[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11100274A - Silicon nitride sintered compact, its production and circuit board - Google Patents

Silicon nitride sintered compact, its production and circuit board

Info

Publication number
JPH11100274A
JPH11100274A JP9261561A JP26156197A JPH11100274A JP H11100274 A JPH11100274 A JP H11100274A JP 9261561 A JP9261561 A JP 9261561A JP 26156197 A JP26156197 A JP 26156197A JP H11100274 A JPH11100274 A JP H11100274A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
sio
phase
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9261561A
Other languages
Japanese (ja)
Inventor
Hideki Hirotsuru
秀樹 廣津留
Ryuichi Terasaki
隆一 寺崎
Kazuyuki Hiruta
和幸 蛭田
Hiroshi Yokota
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP9261561A priority Critical patent/JPH11100274A/en
Publication of JPH11100274A publication Critical patent/JPH11100274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain high thermal conductivity by containing a specific quantity of each Si3 N4 and one or more kinds of Y and lanthgoid group elements expressed in terms of oxide, specifying the ratio of SiO2 /(SiO2 +oxide of lanthanoid element) calculated from oxygen quantity and controlling total content of Al, Be and Li to equal to or below a specific value. SOLUTION: The Si3 N4 based sintered compact contains 90-99 mol.% Si3 N4 and 1-10 mol.% one or more kinds of Y and the lanthanoid elements expressed in terms of oxide and the molar ratio of SiO2 /(SiO2 +oxide of lanthanoid group elexaent or the like) is 0.05-0.5 when the remaining quantity of oxygen substracting the quantity of the oxygen of Re2 O3 obtained by calculating the lanthanoid group elemens into oxide from the total oxygen quantity is expressed in teas of SiO2 and total content of Al, Be and Zr is <=2000 ppm. The sintered compact is >=95% in the density, 0.5-3 μm in the average particle diameter of β-type Si3 N4 particle, >=70 W/(m.k) in the heat conductivity, ∞500 MPa in the three point bending strength and ∞6 MPa.m<1/2> in fracture toughness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体用基板をは
じめ、自動車、機械装置等の幅広い分野で使用される各
種構造部品の素材として利用でき、強度、破壊靭性等の
機械的特性に優れ且つ熱伝導率等の放熱特性に優れた窒
化珪素質焼結体及びそれを用いた窒化珪素質回路基板に
関する。
The present invention can be used as a material for various structural components used in a wide range of fields such as semiconductor substrates, automobiles, machinery and the like, and has excellent mechanical properties such as strength and fracture toughness. The present invention relates to a silicon nitride sintered body having excellent heat dissipation characteristics such as thermal conductivity and a silicon nitride circuit board using the same.

【0002】[0002]

【従来の技術】窒化珪素質焼結体(以下、単に窒化珪素
セラミックスともいう)は、常温及び高温で化学的に安
定な材料であり、優れた機械的特性を有するので、自動
車用エンジン部材、摺動部材等として適した材料であ
る。また、高い絶縁性を利用して、電気絶縁材料として
も使用されている。
2. Description of the Related Art A silicon nitride-based sintered body (hereinafter, also simply referred to as silicon nitride ceramics) is a material which is chemically stable at ordinary and high temperatures and has excellent mechanical properties. It is a material suitable as a sliding member or the like. It is also used as an electrical insulating material by utilizing high insulating properties.

【0003】しかし、窒化珪素は共有結合性の強い物質
であり、優れた高温特性を有する反面、難焼結性の物質
である。この為、窒化珪素セラミックスは、Y2 3
の酸化物を焼結助剤として添加し、焼結性を高めて緻密
化させている。これらの焼結助剤及び原料である窒化珪
素粉末中に含まれるSiO2 が窒化珪素セラミックスの
粒界相を形成し、機械的特性や熱的特性に影響を及ぼ
す。
[0003] However, silicon nitride is a substance having a strong covalent bond and has excellent high-temperature characteristics, but is a substance which is difficult to be sintered. For this reason, silicon nitride ceramics are added with an oxide such as Y 2 O 3 as a sintering aid to increase the sinterability and make the ceramics denser. These sintering aids and SiO 2 contained in the silicon nitride powder as a raw material form a grain boundary phase of the silicon nitride ceramics, and affect mechanical and thermal properties.

【0004】従来の窒化珪素セラミックスは、上述した
とおり、窒化珪素粉末に焼結助剤を添加し、成形した
後、得られた成形体を1600℃〜2200℃の高温で
所定時間焼成し、得られた焼結体を所望の形状に研削加
工して製造されている。
[0004] As described above, conventional silicon nitride ceramics are obtained by adding a sintering aid to silicon nitride powder, molding the resultant, and firing the obtained molded body at a high temperature of 1600 ° C to 2200 ° C for a predetermined time. It is manufactured by grinding the obtained sintered body into a desired shape.

【0005】一方、半導体回路用の基板としては、電気
絶縁性に加えて、優れた放熱特性を得ることができるよ
うに高い熱伝導率が要求される。従来からアルミナ(A
23 )焼結体などのように、絶縁性に優れたセラミ
ックス基板の表面に、導電性を有する金属回路層をろう
材で接合し、更に金属回路層の所定位置に半導体素子を
搭載した回路基板が広く普及している。
[0005] On the other hand, a substrate for a semiconductor circuit is required to have high thermal conductivity so as to obtain excellent heat dissipation characteristics in addition to electric insulation. Conventionally, alumina (A
l 2 O 3 ) A conductive metal circuit layer is joined to the surface of a ceramic substrate having excellent insulation properties, such as a sintered body, with a brazing material, and a semiconductor element is mounted on a predetermined position of the metal circuit layer. Circuit boards are widely used.

【0006】近年、回路基板の小型化、半導体素子の高
集積化等が進むに従い、これらの回路基板における絶縁
材料の放熱特性の向上が望まれている。この様な材料と
してはBeOを添加した炭化珪素(SiC)や窒化アル
ミニウム(AlN)等が開発されている。しかし、Si
CやAlNは熱伝導率は高いが、強度や破壊靭性といっ
た機械的特性が低いため、耐熱サイクル特性や取り扱い
時の強度等に問題があった。
In recent years, as circuit boards have become smaller and semiconductor elements have become more highly integrated, it has been desired to improve the heat radiation characteristics of insulating materials in these circuit boards. As such a material, silicon carbide (SiC) and aluminum nitride (AlN) to which BeO is added have been developed. However, Si
C and AlN have high thermal conductivity, but have low mechanical properties such as strength and fracture toughness, and thus have problems in heat cycle characteristics and handling strength.

【0007】窒化珪素質焼結体は、強度や破壊靭性等の
機械的特性に優れるため、構造材料への適用が進んでい
る材料ではあるが、SiCやAlNに比べて熱伝導率が
低いため、高い放熱特性が要求される電気絶縁基板への
適用は十分にはすすんでいなかった。窒化珪素の熱伝導
率が低い理由は、窒化珪素を緻密化させる為に添加した
焼結助剤成分の一部が、窒化珪素粒内に固溶したり、粒
界に遍在したりするため、フォノン(セラミックス中で
熱を伝達する機構)が散乱されることが原因である。例
えば、一般的な焼結助剤であるY2 3 とAl2 3
添加した焼結体では、熱伝導率は20W/(m・K)程
度であった。
[0007] Silicon nitride sintered bodies are excellent in mechanical properties such as strength and fracture toughness, and thus are being applied to structural materials. However, they have low thermal conductivity compared to SiC and AlN. However, it has not been sufficiently applied to an electrical insulating substrate requiring high heat radiation characteristics. The reason that the thermal conductivity of silicon nitride is low is that a part of the sintering aid component added to densify silicon nitride is dissolved in silicon nitride grains or is ubiquitous in grain boundaries. This is because phonons (mechanisms for transferring heat in ceramics) are scattered. For example, in a sintered body to which Y 2 O 3 and Al 2 O 3 , which are general sintering aids, are added, the thermal conductivity is about 20 W / (m · K).

【0008】窒化珪素粒子内にAl及び酸素が存在する
と局部的にサイアロンを形成し、このサイアロンの熱伝
導率が非常に低いため、Al系の焼結助剤を用いた窒化
珪素焼結体の熱伝導率は低くなってしまう。窒化珪素
は、電気絶縁材料であるため、フォノンにより熱が運ば
れる。フォノンは格子の乱れ、粒界相、気孔等により散
乱されるので、窒化珪素の熱伝導率も、窒化珪素の結晶
構造、焼結助剤の種類、結晶粒内への固溶などの影響を
受ける。窒化珪素の理想的な熱伝導率は、組成、結晶構
造等に基づけば200W/(m・K)以上であると推測
されているが、実際に窒化珪素の単結晶を合成し実用用
途に適用することは難しく、一般には焼結体として製造
されている。
When Al and oxygen are present in the silicon nitride particles, a sialon is locally formed, and the thermal conductivity of the sialon is extremely low. Therefore, a silicon nitride sintered body using an Al-based sintering aid is used. Thermal conductivity will be low. Since silicon nitride is an electrically insulating material, heat is carried by phonons. Since phonons are scattered by lattice disorder, grain boundary phase, pores, etc., the thermal conductivity of silicon nitride also depends on the crystal structure of silicon nitride, the type of sintering aid, and the solid solution in the crystal grains. receive. The ideal thermal conductivity of silicon nitride is estimated to be 200 W / (m · K) or more based on the composition, crystal structure, etc., but a silicon nitride single crystal is actually synthesized and applied to practical use. It is difficult to do so, and is generally manufactured as a sintered body.

【0009】窒化珪素の焼結は、窒化珪素粒子が焼結助
剤と窒化珪素原料粉末中に含まれるSiO2 成分とから
なる液相に溶解・析出しながら進むので、得られる窒化
珪素焼結体中の個々の窒化珪素粒子は、単結晶に近く、
比較的高い熱伝導率が期待されるのであるが、実際の窒
化珪素焼結体においては、前述した粒界相や窒化珪素粒
内への不純物の固溶の影響のほうが大きく、通常の製造
条件によるならば、理論熱伝導率の1〜2割程度の熱伝
導率しか得られないのが実状である。
The sintering of silicon nitride proceeds while the silicon nitride particles dissolve and precipitate in a liquid phase comprising a sintering aid and a SiO 2 component contained in the silicon nitride raw material powder. Individual silicon nitride particles in the body are close to a single crystal,
Although relatively high thermal conductivity is expected, in the actual silicon nitride sintered body, the influence of the solid solution of the impurities in the grain boundary phase and silicon nitride grains described above is larger, and the usual manufacturing conditions According to the above, in reality, only about 10 to 20% of the theoretical thermal conductivity can be obtained.

