[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1110148A - Water purifying process - Google Patents

Water purifying process

Info

Publication number
JPH1110148A
JPH1110148A JP9168595A JP16859597A JPH1110148A JP H1110148 A JPH1110148 A JP H1110148A JP 9168595 A JP9168595 A JP 9168595A JP 16859597 A JP16859597 A JP 16859597A JP H1110148 A JPH1110148 A JP H1110148A
Authority
JP
Japan
Prior art keywords
membrane
water
hollow fiber
filtration
pore size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9168595A
Other languages
Japanese (ja)
Inventor
Teruhiko Oishi
輝彦 大石
Noboru Kubota
昇 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9168595A priority Critical patent/JPH1110148A/en
Publication of JPH1110148A publication Critical patent/JPH1110148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare efficiently water of high safety containing only a small amount of impurities and microbes by forming round or ellipse holes on both faces of a membrane with a polyacrylonitrile hollow fiber filter membrane with small diameter layers of the membrane formed only inside the membrane and filtering. SOLUTION: When the purification of water in which pathogenic microbes contained in tap water are removed, a polyacrylonitrile hollow fiber filter membrane with round or ellipse holes on both faces of a membrane having small diameter layers of the membrane formed only inside the membrane is used. At that time, the membrane with round or ellipse holes formed on both faces is used to make the fouling of the membrane hard to generate. For the purpose of improving the permeability of the membrane, the average pare diameter is set as approximately 1 μm or more to 50 μm or less on the in-membrane surfaces and approximately 0.05 μm or more to 10 μm or less on the out- membrane surface. Also it is preferable to set the inner diameter of the polyacrylonitrile hollow fiber filter membrane is set as approximately 0.5 mm-5 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不純物が少なくか
つ病原性微生物の無い安全性の高い水を効率良く得るた
めの水の浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification method for efficiently obtaining highly safe water free from impurities and free from pathogenic microorganisms.

【0002】[0002]

【従来の技術】近年、水道水に含まれる病原性微生物の
問題がクローズアップされている。クリプトスポリジウ
ムを始めとする「塩素で死なない微生物」対策として
は、1)凝集沈殿砂濾過といった従来処理において浄水
濁度で0.1度以下にする、2)オゾンなどの殺菌力の
強い薬品にて殺菌する、3)膜濾過する、などの方法が
ある。しかし、1)の場合、砂濾過設備など設備の設置
スペースが大きい、といった問題を抱えており、また
2)の場合、十分な維持管理体制が必要であり、小規模
水道などでは難しい。
2. Description of the Related Art In recent years, the problem of pathogenic microorganisms contained in tap water has been highlighted. Cryptosporidium and other "microorganisms that do not die from chlorine" can be countermeasured by: 1) reducing the turbidity of purified water to 0.1 degrees or less in conventional treatments such as coagulated sedimentation sand filtration; Sterilization, and 3) membrane filtration. However, in the case of 1), there is a problem that the installation space for equipment such as a sand filtration facility is large, and in the case of 2), a sufficient maintenance system is required, and it is difficult to use small-scale water supply.

【0003】これに対し、3)の場合、凝集剤などの薬
品を使用せずに濁質などを直接濾過するもので、汚泥
量の削減、薬品注入制御を必要としない、設置スペ
ースが小さくて済む、自動運転ができる、膜の孔よ
りも大きなものは絶対通過できないので病原性微生物の
完全除去が可能であり、衛生学的にも高いレベルの処理
水を確保できる、などの特徴があり、一部で実用化され
ている(例えば水道公論、1996年4月号、頁86ー
89)。
On the other hand, in the case of 3), turbidity or the like is directly filtered without using a chemical such as a flocculant, so that the amount of sludge can be reduced, the chemical injection control is not required, and the installation space is small. There is a feature that it can be completed, automatic operation can be performed, completely removes pathogenic microorganisms because anything larger than the pores of the membrane can never pass, and a high level of sanitary treated water can be secured. Some of them have been put into practical use (for example, Water Works, April 1996, pp. 86-89).

