JPH11118419A - Displacement gauge and three-dimensional shape measuring apparatus - Google Patents
Displacement gauge and three-dimensional shape measuring apparatusInfo
- Publication number
- JPH11118419A JPH11118419A JP27911197A JP27911197A JPH11118419A JP H11118419 A JPH11118419 A JP H11118419A JP 27911197 A JP27911197 A JP 27911197A JP 27911197 A JP27911197 A JP 27911197A JP H11118419 A JPH11118419 A JP H11118419A
- Authority
- JP
- Japan
- Prior art keywords
- light
- axis
- light receiving
- measured
- measurement surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、三角測量方式を用
いて被測定物の測定面の変位(距離)を測定するレーザ
変位計等の変位計と、この変位計の光軸を二次元的(平
面的)にスキャンさせて被測定物の測定面の三次元形状
を測定する三次元形状測定器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement meter such as a laser displacement meter for measuring a displacement (distance) of a measurement surface of an object to be measured using a triangulation method, and a two-dimensional optical axis of the displacement meter. The present invention relates to a three-dimensional shape measuring device that scans (in a planar manner) and measures a three-dimensional shape of a measurement surface of an object to be measured.
【0002】[0002]
【従来の技術】従来、この種の変位計の技術としては、
例えば、次のような文献に記載されるものがあった。 文献:「センサデバイス・計測器ハンドブック‘92」
センサ技術1992年6月臨時増刊号、情報調査会発
行、P.83−85 前記文献に記載されているように、三角測量方式の変位
計のうち、例えば、レーザ変位計は、レーザ光を被測定
物に投射し、この被測定物からの反射光を斜め方向から
観察する時、被測定物と変位計との距離(変位)により
反射光の角度が変化することから、被測定物の変位を計
測する測定器である。レーザ変位計は、レーザ光を被測
定物に投射する投光部と、該被測定物の反射光の受光位
置を検出する受光部とを、有するセンサ部を備え、この
センサ部に回路部が接続されている。回路部は、センサ
部に対して電源電力を供給したり、該センサ部内の受光
部の出力信号から被測定物の変位量を求める等の機能を
有している。レーザ変位計には、このセンサ部を構成す
る投光部と受光部の配置により、正反射型と乱反射型
(これは垂直型ともいわれる)がある。2. Description of the Related Art Conventionally, as a technique of this kind of displacement meter,
For example, there is one described in the following literature. Literature: "Sensor Device and Instrument Handbook '92"
June 1992 Special issue of sensor technology, published by Information Research Committee, 83-85 As described in the above document, among the displacement meters of the triangulation method, for example, a laser displacement meter projects a laser beam onto an object to be measured, and reflects reflected light from the object in an oblique direction. Since the angle of the reflected light changes depending on the distance (displacement) between the measured object and the displacement meter when observing from, the measuring instrument measures the displacement of the measured object. The laser displacement meter includes a sensor unit having a light projecting unit that projects laser light onto the object to be measured, and a light receiving unit that detects a light receiving position of reflected light from the object to be measured, and a circuit unit is provided in the sensor unit. It is connected. The circuit unit has a function of supplying power to the sensor unit, obtaining a displacement amount of the measured object from an output signal of a light receiving unit in the sensor unit, and the like. Laser displacement meters include a specular reflection type and a diffuse reflection type (also referred to as a vertical type) depending on the arrangement of a light projecting unit and a light receiving unit constituting the sensor unit.
【0003】図2は、前記文献に記載された従来の乱反
射型変位計のセンサ部を示す概略の構造図である。乱反
射型変位計のセンサ部10は、レーザ光を投光軸H11
に沿って被測定物1の測定面へ投射する投光部11と、
該測定物1の測定面で反射し受光軸H12に沿って送ら
れてくる反射光の受光位置を検出する受光部12とを備
えている。投光部11は、レーザ光を発生するレーザダ
イオード等の光源と、該レーザ光を被測定物1に向けて
投射する集光レンズとで構成されている。受光部12
は、受光軸H12上の反射光を集光する受光レンズ12
aと、この受光レンズ12aで集光した反射光を受光し
て受光位置を検出する受光素子12bとで構成されてい
る。受光素子12bは、例えば、ディジタルラインセン
サであるCCD(Chargecoupled Device )ラインセン
サで構成されている。FIG. 2 is a schematic structural view showing a sensor portion of a conventional irregular reflection type displacement meter described in the above-mentioned document. The sensor unit 10 of the irregular reflection type displacement meter emits a laser beam to the projection axis H11.
A light projecting unit 11 for projecting the object to be measured 1 along the
A light receiving unit 12 for detecting a light receiving position of reflected light reflected by the measurement surface of the measurement object 1 and transmitted along the light receiving axis H12. The light projecting unit 11 includes a light source such as a laser diode that generates laser light, and a condenser lens that projects the laser light toward the device under test 1. Light receiving section 12
Is a light receiving lens 12 for condensing reflected light on a light receiving axis H12.
a, and a light receiving element 12b that receives reflected light condensed by the light receiving lens 12a and detects a light receiving position. The light receiving element 12b is constituted by, for example, a CCD (Charge Coupled Device) line sensor which is a digital line sensor.
【0004】この乱反射型変位計では、被測定物1に対
して投光軸H11が垂直に設定され(即ち、投光軸H1
1がセンサ部10の軸H10上におかれ)、受光軸H1
2がある角度傾けて設定されている。そして、投光部1
1から投射したレーザ光で被測定物1の測定面を照射
し、この反射光を受光軸H12上の受光レンズ12aに
よって受光素子12b上へ集光する。ここで、反射光の
軸は、被測定物1の測定面の変位により、受光レンズ1
2aを中心として角度変化するため、受光素子12b上
の受光位置が変位することにより変化する。受光素子1
2bは、受光位置によって異なる電圧を出力するため
に、これを回路部によって変位量に換算する。In this irregular reflection type displacement meter, the light projecting axis H11 is set perpendicular to the DUT 1 (ie, the light projecting axis H1).