【0010】この為、窒化珪素焼結体の高熱伝導化につ
いては、日本セラミックス協会学術論文誌1989年1
月号56〜62頁に記載されているとおりに、Alを含
有する焼結助剤を用いず、Y2 3 のみを添加してHI
P(熱間等方圧)焼結することにより、熱伝導率が70
W/(m・K)の焼結体を得ている。
[0010] For this reason, the high thermal conductivity of a silicon nitride sintered body has been described in the academic journal of the Ceramic Society of Japan, January 1989.
As described in Monthly Pages 56 to 62, HI was obtained by adding only Y 2 O 3 without using a sintering aid containing Al.
P (hot isostatic pressure) sintering results in a thermal conductivity of 70
A sintered body of W / (m · K) is obtained.

【0011】また、特開平4−175268号公報や特
開平4−219371号公報に記載されているとおり
に、焼結体中のAl、酸素含有量を低下させ、Ti、Z
r、Hf等の金属を添加し、場合によってはY2 3
焼結助剤として添加することにより、熱伝導率40W/
(m・K)以上の焼結体を得る方法が知られている。
Further, as described in JP-A-4-175268 and JP-A-4-219371, the content of Al and oxygen in the sintered body is reduced, and the content of Ti and Z is reduced.
By adding metals such as r and Hf, and optionally adding Y 2 O 3 as a sintering aid, a thermal conductivity of 40 W /
A method for obtaining a sintered body of (m · K) or more is known.

【0012】更に、日本セラミックス協会学術論文誌1
996年1月号49〜53頁には、焼結助剤として少量
のY2 3 及びNd2 3 を用い、2200℃と非常に
高い温度で4時間、HIP焼結することにより、熱伝導
率が100W/(m・K)以上の窒化珪素質焼結体を得
ている。
Further, The Ceramic Society of Japan 1
In 996, January, pp 49-53, using a small amount of Y 2 O 3 and Nd 2 O 3 as a sintering aid, 2200 ° C. and a very high temperature for 4 hours, by HIP sintering, heat A silicon nitride sintered body having a conductivity of 100 W / (m · K) or more is obtained.

【0013】[0013]

【発明が解決しようとする課題】従来の電気絶縁性高熱
伝導セラミックスとして知られているSiC、BeO、
AlNは、熱伝導率が100W/(m・K)以上と高
く、放熱特性には優れているが、強度、破壊靭性等の機
械的特性が低い。この為、回路基板等として用いる場
合、実装工程において破損を生じたり、半導体素子の作
動に伴う繰り返し熱サイクルを受けて、金属回路層との
接合部付近のセラミックス基板にクラックが発生し易
く、耐熱サイクル特性及び信頼性が低いという問題があ
った。
SUMMARY OF THE INVENTION Conventionally known SiC, BeO,
AlN has a high thermal conductivity of 100 W / (m · K) or more and is excellent in heat radiation properties, but has low mechanical properties such as strength and fracture toughness. Therefore, when used as a circuit board or the like, the ceramic substrate near the joint with the metal circuit layer is liable to crack due to damage in the mounting process or repeated thermal cycling accompanying the operation of the semiconductor element, and heat resistance There was a problem that cycle characteristics and reliability were low.

【0014】また、従来の窒化珪素セラミックスは、強
度、破壊靭性等の機械的特性は優れているものの、熱伝
導特性に関しては、上記したとおりに、SiC、Be
O、AlNセラミックス等に比べ低いこと、更に、高熱
伝導率を有するものを得ようとすると、Al等の不純物
が少ない高純度の原料粉末を用いて、高温でHIP焼結
等の特殊な焼結法を用いなければならず、得られる焼結
体が非常に高価になってしまい、半導体用回路基板等の
電子材料用途には殆ど実用化されていないのが現状であ
る。
Although conventional silicon nitride ceramics have excellent mechanical properties such as strength and fracture toughness, their thermal conductivity properties are, as described above, SiC and Be.
In order to obtain a material having a lower thermal conductivity than O and AlN ceramics, and a material having a high thermal conductivity, a special sintering such as HIP sintering at a high temperature using a high-purity raw material powder containing few impurities such as Al is used. It is necessary to use the method, and the obtained sintered body is very expensive, and at present, it is hardly practically used for electronic materials such as circuit boards for semiconductors.

【0015】本発明は、上記の事情に鑑みなされたもの
であって、優れた強度、破壊靭性を有し、機械的特性に
優れているいると共に、優れた熱伝導特性を持つことに
より、放熱特性及び信頼性に優れる半導体用回路基板や
バルブ等の自動車部品の素材として好適な窒化珪素質焼
結体を安価に提供することを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and has excellent strength, fracture toughness, excellent mechanical properties, and excellent heat conduction properties. It is an object of the present invention to provide inexpensively a silicon nitride sintered body that is excellent in characteristics and reliability and is suitable as a material for automotive parts such as semiconductor circuit boards and valves.

【0016】[0016]

【課題を解決するための手段】本発明者は上記目的を達
成するために、窒化珪素質焼結体を得るための原料粉末
の粉体特性、焼結助剤の組成、量、更には焼結条件等に
関して鋭意検討した結果、強度、破壊靭性等の機械的特
性に優れ且つ従来のものよりも大幅に高い熱伝導率有す
る窒化珪素質焼結体を得て、本発明を完成するに至った
ものである。
Means for Solving the Problems To achieve the above object, the present inventor has set forth the powder characteristics of the raw material powder, the composition and amount of the sintering aid, and the sintering aid for obtaining a silicon nitride based sintered body. As a result of intensive studies on the bonding conditions and the like, a silicon nitride based sintered body having excellent mechanical properties such as strength and fracture toughness and having a significantly higher thermal conductivity than conventional ones was obtained, and the present invention was completed. It is a thing.

【0017】すなわち、本発明の窒化珪素質焼結体は、
窒化珪素(Si3 4 )90〜99mol%、イットリ
ウム(Y)及びランタノイド族元素からなる群から選ば
れる1種以上を酸化物(Re2 3 )換算で1〜10m
ol%含有し、焼結体中の全酸素量よりRe2 3 に帰
属する酸素量を除いた残部をSiO2 とするときに、S
iO2 /(Re2 3 +SiO2 )のモル比が0.05
〜0.5であり、窒化珪素粒子の平均粒子径(平均短軸
径)が0.5〜3μm、焼結体中のAl、Be及びLi
の含有量の合計が2000ppm以下であり、しかも熱
伝導率が70W/(m・K)以上であることを特徴とす
る窒化珪素質焼結体である。
That is, the silicon nitride sintered body of the present invention
Silicon nitride (Si 3 N 4) 90~99mol% , yttrium (Y) and oxides of one or more selected from the group consisting of lanthanoid elements (Re 2 O 3) in terms of 1~10m
containing ol%, the balance excluding the amount of oxygen belonging to Re 2 O 3 than the total oxygen content in the sintered body when the SiO 2, S
The molar ratio of iO 2 / (Re 2 O 3 + SiO 2 ) is 0.05
To 0.5, the average particle diameter (average minor axis diameter) of the silicon nitride particles is 0.5 to 3 μm, and Al, Be and Li in the sintered body are
Is 2000 ppm or less, and the thermal conductivity is 70 W / (m · K) or more.

【0018】また、本発明の窒化珪素質焼結体は、X線
回折による粒界結晶相としてK相(ReSi2 N)、J
相(Re4 Si2 7 4 )、H相(Re10Si7 23
4)、Re2 Si3 3 4 、Re2 SiO5 及びR
2 3 の1種以上を含有し、K相、J相、H相、Re
2 Si3 3 4 、Re2 SiO5 及びRe2 3 の各
々のメインピーク強度の合計(IGB)が、β型窒化珪素
の(200)面のピーク強度(ISN)に対し0.03〜
0.20であることを特徴とする前記の窒化珪素質焼結
体である。
The silicon nitride sintered body of the present invention has a K phase (ReSi 2 N),
Phase (Re 4 Si 2 O 7 N 4 ), H phase (Re 10 Si 7 O 23
N 4 ), Re 2 Si 3 O 3 N 4 , Re 2 SiO 5 and R
e 2 O 3 , K phase, J phase, H phase, Re phase
The total (I GB ) of the main peak intensities of each of 2 Si 3 O 3 N 4 , Re 2 SiO 5 and Re 2 O 3 is 0 with respect to the peak intensity ( ISN ) of the (200) plane of β-type silicon nitride. .03-
The silicon nitride-based sintered body described above is 0.20.

【0019】更に本発明は、Al、Be及びLiの合計
含有量が2000ppm以下であり、α率が50%以下
の窒化珪素粉末90〜99mol%に、イットリウム
(Y)及びランタノイド族元素からなる群の1種以上を
酸化物換算で1〜10mol%、窒化珪素粉末中の酸素
量をSiO2 換算したSiO2 量及び添加するSiO2
量の合計が、SiO2 /(Re2 3 +SiO2 )のモ
ル比が0.05〜0.5となるように添加混合し、1M
Pa未満の窒素加圧雰囲気中、温度1800〜2000
℃で焼成することを特徴とする前記窒化珪素質焼結体の
製造方法である。
Further, the present invention relates to a group comprising yttrium (Y) and a lanthanoid element in 90 to 99 mol% of silicon nitride powder having a total content of Al, Be and Li of 2000 ppm or less and an α ratio of 50% or less. 1 to 10 mol% in terms of oxide of one or more, SiO 2 of the amount of oxygen in the silicon nitride powder to the amount of SiO 2 and addition was SiO 2 in terms
The total quantities, the molar ratio of SiO 2 / (Re 2 O 3 + SiO 2) is added and mixed so that 0.05 to 0.5, 1M
In a nitrogen pressurized atmosphere of less than Pa, at a temperature of 1800 to 2000
A method for producing the silicon nitride-based sintered body, characterized in that the sintered body is fired at a temperature of ℃.

【0020】加えて、本発明は、前記窒化珪素質焼結体
を用いてなる回路基板である。
In addition, the present invention is a circuit board using the silicon nitride sintered body.