【0004】膜の素材としては、セルロース系、ポリア
ミド系、ポリアクリロニトリル系、ポリカーボネート
系、ポリスルホン系等の樹脂が使用されているが、その
中でもポリアクリロニトリル系樹脂は膜の親水性および
透水性に優れる上、機械的強度特性も良いという利点が
ある。また、ポリアクリロニトリル系素材からなる中空
糸状限外濾過膜モジュールによる河川水処理における実
績もあがりつつある(松尾育朗、ニューメンブレンテク
ノロジーシンポジウム’97 SESSION1、講演
要旨集、頁1ー2ー1から1ー2ー8、日本膜学会)。
[0004] As the material of the membrane, cellulose-based, polyamide-based, polyacrylonitrile-based, polycarbonate-based, polysulfone-based resins and the like are used. Among them, polyacrylonitrile-based resins are excellent in hydrophilicity and water permeability of the membrane. In addition, there is an advantage that the mechanical strength characteristics are also good. In addition, results in river water treatment using hollow fiber ultrafiltration membrane modules made of polyacrylonitrile-based materials are also increasing (Ikuo Matsuo, New Membrane Technology Symposium '97 SESSION1, Abstracts of Lectures, pages 1-2-1 to 1--1) 2-8, The Membrane Society of Japan).

【0005】[0005]

【発明が解決しようとする課題】本発明は、不純物が少
なくかつ病原性微生物の無い安全性の高い水を効率良く
得るための水の浄化方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a water purification method for efficiently obtaining highly safe water free of impurities and free of pathogenic microorganisms.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決したものである。すなわちこの発明は、(1)膜の両
表面に円形状または楕円形状の孔を有し、膜の最小孔径
層を膜内部のみに有するポリアクリロニトリル系中空糸
状濾過膜を用いて濾過することを特徴とする水の浄化方
法、(2)膜の内表面の孔の平均孔径の大きさが、1μ
m以上であることを特徴とする上記(1)の水の浄化方
法、(3)膜の外表面の孔の平均孔径の大きさが、0.
05μm以上であることを特徴とする上記(1)または
(2)の水の浄化方法、(4)ポリアクリロニトリル系
中空糸状濾過膜の内径が0.5mm〜5mmであること
を特徴とする上記(1)〜(3)の水の浄化方法、
(5)膜の両表面に円形状または楕円形状の孔を有し、
膜の最小孔径層を膜内部のみに有するポリアクリロニト
リル系中空糸状濾過膜を内蔵したモジュールに、濾過膜
の外表面側がら原水を供給し、濾過を行う水の浄化方
法、(6)水が天然水である上記(1)または(5)の
浄化方法、に関する。
The present invention has solved the above-mentioned problems. That is, the present invention is characterized in that (1) filtration is performed using a polyacrylonitrile-based hollow fiber filtration membrane having circular or elliptical pores on both surfaces of the membrane and having a minimum pore size layer of the membrane only inside the membrane. (2) The average pore diameter of the pores on the inner surface of the membrane is 1 μm.
(3) water purification method according to the above (1), wherein the average pore size of pores on the outer surface of the membrane is 0.
(1) or (2), wherein the inner diameter of the polyacrylonitrile-based hollow fiber filtration membrane is 0.5 mm to 5 mm. 1) to (3) water purification methods,
(5) having a circular or elliptical hole on both surfaces of the membrane,
A method for purifying water by supplying raw water from the outer surface side of a filtration membrane to a module incorporating a polyacrylonitrile-based hollow fiber filtration membrane having a minimum pore size layer only inside the membrane, and (6) natural water The present invention relates to the purification method of the above (1) or (5), which is water.

【0007】以下、本発明の詳細について記述する。本
発明は、膜の両表面に円形状あるいは楕円形状の孔を有
し、膜の最小孔径層を膜内部のみに有するポリアクリロ
ニトリル系中空糸状濾過膜を用いることに特徴がある。
両表面の孔が円形状あるいは楕円形状である膜を用いる
ことにより、膜のファウリング(目詰まり)をおこしに
くくすることができる。
Hereinafter, the present invention will be described in detail. The present invention is characterized by using a polyacrylonitrile-based hollow fiber filtration membrane having circular or elliptical pores on both surfaces of the membrane and having a minimum pore size layer only in the interior of the membrane.
By using a film in which the holes on both surfaces are circular or elliptical, fouling (clogging) of the film can be suppressed.