1 is placed on the axis H10 of the sensor unit 10), and the light receiving axis H1
2 is set at an angle. And the light emitting unit 1
The measurement surface of the DUT 1 is illuminated with the laser light projected from 1 and the reflected light is collected on the light receiving element 12b by the light receiving lens 12a on the light receiving axis H12. Here, the axis of the reflected light depends on the displacement of the measurement surface of the DUT 1 and the light receiving lens 1
Since the angle changes about the center 2a, the angle changes when the light receiving position on the light receiving element 12b is displaced. Light receiving element 1
The circuit 2b converts the voltage into a displacement amount by a circuit unit in order to output a different voltage depending on the light receiving position.
【0005】例えば、投光部11から被測定物1の測定
面にレーザ光が照射されると、この照射部分が輝度(ス
ポット)となり、その点で反射する。被測定物1がセン
サ部10から最も遠い位置1−3にあるときのスポット
をs3とすると、このスポットs3での反射光が受光レ
ンズ12aで集光され、受光素子12bの点n3に結像
される。被測定物1がセンサ部10に近づくにつれ、そ
の位置が1−3→1−2→1−1と変化し、スポットも
s3→s2→s1と移動する。これと同時に、受光素子
12b上の結像点の位置もn3→n2→n1と移動し、
被測定物1の測定面の変位量Wが受光素子12b上の位
置n3〜n1の変位量wに置き換えられる。受光素子1
2bを構成するCCDラインセンサは、多数の半導体光
検出素子を直線上に並べた構造であり、結像点(即ち、
光の照射された点)の光検出素子から信号を取出せる。
この取出した信号を回路部で処理し、その部分の番地を
読出すことにより、被測定物1の変位を測定できること
になる。この種の乱反射型変位計では、被測定物1の平
面の上のある一点の上下変化を測定できるが、表面が乱
反射する物でないと測定できないという特性がある。For example, when a laser beam is irradiated from the light projecting unit 11 to the measurement surface of the DUT 1, the irradiated portion becomes a luminance (spot) and is reflected at that point. Assuming that a spot when the DUT 1 is at the position 1-3 farthest from the sensor unit 10 is s3, the reflected light at the spot s3 is condensed by the light receiving lens 12a and forms an image at a point n3 of the light receiving element 12b. Is done. As the DUT 1 approaches the sensor section 10, the position changes from 1-3 → 1-2 → 1-1, and the spot also moves from s3 → s2 → s1. At the same time, the position of the imaging point on the light receiving element 12b also moves from n3 to n2 to n1,
The displacement W of the measurement surface of the DUT 1 is replaced with the displacement w of the positions n3 to n1 on the light receiving element 12b. Light receiving element 1
The CCD line sensor constituting 2b has a structure in which a large number of semiconductor photodetectors are arranged on a straight line, and has an image forming point (ie,
A signal can be extracted from the light detection element at the point where light is irradiated).
The extracted signal is processed by the circuit unit, and the address of that portion is read, whereby the displacement of the DUT 1 can be measured. This type of irregular reflection type displacement meter can measure a vertical change at a certain point on the plane of the DUT 1, but has a characteristic that it cannot be measured unless the surface is irregularly reflected.
【0006】図3は、前記文献に記載された従来の正反
射型変位計のセンサ部を示す概略の構造図であり、図2
中の要素と共通する要素には共通の符号が付されてい
る。正反射型変位計のセンサ部10Aでは、このセンサ
部10Aの軸H10Aに対して投光部11の投光軸H1
1と受光部12の受光軸H12とが同一角度で傾けて設
定されている。この正反射型変位計でも、図2の乱反射
型変位計と同様の動作原理によって被測定物1の変位量
を測定できる。正反射型では、被測定物1が位置1−1
〜1−3のように上下に変化した場合、平面上の測定点
が移動するので、ある一点での変化は測定できないが
(即ち、ある面積内の変化となるが)、原理的にはどの
ような被測定物1でも測定可能である。FIG. 3 is a schematic structural view showing a sensor section of the conventional regular reflection type displacement meter described in the above-mentioned document.
Elements common to those in the middle are denoted by common reference numerals. In the sensor unit 10A of the regular reflection type displacement meter, the light projecting axis H1 of the light projecting unit 11 with respect to the axis H10A of the sensor unit 10A.
1 and the light receiving axis H12 of the light receiving unit 12 are set to be inclined at the same angle. This regular reflection type displacement meter can also measure the displacement amount of the DUT 1 by the same operation principle as the irregular reflection type displacement meter of FIG. In the regular reflection type, the DUT 1 is positioned at position 1-1.
In the case of a vertical change as in 1-3, the measurement point on the plane moves, so a change at a certain point cannot be measured (that is, a change within a certain area). It is possible to measure even the DUT 1 as described above.
【0007】図2または図3の変位計を使用して被測定
物1の三次元形状を測定するための三次元形状測定器
は、従来、次の(a),(b)のような2つの構成例が
一般的に採用されている。 (a) 図2あるいは図3の変位計のセンサ部10,1
0Aを二次元的(平面的)に移動させ、この移動位置に
よる変位を計測して被測定物1の三次元形状を測定す
る。 (b) 図4は、図2あるいは図3の変位計を用いて構
成した従来の三次元形状測定器のセンサユニットを示す
概略の構造図である。三次元形状測定器のセンサユニッ
トは、投光部11及び受光部12と、該投光部11の投
光軸H11と受光部12の受光軸H12とに跨がるよう
に配置されたミラー13とで構成されている。そして、
被測定物1の測定面(即ち、スキャン範囲)に対して、
ミラー13を振ることによる投光軸H11及び受光軸H
12の変化でX軸方向(ミラースキャン方向)の一次元
分、残る一次元分は該ミラー13、投光部11及び受光
部12からなるセンサユニット全体をY軸方向(ユニッ
ト移動方向)に移動させることにより、被測定物1の測
定面を二次元的にスキャンし、該被測定物1の測定面の
三次元形状を測定するようにしている。Conventionally, a three-dimensional shape measuring instrument for measuring the three-dimensional shape of the DUT 1 using the displacement meter shown in FIG. 2 or FIG. 3 has the following two types (a) and (b). One configuration example is generally employed. (A) Sensor units 10, 1 of the displacement meter of FIG. 2 or FIG.