【0021】[0021]

【発明の実施の形態】窒化珪素セラミックスは、柱状の
β型窒化珪素粒子が複雑に絡み合った焼結体組織を呈し
ており、この組織が強度、破壊靭性等の機械的特性に大
きく寄与している。また、焼結体中の気孔は、欠陥とし
て作用し強度特性に影響を及ぼす。窒化珪素セラミック
スにおいては、これらの欠陥をも含めた焼結体組織を適
正化することが、強度、破壊靭性等の機械的特性に優れ
た焼結体を得るために重要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Silicon nitride ceramics have a sintered body structure in which columnar β-type silicon nitride particles are intricately entangled, and this structure greatly contributes to mechanical properties such as strength and fracture toughness. I have. Moreover, the pores in the sintered body act as defects and affect the strength characteristics. In silicon nitride ceramics, it is important to optimize the structure of the sintered body including these defects in order to obtain a sintered body having excellent mechanical properties such as strength and fracture toughness.

【0022】しかし、窒化珪素焼結体中の窒化珪素粒子
が相接する時の二粒子界面の厚さは1nm程度であり、
これはフォノンの平均自由工程の1/10以下である。
このことから、窒化珪素焼結体の熱伝導率に関しては、
粒界相の影響よりも窒化珪素粒子内の欠陥によるフォノ
ン散乱の影響の方がより大きな支配因子となっているも
のと考えられる。従って、窒化珪素焼結体の熱伝導率を
向上させるには、窒化珪素粒子内の欠陥を制御すること
が重要であると推測される。
However, the thickness of the interface between the two particles when the silicon nitride particles in the silicon nitride sintered body are in contact with each other is about 1 nm,
This is 1/10 or less of the phonon mean free path.
From this, regarding the thermal conductivity of the silicon nitride sintered body,
It is considered that the influence of phonon scattering due to defects in the silicon nitride particles is a larger controlling factor than the influence of the grain boundary phase. Therefore, it is presumed that it is important to control the defects in the silicon nitride particles in order to improve the thermal conductivity of the silicon nitride sintered body.

【0023】本発明者らは、上記推察に基づき、窒化珪
素焼結体中の粒内欠陥を低減させ、且つ粒界相を制御す
ることにより、本発明の目的である機械的特性と熱伝導
特性に共に優れた焼結体を得ることができるとの予測に
立ち、鋭意検討を行った結果、本発明に至ったのもので
ある。
Based on the above presumption, the present inventors have reduced the intragranular defects in the silicon nitride sintered body and controlled the grain boundary phase, so that the mechanical properties and heat conduction, which are the objects of the present invention, have been achieved. Based on the prediction that a sintered body excellent in both properties can be obtained, the present inventors have conducted intensive studies and, as a result, have arrived at the present invention.

【0024】すなわち、本発明の窒化珪素質焼結体は、
窒化珪素(Si3 4 )90〜99mol%、イットリ
ウム(Y)及びランタノイド族元素からなる群から選ば
れる1種以上を酸化物(Re2 3 )換算で1〜10m
ol%含有するものである。窒化珪素の焼結助剤として
は、各種の酸化物等が用いられているが、Al2 3
例示される窒化珪素と固溶する焼結助剤を用いて得られ
る従来公知の窒化珪素質焼結体は、窒化珪素粒子内に前
記アルミナ等の焼結助剤が固溶した部分が、欠陥として
存在するために、フォノンを散乱し熱伝導率を低下させ
る。これに対し、本発明の窒化珪素質焼結体は、窒化珪
素と固溶しないイットリウム(Y)及びランタノイド族
元素からなる群から選ばれる1種以上を酸化物(Re2
3 )換算で1〜10mol%含有するものであり、好
ましくは2〜5mol%含有するものである。尚、前記
イットリウム及びランタノイド族元素の中で、Yb、E
rなどのイオン半径の小さい元素が好ましい。
That is, the silicon nitride sintered body of the present invention
Silicon nitride (Si 3 N 4) 90~99mol% , yttrium (Y) and oxides of one or more selected from the group consisting of lanthanoid elements (Re 2 O 3) in terms of 1~10m
ol%. Various oxides and the like are used as a sintering aid for silicon nitride, and a conventionally known silicon nitride obtained using a sintering aid that dissolves with silicon nitride exemplified by Al 2 O 3 is used. In the porous sintered body, a portion in which the sintering aid such as alumina is dissolved in the silicon nitride particles is present as a defect, so that phonons are scattered and the thermal conductivity is reduced. On the other hand, the silicon nitride-based sintered body of the present invention contains one or more oxides selected from the group consisting of yttrium (Y) and lanthanoid group elements that do not form a solid solution with silicon nitride (Re 2).
The content is 1 to 10 mol% in terms of O 3 ), preferably 2 to 5 mol%. Among the yttrium and lanthanoid group elements, Yb, E
An element having a small ionic radius such as r is preferable.

【0025】前記イットリウム(Y)及びランタノイド
族元素からなる群から選ばれる1種以上の酸化物換算の
含有量が1mol%未満では、焼結時に生成する液相量
が不足し、十分に緻密化した焼結体が得られなくなる。
一方、希土類元素の含有量が10mol%を越えると、
粒界相の量が多くなり過ぎて粒界相でのフォノンの散乱
による熱伝導率の低下が起こってしまう。また、粒界相
の量が多くなり過ぎると、強度、破壊靭性等の機械的特
性、特に高温強度の低下があるからである。
If the content of one or more oxides selected from the group consisting of yttrium (Y) and lanthanoid group elements is less than 1 mol%, the amount of liquid phase generated during sintering is insufficient, and sufficient densification is achieved. A sintered body cannot be obtained.
On the other hand, when the content of the rare earth element exceeds 10 mol%,
If the amount of the grain boundary phase is too large, the thermal conductivity is reduced due to phonon scattering in the grain boundary phase. On the other hand, if the amount of the grain boundary phase is too large, mechanical properties such as strength and fracture toughness, particularly, high-temperature strength are reduced.

【0026】また、本発明の窒化珪素質焼結体は、焼結
体中の全酸素量よりイットリウム及びランタノイド族元
素からなる群から選ばれる1種以上を酸化物換算したR
23 に帰属する酸素量を除いた残部をSiO2 とし
たときに、SiO2 /(Re 2 3 +SiO2 )のモル
比が0.05〜0.5であり、好ましくは、0.1〜
0.4である。窒化珪素の焼結は、添加した焼結助剤と
原料粉末中並びに必要に応じて添加したSiO2 からな
る粒界相(液相)に窒化珪素粒子が溶解−析出しながら
粒成長してゆく。この場合、液相中のSiO2 の量が増
加すると、その一部が液相から析出する窒化珪素粒子中
に固溶して、窒化珪素粒子中の欠陥として存在し、その
結果、フォノンを散乱して熱伝導率を低下させてしま
う。このため、粒界相の組成として、焼結体中の全酸素
量よりイットリウム及びランタノイド族元素からなる群
から選ばれる1種以上を酸化物換算したRe2 3 に帰
属する酸素量を除いた残部をSiO2としたときに、S
iO2 /(Re2 3 +SiO2 )のモル比を0.5以
下にすることが熱伝導率向上の面で有効である。
Further, the silicon nitride sintered body of the present invention
Yttrium and lanthanoid elements from total oxygen in the body
At least one element selected from the group consisting of
eTwoOThreeThe remainder excluding the oxygen content attributed toTwoage
When the SiOTwo/ (Re TwoOThree+ SiOTwo) Mol
The ratio is from 0.05 to 0.5, preferably from 0.1 to 0.5
0.4. The sintering of silicon nitride is performed with the added sintering aid.
SiO in raw material powder and optionally addedTwoFrom
Silicon nitride particles dissolve and precipitate in the grain boundary phase (liquid phase)
Grain grows. In this case, the SiO 2 in the liquid phaseTwoIncreased
When added, silicon nitride particles, some of which precipitate from the liquid phase,
Solid solution and exist as defects in silicon nitride particles.
As a result, phonons are scattered and thermal conductivity is reduced.
U. Therefore, as the composition of the grain boundary phase, the total oxygen in the sintered body
Group consisting of yttrium and lanthanoid elements by quantity
Re converted into oxides of at least one selected fromTwoOThreeReturn to
The remainder excluding the oxygen content belongs to SiOTwoThen, S
iOTwo/ (ReTwoOThree+ SiOTwo ) Is 0.5 or less
Lowering is effective in improving the thermal conductivity.

【0027】一方、原料粉末である窒化珪素粉末中には
不可避的に酸素が含まれており、焼結体中には、この酸
素に起因するSiO2 成分が存在する。このため、Si
2/(Re2 3 +SiO2 )のモル比を下げるため
には、酸素量の少ない原料粉末を用いるか、前記Re2
3 量を増加させる必要がある。しかし、原料粉末中の
全酸素量を下げるのには限界があるし、Re2 3 量を
増加させる場合には粒界相の量が増えてしまい、機械的
特性や熱伝導率等の低下を引き起こす。このような理由
から、SiO2 /(Re2 3 +SiO2 )のモル比の
下限値については、0.05である。
On the other hand, oxygen is inevitably contained in the silicon nitride powder, which is the raw material powder, and a SiO 2 component originating from this oxygen exists in the sintered body. For this reason, Si
O 2 / in order to reduce the (Re 2 O 3 + SiO 2 ) molar ratio of either use less raw material powder having oxygen content, the Re 2
It is necessary to increase the amount of O 3 . However, there is a limit in reducing the total amount of oxygen in the raw material powder, and when the amount of Re 2 O 3 is increased, the amount of the grain boundary phase increases, and the mechanical properties and thermal conductivity decrease. cause. For this reason, the lower limit of the molar ratio of SiO 2 / (Re 2 O 3 + SiO 2 ) is 0.05.

【0028】また、本発明の窒化珪素質焼結体の密度
は、95%以上であることが好ましく、更に好ましくは
97%以上である。焼結体密度が95%未満では、焼結
体中の気孔量が多くなり過ぎ、これらが欠陥となり強度
の低下をもたらし、十分な強度特性が得られなくなる
し、焼結体中の気孔は、フォノンを散乱し熱伝導率の低
下をも引き起こすからである。
The density of the silicon nitride sintered body of the present invention is preferably at least 95%, more preferably at least 97%. If the density of the sintered body is less than 95%, the amount of pores in the sintered body becomes too large, these become defects and cause a decrease in strength, and sufficient strength characteristics cannot be obtained. This is because phonons are scattered and the thermal conductivity is also reduced.

