal light P3 is incident on an object to be measured S (for example, a human finger, milk, skim milk, or the like), and is transmitted as a modulated signal light PS to form a non-polarized light. The beam is incident on a beam splitter 9 of a scalable type. The modulated reference light P4 is reflected by the mirror 8 at 90 degrees, and then enters the non-polarization type beam splitter 9.
【0016】変調信号光PSと変調参照光P4とがビ−
ムスプリッタ9で合波されると、光ヘテロダインの原理
に基づいて、変調信号光PSと変調参照光P4の変調周
波数の差(f1−f2)の周波数で前記スペクトル光P
が変調された光ヘテロダインビ−トが生成される。そし
て、ビ−ムスプリッタ9で生成された光ヘテロダインビ
−トは均等に分割され、フォトダイオ−ドから成る光電
変換器(PD1)10,(PD2)11に入射される。The modulation signal light PS and the modulation reference light P4 are
After being multiplexed by the splitter 9, based on the principle of optical heterodyne, the spectrum light P has a frequency (f1-f2) which is the difference between the modulation frequencies of the modulation signal light PS and the modulation reference light P4.
Is modulated to generate an optical heterodyne beat. Then, the optical heterodyne beat generated by the beam splitter 9 is equally divided and incident on the photoelectric converters (PD1) 10 and (PD2) 11 composed of photodiodes.
【0017】光電変換器10,11それぞれで光電変換
された信号は光ヘテロダイン検波された光ヘテロダイン
ビ−ト電気信号となる。この光ヘテロダインビ−ト電気
信号は、変調信号光PSと変調参照光P4の変調周波数
の差(f1−f2)の周波数の交流信号に変換されたも
のである。The signals photoelectrically converted by the respective photoelectric converters 10 and 11 become optical heterodyne beat electric signals subjected to optical heterodyne detection. This optical heterodyne beat electric signal is converted into an AC signal having a frequency (f1-f2) which is the difference between the modulation frequencies of the modulation signal light PS and the modulation reference light P4.
【0018】光電変換器10,11から出力されたそれ
ぞれの光ヘテロダインビ−ト電気信号は差動演算回路1
2に入力され、差動演算される。そのため、光源1から
発光されたスペクトル光Pの振幅が時間的に変動して
も、その振幅変動成分が差動演算により除去されるた
め、スペクトル光Pの振幅変動成分が除去された光ヘテ
ロダインビ−ト電気信号のみが差動演算回路12から出
力される。Each of the optical heterodyne beat electric signals output from the photoelectric converters 10 and 11 is converted into a differential operation circuit 1
2 and a differential operation is performed. Therefore, even if the amplitude of the spectral light P emitted from the light source 1 fluctuates with time, the amplitude fluctuating component is removed by the differential operation, so that the optical heterodyne signal from which the amplitude fluctuating component of the spectral light P is removed is removed. Only the electrical signal is output from the differential operation circuit 12.
【0019】差動演算回路12の出力側には、前記変調
周波数の差(f1−f2)を同期信号とするロックイン
アンプ13が接続されている。ロックインアンプ13
は、前記コントロ−ラ15と接続されており、コントロ
−ラ15から前記変調周波数の差(f1−f2)に対応
した同期信号が出力されると、差動演算回路12から出
力された光ヘテロダインビ−ト電気信号は、ロックイン
アンプ13において雑音成分が除去された直流信号に変
換される。尚、ロックインアンプ13の代わりに、前記
変調周波数の差(f1−f2)を通過周波数とする通過
周波数可変タイプのバンドパスフィルタ及び整流器を用
いることができる。The output side of the differential operation circuit 12 is connected to a lock-in amplifier 13 which uses the difference (f1-f2) of the modulation frequencies as a synchronization signal. Lock-in amplifier 13
Are connected to the controller 15, and when a synchronization signal corresponding to the difference (f1-f2) of the modulation frequencies is output from the controller 15, the optical heterodyne output from the differential operation circuit 12 is output. The beat electric signal is converted by the lock-in amplifier 13 into a DC signal from which noise components have been removed. Note that, instead of the lock-in amplifier 13, a band-pass filter and a rectifier of a variable pass frequency that uses the difference (f1-f2) of the modulation frequencies as a pass frequency can be used.