OA is moved two-dimensionally (two-dimensionally), and the displacement due to this movement position is measured to measure the three-dimensional shape of the DUT 1. (B) FIG. 4 is a schematic structural view showing a sensor unit of a conventional three-dimensional shape measuring instrument constituted by using the displacement meter of FIG. 2 or FIG. The sensor unit of the three-dimensional shape measuring device includes a light projecting unit 11 and a light receiving unit 12, and a mirror 13 disposed so as to straddle the light projecting axis H11 of the light projecting unit 11 and the light receiving axis H12 of the light receiving unit 12. It is composed of And
With respect to the measurement surface of the DUT 1 (that is, the scan range),
Projection axis H11 and reception axis H by shaking mirror 13
With the change of 12, the one-dimensional portion in the X-axis direction (mirror scan direction) and the remaining one-dimensional portion move the entire sensor unit including the mirror 13, the light projecting portion 11 and the light receiving portion 12 in the Y-axis direction (unit moving direction). By doing so, the measurement surface of the DUT 1 is two-dimensionally scanned, and the three-dimensional shape of the measurement surface of the DUT 1 is measured.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、従来の
変位計及びこれを用いた三次元形状測定器では、次の
(i),(ii)のような課題があった。 (i) 変位計の課題 被測定物1の測定面が変位計のセンサ部10,10Aの
軸H10,H10Aと垂直のとき、図3の正反射型変位
計では、被測定物1の測定面への光の入射角と反射角が
ほぼ同一になるので、原理的にはどのような被測定物1
でも反射光が得られ、変位測定が可能である。これに対
し、図2の乱反射型変位計では、被測定物1の測定面に
対する入射角と反射角が異なるため、該測定面で入射し
た光がある程度乱反射しないと反射光が得られず、変位
測定ができない。ところが、実際の変位計では、変位量
を受光位置差として検出する受光位置検出用の受光素子
12bが、特性上、反射光が強すぎても、あるいは弱す
ぎても受光位置を検出できない。例えば、正反射型で反
射光が強すぎる場合や、乱反射型で反射光が弱すぎる場
合、被測定物1の変位の測定ができない。そのため、通
常、変位計では被測定物1の測定面の光の反射特性によ
り、反射型と乱反射型を使いわける必要があり、使用
上、不利不便である。 (ii) 三次元形状測定器の課題 従来の変位計を用いた三次元形状測定器では、前記
(a),(b)のいずれの構成でも、センサユニットを
移動させなければならないため、移動部が大型化してし
まうことや、高速スキャンが難しい等の課題がある。本
発明は、前記従来技術が持っていた課題を解決し、正反
射型と乱反射型を自在に切換えることができる変位計を
提供すると共に、このような変位計を用いて構造の簡単
な三次元形状測定器を提供することを目的とする。However, the conventional displacement meter and the three-dimensional shape measuring instrument using the same have the following problems (i) and (ii). (I) Problems of the Displacement Meter When the measurement surface of the DUT 1 is perpendicular to the axes H10 and H10A of the sensor units 10 and 10A of the displacement meter, the regular reflection type displacement meter of FIG. Since the angle of incidence and the angle of reflection of light to the light are almost the same, in principle,
However, reflected light can be obtained, and displacement can be measured. On the other hand, in the diffuse reflection type displacement meter of FIG. 2, since the incident angle and the reflection angle of the DUT 1 with respect to the measurement surface are different, reflected light cannot be obtained unless the light incident on the measurement surface is diffusely reflected to some extent. Cannot measure. However, in an actual displacement meter, the light receiving element 12b for detecting the light receiving position, which detects the amount of displacement as a light receiving position difference, cannot detect the light receiving position if the reflected light is too strong or too weak. For example, when the reflected light is too strong in the regular reflection type or the reflected light is too weak in the irregular reflection type, the displacement of the DUT 1 cannot be measured. Therefore, in the displacement meter, it is usually necessary to use the reflection type and the irregular reflection type depending on the light reflection characteristics of the measurement surface of the DUT 1, which is inconvenient in use. (Ii) Problems of the three-dimensional shape measuring device In the conventional three-dimensional shape measuring device using the displacement meter, the sensor unit must be moved in any of the above configurations (a) and (b). However, there are problems such as an increase in size and difficulty in high-speed scanning. The present invention solves the problems of the prior art, and provides a displacement meter capable of freely switching between a regular reflection type and a diffuse reflection type, and a three-dimensional structure having a simple structure using such a displacement meter. An object of the present invention is to provide a shape measuring instrument.
【0009】[0009]
【課題を解決するための手段】前記課題を解決するため
に、本発明のうちの第1の発明は、三角測距方式を用い
て被測定物の測定面の変位量を測定する変位計におい
て、前記被測定物に対して垂直方向の投光軸を有し、該
投光軸に沿って該被測定物の測定面に光を照射する投光
部と、前記投光軸と平行な受光軸を有し、前記測定面で
反射し該受光軸に沿って送られてくる反射光の受光位置
を検出する受光部と、前記投光軸及び前記受光軸を跨ぐ
大きさのレンズ口径を持ち、かつ該投光軸及び該受光軸
と平行な光軸を有し、前記投光部及び前記受光部と前記
被測定物との間に配置され、該投光軸及び該受光軸に対
して垂直方向に移動可能な対物レンズとを備え、前記対
物レンズの中心を、前記投光軸上と該投光軸及び前記受
光軸の中心線上とに切換え移動可能な構造にしている。
このような構成を採用したことにより、対物レンズの中
心を投光部の投光軸上に移動させると、該投光部から放
射された光が対物レンズの中心部を通過して被測定物の
測定面に照射され、この測定面での反射光が対物レンズ
によって受光部方向に屈折し、該受光部で受光される。
これにより、乱反射型の変位計として作用する。対物レ
ンズの中心を投光軸及び受光軸の中心線上に移動する
と、投光部から放射された光が対物レンズによって被測
定物方向に屈折して測定面に照射される。この反射光
は、対物レンズによって受光部方向に屈曲した後、該受
光部で受光される。これにより、正反射型の変位計とし
て作用する。According to a first aspect of the present invention, there is provided a displacement meter for measuring a displacement of a measurement surface of an object to be measured by using a triangulation method. A light projecting unit having a light projecting axis in a direction perpendicular to the object to be measured, and irradiating light to a measurement surface of the object to be measured along the light projecting axis; and a light receiving part parallel to the light projecting axis. A light receiving portion for detecting a light receiving position of reflected light reflected by the measurement surface and sent along the light receiving axis, and having a lens diameter large enough to straddle the light projecting axis and the light receiving axis. And has an optical axis parallel to the light projecting axis and the light receiving axis, and is disposed between the light projecting part and the light receiving part and the object to be measured, with respect to the light projecting axis and the light receiving axis. A vertically movable objective lens, wherein the center of the objective lens is positioned on the light projecting axis and on a center line of the light projecting axis and the light receiving axis. It is to place a movable structure.