【0029】さらに、本発明の窒化珪素質焼結体は、焼
結体中のAl、Be及びLiの含有量の合計が2000
ppm以下であり、好ましくは500ppm以下であ
る。Al、Be及びLiは焼結時に窒化珪素粒子中に固
溶し、その結果、窒化珪素粒子内に欠陥を形成しフォノ
ンを散乱して、熱伝導率の低下をもたらす。つまり、A
l、Be及びLiの含有量が2000ppmを越える
と、これらの元素の窒化珪素粒子への固溶量が多くなり
過ぎ、その結果、熱伝導率が低下してしまう。
Further, in the silicon nitride sintered body of the present invention, the total content of Al, Be and Li in the sintered body is 2,000.
ppm or less, preferably 500 ppm or less. Al, Be, and Li form a solid solution in the silicon nitride particles during sintering. As a result, defects are formed in the silicon nitride particles, phonons are scattered, and the thermal conductivity is reduced. That is, A
If the contents of l, Be and Li exceed 2000 ppm, the solid solution amount of these elements in the silicon nitride particles becomes too large, and as a result, the thermal conductivity decreases.

【0030】尚、窒化珪素質焼結体中のイットリウム、
ランタノイド族元素、Al、Be及びLiの含有量は、
焼結体を粉砕した後、原子吸光法で定量することができ
るし、焼結体中の全酸素量については、焼結体を粉砕
し、LECO社製のO/N同時分析計(TC−436)
にて定量することができる。
In addition, yttrium in the silicon nitride based sintered body,
The contents of lanthanoid elements, Al, Be and Li are
After the sintered body is pulverized, it can be quantified by an atomic absorption method. For the total oxygen content in the sintered body, the sintered body is pulverized and an O / N simultaneous analyzer (TC-TC manufactured by LECO) is used. 436)
Can be quantified.

【0031】更にまた、本発明に係わる窒化珪素質焼結
体中のβ型窒化珪粒子の平均粒子径(短軸径)は、0.
5〜3μmである。熱の伝達機構であるフォノンは、窒
化珪素粒子内では伝搬し易く、粒界相で散乱される。こ
のため、個々の粒子が大きくなると、粒界相によるフォ
ノン散乱の程度が減少し、熱伝導率が向上する。平均粒
子径が0.5μm未満では、粒界相によるフォノン散乱
の寄与が大きくなり十分な熱伝導率が得にくい。一方、
平均粒子径が3μmを越えると、熱伝導率は向上するも
のの、粗大に粒成長した窒化珪素粒子が欠陥となって、
強度等の機械的特性が低下してしまう。
Further, the average particle diameter (short axis diameter) of the β-type silicon nitride particles in the silicon nitride sintered body according to the present invention is 0.1.
5 to 3 μm. Phonon, which is a heat transfer mechanism, easily propagates in silicon nitride particles and is scattered in the grain boundary phase. Therefore, as the size of each particle increases, the degree of phonon scattering by the grain boundary phase decreases, and the thermal conductivity improves. If the average particle diameter is less than 0.5 μm, the contribution of phonon scattering by the grain boundary phase increases, and it is difficult to obtain a sufficient thermal conductivity. on the other hand,
When the average particle diameter exceeds 3 μm, the thermal conductivity improves, but the coarsely grown silicon nitride particles become defects,
Mechanical properties such as strength are reduced.

【0032】窒化珪素質焼結体の組織評価に関しては、
窒化珪素質焼結体を研削加工し、更にダイヤモンド砥粒
で鏡面研磨した後、酸素を8%含有するCF4 ガス中で
高周波プラズマによるエッチングを行い、得られた試料
を走査型電子顕微鏡(SEM)を用いて観察をする。次
に、組織の定量評価については、得られたSEM写真を
用いて、画像解析装置により粒子個数300以上で定量
評価を行った。尚、β型窒化珪素粒子は、形状が六角柱
状であり、平均粒子径としては、短軸側の粒子径の面積
50%に相当する粒子径を平均粒子径とした。
Regarding the evaluation of the structure of the silicon nitride sintered body,
The silicon nitride-based sintered body is ground and further mirror-polished with diamond abrasive grains, then etched by high-frequency plasma in CF 4 gas containing 8% of oxygen, and the obtained sample is scanned with a scanning electron microscope (SEM). Observe using). Next, regarding the quantitative evaluation of the structure, the obtained SEM photograph was used to quantitatively evaluate the number of particles at 300 or more by an image analyzer. The β-type silicon nitride particles had a hexagonal column shape, and the average particle diameter was a particle diameter corresponding to 50% of the particle diameter on the minor axis side.

【0033】上記構成を持つ本発明の窒化珪素質焼結体
は、その熱伝導率が70W/(m・K)以上である。熱
伝導率が70W/(m・K)未満では、放熱基板等とし
て用いる場合、十分な放熱特性が得られず、その用途が
限定されるからである。
The silicon nitride sintered body of the present invention having the above configuration has a thermal conductivity of 70 W / (m · K) or more. If the thermal conductivity is less than 70 W / (m · K), when used as a heat dissipation substrate or the like, sufficient heat dissipation characteristics cannot be obtained, and the use thereof is limited.

【0034】また、本発明に係わる窒化珪素質焼結体の
機械的特性は、3点曲げ強さが500MPa以上で、破
壊靭性値が6MPa・m1/2 以上であるものとすること
が好ましい。機械的特性がこれらの値よりも低い場合、
放熱基板やエンジン部品として用いる場合の機械的特性
が不十分となり、高い信頼性を要求される用途に用いる
ことができなくなることがある。
The mechanical properties of the silicon nitride sintered body according to the present invention are preferably such that the three-point bending strength is not less than 500 MPa and the fracture toughness is not less than 6 MPa · m 1/2. . If the mechanical properties are lower than these values,
When used as a heat radiation board or an engine component, the mechanical properties become insufficient, and it may not be possible to use it for applications requiring high reliability.

【0035】更に、本発明の窒化珪素質焼結体は、X線
回折による粒界結晶相としてK相(ReSi2 N)、J
相(Re4 Si2 7 4 )、H相(Re10Si7 23
4)、Re2 Si3 3 4 、Re2 SiO5 及びR
2 3 の1種以上を含有し、K相、J相、H相、Re
2 Si3 3 4 、Re2 SiO5 及びRe2 3 の各
々のメインピーク強度の合計(IGBB)が、β型窒化珪
素の(200)面のピーク強度(ISN)に対し0.03
〜0.20であることが好ましい。尚、結晶相の同定
は、焼結体を研削加工した後、焼結体のままX線回折装
置で測定することができる。
Further, the silicon nitride sintered body of the present invention has a K phase (ReSi 2 N), a J phase as a grain boundary crystal phase by X-ray diffraction.
Phase (Re 4 Si 2 O 7 N 4 ), H phase (Re 10 Si 7 O 23
N 4 ), Re 2 Si 3 O 3 N 4 , Re 2 SiO 5 and R
e 2 O 3 , K phase, J phase, H phase, Re phase
The sum of the main peak intensities of each of 2 Si 3 O 3 N 4 , Re 2 SiO 5 and Re 2 O 3 (I GBB ) is the same as the peak intensity (I SN ) of the (200) plane of β-type silicon nitride. 0.03
0.20.20 is preferred. Incidentally, the identification of the crystal phase can be measured by an X-ray diffractometer as it is after grinding the sintered body.

【0036】窒化珪素質焼結体の熱伝導率は、窒化珪素
粒子内の欠陥及び粒界相によるフォノンの散乱に大きく
支配されている。そこで、粒界相を結晶化することによ
り、熱伝導率を向上することができる。本発明の窒化珪
素質焼結体の粒界結晶相の種類に関しては、K相、J
相、H相、Re2 Si3 3 4 、Re2 SiO5 及び
Re2 3 である。本発明者らの検討によれば、窒化珪
素質焼結体の熱伝導率に関して、窒化珪素粒子が液相に
溶解−析出する際に、酸素が固溶し難い組成の液相(イ
ットリウム及びランタノイド族元素の酸化物の比率が高
い液相)を形成することが有効であること、つまり、X
線回折によって得られる粒界結晶相の組成が、請求項1
の組成(SiO2 /(SiO2 +Re2 3 ))を満足
する化合物であること、更に窒化珪素がこれらに固溶し
た組成であることが熱伝導率の向上に重要であることを
見出したものである。
The thermal conductivity of a silicon nitride sintered body is largely controlled by phonon scattering due to defects in silicon nitride particles and a grain boundary phase. Therefore, the thermal conductivity can be improved by crystallizing the grain boundary phase. Regarding the type of grain boundary crystal phase of the silicon nitride sintered body of the present invention,
Phase, H phase, Re 2 Si 3 O 3 N 4 , Re 2 SiO 5 and Re 2 O 3 . According to the study of the present inventors, regarding the thermal conductivity of a silicon nitride-based sintered body, when silicon nitride particles are dissolved and precipitated in a liquid phase, a liquid phase (yttrium and lanthanoid) having a composition in which oxygen is hardly dissolved in a liquid phase. It is effective to form a liquid phase having a high ratio of the oxide of the group III element), that is, X
2. The composition of a grain boundary crystal phase obtained by line diffraction,
Was found to be a compound that satisfies the composition (SiO 2 / (SiO 2 + Re 2 O 3 )) and that a composition in which silicon nitride was dissolved in these compounds was important for improving the thermal conductivity. Things.

【0037】本発明の窒化珪素質焼結体においては、上
記したとおり、粒界相が特定の値以上に結晶化している
ことが特徴であり、その結晶化の程度に関しては、K
相、J相、H相、Re2 Si3 3 4 、Re2 SiO
5 及びRe2 3 の各々のメインピーク強度の合計(I
GB)が、β型窒化珪素の(200)面のピーク強度(I
SN)に対し0.03〜0.20である。IGB/ISN
0.03未満では、粒界相の結晶化が不十分であり、十
分な熱伝導率が得られなくなることがあるし、高温強度
といった機械的特性も低下してしまうことがある。一
方、IGB/ISNが0.20を越えると、粒界相の量が多
くなり過ぎて、熱伝導率、機械的特性が低下してしまう
ことがある。
In the silicon nitride sintered body of the present invention,
As noted, the grain boundary phase has crystallized above a certain value
And the degree of crystallization is K
Phase, J phase, H phase, ReTwoSiThreeOThreeNFour, ReTwoSiO
FiveAnd ReTwoOThreeOf the main peak intensities (I
GB) Is the peak intensity (I) of the (200) plane of β-type silicon nitride.
SN) Is 0.03 to 0.20. IGB/ ISNBut
If it is less than 0.03, crystallization of the grain boundary phase is insufficient, and
Thermal conductivity may not be obtained, and high-temperature strength
, Etc., may also be reduced. one
One, IGB/ ISNExceeds 0.20, the amount of the grain boundary phase is large.
It becomes too hot and thermal conductivity and mechanical properties decrease
Sometimes.