【0020】ロックインアンプ13から出力された直流
信号は分析装置14に入力され、光源1から発光された
スペクトル光Pの波長に対応した被測定体Sの成分の光
吸収スペクトラムが記憶される。コントロ−ラ15は、
光源1から発光させるスペクトル光Pの波長を所要の波
長範囲で連続可変制御、もしくは段階的に可変制御する
とともに、前記音響光学変調器3,4を変調駆動する超
音波発振器5,6の発振周波数f1,f2を上記波長に
反比例させ、変調信号光P3及び変調参照光P4の回折
角が変わらないように制御する。コントロ−ラ15によ
り上記のような制御が行われると、分析装置14には上
記所要波長範囲における被測定体Sの複数の成分の光吸
収スペクトラムが記憶される。The DC signal output from the lock-in amplifier 13 is input to the analyzer 14, where the light absorption spectrum of the component of the device S to be measured corresponding to the wavelength of the spectral light P emitted from the light source 1 is stored. The controller 15 is
The wavelength of the spectral light P emitted from the light source 1 is continuously or variably controlled in a required wavelength range, and the oscillation frequencies of the ultrasonic oscillators 5 and 6 for driving the acousto-optic modulators 3 and 4 for modulation. f1 and f2 are inversely proportional to the wavelengths, and control is performed so that the diffraction angles of the modulation signal light P3 and the modulation reference light P4 do not change. When the above control is performed by the controller 15, the analyzer 14 stores the light absorption spectra of the plurality of components of the measured object S in the required wavelength range.
【0021】分析装置14は、光源1からのスペクトル
光Pの波長が連続可変制御されたとき、上記光吸収スペ
クトラムに基づいて、被測定体Sを構成する複数の成分
の内の濃度測定目的の成分の吸収波長の光と、濃度測定
目的以外の成分の吸収波長の光とを区別してそれぞれの
光吸収特性を計測することで、より正確にそれぞれの成
分の濃度を測定することができる。また、光源1からの
スペクトル光Pの波長が段階的に可変制御されたとき、
波長が瞬時に切替可能であるため、複数の波長に対する
各成分の光吸収特性を短時間に計測することができる。
そのため、生体の成分の光吸収特性を計測する際、雑音
の主たる要因である生体の筋肉の動き、血流などの影響
を比較的受け難い。When the wavelength of the spectrum light P from the light source 1 is continuously and variably controlled, the analyzing device 14 is used for measuring the concentration of a plurality of components constituting the object S based on the light absorption spectrum. By measuring the light absorption characteristics of each component while distinguishing the light having the absorption wavelength of the component from the light having the absorption wavelength of the component other than the concentration measurement purpose, the concentration of each component can be measured more accurately. When the wavelength of the spectrum light P from the light source 1 is variably controlled stepwise,
Since the wavelength can be switched instantaneously, the light absorption characteristics of each component for a plurality of wavelengths can be measured in a short time.
Therefore, when measuring the light absorption characteristics of the components of the living body, it is relatively unaffected by the movement of the muscles of the living body and blood flow, which are the main factors of noise.
【0022】以上のように構成された光ヘテロダイン法
分光分析装置で得られる光ヘテロダインビ−ト信号は、
被測定体Sを透過した非散乱光の光量に対応しているの
で、一般に分光計で用いられる多量解析法などを適用し
て検量線を作成し、その検量線に基づいて被測定体Sを
構成する複数の成分の光吸収特性を分析してそれぞれの
成分の濃度を測定することができる。An optical heterodyne beat signal obtained by the optical heterodyne spectroscopic analyzer configured as described above is
Since it corresponds to the amount of non-scattered light transmitted through the measurement object S, a calibration curve is generally created by applying a mass analysis method or the like generally used in a spectrometer, and the measurement object S is formed based on the calibration curve. By analyzing the light absorption characteristics of a plurality of constituent components, the concentration of each component can be measured.
【0023】以上説明した光ヘテロダイン法分光分析装
置は、一つの光源1を用いて、光源1から発光される光
の波長を連続的に変化させたり、段階的に変化させるこ
とにより被測定体Sの複数の成分の光吸収特性を計測
し、それぞれの成分の濃度を測定することを説明した
が、光源を複数の光源で構成し、それぞれの光源から測
定目的のそれぞれの成分に吸収され易い波長の光を切替
発光させるとともに、超音波発振器5,6の発振周波数
を上記波長切替に同期して変えることにより、被測定体
Sの複数の成分の光吸収特性を計測し、濃度を測定する
ことができる。The optical heterodyne spectroscopic analyzer described above uses one light source 1 to continuously or stepwise change the wavelength of the light emitted from the light source 1 so that the object S can be measured. It has been described that the light absorption characteristics of a plurality of components are measured and the concentration of each component is measured.However, the light source is composed of a plurality of light sources, and the wavelength that is easily absorbed from each light source to each component of the measurement object is used. The light absorption characteristics of a plurality of components of the measured object S are measured by measuring the light absorption characteristics of a plurality of components of the measurement target S by changing the oscillation frequency of the ultrasonic oscillators 5 and 6 in synchronization with the above-described wavelength switching while causing the light to emit light. Can be.