By adopting such a configuration, when the center of the objective lens is moved on the light projecting axis of the light projecting part, the light emitted from the light projecting part passes through the center part of the objective lens, and Is reflected on the measurement surface, and the reflected light on the measurement surface is refracted by the objective lens toward the light receiving portion, and is received by the light receiving portion.
Thereby, it functions as a diffuse reflection type displacement meter. When the center of the objective lens is moved on the center lines of the light projecting axis and the light receiving axis, the light emitted from the light projecting portion is refracted by the objective lens in the direction of the object to be measured and is irradiated on the measurement surface. This reflected light is bent by the objective lens in the direction of the light receiving section, and then received by the light receiving section. Thereby, it functions as a regular reflection type displacement meter.
【0010】第2の発明によれば、三角測距方式を用い
て被測定物の測定面の三次元形状を測定する三次元形状
測定器において、前記被測定物に対して垂直方向の投光
軸を有し、該投光軸に沿って該被測定物の測定面に光を
照射する投光部と、前記投光軸と平行な受光軸を有し、
前記測定面で反射し該受光軸に沿って送られてくる反射
光の受光位置を検出する受光部と、前記投光軸及び前記
受光軸を跨ぐ大きさのレンズ口径を持ち、かつ該投光軸
及び該受光軸と平行な光軸を有し、前記投光部及び前記
受光部と前記被測定物との間に配置され、該投光軸及び
該受光軸に対して垂直方向に二次元的に移動可能な対物
レンズとを備えている。このような構成を採用したこと
により、被測定物の測定面に対して対物レンズを二次元
的に移動させれば、該測定面を二次元スキャンできる。
この各スキャン位置での測定面の変位を計測することに
より、被測定物の三次元形状の測定が行える。According to a second aspect of the present invention, there is provided a three-dimensional shape measuring instrument for measuring a three-dimensional shape of a measurement surface of an object to be measured by using a triangulation method. A light projecting unit that irradiates light to the measurement surface of the device under measurement along the light projecting axis, and a light receiving axis that is parallel to the light projecting axis.
A light-receiving portion for detecting a light-receiving position of reflected light reflected by the measurement surface and sent along the light-receiving axis, a lens aperture having a size across the light-projecting axis and the light-receiving axis, and Axis, and an optical axis parallel to the light-receiving axis, disposed between the light-emitting section and the light-receiving section and the device under test, and two-dimensional in a direction perpendicular to the light-emitting axis and the light-receiving axis. And a movable objective lens. By adopting such a configuration, if the objective lens is moved two-dimensionally with respect to the measurement surface of the measurement object, the measurement surface can be two-dimensionally scanned.
By measuring the displacement of the measurement surface at each scan position, the three-dimensional shape of the measured object can be measured.
【0011】[0011]
【発明の実施の形態】第1の実施形態 図1(a),(b)は、本発明の第1の実施形態を示す
正反射型/乱反射型切換え可能な変位計のセンサユニッ
トの概略の構造図である。この第1の実施形態の変位計
は、三角測距方式を用い、レーザ光を被測定物1の測定
面に照射してこの反射光を受光し、この受光位置を検出
することによって該測定面の変位量を測定するものであ
り、レーザ光の照射と受光を行うセンサユニットと、こ
のセンサユニットで受光した受光位置の検出信号に基づ
き被測定物1の測定面の変位を演算により求める回路部
とで構成されている。センサユニットは、被測定物1に
向けてレーザ光を投射し、該被測定物1からの反射光を
受光するセンサ部20と、このセンサ部20と被測定物
1との間に配置された対物レンズ(例えば、凸レンズ)
23とで構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIGS. 1A and 1B are schematic diagrams of a sensor unit of a regular reflection type / diffuse reflection type switchable displacement meter according to a first embodiment of the present invention. FIG. The displacement meter according to the first embodiment uses a triangular ranging method, irradiates a laser beam to a measurement surface of the DUT 1, receives the reflected light, and detects the light receiving position to detect the light reception position. A sensor unit for measuring the amount of displacement of the object, and a sensor unit for irradiating and receiving laser light, and a circuit unit for calculating the displacement of the measurement surface of the DUT 1 based on a detection signal of a light receiving position received by the sensor unit It is composed of The sensor unit projects a laser beam toward the DUT 1 and receives a reflected light from the DUT 1, and is disposed between the sensor unit 20 and the DUT 1. Objective lens (eg convex lens)
23.