【0008】膜の両表面にある円形状あるいは楕円形状
の孔の大きさは、膜の透水性を向上させるために、膜内
表面においては平均孔径が1μm以上50μm以下、好
ましくは5μm以上30μm以下であり、膜外表面にお
いては平均孔径が0.05μm以上10μm以下、好ま
しくは0.1μm以上5μm以下が良い。なお、本発明
でいう膜の両表面の平均孔径については、膜表面を電子
顕微鏡で観察して画像解析することにより平均孔径を求
めた。平均孔径は、下記式で示される。
The size of the circular or elliptical pores on both surfaces of the membrane is such that the average pore diameter on the inner surface of the membrane is 1 μm or more and 50 μm or less, preferably 5 μm or more and 30 μm or less in order to improve the water permeability of the membrane. The average pore diameter on the outer surface of the membrane is preferably from 0.05 μm to 10 μm, and more preferably from 0.1 μm to 5 μm. As for the average pore diameter on both surfaces of the membrane in the present invention, the average pore diameter was determined by observing the membrane surface with an electron microscope and analyzing the image. The average pore size is represented by the following equation.

【0009】[0009]

【数1】 (Equation 1)

【0010】さらに、この発明で用いる膜は膜内部に最
小孔径層を有するので、膜外表面が膜の分離機能を司る
最小孔径層に対する一種のプレフィルターとして働き、
汚泥および微生物に対し耐ファウリング性を示す。ま
た、最小孔径層以外の孔は大きいため、高い透水性を示
す。本発明でいう膜の最小孔径層とは、ミクロ的に見る
と膜厚方向の断面において膜を構成するポリマーの空隙
部分すなわち孔が小さく、膜の分画性能に寄与する層で
あり、膜の最小孔径層中に存在する孔の平均孔径(以
下、最小孔径層の平均孔径という)は、0.01μm以
上1μm以下である。最小孔径層の平均孔径が0.01
μm未満であると、膜の透水性能が低下する傾向にあ
り、1μmより大きいと微粒子の除去性能が低下する傾
向にある。好ましい最小孔径層の平均孔径は、0.01
μm以上0.5μm以下である。また、最小孔径層の厚
みは任意であるが、厚すぎると透水性が低下するので、
通常30μm以下、好ましくは10μm以下である。な
お、本発明でいう最小孔径層の平均孔径は、ASTM
F316ー86に記載されているエアーフロー法により
測定した平均孔径を指す。
Furthermore, since the membrane used in the present invention has a minimum pore size layer inside the membrane, the outer surface of the membrane acts as a kind of pre-filter for the minimum pore size layer which controls the separation function of the membrane,
Shows fouling resistance to sludge and microorganisms. Further, since the pores other than the minimum pore diameter layer are large, they exhibit high water permeability. The minimum pore diameter layer of the membrane referred to in the present invention is a layer that has small voids or pores of the polymer constituting the membrane in a cross section in the film thickness direction when viewed microscopically, and contributes to the fractionation performance of the membrane. The average pore size of the pores present in the minimum pore size layer (hereinafter, referred to as the average pore size of the minimum pore size layer) is 0.01 μm or more and 1 μm or less. The average pore size of the smallest pore size layer is 0.01
If it is less than μm, the water permeability of the membrane tends to decrease, and if it is more than 1 μm, the ability to remove fine particles tends to decrease. The average pore size of the preferred minimum pore size layer is 0.01
It is not less than μm and not more than 0.5 μm. In addition, the thickness of the minimum pore size layer is arbitrary, but if too thick, water permeability is reduced,
It is usually at most 30 μm, preferably at most 10 μm. The average pore size of the minimum pore size layer referred to in the present invention is ASTM.
The average pore diameter measured by the air flow method described in F316-86.