【0024】[0024]
【発明の効果】請求項1の発明によれば、光源からの光
の波長を被測定体中の測定目的の成分それぞれの光吸収
特性に対応して変化させるとともに、信号光と参照光そ
れぞれの回折角が変化しないような周波数で信号光と参
照光を変調することができるため、光ヘテロダイン法に
より得られた光ヘテロダインビ−トを光電変換した光ヘ
テロダインビ−ト電気信号に基づいて被測定体中の成分
それぞれの光吸収特性を分析し濃度を測定することがで
きる。According to the first aspect of the present invention, the wavelength of the light from the light source is changed in accordance with the light absorption characteristics of each of the components to be measured in the object to be measured, and the signal light and the reference light are each changed. Since the signal light and the reference light can be modulated at a frequency at which the diffraction angle does not change, measurement is performed based on the optical heterodyne beat electrical signal obtained by photoelectrically converting the optical heterodyne beat obtained by the optical heterodyne method. The light absorption characteristics of each component in the body can be analyzed to determine the concentration.
【0025】請求項2の発明によれば、光源からの光の
波長を段階的に変化させることができるため、被測定体
中の成分それぞれの各波長に対する光吸収特性を分析し
濃度を測定することができる。According to the second aspect of the present invention, since the wavelength of the light from the light source can be changed in a stepwise manner, the concentration is measured by analyzing the light absorption characteristics of each component in the measured object with respect to each wavelength. be able to.
【0026】請求項3の発明によれば、光源からの光の
振幅が時間的に変動しても光の振幅成分を除去すること
ができるため、被測定体中の成分それぞれの濃度を正確
に測定することができる。According to the third aspect of the present invention, even if the amplitude of the light from the light source fluctuates with time, the amplitude component of the light can be removed, so that the concentration of each component in the measured object can be accurately determined. Can be measured.
【図1】本発明の実施の形態の全体的な構成を示したブ
ロック図である。FIG. 1 is a block diagram showing an overall configuration of an embodiment of the present invention.
1 光源 2,9 ビ−ムスプリッタ 3,4 音響光学変調器 5,6 超音波発振器 7,8 ミラ− 10,11 光電変換器 12 差動演算回路 13, ロックインアンプ 14 分析装置 15 コントロ−ラ S 被測定体 Reference Signs List 1 light source 2, 9 beam splitter 3, 4 acousto-optic modulator 5, 6 ultrasonic oscillator 7, 8 mirror 10, 11 photoelectric converter 12 differential operation circuit 13, lock-in amplifier 14 analyzer 15 controller S DUT
───────────────────────────────────────────────────── フロントページの続き (72)発明者 亀井 智成 愛知県名古屋市東区東片端町8番地 株式 会社スズケン内 (72)発明者 内藤 建 愛知県名古屋市東区東片端町8番地 株式 会社スズケン内 (72)発明者 内藤 義英 愛知県名古屋市瑞穂区片坂町1の52 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tomonari Kamei 8 Suzuken, Higashi-Katabata-cho, Higashi-ku, Nagoya-shi, Aichi Prefecture (72) Inventor Takeshi Naito 8-Shift, Higashi-Katabata-cho, Higashi-ku, Nagoya-shi, Aichi ( 72) Inventor Yoshihide Naito 52-1 Katasaka-cho, Mizuho-ku, Nagoya-shi, Aichi
Claims (3)
源から発光される前記光の波長を可変制御する制御手段
と、前記光源から発光された前記光を被測定体を通過さ
せる信号光と前記被測定体を通過させない参照光とに分
割する手段と、前記制御手段により前記光の波長が変化
されたとき前記信号光及び前記参照光それぞれの回折角
を変化させない周波数で前記信号光を変調した変調信号
光と前記参照光を変調した変調参照光とを生成する手段
と、前記被測定体を通過させた前記変調信号光と前記被
測定体を通過させない前記変調参照光とを合波して光ヘ
テロダインビ−トを得る手段と、前記光ヘテロダインビ
−トを光電変換して光ヘテロダインビ−ト電気信号を得
る手段と、前記制御手段から出力された波長対応信号と
前記光ヘテロダインビ−ト電気信号とに基づいて前記被
測定体の成分の光吸収特性を分析し濃度を測定する手段
とを備えたことを特徴とする光ヘテロダイン法分光分析
装置。A light source that emits light of variable wavelength; control means for variably controlling the wavelength of the light emitted from the light source; and a signal light for passing the light emitted from the light source through an object to be measured. Means for dividing the signal light into reference light that does not pass through the object to be measured, and the signal light at a frequency that does not change the respective diffraction angles of the signal light and the reference light when the wavelength of the light is changed by the control means. Means for generating a modulated modulated signal light and a modulated reference light that modulates the reference light, and multiplexes the modulated signal light passed through the measured object and the modulated reference light not passed through the measured object. Means for obtaining an optical heterodyne beat, means for photoelectrically converting the optical heterodyne beat to obtain an optical heterodyne beat electric signal, and a wavelength corresponding signal output from the control means and the optical heterodyne beat. Means for analyzing the light absorption characteristics of the components of the object to be measured based on the beat electric signal and measuring the concentration.