【0038】次に、本発明の窒化珪素質焼結体の製造方
法は、Al、Be及びLiの合計含有量が2000pp
m以下であり、α率が50%以下の窒化珪素粉末90〜
99mol%に、イットリウム(Y)及びランタノイド
族元素からなる群から選ばれる1種類以上を酸化物換算
で1〜10mol%、窒化珪素粉末中の酸素量をSiO
2 換算したSiO2 量及び添加するSiO2 量の合計
が、SiO2 /(Re23 +SiO2 )のモル比が
0.05〜0.5となるように添加混合し、1MPa以
下の窒素加圧雰囲気中、温度1800〜2000℃で焼
成することを特徴とするものである。
Next, the method for producing a silicon nitride sintered body of the present invention is characterized in that the total content of Al, Be and Li is 2000 pp.
m or less, and the α ratio is 50% or less.
99 mol%, one or more selected from the group consisting of yttrium (Y) and lanthanoid group elements are 1 to 10 mol% in terms of oxide, and the oxygen content in the silicon nitride powder is SiO2.
Total 2-converted amount of SiO 2 and SiO 2 amount to be added is, the molar ratio of SiO 2 / (Re 2 O 3 + SiO 2) is added and mixed so that 0.05 to 0.5, 1 MPa or less nitrogen It is characterized by firing at a temperature of 1800 to 2000 ° C. in a pressurized atmosphere.

【0039】原料である窒化珪素粉末の不純物として
は、Al、Be及びLiの合計含有量は2000ppm
以下であり、好ましくは500ppm以下である。A
l、Be及びLiはいずれも焼結時に窒化珪素粒子中に
固溶し、その結果、窒化珪素粒子内に欠陥を形成し、そ
の結果、フォノンを散乱して熱伝導率の低下をもたら
す。つまり、原料粉末中のAl、Be及びLiの含有量
が2000ppmを越えると、焼結時にこれらの元素の
窒化珪素粒子への固溶量が多くなり過ぎ、その結果、熱
伝導率が低下してしまう。
As impurities of the silicon nitride powder as a raw material, the total content of Al, Be and Li is 2000 ppm.
Or less, preferably 500 ppm or less. A
All of l, Be, and Li form a solid solution in the silicon nitride particles during sintering, thereby forming defects in the silicon nitride particles, and as a result, scatter phonons to lower the thermal conductivity. That is, if the content of Al, Be and Li in the raw material powder exceeds 2000 ppm, the amount of these elements dissolved in the silicon nitride particles during sintering becomes too large, and as a result, the thermal conductivity decreases. I will.

【0040】また、窒化珪素粉末のα率は50%以下で
あり、好ましくは30%以下である。α率が50%を超
えると、本発明の助剤組成では充分に緻密な焼結体が得
られず、さらに、得られた焼結体の熱伝導率が低下して
しまうことがある。
The α ratio of the silicon nitride powder is 50% or less, preferably 30% or less. If the α ratio exceeds 50%, a sufficiently dense sintered body cannot be obtained with the auxiliary composition of the present invention, and the thermal conductivity of the obtained sintered body may be reduced.

【0041】次に、焼結助剤としては、窒化珪素粉90
〜99mol%に対し、イットリウム(Y)及びランタ
ノイド族元素からなる群から選ばれる1種類以上を酸化
物換算で1〜10mol%、好ましくは2〜5mol%
添加する。本発明のイットリウム(Y)及びランタノイ
ド族からなる群から選ばれる1種以上の酸化物は、窒化
珪素と固溶しないので、焼結助剤として用いるとき、得
られる窒化珪素質焼結体の熱伝導率向上に効果がある。
添加量が酸化物換算で1mol%未満では、焼結時に生
成する液相量が不足し、十分に緻密化した焼結体が得ら
れなくなる。一方、添加量が酸化物換算で10mol%
を越えると、粒界相の量が多くなり過ぎて粒界相でのフ
ォノンの散乱による熱伝導率の低下が起こってしまう。
また、粒界相の量が多くなり過ぎると、強度、破壊靭性
等の機械的特性、特に高温強度の低下がある。
Next, as a sintering aid, silicon nitride powder 90
1 to 10 mol%, preferably 2 to 5 mol%, in terms of oxide of at least one selected from the group consisting of yttrium (Y) and lanthanoid group elements with respect to ~ 99 mol%.
Added. Since at least one oxide selected from the group consisting of yttrium (Y) and the lanthanoid group of the present invention does not form a solid solution with silicon nitride, when used as a sintering aid, the heat of the obtained silicon nitride-based sintered body is reduced. Effective for improving conductivity.
If the addition amount is less than 1 mol% in terms of oxide, the amount of liquid phase generated during sintering becomes insufficient, and a sufficiently dense sintered body cannot be obtained. On the other hand, the addition amount is 10 mol% in oxide conversion.
If the ratio exceeds the range, the amount of the grain boundary phase becomes too large, and the thermal conductivity decreases due to scattering of phonons in the grain boundary phase.
On the other hand, if the amount of the grain boundary phase is too large, mechanical properties such as strength and fracture toughness, particularly, high-temperature strength are reduced.

【0042】また、窒化珪素粉末中の酸素量をSiO2
換算したSiO2 量及び添加するSiO2 量に関して
は、SiO2 /(Re2 3 +SiO2 )のモル比が
0.05〜0.5であり、好ましくは、0.1〜0.4
である。窒化珪素の焼結は、添加した焼結助剤と原料粉
末中及び添加したSiO2 からなる粒界相(液相)に窒
化珪素粒子が溶解−析出しながら粒成長してゆく。この
場合、液相中のSiO2 の量が増加すると、その一部が
液相から析出する窒化珪素粒子中に固溶して、その結
果、窒化珪素粒子中の欠陥として存在し、フォノンを散
乱して熱伝導率を低下させてしまう。このため、粒界相
の組成として、焼結体中の酸素量よりイットリウム
(Y)及びランタノイド族元素からなる群から選ばれる
1種以上を酸化物換算したRe2 3 に帰属する酸素量
を除いた残部をSiO2 とし、SiO2 /(Re2 3
+SiO2 )のモル比を0.5以下にすることが熱伝導
率向上に有効である。
Further, the amount of oxygen in the silicon nitride powder is determined as SiO 2
Regarding the converted SiO 2 amount and the added SiO 2 amount, the molar ratio of SiO 2 / (Re 2 O 3 + SiO 2 ) is 0.05 to 0.5, preferably 0.1 to 0.4.
It is. In the sintering of silicon nitride, silicon nitride particles grow while dissolving and precipitating in a grain boundary phase (liquid phase) composed of the added sintering aid and the raw material powder and the added SiO 2 . In this case, when the amount of SiO 2 in the liquid phase increases, a part thereof forms a solid solution in silicon nitride particles precipitated from the liquid phase, and as a result, exists as defects in the silicon nitride particles and scatters phonons. As a result, the thermal conductivity is reduced. Therefore, as the composition of the grain boundary phase, the amount of oxygen belonging to Re 2 O 3 , which is obtained by converting one or more selected from the group consisting of yttrium (Y) and lanthanoid group elements from the amount of oxygen in the sintered body into oxides, is defined as The remaining portion was defined as SiO 2, and SiO 2 / (Re 2 O 3
Making the molar ratio of (+ SiO 2 ) 0.5 or less is effective for improving the thermal conductivity.

【0043】一方、窒化珪素粉末中には不可避的に酸素
が含まれており、焼結体中には、この酸素に起因するS
iO2 成分が存在する。このため、SiO2 /(Re2
3+SiO2 )のモル比を下げるためには、SiO2
の添加量を抑え、酸素量の少ない原料粉末を用いるか、
Re2 3 量を増加させる必要がある。しかし、原料粉
末中の酸素量を下げるのには限界があり、Re2 3
を増加させると粒界相量が増えてしまい、機械的特性や
熱伝導率等の低下を引き起こす。このため、SiO2
(Re2 3 +SiO2 )のモル比の下限値について
は、0.05である。
On the other hand, oxygen is inevitably contained in the silicon nitride powder, and S
An iO 2 component is present. For this reason, SiO 2 / (Re 2
In order to reduce the molar ratio of (O 3 + SiO 2 ), SiO 2
Use less raw material powder with less oxygen content,
It is necessary to increase the amount of Re 2 O 3 . However, there is a limit in reducing the amount of oxygen in the raw material powder, and when the amount of Re 2 O 3 is increased, the amount of the grain boundary phase is increased, which causes a decrease in mechanical properties and thermal conductivity. For this reason, SiO 2 /
The lower limit of the molar ratio of (Re 2 O 3 + SiO 2 ) is 0.05.

【0044】次に、上記の配合物をボールミル等で均一
に混合する。得られた混合粉末は、金型成形後、冷間静
水圧成形(CIP)して成形体とする。成形方法に関し
ては、上記手法以外の泥しょう鋳込成形法、押出成形法
等でも問題ない。また、必要に応じて、分散剤、バイン
ダー等を添加してもよい。
Next, the above composition is uniformly mixed by a ball mill or the like. The resulting mixed powder is subjected to cold isostatic pressing (CIP) after forming a mold to form a formed body. As for the molding method, there is no problem with a slurry casting method, an extrusion method, or the like other than the above method. Further, if necessary, a dispersant, a binder, and the like may be added.