【0012】センサ部20は、該センサ部20の軸H2
0上に投光軸H21を有し、該投光軸H21に沿ってレ
ーザ光を投射する投光部21と、投光軸H21と一定距
離をおいて平行な受光軸H22を有し、該受光軸H22
に沿って送られてくる反射光の受光位置を検出する受光
部22とを備えている。投光部21は、レーザ光を出射
するレーザダイオード等の光源と、該レーザ光を平行光
線にして投光軸H21方向へ投射する受光レンズとで構
成されている。受光部22は、受光軸H22に沿って送
られてきた反射光を集光する受光レンズ22aと、この
受光レンズ22aで集光された反射光から受光位置の検
出を行う受光素子22bとで構成されている。受光素子
22bは、例えば、ディジタルラインセンサであるCC
Dラインセンサで構成され、この出力側に回路部が接続
されている。センサ部20と被測定物1との間に配置さ
れた凸レンズ23は、投光軸H21及び受光軸H22を
跨ぐ大きさのレンズ口径を持ち、かつ該投光軸H21及
び受光軸H22と平行な光軸H23を有し、該投光軸H
21及び受光軸H22に対して垂直方向に移動可能なよ
うになっている。凸レンズ23の中心の移動範囲は、投
光軸H21から該投光軸H21及び受光軸H22の中心
線までの範囲であり、手動レバー、モータ等の移動手段
によって切換え移動可能な構造になっている。次に、
(i)図1(a)の乱反射型の動作と、(ii)図1
(b)の正反射型の動作を説明する。The sensor unit 20 has an axis H2 of the sensor unit 20.
0, a light projecting unit 21 that projects a laser beam along the light projecting axis H21, and a light receiving axis H22 that is parallel to the light projecting axis H21 at a fixed distance. Light receiving axis H22
And a light receiving section 22 for detecting the light receiving position of the reflected light sent along the line. The light projecting unit 21 includes a light source such as a laser diode that emits a laser beam, and a light receiving lens that converts the laser beam into a parallel beam and projects the beam in the direction of the projection axis H21. The light receiving section 22 includes a light receiving lens 22a for collecting the reflected light sent along the light receiving axis H22, and a light receiving element 22b for detecting a light receiving position from the reflected light collected by the light receiving lens 22a. Have been. The light receiving element 22b is, for example, a digital line sensor CC
It is composed of a D-line sensor, and a circuit section is connected to this output side. The convex lens 23 disposed between the sensor unit 20 and the DUT 1 has a lens diameter large enough to straddle the light projecting axis H21 and the light receiving axis H22, and is parallel to the light projecting axis H21 and the light receiving axis H22. An optical axis H23;
21 and the light receiving axis H22. The moving range of the center of the convex lens 23 is a range from the light projecting axis H21 to the center line of the light projecting axis H21 and the light receiving axis H22, and has a structure that can be switched by a moving means such as a manual lever or a motor. . next,
(I) the diffuse reflection type operation of FIG. 1 (a) and (ii) FIG.
The operation of the specular reflection type shown in FIG.
【0013】(i) 図1(a)の乱反射型の動作 変位計を乱反射型として使用する場合、図1(a)に示
すように、移動手段によって凸レンズ23の中心を投光
軸H21上に移動する。そして、投光部21から投光軸
H21方向にレーザ光を投射すると、このレーザ光が凸
レンズ23の中心部を通って被測定物1の測定面に照射
され、この照射部分がスポットとなってその点で反射す
る。被測定物1が凸レンズ23から最も遠い位置1−3
にあるときのスポットをs3とすると、このスポットs
3での反射光が凸レンズ23によって受光レンズ22a
方向に屈折した後、該受光レンズ22aで集光され、受
光素子22b上の点n3に結像される。被測定物1が凸
レンズ23に近づくにつれて、その位置は1−3→1−
2→1−1と変化し、スポットもs3→s2→s1と移
動する。これと同時に、受光素子22b上の結像点の位
置もn3→n2→n1と移動し、被測定物1の測定面の
変位量Wが受光素子22b上のn3〜n1の変位量wに
置き換えられる。受光素子22bは、例えば、多数の半
導体光検出素子を直線上に並べたCCDラインセンサで
構成されているので、結像点(即ち、光の照射された
点)の光検出素子から信号を取出せる。この信号を回路
部で処理し、その部分の番地を読出すことにより、被測
定物1の変位を測定できることになる。このような変位
計の使用方法では、従来の図2の乱反射型変位計の投光
軸H11上に、凸レンズ23を挿入した構造とほぼ同一
になる。このため、本実施形態の変位計では、従来の図
2の乱反射型変位計の変位検出特性とほぼ同一になる。 (ii) 図1(b)の正反射型の動作 変位計を正反射型として使用する場合、図1(b)に示
すように、移動手段によって凸レンズ23の中心を、投
光軸H21及び受光軸H22に対して垂直方向に、該投
光軸H21及び受光軸H22の中心線上まで平行移動す
る。すると、投光部21から投射されたレーザ光は、凸
レンズ23によって該凸レンズ23の光軸H23方向へ
屈折し、被測定物1の測定面に照射される。この反射光
は、凸レンズ23によって受光レンズ22a方向に屈折
し、該受光レンズ22aによって受光素子22b上に集
光される。このような使用方法では、投光部21からの
レーザ光が凸レンズ23によって該凸レンズ23の光軸
H23方向へ屈折し、被測定物1の測定面による反射光
もこれに伴い変化するが、該被測定物1の測定面の位置
1−1,1−2,1−3に対する受光素子22b上の受
光位置がほとんど変化しない。そのため、投光と受光の
角度関係が正反射型になり、被測定物1の変位を正確に
測定できることになる。以上のように、この第1の実施
形態の変位計では、凸レンズ23を平行移動させるだけ
で、正反射型と乱反射型を自在に切換えることができ、
しかもこの時の変位量検出特性もほとんど変化しない。
従って、受光強度等によって正反射型と乱反射型を任意
に選択できる変位計を実現できる。(I) Diffuse reflection type operation of FIG. 1A When the displacement meter is used as a diffuse reflection type, as shown in FIG. 1A, the center of the convex lens 23 is moved on the light projecting axis H21 by the moving means. Moving. When the laser beam is projected from the light projecting unit 21 in the direction of the light projecting axis H21, the laser beam passes through the center of the convex lens 23 and irradiates the measurement surface of the DUT 1, and the irradiated portion becomes a spot. Reflect at that point. The position 1-3 at which the DUT 1 is farthest from the convex lens 23
Let s3 be the spot when there is
3 is reflected by the convex lens 23 into the light receiving lens 22a.