【0011】中空糸状濾過膜に用いられるアクリロニト
リル系重合体としては、少なくとも70重量%、好まし
くは85重量%〜100重量%のアクリロニトリルと、
アクリロニトリルに対して共重合性を有するビニル化合
物の一種又は二種以上が30重量%以下、好ましくは0
重量%〜15重量%以下のアクリロニトリル単独重合
体、もしくはアクリロニトリル系共重合体である。アク
リロニトリル系重合体の極限粘度は、0.4以上2.0
未満が好ましい。極限粘度が0.4未満では、膜の強度
が弱く、2.0以上では溶解性が悪い傾向にある。
The acrylonitrile-based polymer used in the hollow fiber filtration membrane includes at least 70% by weight, preferably 85% to 100% by weight of acrylonitrile;
One or more vinyl compounds copolymerizable with acrylonitrile contain 30% by weight or less, preferably 0% by weight or less.
It is an acrylonitrile homopolymer or an acrylonitrile-based copolymer in an amount of from 15% by weight to 15% by weight. The intrinsic viscosity of the acrylonitrile polymer is 0.4 or more and 2.0
Less than is preferred. If the intrinsic viscosity is less than 0.4, the strength of the film tends to be low, and if it is 2.0 or more, the solubility tends to be poor.

【0012】上記ビニル化合物としては、アクリロニト
リルに対して共重合性を有する公知の化合物であれば良
く、特に限定されないが、好ましい共重合成分として
は、アクリル酸、アクリル酸メチル、アクリル酸エチ
ル、イタコン酸、酢酸ビニル、アクリルスルホン酸ソー
ダ、メタリルスルホン酸ソーダ、p(パラ)−スチレン
スルホン酸ソーダ、ヒドロキシエチルメタクリレート、
メタアクリル酸エチルトリエチルアンモニウムクロライ
ド、メタアクリル酸エチルトリメチルアンモニウムクロ
ライド、ビニルピロリドン等を例示することができる。
The vinyl compound is not particularly limited as long as it is a known compound having copolymerizability with acrylonitrile. Preferred copolymerization components include acrylic acid, methyl acrylate, ethyl acrylate and itacone. Acid, vinyl acetate, sodium acrylsulfonate, sodium methallylsulfonate, sodium p (para) -styrenesulfonate, hydroxyethyl methacrylate,
Examples thereof include ethyl triethyl ammonium methacrylate, ethyl trimethyl ammonium methacrylate, and vinylpyrrolidone.

【0013】この発明に用いられる中空糸状濾過膜の糸
径は、特に制限されないが、内径が0.5mm以上5m
m以下が好ましい。内径が小さすぎると、中空糸状濾過
膜管内を流れる液(膜内表面側から濾過するときは供給
水、膜外表面側から濾過するときは膜濾過水)の流れの
圧力損失が大きくなる。すなわち、膜内表面側から濾過
するときは中空糸状膜管内での供給水圧力が低下して実
質的濾過圧(膜内表面と膜外表面との差圧)が低下し、
外表面側から濾過するときには中空糸状膜管内に流れる
膜濾過水の圧力が高くなって膜の実質的濾過圧が低下す
る。従ってどちら側から濾過をしても、内径が小さいと
圧力損失により膜にかかる実質的濾過圧が低下して得ら
れる濾過水量が低下するため、本発明の目的である“安
全性の高い水を効率良く得る”ことが困難になる。一
方、内径が大きすぎると、単位体積当たりに充填できる
膜面積が減少し、モジュール当たりの濾過水量が低下す
るため、やはり本発明の上記目的を達成することが困難
になる。
The fiber diameter of the hollow fiber filtration membrane used in the present invention is not particularly limited, but the inner diameter is 0.5 mm or more and 5 m or more.
m or less is preferable. If the inner diameter is too small, the pressure loss of the liquid flowing through the hollow fiber filtration membrane tube (supply water when filtering from the inner surface side of the membrane, or membrane filtration water when filtering from the outer surface side) increases. That is, when filtering from the inner surface side of the membrane, the supply water pressure in the hollow fiber membrane tube decreases, and the substantial filtration pressure (the differential pressure between the inner surface of the membrane and the outer surface of the membrane) decreases,
When filtering from the outer surface side, the pressure of the membrane filtration water flowing into the hollow fiber membrane tube increases, and the substantial filtration pressure of the membrane decreases. Therefore, even if filtration is performed from either side, if the inner diameter is small, the substantial filtration pressure applied to the membrane is reduced due to pressure loss, and the amount of filtered water obtained is reduced. It is difficult to get it efficiently. On the other hand, if the inner diameter is too large, the membrane area that can be filled per unit volume decreases, and the amount of filtered water per module decreases, so that it is also difficult to achieve the above object of the present invention.