【0045】次に、得られた成形体を、必要に応じて脱
脂後、1MPa以下の窒素加圧雰囲気中、温度1800
〜2000℃で1〜48時間焼成して焼結体を作製す
る。焼成温度に関しては、1800℃以下では緻密化不
足が発生し、2000℃以上では、窒化珪素の分解が起
こると共に粒成長が進みすぎ、得られる焼結体の機械的
特性が低下する。焼結温度に関しては、好ましくは18
50〜1950℃である。焼成時間に関しては、1時間
未満では緻密化不足が発生しやすく、48時間を越える
長時間焼成はコスト的に得策でない。また焼成雰囲気に
関しては、本発明の焼成温度においては、窒化珪素の分
解を押さえる為、窒素加圧が必要となる。窒素加圧の上
限圧力に関しては、得られる焼結体の物性面からは高い
方が好ましい。しかし、窒素加圧が1MPaを超える
と、HIP等の特殊な焼結装置を必要とし、得られる焼
結体のコストが非常に高価になってしまうという問題が
ある。
Next, the obtained molded body is degreased as required, and then heated to a temperature of 1800 in a nitrogen pressurized atmosphere of 1 MPa or less.
It is fired at 20002000 ° C. for 1 to 48 hours to produce a sintered body. Regarding the firing temperature, if the temperature is 1800 ° C. or less, insufficient densification occurs. If the temperature is 2000 ° C. or more, the decomposition of silicon nitride occurs and the grain growth proceeds excessively, and the mechanical properties of the obtained sintered body deteriorate. Regarding the sintering temperature, preferably 18
50-1950 ° C. Regarding the firing time, if it is less than 1 hour, insufficient densification tends to occur, and firing for more than 48 hours is not economically advantageous. Regarding the firing atmosphere, nitrogen pressure is required at the firing temperature of the present invention in order to suppress decomposition of silicon nitride. The upper limit of the nitrogen pressure is preferably higher from the viewpoint of the physical properties of the obtained sintered body. However, when the nitrogen pressure exceeds 1 MPa, a special sintering device such as HIP is required, and there is a problem that the cost of the obtained sintered body becomes very high.

【0046】また、本発明の窒化珪素質焼結体は、熱伝
導特性、電気絶縁性及び機械的特性が要求される回路基
板等に用いることができる。例えば、パワーモジュール
用の回路基板等では、従来、回路基板に求められていた
電気絶縁性に加え、高い熱伝達性能と機械的特性が要求
されてきている。本発明の窒化珪素回路基板は、ベース
となる窒化珪素質焼結体の強度、破壊靭性等の機械的特
性が優れている為、ヒートサイクル等の熱応力や基板自
体に対する曲げ応力に対し、高い信頼性を有することが
できる。また、窒化珪素自体、高い絶縁抵抗を有するた
め、厳しい使用条件で用いられる回路基板に適してい
る。更に、本発明の窒化珪素質焼結体を用いた窒化珪素
質回路基板は、一般的なセラミックス回路基板であるア
ルミナ回路基板に比べ、機械的特性に優れるだけでな
く、高熱伝導率が要求される回路基板の用途に適してい
る。
Further, the silicon nitride sintered body of the present invention can be used for a circuit board or the like which is required to have thermal conductivity, electrical insulation and mechanical properties. For example, in the case of a circuit board for a power module or the like, high heat transfer performance and mechanical properties have been required in addition to the electrical insulation properties required of the circuit board. The silicon nitride circuit board of the present invention has excellent mechanical properties such as strength and fracture toughness of a silicon nitride based sintered body as a base, and therefore has a high thermal stress such as a heat cycle and a bending stress on the board itself. Can have reliability. Further, since silicon nitride itself has a high insulation resistance, it is suitable for a circuit board used under severe use conditions. Further, the silicon nitride circuit board using the silicon nitride sintered body of the present invention is required to have not only excellent mechanical properties but also high thermal conductivity as compared with an alumina circuit board which is a general ceramic circuit board. Suitable for circuit board applications.

【0047】このような回路基板の製造方法としては、
板状の窒化珪素質焼結体又は研削加工等により板状に加
工した窒化珪素質焼結体を金属板と接合した後、エッチ
ング等手法により回路を形成して製造することができ
る。窒化珪素質焼結体と金属板との接合方法に関して
は、例えば窒化珪素質焼結体と金属板とを不活性ガス又
は真空雰囲気中で加熱し、焼結体と金属板を直接接合す
る方法(直接接合法)やTi、Zr等の活性金属と低融
点合金を作るAg、Cu等の金属を混合又は合金とした
ろう材を窒化珪素質焼結体と金属板との間に介在させて
不活性ガス又は真空雰囲気中で加熱圧着する方法(活性
金属法)を利用して製造できる。
As a method of manufacturing such a circuit board,
After joining a plate-shaped silicon nitride-based sintered body or a silicon nitride-based sintered body processed into a plate shape by grinding or the like to a metal plate, a circuit can be formed by a technique such as etching and the like. Regarding the joining method of the silicon nitride-based sintered body and the metal plate, for example, a method of heating the silicon nitride-based sintered body and the metal plate in an inert gas or a vacuum atmosphere, and directly joining the sintered body and the metal plate (Direct joining method) or a brazing material made by mixing or alloying an active metal such as Ti or Zr with a metal such as Ag or Cu to form a low melting point alloy between the silicon nitride sintered body and the metal plate. It can be manufactured using a method of hot pressing in an inert gas or vacuum atmosphere (active metal method).

【0048】[0048]

【実施例】以下、実施例と比較例をあげて、更に本発明
を詳細に説明するが、本発明はこれに限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0049】〔実施例1〜17、比較例1〜8〕表1に
示す粉体特性の異なる窒化珪素粉末A〜Eに、表2に示
す組成の酸化物を添加し、更にメタノールを添加して湿
式ボールミルで5時間湿式混合した。次に、これらの混
合粉末を濾過・乾燥後、20MPaの成形圧で金型成形
した後、200MPaの成形圧でCIP成形して、5m
m×30mm×50mmの成形体を得た。得られた成形
体は、窒化ホウ素(BN)製の坩堝に充填し、カーボン
ヒーターの電気炉で表2に示す窒素ガス圧力、焼成温
度、焼成時間の条件で焼結し、焼結体を作製した。ま
た、上記操作で得た各種の焼結体の密度を、アルキメデ
ス法で測定し、その結果を表3に示した。
Examples 1 to 17, Comparative Examples 1 to 8 To silicon nitride powders A to E having different powder properties as shown in Table 1, oxides having the composition shown in Table 2 were added, and methanol was further added. And wet-mixed in a wet ball mill for 5 hours. Next, these mixed powders were filtered and dried, and then molded in a mold at a molding pressure of 20 MPa.
A molded product of mx 30 mm x 50 mm was obtained. The obtained molded body was filled into a crucible made of boron nitride (BN), and sintered in an electric furnace of a carbon heater under the conditions of nitrogen gas pressure, firing temperature and firing time shown in Table 2 to produce a sintered body. did. In addition, the densities of the various sintered bodies obtained by the above operations were measured by the Archimedes method, and the results are shown in Table 3.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【表3】 [Table 3]

【0053】次に、得られた各種焼結体を#200のダ
イヤモンドホイールで平面研削し、20mm×20mm
×3mmの形状に加工した。実施例1、2、10、16
及び比較例7、8について、これらの加工体を用いX線
回折により結晶相の同定を行った。X線回折の結果を表
4に示す。尚、比較例5については、焼成時の重量減少
が50%以上あり、その後の評価に供することのできる
焼結体が得られなかった。
Next, the obtained various sintered bodies were ground by a # 200 diamond wheel to obtain a surface of 20 mm × 20 mm.
It was processed into a shape of × 3 mm. Examples 1, 2, 10, 16
The crystal phases of Comparative Examples 7 and 8 were identified by X-ray diffraction using these processed bodies. Table 4 shows the results of the X-ray diffraction. In Comparative Example 5, the weight loss during firing was 50% or more, and a sintered body that could be used for subsequent evaluation was not obtained.

【0054】[0054]

【表4】 [Table 4]

【0055】次に、これらの焼結体を研削加工し、熱伝
導率測定用の10mmφ×3mmの円盤及びJIS−R
1601に準じた強度試験体を作製し、熱伝導率と室温
の3点曲げ強さを評価した。尚、熱伝導率測定はレーザ
フラッシュ法により測定した。更に、強度試験体をダイ
ヤモンド砥粒で鏡面研磨し、JIS−R1607に準じ
てIF法による破壊靱性の評価を行った。
Next, these sintered bodies were ground, and a 10 mmφ × 3 mm disk for measuring thermal conductivity and a JIS-R
A strength test body according to the standard 1601 was prepared, and the thermal conductivity and the three-point bending strength at room temperature were evaluated. The thermal conductivity was measured by a laser flash method. Further, the strength test body was mirror-polished with diamond abrasive grains, and the fracture toughness was evaluated by the IF method according to JIS-R1607.

【0056】また、鏡面研磨した焼結体を8%の酸素を
含有するCF4 ガス雰囲気中で、80Wの出力で2分
間、高周波プラズマによるエッチングを行った後、SE
Mにより焼結体組織の観察(写真撮影)を行った。次い
で、これらのSEM写真を用いて画像解析装置により焼
結体組織の定量評価を行った。各焼結体組織の定量評価
には、300個以上の窒化珪素粒子のデータを用い、各
焼結体の平均粒子径を測定した。これらの結果を表5に
示した。
Further, after the mirror-polished sintered body was etched by high-frequency plasma at a power of 80 W for 2 minutes in a CF 4 gas atmosphere containing 8% oxygen, SE
Observation (photographing) of the sintered body structure was performed using M. Next, using these SEM photographs, a quantitative evaluation of the sintered body structure was performed by an image analyzer. For the quantitative evaluation of each sintered body structure, the average particle diameter of each sintered body was measured using data of 300 or more silicon nitride particles. Table 5 shows the results.

【0057】また、強度試験に用いた試験体の一部を窒
化珪素製の乳鉢と乳棒で粉砕し、LECO社O/N同時
分析計(TC−436)による酸素量の評価及び原子吸
光法による金属元素の含有量の定量評価を行った。得ら
れた結果を表3及び表5に示す。
A part of the test specimen used for the strength test was pulverized with a mortar and pestle made of silicon nitride, and the oxygen content was evaluated using an O / N simultaneous analyzer (TC-436) manufactured by LECO and the atomic absorption method was used. The quantitative evaluation of the content of the metal element was performed. Tables 3 and 5 show the obtained results.