After being refracted in the direction, the light is condensed by the light receiving lens 22a and is imaged at a point n3 on the light receiving element 22b. As the DUT 1 approaches the convex lens 23, its position is changed from 1-3 → 1-
2 → 1-1, and the spot also moves from s3 → s2 → s1. At the same time, the position of the imaging point on the light receiving element 22b also moves from n3 to n2 to n1, and the displacement W of the measurement surface of the DUT 1 is replaced with the displacement w of n3 to n1 on the light receiving element 22b. Can be Since the light receiving element 22b is composed of, for example, a CCD line sensor in which a large number of semiconductor light detecting elements are arranged in a straight line, the light receiving element 22b receives a signal from the light detecting element at the image forming point (that is, the point irradiated with light). I can put it out. By processing this signal in the circuit section and reading out the address of that portion, the displacement of the DUT 1 can be measured. The method of using such a displacement meter is almost the same as the structure of the conventional diffuse reflection type displacement meter of FIG. 2 in which the convex lens 23 is inserted on the light projecting axis H11. Therefore, the displacement meter of the present embodiment has almost the same displacement detection characteristics as the conventional diffuse reflection type displacement meter of FIG. (Ii) Specular reflection type operation of FIG. 1B When the displacement meter is used as a specular reflection type, as shown in FIG. 1B, the center of the convex lens 23 is moved by the moving means to the light projecting axis H21 and the light receiving axis. In the direction perpendicular to the axis H22, the parallel movement is performed to the center line of the light projecting axis H21 and the light receiving axis H22. Then, the laser light projected from the light projecting unit 21 is refracted by the convex lens 23 in the direction of the optical axis H23 of the convex lens 23, and is irradiated on the measurement surface of the DUT 1. The reflected light is refracted in the direction of the light receiving lens 22a by the convex lens 23, and is condensed on the light receiving element 22b by the light receiving lens 22a. In such a usage method, the laser light from the light projecting unit 21 is refracted by the convex lens 23 in the direction of the optical axis H23 of the convex lens 23, and the light reflected by the measurement surface of the DUT 1 changes accordingly. The light receiving position on the light receiving element 22b with respect to the positions 1-1, 1-2, and 1-3 on the measurement surface of the DUT 1 hardly changes. Therefore, the angle relationship between the light projection and the light reception becomes a regular reflection type, and the displacement of the DUT 1 can be accurately measured. As described above, in the displacement meter of the first embodiment, it is possible to freely switch between the regular reflection type and the irregular reflection type only by moving the convex lens 23 in parallel.
In addition, the displacement detection characteristic at this time hardly changes.
Therefore, it is possible to realize a displacement meter that can arbitrarily select the regular reflection type or the irregular reflection type depending on the received light intensity or the like.
【0014】第2の実施形態 図5(a),(b)は、本発明の第2の実施形態を示す
三次元形状測定器のセンサユニットの概略の構造図であ
り、第1の実施形態を示す図1中の要素と共通の要素に
は共通の符号が付されている。この三次元形状測定器で
は、図1の変位計に対して、凸レンズ23の移動手段の
構造が異なると共に、受光素子22bの受光位置検出信
号を処理する回路部の構成が異なっている。即ち、この
三次元形状測定器における凸レンズ23の移動手段は、
該凸レンズ23を、投光軸H21及び受光軸H22に対
して垂直方向のX軸方向及びY軸方向からなる二次元面
上をモータ等によって移動させるようになっている。さ
らに、センサ部20の出力信号を入力する回路部は、受
光素子22bの受光位置検出信号に基づき、被測定物1
の測定面の三次元形状を演算によって求めるような構成
になっている。 Second Embodiment FIGS. 5A and 5B are schematic structural views of a sensor unit of a three-dimensional shape measuring instrument according to a second embodiment of the present invention. 1 are denoted by the same reference numerals as those in FIG. This three-dimensional shape measuring instrument differs from the displacement meter in FIG. 1 in the structure of the moving means of the convex lens 23 and in the configuration of the circuit for processing the light receiving position detection signal of the light receiving element 22b. That is, the moving means of the convex lens 23 in this three-dimensional shape measuring instrument is
The convex lens 23 is moved by a motor or the like on a two-dimensional plane including the X-axis direction and the Y-axis direction perpendicular to the light projecting axis H21 and the light receiving axis H22. Further, the circuit unit for inputting the output signal of the sensor unit 20 is configured to detect the position of the DUT 1 based on the light receiving position detection signal of the light receiving element 22b.
The three-dimensional shape of the measurement surface is calculated by calculation.
【0015】図6は、図5の動作説明図である。被測定
物1の測定面の三次元形状を測定する場合、図5
(a),(b)に示すように、移動手段によって凸レン
ズ23をX軸方向に移動していく。例えば、図5(a)
に示す凸レンズ23の位置では、投光部21の投光軸H
21と凸レンズ23の光軸H23とが一致しているた
め、該投光部21から出射されたレーザ光が、凸レンズ
23の中心部を通過して被測定物1の測定面に照射さ
れ、この反射光が該凸レンズ23によって受光レンズ2
2a方向に屈折した後、該受光レンズ22aで受光素子
22b上に集光される。この状態から、凸レンズ23を
図5(b)の位置まで平行移動させると、投光部21か
ら出射されたレーザ光が、凸レンズ23によって該凸レ
ンズ23の光軸H23方向に屈折するが、被測定物1の
測定面からの反射光も、出射されたレーザ光の屈折に合
わせて該凸レンズ23で受光レンズ22a方向に屈折し
て変化する。このため、受光部20は、凸レンズ23の
移動の影響なく、被測定物1の測定面からの反射光を受
光することができる。FIG. 6 is a diagram for explaining the operation of FIG. When measuring the three-dimensional shape of the measurement surface of the DUT 1, FIG.
As shown in (a) and (b), the convex lens 23 is moved in the X-axis direction by the moving means. For example, FIG.
At the position of the convex lens 23 shown in FIG.
Since the optical axis 21 coincides with the optical axis H23 of the convex lens 23, the laser light emitted from the light projecting section 21 passes through the central portion of the convex lens 23 and irradiates the measurement surface of the DUT 1. The reflected light is reflected by the convex lens 23 into the light receiving lens 2.