【0014】本発明に用いられるポリアクリロニトリル
系中空糸状濾過膜は、例えば、アクリロニトリル系重合
体を特定の有機溶媒に溶解した製膜原液を、アクリロニ
トリル系重合体を溶解する溶媒の高濃度水溶液からなる
内部液とともに2重環状ノズルから吐出し、エアギャッ
プを通過させた後、凝固浴で凝固させることにより製造
することができる(例えば特願平9ー131391
号)。
The polyacrylonitrile-based hollow fiber filtration membrane used in the present invention comprises, for example, a stock solution prepared by dissolving an acrylonitrile-based polymer in a specific organic solvent, and a high-concentration aqueous solution of a solvent dissolving the acrylonitrile-based polymer. It can be manufactured by discharging from a double annular nozzle together with the internal liquid, passing through an air gap, and coagulating in a coagulation bath (for example, Japanese Patent Application No. 9-131391).
issue).

【0015】実際に濾過を行う場合は、通常、中空糸状
膜を多数本束ねてケースに挿入したモジュールを用いて
行う。濾過を、膜外表面側に原水を供給して内表面側へ
濾過を行うか、膜の内表面側に原水を供給して外表面側
へ濾過を行うかについては、濾過の状況に応じて適宜決
定される。原水に濁り物質等の膜汚染物質が多く含まれ
る場合には、単位膜面積当たりへの膜汚染物質の負荷量
がより少なくなる、膜外表面側から濾過する方法のほう
が好ましい。中空糸状膜の膜表面積は、外表面積の方が
内表面積より大きいため、同じ水質の液を同じ液量だけ
濾過した場合には、膜外表面から濾過したときの方が、
単位膜面積当たりの膜汚染物負荷量が少なくなり、膜の
濾過水量レベルを高く保持し、安全性の高い水を効率良
く得るうえで有効である。
When actually performing filtration, it is usually performed using a module in which a number of hollow fiber membranes are bundled and inserted into a case. Whether the filtration is performed by supplying raw water to the outer surface side of the membrane and performing filtration to the inner surface side, or by supplying raw water to the inner surface side of the membrane and performing filtration to the outer surface side, depends on the state of filtration. It is determined as appropriate. When the raw water contains a large amount of film contaminants such as turbid substances, a method of filtering from the outer surface side of the membrane is more preferable because the load of the film contaminants per unit membrane area is smaller. Since the outer surface area of the hollow fiber membrane is larger than the inner surface area, if the same water quality liquid is filtered by the same amount, it is better when the liquid is filtered from the outer surface of the membrane.
This is effective in reducing the membrane contaminant load per unit membrane area, maintaining a high level of filtered water in the membrane, and efficiently obtaining highly safe water.

【0016】中空糸状膜モジュールに対し、膜外表面側
から原水を供給して濾過運転を行う場合には、特開平7
ー275671号公報に開示されているような、逆洗、
空気洗浄等を織り込んで濾過運転を行うことが、濾過水
量を高いレベルに維持し、本発明の目的である“安全性
の高い水を効率良く得る”上でより好ましい。本発明の
対象となる、濾過により洗浄されるべき原水は、特には
限定されないが、河川水、湖沼水、地下水、海水等の天
然水が例示できる。また、これら天然水を凝集沈殿法、
凝集濾過法、加圧浮上法等の既存の浄化方法で浄化した
水、あるいはオゾンなどの殺菌力の強い薬品にて殺菌し
た水を原水とし、そのさらなる水質向上のために本発明
を利用することもできる。本発明により得られる浄化水
は、飲料水、工業用水等に利用することができる。
In the case where raw water is supplied to the hollow fiber membrane module from the outer surface side of the membrane to perform a filtration operation, Japanese Patent Application Laid-Open No.
-Backwashing, as disclosed in
It is more preferable to carry out the filtration operation by incorporating air washing or the like in order to maintain the amount of filtered water at a high level and to “obtain highly safe water efficiently” which is the object of the present invention. Raw water to be washed by filtration, which is an object of the present invention, is not particularly limited, and examples thereof include natural waters such as river water, lake water, groundwater, and seawater. In addition, these natural waters are coagulated and sedimented,
Using water purified by an existing purification method such as a coagulation filtration method or a pressure flotation method, or water sterilized by a strong sterilizing agent such as ozone as raw water, and using the present invention to further improve the water quality. Can also. The purified water obtained by the present invention can be used for drinking water, industrial water and the like.