【0058】[0058]

【表5】 [Table 5]

【0059】〔実施例18〜31〕表6に示す配合品を
実施例1と同じ方法により、混合、成形して、5mm×
30mm×50mmの成形体を得た。得られた成形体
は、窒化ホウ素(BN)製の坩堝に充填し、カーボンヒ
ーターの電気炉で、0.9MPaの窒素加圧雰囲気下、
温度1900℃で8時間焼成し、焼結体を作製した。得
られた焼結体は、実施例1と同じ方法により、焼結体中
の組成、不純物量、焼結体密度、3点曲げ強さ、破壊靭
性、平均粒子径、熱伝導率の評価を行った。得られた結
果を表7及び表8に示す。
[Examples 18 to 31] The compounds shown in Table 6 were mixed and molded in the same manner as in Example 1 to obtain a mixture of 5 mm ×
A 30 mm × 50 mm molded body was obtained. The obtained molded body is filled in a crucible made of boron nitride (BN), and is heated in a carbon heater electric furnace under a nitrogen pressurized atmosphere of 0.9 MPa.
It was fired at a temperature of 1900 ° C. for 8 hours to produce a sintered body. The obtained sintered body was evaluated for the composition, the amount of impurities, the sintered body density, the three-point bending strength, the fracture toughness, the average particle diameter, and the thermal conductivity in the sintered body in the same manner as in Example 1. went. Tables 7 and 8 show the obtained results.

【0060】[0060]

【表6】 [Table 6]

【0061】[0061]

【表7】 [Table 7]

【0062】[0062]

【表8】 [Table 8]

【0063】また、実施例18について、X線回折によ
る結晶相の同定を行った結果、K相(Y4 Si2 7
7 及びYb4 Si2 7 7 )、Y2 3 ・Si
3 4 、Yb2 3 ・Si3 4 が確認でき、IGB/I
SNは0.12であった。
The crystal phase of Example 18 was identified by X-ray diffraction. As a result, the K phase (Y 4 Si 2 O 7 N) was obtained.
7 and Yb 4 Si 2 O 7 N 7 ), Y 2 O 3 .Si
3 N 4 and Yb 2 O 3 .Si 3 N 4 were confirmed, and I GB / I
SN was 0.12.

【0064】〔実施例32〕窒化珪素粉末A:97mo
l%に、YF3 :4mol%、Y2 3 :1mol%及
びSiO2 :3mol%を添加し、実施例1と同じ方法
で、焼結体を作製した。得られた焼結体の密度は、98
%であり、焼結体中の希土類元素量は、酸化物換算で
2.5mol%であった。また、焼結体中の酸素量から
前記の希土類元素量に関与する酸素量を引いた分をSi
2 量とした場合のSiO2 /(Y2 3 +SiO2
のモル比は0.23であった。
[Example 32] Silicon nitride powder A: 97mo
1%, YFThree: 4 mol%, YTwoOThree: 1 mol%
And SiOTwo: The same method as in Example 1 with the addition of 3 mol%
Thus, a sintered body was produced. The density of the obtained sintered body is 98
%, And the amount of rare earth element in the sintered body is calculated as oxide
It was 2.5 mol%. Also, from the amount of oxygen in the sintered body,
The amount obtained by subtracting the amount of oxygen related to the amount of the rare earth element is taken as Si
OTwoSiO in case of quantityTwo/ (YTwoO Three+ SiOTwo)
Was 0.23.

【0065】更に、得られた焼結体の3点曲げ強さは6
90MPa、破壊靱性値は6.6MPa・m1/2 、熱伝
導率は110W/(m・K)であった。また、平均粒子
径は1.0μmであった。
Further, the three-point bending strength of the obtained sintered body was 6
90 MPa, the fracture toughness value was 6.6 MPa · m 1/2 , and the thermal conductivity was 110 W / (m · K). The average particle size was 1.0 μm.

【0066】〔実施例33、34〕実施例33は実施例
1、実施例34は実施例2のそれぞれの助剤混合粉末を
10MPaの圧力で金型成形した後、200MPaの圧
力でCIP成形して50mm×100mm×8mmの成
形体を得た。これらの成形体は、BN製の容器に充填
し、カーボンヒーターの電気炉で、0.9MPaの窒素
加圧雰囲気下、温度1900℃で8時間焼成して焼結体
を作製した。得られた焼結体は、研削加工により40m
m×80mm×0.6mmの形状の平板とした。得られ
た焼結体の熱伝導率は、実施例33が105W/(m・
K)、実施例34が113W/(m・K)であった。
[Examples 33 and 34] In Example 33, the auxiliary mixed powder of Example 1 and Example 34 were molded in a mold at a pressure of 10 MPa, and then CIP molded at a pressure of 200 MPa. Thus, a molded product of 50 mm × 100 mm × 8 mm was obtained. These compacts were filled in a container made of BN, and fired in a carbon heater electric furnace at a temperature of 1900 ° C. for 8 hours under a nitrogen pressurized atmosphere of 0.9 MPa to produce a sintered body. The obtained sintered body is 40 m
It was a flat plate having a shape of mx 80 mm x 0.6 mm. The thermal conductivity of the obtained sintered body was 105 W / (m ·
K), and the value of Example 34 was 113 W / (m · K).

【0067】次に、前期窒化珪素平板の両面に活性金属
含有ろう材(Ag−Cu−Ti:80−15−5)を3
0μmの厚さでスクリーン印刷し、回路側に0.3mm
厚の銅板及び裏面に0.15mm厚の銅板を載置し、1
-3Pa台の真空雰囲気下、温度850℃で30分間加
熱した。その後、冷却して複合体を得た。この複合体に
ついて、板厚0.3mmの銅板側を研磨し、パターニン
グ用レジストを印刷し、熱硬化後、塩化第二鉄水溶液に
浸漬エッチングしてパターンを形成した。更に、回路間
に残存する接合材を除くため、銅板部を酸性フッ化アン
モニウム水溶液に浸触させた後、水洗してパターン形成
した回路基板を作製した。
Next, an active metal-containing brazing material (Ag-Cu-Ti: 80-15-5) was applied to both surfaces of the silicon nitride
Screen printed with a thickness of 0μm, 0.3mm on the circuit side
A 0.15 mm thick copper plate is placed on the thick copper plate and
It was heated at a temperature of 850 ° C. for 30 minutes in a vacuum atmosphere of the order of 0 −3 Pa. Thereafter, the mixture was cooled to obtain a composite. This composite was polished on the side of a copper plate having a thickness of 0.3 mm, printed with a resist for patterning, thermally cured, and then immersed and etched in an aqueous ferric chloride solution to form a pattern. Further, in order to remove the bonding material remaining between the circuits, the copper plate portion was immersed in an aqueous solution of ammonium ammonium fluoride, and then washed with water to produce a circuit board having a pattern formed thereon.

【0068】次に、前記回路基板を、下部スパン30m
mでの3点曲げ強さを測定したところ、実施例33は7
50MPa、実施例34は730MPaであった。ま
た、−40℃から150℃の温度幅で3000回のヒー
トサイクル試験を行った。ヒートサイクル試験後の基板
の3点曲げ強さは、実施例33が700MPa、実施例
34が690MPaであり、ヒートサイクル試験後も回
路間の亀裂や回路の剥離は認められなかった。
Next, the circuit board is placed in a lower span of 30 m.
When the three-point bending strength at m was measured, Example 33 was 7
It was 50 MPa, and Example 34 was 730 MPa. In addition, 3000 heat cycle tests were performed in a temperature range of -40 ° C to 150 ° C. The three-point bending strength of the substrate after the heat cycle test was 700 MPa in Example 33 and 690 MPa in Example 34, and no cracks between the circuits or peeling of the circuits were recognized even after the heat cycle test.

【0069】〔実施例35〕実施例33の窒化珪素平板
の両面に、実施例33で用いた板厚の異なる2種類の銅
板を載置し、窒素ガス雰囲気、温度1050℃で5分間
加熱処理し、その後、冷却して複合体を作製した。得ら
れた複合体は、実施例33と同様の手法で回路基板を作
製した。得られた回路基板の3点曲げ強さは730MP
aであり、ヒートサイクル3000回後の3点曲げ強さ
は670MPaであった。また、ヒートサイクル試験後
も回路間の亀裂や回路の剥離は認められなかった。
Example 35 Two types of copper plates having different thicknesses used in Example 33 were placed on both surfaces of the silicon nitride flat plate of Example 33, and heat-treated in a nitrogen gas atmosphere at a temperature of 1050 ° C. for 5 minutes. Then, cooling was performed to produce a composite. From the obtained composite, a circuit board was produced in the same manner as in Example 33. The three-point bending strength of the obtained circuit board is 730MP.
a, and the three-point bending strength after 3000 heat cycles was 670 MPa. Also, no cracks between circuits or peeling of circuits were observed after the heat cycle test.

【0070】〔実施例36〕実施例1の焼結助剤を混合
した粉末に、成形用バインダーとしてセランダー(ユケ
ン工業社製)を20重量部、純水20重量部を添加混合
し、押し出し成形機でシート幅100mm、シート厚
0.8mmのシートを作製した。得られたシートは45
mm×90mmのサイズに裁断し、表面にBN粉を塗布
して10枚積層し、大気中、温度550℃で2時間脱脂
した。次に、得られた脱脂体をBN容器に充填し、カー
ボンヒーターの電気炉で、0.9MPaの窒素加圧雰囲
気下、温度1900℃で8時間焼成して焼結体を作製し
た。得られた焼結体は、#400のアルミナ砥粒を用い
て乾式ホーニングして表面のBN及び変質層等を除去し
た。得られた焼結体の熱伝導率は104W/(m・K)
であった。
Example 36 To a powder obtained by mixing the sintering aid of Example 1, 20 parts by weight of Serander (manufactured by Yuken Industries) and 20 parts by weight of pure water were added and mixed as a molding binder, followed by extrusion molding. A sheet having a sheet width of 100 mm and a sheet thickness of 0.8 mm was produced by a machine. The resulting sheet is 45
The sheet was cut into a size of mm × 90 mm, BN powder was applied to the surface, and 10 sheets were laminated, and degreased in air at a temperature of 550 ° C. for 2 hours. Next, the obtained degreased body was filled in a BN container, and fired at a temperature of 1900 ° C. for 8 hours in a nitrogen pressurized atmosphere of 0.9 MPa in an electric furnace of a carbon heater to produce a sintered body. The obtained sintered body was dry-honed using # 400 alumina abrasive grains to remove BN and altered layers on the surface. The thermal conductivity of the obtained sintered body is 104 W / (m · K)
Met.