After being refracted in the 2a direction, the light is condensed on the light receiving element 22b by the light receiving lens 22a. When the convex lens 23 is moved in parallel from this state to the position shown in FIG. 5B, the laser light emitted from the light projecting unit 21 is refracted by the convex lens 23 in the direction of the optical axis H23 of the convex lens 23. The reflected light from the measurement surface of the object 1 is also refracted by the convex lens 23 in the direction of the light receiving lens 22a in accordance with the refraction of the emitted laser light and changes. For this reason, the light receiving unit 20 can receive the reflected light from the measurement surface of the DUT 1 without being affected by the movement of the convex lens 23.
【0016】凸レンズ23を図6のX軸方向に移動させ
た後、該凸レンズ23をY軸方向に所定ピッチだけ移動
させ、前記と同様にしてX軸方向に移動していく。この
ように、移動手段によって凸レンズ23のみをX軸方向
及びY軸方向にジクザグ状に移動させ、これらの各移動
位置での受光素子22bの受光位置検出信号を回路部に
よって演算処理すれば、各移動位置における被測定物1
の測定面の高さを測定できる。以上のように、この第2
の実施形態では、凸レンズ23を、X軸方向及びY軸方
向からなる二次元面上を移動させることのみで、センサ
部20を動かすことなく、被測定物1の測定面を二次元
的にスキャンし、各スキャン位置での測定面の変位を高
速に連続検出して該測定面の三次元形状を測定すること
ができる。この結果、凸レンズ23の移動手段を小型化
して高速スキャンが可能になる。なお、本発明は上記実
施形態に限定されず、例えば、投光部21及び受光部2
2を他の構造や配置形状にする等、種々の変形が可能で
ある。After the convex lens 23 is moved in the X-axis direction in FIG. 6, the convex lens 23 is moved in the Y-axis direction by a predetermined pitch, and is moved in the X-axis direction in the same manner as described above. As described above, only the convex lens 23 is moved in a zigzag manner in the X-axis direction and the Y-axis direction by the moving means, and the light receiving position detection signal of the light receiving element 22b at each of these moving positions is arithmetically processed by the circuit unit. DUT 1 at moving position
The height of the measurement surface can be measured. As described above, this second
In the embodiment, the measurement surface of the DUT 1 is two-dimensionally scanned by moving the convex lens 23 only on a two-dimensional surface including the X-axis direction and the Y-axis direction without moving the sensor unit 20. Then, the three-dimensional shape of the measurement surface can be measured by continuously detecting the displacement of the measurement surface at each scanning position at a high speed. As a result, the moving means of the convex lens 23 can be reduced in size and high-speed scanning can be performed. Note that the present invention is not limited to the above-described embodiment. For example, the light projecting unit 21 and the light receiving unit 2
Various modifications are possible, such as 2 having another structure or arrangement shape.
【0017】[0017]
【発明の効果】以上詳細に説明したように、第1の発明
によれば、対物レンズの中心を、投光軸上と該投光軸及
び受光軸の中心線上とに切換え移動可能な構造にしたの
で、一つの変位計を正反射型と乱反射型に自在に切換え
ることができる。しかも、この時の変位量検出特性がほ
とんど変化しないので、受光強度等によって正反射型と
乱反射型を任意に選択できる変位計を実現できる。第2
の発明によれば、対物レンズを二次元的に移動させるこ
とのみで、変位計の他の部分を動かすことなく、該対物
レンズの光軸を被測定物の測定面に沿って二次元的にス
キャンし、各スキャン位置での変位を計測することによ
って被測定物の三次元形状を測定することができる。従
って、対物レンズを移動するための手段を小型化でき、
高速スキャンが可能な三次元形状測定器を実現できる。As described above in detail, according to the first aspect, the center of the objective lens can be switched and moved between the projection axis and the center lines of the projection axis and the light receiving axis. Therefore, one displacement meter can be freely switched between a specular reflection type and a diffuse reflection type. In addition, since the displacement amount detection characteristic at this time hardly changes, a displacement meter that can arbitrarily select the regular reflection type or the irregular reflection type depending on the received light intensity or the like can be realized. Second
According to the invention, the optical axis of the objective lens is two-dimensionally moved along the measurement surface of the object to be measured only by moving the objective lens two-dimensionally and without moving other parts of the displacement meter. By scanning and measuring the displacement at each scanning position, the three-dimensional shape of the measured object can be measured. Therefore, the means for moving the objective lens can be miniaturized,
A three-dimensional shape measuring instrument capable of high-speed scanning can be realized.
【図1】本発明の第1の実施形態を示す変位計のセンサ
ユニットの概略の構造図である。FIG. 1 is a schematic structural diagram of a sensor unit of a displacement meter according to a first embodiment of the present invention.
【図2】従来の乱反射型変位計のセンサ部を示す概略の
構造図である。FIG. 2 is a schematic structural diagram showing a sensor unit of a conventional irregular reflection type displacement meter.
【図3】従来の正反射型変位計のセンサ部を示す概略の
構造図である。FIG. 3 is a schematic structural view showing a sensor unit of a conventional regular reflection type displacement meter.
【図4】従来の三次元形状測定器のセンサユニットを示
す概略の構造図である。FIG. 4 is a schematic structural view showing a sensor unit of a conventional three-dimensional shape measuring instrument.
【図5】本発明の第2の実施形態を示す三次元形状測定
器のセンサユニットの概略の構造図である。FIG. 5 is a schematic structural diagram of a sensor unit of a three-dimensional shape measuring instrument according to a second embodiment of the present invention.