【0017】[0017]

【発明の実施の形態】以下にこの発明の実施例を示す
が、これに限定されるものではない。各測定方法は、下
記のとおりである。なお、測定サンプルとして使用した
中空糸状膜及び平面状膜は、すべて十分に水を含浸させ
た状態のものを用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments. Each measuring method is as follows. In addition, the hollow fiber membrane and the planar membrane used as the measurement samples were all completely impregnated with water.

【0018】中空糸状膜の透水量は、25℃の限外濾過
水を長さ50mmの中空糸状膜のサンプルの内表面から
外表面へ透過させ、その量をリットル/hr・m2 ・a
tmで表した。ただし、有効膜面積は内表面換算した。
アクリロニトリル系重合体の極限粘度は、Journa
l of polymer Science(Aー1)
第6巻、147〜157(1968)に記載されている
測定法に準じて、N,Nージメチルホルムアミドを溶剤
とし30℃で測定した。
The amount of water permeation of the hollow fiber membrane is determined by permeating ultrafiltration water at 25 ° C. from the inner surface to the outer surface of the hollow fiber membrane sample having a length of 50 mm, and the amount is liter / hr · m 2 · a.
tm. However, the effective film area was converted to the inner surface.
The intrinsic viscosity of the acrylonitrile polymer is determined by Journa
l of Polymer Science (A-1)
According to the measuring method described in Vol. 6, 147 to 157 (1968), measurement was carried out at 30 ° C. using N, N-dimethylformamide as a solvent.

【0019】[0019]

【実施例1】アクリロニトリル91.5重量%、アクリ
ル酸メチル8.0重量%、メタリルスルホン酸ソーダ
0.5重量%からなる極限粘度[η]=1.2の共重合
体16重量%、および重量平均分子量9,000のポリ
ビニルピロリドン(BASF社製、K17)12重量%
を、Nーメチルー2ーピロリドン54重量%とγーブチ
ロラクトン18重量%の混合溶剤に溶解して均一溶液と
した。この溶液を60℃に保ち、N−メチルー2ーピロ
リドン90重量%と水10重量%との混合溶液からなる
内部液とともに、紡口(2重環状ノズル0.5mm−
0.7mm−1.3mm)から吐出させ、20mmのエ
アギャップを80℃の水からなる凝固浴に浸漬して、凝
固を完結させた。この時、紡口から凝固浴までを円筒状
の筒で囲み、筒の中のエアギャップの湿度を100%、
温度を60℃に制御した。紡速は10m/分に固定し
た。
Example 1 A copolymer consisting of 91.5% by weight of acrylonitrile, 8.0% by weight of methyl acrylate and 0.5% by weight of sodium methallylsulfonate having an intrinsic viscosity [η] = 16% by weight, And 12% by weight of polyvinylpyrrolidone having a weight average molecular weight of 9,000 (K17, manufactured by BASF)
Was dissolved in a mixed solvent of 54% by weight of N-methyl-2-pyrrolidone and 18% by weight of γ-butyrolactone to obtain a homogeneous solution. This solution was maintained at 60 ° C., and a spinneret (double annular nozzle 0.5 mm−) was prepared together with an internal solution composed of a mixed solution of 90% by weight of N-methyl-2-pyrrolidone and 10% by weight of water.
0.7 mm-1.3 mm), and a 20 mm air gap was immersed in a coagulation bath made of water at 80 ° C. to complete the coagulation. At this time, the area from the spinneret to the coagulation bath is surrounded by a cylindrical tube, and the humidity of the air gap in the tube is 100%.
The temperature was controlled at 60 ° C. The spinning speed was fixed at 10 m / min.