【0071】次に、前記窒化珪素平板を用いて、実施例
33と同じ手法で回路基板を作製した。得られた回路基
板の3点曲げ強さは740MPaであり、ヒートサイク
ル3000回後の3点曲げ強さは700MPaであっ
た。また、ヒートサイクル試験後も回路間の基板の亀裂
や回路との基板の剥離は認められなかった。
Next, a circuit board was manufactured using the silicon nitride flat plate in the same manner as in Example 33. The three-point bending strength of the obtained circuit board was 740 MPa, and the three-point bending strength after 3000 heat cycles was 700 MPa. Further, even after the heat cycle test, cracks of the substrate between the circuits and peeling of the substrate from the circuit were not recognized.

【0072】[0072]

【発明の効果】本発明の窒化珪素質焼結体は、焼結時の
窒化珪素粒子内部への不純物の固溶量を低減し、粒界相
の組成、量、結晶性を制御しているので、強度、破壊靭
性の機械的特性に優れると共に、熱伝導率が70W/
(m・K)以上と高く、半導体用絶縁基板をはじめと
し、自動車、機械装置等の幅広い分野で各種構造部品の
素材として利用することができる。更に、本発明の窒化
珪素質焼結体の製造方法は、HIP等の特殊な焼結方法
を用いないで、前記の熱伝導率と機械的特性に優れた窒
化珪素質焼結体を安価に製造することができる。また、
本発明の窒化珪素回路基板は、熱伝導率が高く、機械的
特性に優れているので、信頼性が要求される輸送機器等
の用途や、パワーモジュール用回路基板等に適した回路
基板である。
The silicon nitride sintered body of the present invention controls the composition, amount and crystallinity of the grain boundary phase by reducing the amount of impurities dissolved in the silicon nitride particles during sintering. Therefore, it has excellent mechanical properties such as strength and fracture toughness, and has a thermal conductivity of 70 W /
(M · K) or more, it can be used as a material for various structural parts in a wide range of fields such as insulating substrates for semiconductors, automobiles, machinery and the like. Furthermore, the method for producing a silicon nitride-based sintered body of the present invention uses the above-described silicon nitride-based sintered body having excellent thermal conductivity and mechanical properties at a low cost without using a special sintering method such as HIP. Can be manufactured. Also,
Since the silicon nitride circuit board of the present invention has high thermal conductivity and excellent mechanical properties, it is a circuit board suitable for use in transportation equipment and the like requiring reliability and a circuit board for a power module. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横田 博 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社総合研究所内 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Hiroshi Yokota 3-5-1 Asahicho, Machida-shi, Tokyo Denki Kagaku Kogyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素(Si3 4 )90〜99mo
l%、イットリウム(Y)及びランタノイド族元素から
なる群から選ばれる1種以上を酸化物(Re23 )換
算で1〜10mol%含有し、焼結体中の全酸素量より
Re2 3 に帰属する酸素量を除いた残部をSiO2
するときに、SiO2 /(Re2 3 +SiO2 )のモ
ル比が0.05〜0.5であり、窒化珪素粒子の平均粒
子径(平均短軸径)が0.5〜3μm、焼結体中のA
l、Be及びLiの含有量の合計が2000ppm以下
であり、しかも熱伝導率が70W/(m・K)以上であ
ることを特徴とする窒化珪素質焼結体。
1. Silicon nitride (Si 3 N 4 ) 90-99 mo
l%, yttrium (Y) and oxides of one or more selected from the group consisting of lanthanoid elements (Re 2 O 3) containing 1 to 10 mol% in terms of, Re 2 O from the total oxygen content in the sintered body When SiO 2 is the balance excluding the oxygen amount attributed to 3 , the molar ratio of SiO 2 / (Re 2 O 3 + SiO 2 ) is 0.05 to 0.5, and the average particle diameter of the silicon nitride particles (Average short axis diameter) 0.5 to 3 μm, A in the sintered body
A silicon nitride-based sintered body characterized in that the total content of l, Be and Li is 2000 ppm or less and the thermal conductivity is 70 W / (m · K) or more.
【請求項2】 X線回折による粒界結晶相としてK相
(ReSi2 N)、J相(Re4 Si2 7 4 )、H
相(Re10Si7 234 )、Re2 Si3 34
Re2 SiO5 及びRe2 3 の少なくとも1種以上を
含有し、K相、J相、H相、Re2 Si3 3 4 、R
2 SiO5 及びRe2 3 の各々のメインピーク強度
の合計(IGB)が、β型窒化珪素の(200)面のピー
ク強度(I SN)に対し、0.03〜0.20であること
を特徴とする請求項1記載の窒化珪素質焼結体。
2. K phase as a grain boundary crystal phase by X-ray diffraction
(ReSiTwoN), J phase (ReFourSiTwoO7NFour), H
Phase (ReTenSi7Otwenty threeNFour), ReTwoSiThreeOThreeNFour,
ReTwoSiOFiveAnd ReTwoOThreeAt least one of
Contains, K phase, J phase, H phase, ReTwoSiThreeOThreeNFour, R
eTwoSiOFiveAnd ReTwoOThreeEach main peak intensity
Sum of (IGB) Is the peak of the (200) plane of β-type silicon nitride.
Strength (I SN) To 0.03 to 0.20
The silicon nitride-based sintered body according to claim 1, wherein:
【請求項3】 Al、Be及びLiの合計含有量が20
00ppm以下であり、α率が50%以下の窒化珪素粉
末90〜99mol%に、イットリウム(Y)及びラン
タノイド族元素からなる群から選ばれる1種以上を酸化
物換算で1〜10mol%、窒化珪素粉末中の酸素量を
SiO2 換算したSiO2 量及び添加するSiO2 量の
合計が、SiO2 /(Re2 3 +SiO2 )のモル比
が0.05〜0.5となるように添加混合し、1MPa
未満の窒素加圧雰囲気中、温度1800〜2000℃で
焼成することを特徴とする請求項1又は請求項2記載の
窒化珪素質焼結体の製造方法。
3. The total content of Al, Be and Li is 20.
To 90 to 99 mol% of silicon nitride powder having an α ratio of 50 ppm or less and at least one selected from the group consisting of yttrium (Y) and a lanthanoid group element in an amount of 1 to 10 mol% in terms of oxide, the total oxygen amount in terms of SiO 2 was SiO 2 amount and SiO 2 amount to be added in the powder is added such that the molar ratio of SiO 2 / (Re 2 O 3 + SiO 2) is 0.05 to 0.5 Mix, 1MPa
3. The method for producing a silicon nitride-based sintered body according to claim 1, wherein the sintering is performed at a temperature of 1800 to 2000 [deg.] C. in a nitrogen pressurized atmosphere of less than 1.
【請求項4】 請求項1又は請求項2記載の窒化珪素質
焼結体を用いてなることを特徴とする窒化珪素質回路基
板。
4. A silicon nitride based circuit board comprising the silicon nitride based sintered body according to claim 1 or 2.
JP9261561A 1997-09-26 1997-09-26 Silicon nitride sintered compact, its production and circuit board Pending JPH11100274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9261561A JPH11100274A (en) 1997-09-26 1997-09-26 Silicon nitride sintered compact, its production and circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9261561A JPH11100274A (en) 1997-09-26 1997-09-26 Silicon nitride sintered compact, its production and circuit board

Publications (1)

Publication Number Publication Date
JPH11100274A true JPH11100274A (en) 1999-04-13

Family

ID=17363620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9261561A Pending JPH11100274A (en) 1997-09-26 1997-09-26 Silicon nitride sintered compact, its production and circuit board

Country Status (1)

Country Link
JP (1) JPH11100274A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2002029851A (en) * 2000-07-17 2002-01-29 Denki Kagaku Kogyo Kk Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP2009029665A (en) * 2007-07-27 2009-02-12 Kyocera Corp Circuit board and its manufacturing method
JP2015081205A (en) * 2013-10-21 2015-04-27 独立行政法人産業技術総合研究所 Silicon nitride filler, resin composite, insulating substrate, and semiconductor sealant
WO2021053857A1 (en) 2019-09-17 2021-03-25 Kabushiki Kaisha Toshiba Structure and bonded body
EP3951857A4 (en) * 2019-03-29 2022-05-18 Denka Company Limited Silicon nitride sintered body, method for producing same, multilayer body and power module
US11355416B2 (en) 2020-03-19 2022-06-07 Kabushiki Kaisha Toshiba Structure and joined composite

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064080A (en) * 1999-06-23 2001-03-13 Ngk Insulators Ltd Silicon nitride sintered body and its production
JP2002029851A (en) * 2000-07-17 2002-01-29 Denki Kagaku Kogyo Kk Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP2009029665A (en) * 2007-07-27 2009-02-12 Kyocera Corp Circuit board and its manufacturing method
JP2015081205A (en) * 2013-10-21 2015-04-27 独立行政法人産業技術総合研究所 Silicon nitride filler, resin composite, insulating substrate, and semiconductor sealant
EP3951857A4 (en) * 2019-03-29 2022-05-18 Denka Company Limited Silicon nitride sintered body, method for producing same, multilayer body and power module
WO2021053857A1 (en) 2019-09-17 2021-03-25 Kabushiki Kaisha Toshiba Structure and bonded body
US11355416B2 (en) 2020-03-19 2022-06-07 Kabushiki Kaisha Toshiba Structure and joined composite

Similar Documents

Publication Publication Date Title
JP5850031B2 (en) Silicon nitride sintered body, silicon nitride circuit board, and semiconductor module
JP5245405B2 (en) Silicon nitride substrate, manufacturing method thereof, silicon nitride wiring substrate using the same, and semiconductor module
JP5673106B2 (en) Method for manufacturing silicon nitride substrate, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
CN112789256B (en) Ceramic sintered body and substrate for semiconductor device
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
JP2002201076A (en) Silicon nitride substrate and circuit substrate
JP2002293642A (en) Silicon nitride-based sintered compact having high thermal conductivity, method of producing the same, and circuit board
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
JP3002642B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board using the same
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
JP2002029849A (en) Sintered silicon nitride compact and method for manufacturing the same as well as circuit board using the same
JP2000351673A (en) High heat-conductive silicon nitride-based sintered product and its production
JPH11236270A (en) Silicon nitride substrate and its manufacture
JP2002029850A (en) Sintered silicon nitride compact and method for manufacturing the same
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP2001019557A (en) Silicon nitride sintered compact, its production and substrate
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JPH11322437A (en) Silicon nitride sintered compact, its production and circuit board using the same
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture
JP2001019556A (en) Silicon nitride sintered compact, its production and substrate using the same
WO2020115870A1 (en) Ceramic sintered body and substrate for semiconductor devices

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070208

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070309