【図6】図5の動作説明図である。FIG. 6 is an operation explanatory diagram of FIG. 5;
1 被測定物 20 センサ部 21 投光部 22 受光部 22a 受光レンズ 22b 受光素子 23 凸レンズ Reference Signs List 1 object to be measured 20 sensor unit 21 light emitting unit 22 light receiving unit 22a light receiving lens 22b light receiving element 23 convex lens
Claims (2)
の変位量を測定する変位計において、 前記被測定物に対して垂直方向の投光軸を有し、該投光
軸に沿って該被測定物の測定面に光を照射する投光部
と、 前記投光軸と平行な受光軸を有し、前記測定面で反射し
該受光軸に沿って送られてくる反射光の受光位置を検出
する受光部と、 前記投光軸及び前記受光軸を跨ぐ大きさのレンズ口径を
持ち、かつ該投光軸及び該受光軸と平行な光軸を有し、
前記投光部及び前記受光部と前記被測定物との間に配置
され、該投光軸及び該受光軸に対して垂直方向に移動可
能な対物レンズとを備え、 前記対物レンズの中心を、前記投光軸上と該投光軸及び
前記受光軸の中心線上とに切換え移動可能な構造にした
ことを特徴とする変位計。1. A displacement meter for measuring a displacement amount of a measurement surface of an object to be measured by using a triangular distance measuring method, comprising: a light projecting axis perpendicular to the object to be measured; A light projecting unit for irradiating the measurement surface of the object with light along the light receiving axis, and a reflected light reflected from the measurement surface and sent along the light receiving axis, having a light receiving axis parallel to the light projecting axis. A light receiving unit that detects the light receiving position of the light receiving unit, having a lens diameter large enough to straddle the light projecting axis and the light receiving axis, and having an optical axis parallel to the light projecting axis and the light receiving axis;
An objective lens disposed between the light projecting unit and the light receiving unit and the object to be measured, the objective lens being movable in a direction perpendicular to the light projecting axis and the light receiving axis. A displacement meter having a structure capable of switching and moving on the light projecting axis and on the center line of the light projecting axis and the light receiving axis.
の三次元形状を測定する三次元形状測定器において、 前記被測定物に対して垂直方向の投光軸を有し、該投光
軸に沿って該被測定物の測定面に光を照射する投光部
と、 前記投光軸と平行な受光軸を有し、前記測定面で反射し
該受光軸に沿って送られてくる反射光の受光位置を検出
する受光部と、 前記投光軸及び前記受光軸を跨ぐ大きさのレンズ口径を
持ち、かつ該投光軸及び該受光軸と平行な光軸を有し、
前記投光部及び前記受光部と前記被測定物との間に配置
され、該投光軸及び該受光軸に対して垂直方向に二次元
的に移動可能な対物レンズとを備えたことを特徴とする
三次元形状測定器。2. A three-dimensional shape measuring device for measuring a three-dimensional shape of a measurement surface of an object to be measured by using a triangular distance measuring method, comprising: a light projecting axis perpendicular to the object to be measured; A light projecting unit that irradiates light onto the measurement surface of the DUT along the light projection axis, and a light receiving axis that is parallel to the light projection axis, and is reflected along the measurement surface and sent along the light receiving axis. A light receiving unit for detecting a light receiving position of the reflected light coming, having a lens aperture having a size across the light projecting axis and the light receiving axis, and having an optical axis parallel to the light projecting axis and the light receiving axis,
An objective lens disposed between the light projecting unit and the light receiving unit and the object to be measured, and movable two-dimensionally in a direction perpendicular to the light projecting axis and the light receiving axis. 3D shape measuring instrument.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27911197A JPH11118419A (en) | 1997-10-13 | 1997-10-13 | Displacement gauge and three-dimensional shape measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27911197A JPH11118419A (en) | 1997-10-13 | 1997-10-13 | Displacement gauge and three-dimensional shape measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11118419A true JPH11118419A (en) | 1999-04-30 |
Family
ID=17606578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27911197A Withdrawn JPH11118419A (en) | 1997-10-13 | 1997-10-13 | Displacement gauge and three-dimensional shape measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11118419A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021504707A (en) * | 2017-11-30 | 2021-02-15 | セプトン テクノロジーズ,インコーポレイテッド | Optical design and detector design to improve the resolution of the rider system |
-
1997
- 1997-10-13 JP JP27911197A patent/JPH11118419A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021504707A (en) * | 2017-11-30 | 2021-02-15 | セプトン テクノロジーズ,インコーポレイテッド | Optical design and detector design to improve the resolution of the rider system |
US11585902B2 (en) | 2017-11-30 | 2023-02-21 | Cepton Technologies, Inc. | Optical designs using cylindrical lenses for improved resolution in lidar systems |
US11592530B2 (en) | 2017-11-30 | 2023-02-28 | Cepton Technologies, Inc. | Detector designs for improved resolution in lidar systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6428171B1 (en) | Height measuring apparatus | |
US4796997A (en) | Method and system for high-speed, 3-D imaging of an object at a vision station | |
US20040109170A1 (en) | Confocal distance sensor | |
US7271919B2 (en) | Confocal displacement sensor | |
US4222262A (en) | Hardness testing apparatus | |
US4527893A (en) | Method and apparatus for optically measuring the distance to a workpiece | |
EP0877225A2 (en) | Optical surface measurement apparatus and methods | |
JPH045508A (en) | Method and device for detecting shape of body | |
US6396589B1 (en) | Apparatus and method for measuring three-dimensional shape of object | |
JP3947159B2 (en) | Sensor device for quick optical distance measurement according to the confocal optical imaging principle | |
EP0492723A1 (en) | Device for optically measuring the height of a surface | |
US4255966A (en) | Hardness testing apparatus | |
JP2004000004U6 (en) | Probe for surface measurement | |
JP2004000004U (en) | Probe for surface measurement | |
JP3726028B2 (en) | 3D shape measuring device | |
JPH11118419A (en) | Displacement gauge and three-dimensional shape measuring apparatus | |
JP2000509825A (en) | Optical scanning device | |
JPH06258040A (en) | Laser displacement meter | |
GB2204947A (en) | Method and system for high speed, 3-D imaging of an object at a vision station | |
JP2531449B2 (en) | Laser displacement meter | |
JP2531450B2 (en) | Laser displacement meter | |
JP2009042128A (en) | Height measuring device | |
JPH0357914A (en) | Optical probe | |
JPS62291512A (en) | Distance measuring apparatus | |
JP2004037191A (en) | Spherical part measuring method and spherical part measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050104 |