【0020】得られた中空糸状膜は、膜内部に最小孔径
層を有し、膜の両表面にある孔が円形状である構造であ
った。また、最小孔径層の平均孔径は0.05μmであ
り、外表面の平均孔径は0.6μm、内表面の平均孔径
は10μmであった。また、膜性能は、内/外径=0.
8/1.2(mm)、膜の透水量は2500リットル/
hr・m2 ・atmであった。
The obtained hollow fiber membrane had a structure having a minimum pore diameter layer inside the membrane, and the pores on both surfaces of the membrane were circular. The average pore size of the minimum pore size layer was 0.05 μm, the average pore size on the outer surface was 0.6 μm, and the average pore size on the inner surface was 10 μm. In addition, the membrane performance was such that inner / outer diameter = 0.
8 / 1.2 (mm), the water permeability of the membrane is 2500 liters /
hr · m 2 · atm.

【0021】この中空糸状膜を用い、有効膜面積=0.
15m2 のモジュールを作成した。このモジュールに、
膜外表面側から濁度3の河川表流水を20℃、平均濾過
圧=0.15kgf/cm2 にて供給した。供給水の1
0%は濃縮水としてモジュールの外へ排出した。また、
濾過60分毎に1分間、膜濾過水を膜内表面側から濾過
する逆洗操作(濾過圧:0.4kgf/cm2 )を加え
てモジュールを運転した。膜濾過水の透水量は、550
リットル/hr・m2 ・atm(膜面積は膜内表面換
算)で安定した。この時、河川表流水中には、Pseu
domonasDiminutaが30個/ml存在し
ていたが、濾水中には皆無であった。
Using this hollow fiber membrane, the effective membrane area = 0.
A 15 m 2 module was created. In this module,
River surface water having a turbidity of 3 was supplied from the outer surface of the membrane at 20 ° C. at an average filtration pressure of 0.15 kgf / cm 2 . Supply water 1
0% was discharged out of the module as concentrated water. Also,
The module was operated by applying a backwashing operation (filtration pressure: 0.4 kgf / cm 2 ) for filtering the membrane filtered water from the inner surface of the membrane for 1 minute every 60 minutes of filtration. The permeability of the membrane filtration water is 550
It was stabilized at liter / hr · m 2 · atm (the film area was converted to the film inner surface). At this time, Pseu
domonasDiminuta was present at 30 cells / ml, but was not present in the filtrate.

【0022】[0022]

【比較例1】実施例1に用いたポリマーと紡口を用い、
特公昭52ー150072号公報実施例1に準拠して内
/外径=0.8/1.4(mm)、膜の透水量は200
リットル/hr・m2 ・atmの膜を得た。得られた中
空糸状膜は、膜の両表面に最小孔径層を有し、膜の両表
面にある孔は非円形状である構造であった。この中空糸
状膜を用い、有効膜面積=0.15m2 のモジュールを
作成した。このモジュールに膜外表面側から濁度3の河
川表流水を20℃、平均濾過圧=0.15kgf/cm
2 にて供給した。供給水の10%は濃縮水としてモジュ
ールの外へ排出した。また、濾過60分毎に1分間、膜
濾過水を膜内表面側から濾過する逆洗操作(濾過圧:
0.4kgf/cm2 )を加えてモジュールを運転し
た。膜濾過水の透水量は、100リットル/hr・m2
・atm(膜面積は膜内表面換算)で安定した。
Comparative Example 1 Using the polymer and spinneret used in Example 1,
According to Example 1 of JP-B-52-150072, the inner / outer diameter is 0.8 / 1.4 (mm), and the water permeability of the membrane is 200.
1 / hr · m 2 · atm was obtained. The resulting hollow fiber membrane had a structure in which the minimum pore size layers were present on both surfaces of the membrane, and the pores on both surfaces of the membrane were non-circular. Using the hollow fiber membrane, a module having an effective membrane area of 0.15 m 2 was prepared. In this module, river surface water having a turbidity of 3 is applied from the outer surface side of the membrane at 20 ° C., average filtration pressure = 0.15 kgf / cm.
Supplied at 2 . 10% of the feed water was discharged out of the module as concentrated water. In addition, a backwashing operation of filtering the membrane filtered water from the inner surface of the membrane for 1 minute every 60 minutes of filtration (filtration pressure:
0.4 kgf / cm 2 ) was added to operate the module. The permeation rate of the membrane filtration water is 100 liter / hr · m 2
• Stable at atm (film area is converted to film inner surface).