段階的に変化させるとともに、波長変化に対応して前記
信号光と参照光それぞれの変調周波数を変化させること
を特徴とする請求項1に記載の光ヘテロダイン法分光分
析装置。2. The apparatus according to claim 1, wherein the control means changes the wavelength of the light from the light source in a stepwise manner, and changes the modulation frequencies of the signal light and the reference light in accordance with the wavelength change. 2. The optical heterodyne spectroscopic analyzer according to 1.
割する手段と、2分割されたそれぞれの光ヘテロダイン
ビ−トを光電変換して得られたそれぞれの光ヘテロダイ
ンビ−ト電気信号を差動演算する手段とを設けたことを
特徴とする請求項1,又は2に記載の光ヘテロダイン法
分光分析装置。3. A means for equally dividing said optical heterodyne beat into two, and a difference between respective optical heterodyne beat electric signals obtained by photoelectrically converting each of the divided optical heterodyne beats. 3. An optical heterodyne spectroscopic analyzer according to claim 1, further comprising means for performing a dynamic operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27605797A JPH11118709A (en) | 1997-10-08 | 1997-10-08 | Optical heterodyne method spectrophotometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27605797A JPH11118709A (en) | 1997-10-08 | 1997-10-08 | Optical heterodyne method spectrophotometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11118709A true JPH11118709A (en) | 1999-04-30 |
Family
ID=17564202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27605797A Pending JPH11118709A (en) | 1997-10-08 | 1997-10-08 | Optical heterodyne method spectrophotometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11118709A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102166537A (en) * | 2011-01-30 | 2011-08-31 | 南京大学 | Hydrophilic, multifunctional and integrated miniflow control chip easy to optical detection, manufacture method thereof and use thereof |
JP2011203550A (en) * | 2010-03-26 | 2011-10-13 | Neoark Corp | Heterodyne light source, and light absorption/light loss measuring instrument and spectroscopic analyzer using the same |
CN102564967A (en) * | 2010-12-13 | 2012-07-11 | 依诺特生物能量控股公司 | Chlorophyll fluorescent spectroscopy analyzer and method for measuring chlorophyll concentration |
-
1997
- 1997-10-08 JP JP27605797A patent/JPH11118709A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011203550A (en) * | 2010-03-26 | 2011-10-13 | Neoark Corp | Heterodyne light source, and light absorption/light loss measuring instrument and spectroscopic analyzer using the same |
CN102564967A (en) * | 2010-12-13 | 2012-07-11 | 依诺特生物能量控股公司 | Chlorophyll fluorescent spectroscopy analyzer and method for measuring chlorophyll concentration |
CN102166537A (en) * | 2011-01-30 | 2011-08-31 | 南京大学 | Hydrophilic, multifunctional and integrated miniflow control chip easy to optical detection, manufacture method thereof and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5713501B2 (en) | Homodyne detection system electromagnetic spectrum measurement system | |
US8891085B2 (en) | Gas analyzer | |
KR20090023191A (en) | Measurement equipment | |
JPH09133654A (en) | Photo-acoustic analyzer | |
JPH11118709A (en) | Optical heterodyne method spectrophotometer | |
JP2011191246A (en) | Laser-type gas analyzer | |
JP5370248B2 (en) | Gas analyzer | |
JP2010145270A (en) | Stimulated raman spectroscopic analyzer | |
KR20180005447A (en) | APPARATUS FOR GENERATING THz WAVE USING PHASE MODULATION | |
JP2001066250A (en) | Gas detection apparatus | |
JPH0915334A (en) | Laser equipment for measuring distance | |
JPH1133017A (en) | Optical heterodyne method spectroscopic analyser | |
JP2004340833A (en) | Optical measuring device | |
JP6278917B2 (en) | Component concentration measuring apparatus and component concentration measuring method | |
JP6254543B2 (en) | Dielectric spectrometer | |
JPH09197019A (en) | Electrical signal measuring device | |
JP2006029821A (en) | Optical frequency measuring system | |
JP2829966B2 (en) | Laser Doppler speedometer | |
JPH08101066A (en) | Optical spectrum measuring apparatus | |
JP2003090704A (en) | Optical heterodyne interferometer | |
JP2758556B2 (en) | Optical signal detector | |
JP2004325099A (en) | Laser light source and laser spectroscopic analyzer using the same | |
JP2664255B2 (en) | Optical spectrum analyzer | |
JPH0264433A (en) | Measuring method of frequency characteristic of light modulator and measuring apparatus therefor | |
Larson et al. | SWIR LED-Based Dual Comb Spectroscopy for High Value Gas Detection |