【0023】[0023]

【発明の効果】本発明によれば、不純物が少なくかつ病
原性微生物の無い安全性の高い水を効率良く得ることが
できる。
According to the present invention, highly safe water free from impurities and free from pathogenic microorganisms can be efficiently obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 膜の両表面に円形状または楕円形状の孔
を有し、膜の最小孔径層を膜内部のみに有するポリアク
リロニトリル系中空糸状濾過膜を用いて濾過することを
特徴とする水の浄化方法。
1. A water filtration method using a polyacrylonitrile-based hollow fiber filtration membrane having circular or elliptical pores on both surfaces of the membrane and having a minimum pore size layer of the membrane only inside the membrane. Purification method.
JP9168595A 1997-06-25 1997-06-25 Water purifying process Pending JPH1110148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9168595A JPH1110148A (en) 1997-06-25 1997-06-25 Water purifying process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9168595A JPH1110148A (en) 1997-06-25 1997-06-25 Water purifying process

Publications (1)

Publication Number Publication Date
JPH1110148A true JPH1110148A (en) 1999-01-19

Family

ID=15870975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9168595A Pending JPH1110148A (en) 1997-06-25 1997-06-25 Water purifying process

Country Status (1)

Country Link
JP (1) JPH1110148A (en)

Similar Documents

Publication Publication Date Title
Ping Chu et al. Membrane fouling in a membrane bioreactor (MBR): sludge cake formation and fouling characteristics
JP5431347B2 (en) Porous membrane, method for producing porous membrane, method for producing clarified liquid, and porous membrane module
Yu et al. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment
KR100980571B1 (en) Porous Membrane and Method for Manufacturing the Same
Li et al. Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes
JP5496901B2 (en) Use of porous hollow fiber membranes to produce clarified biopharmaceutical cultures
JP3887072B2 (en) Method for cleaning hollow fiber membrane module and filtration device used in the method
US20020011443A1 (en) Porous hollow fiber membranes and method of making the same
Praneeth et al. Design of novel ultrafiltration systems based on robust polyphenylsulfone hollow fiber membranes for treatment of contaminated surface water
AU2002338039A1 (en) Hollow fiber film and method for production thereof
JP6303910B2 (en) Hollow fiber membrane for ultrafiltration
JP4626319B2 (en) Porous membrane, method for producing the same, and solid-liquid separator
WO2020100763A1 (en) Filtration method in which porous membrane is used
Bian et al. Preparation, characterization and dyeing wastewater treatment of a new PVDF/PMMA five-bore UF membrane with β-cyclodextrin and additive combinations
Ma et al. Preparation, characterization and performance of a novel PVDF/PMMA/TPU blend hollow fiber membrane for wastewater treatment
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JP2002035748A (en) Water cleaning treatment apparatus using large pore size filter membrane member
JPH1110148A (en) Water purifying process
CN210410244U (en) Aminated graphene oxide and graphite-phase carbon nitride composite modified film
JP7403387B2 (en) Coagulation membrane filtration system and coagulation membrane filtration method
WO2019172077A1 (en) Hollow-fiber membrane and method for producing hollow-fiber membrane
JP3979751B2 (en) Method for filtering oxidant-containing water
JPH1177041A (en) Removal of microorganism from water
JP2008062119A (en) Filter medium, its manufacturing method, filtration treatment device, and filtration treatment method
JP4380380B2 (en) Method for producing liquid separation membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091224

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111224

LAPS Cancellation because of no payment of annual fees