JPH11106221A - Molding of glass element - Google Patents
Molding of glass elementInfo
- Publication number
- JPH11106221A JPH11106221A JP26964797A JP26964797A JPH11106221A JP H11106221 A JPH11106221 A JP H11106221A JP 26964797 A JP26964797 A JP 26964797A JP 26964797 A JP26964797 A JP 26964797A JP H11106221 A JPH11106221 A JP H11106221A
- Authority
- JP
- Japan
- Prior art keywords
- molding
- glass material
- glass
- molded
- molding surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B40/00—Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
- C03B40/04—Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it using gas
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/63—Pressing between porous dies supplied with gas, i.e. contactless pressing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば、カメラや
ビデオカメラに用いられる、レンズなどの光学ガラス素
子を、熱間加工で、加圧成形する成形方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding method for hot-pressing optical glass elements such as lenses used in cameras and video cameras.
【0002】[0002]
【従来の技術】従来から、ガラス素子の加圧成形加工に
は、軟化状態の成形ガラス素材と成形型の成形面とを接
触させて、所要の光学機能面に相当する表面形状を得
る、所謂、熱間プレス成形法が広く用いられており、通
常、この成形法には、胴型とその胴型に組み合わせられ
る複数の上下の成形用型部材よりなる成形型が採用され
る。そして、加熱軟化状態にある成形ガラス素材をプレ
スし、前記型部材の成形面に対応した形状を、前記成形
ガラス素材の表面に転写し、その後、冷却を行い、前記
型部材からガラス素子を取り出すのである。2. Description of the Related Art Conventionally, in pressure molding of a glass element, a so-called softened molded glass material is brought into contact with a molding surface of a molding die to obtain a surface shape corresponding to a required optical functional surface. A hot press forming method is widely used, and usually, in this forming method, a forming die including a body die and a plurality of upper and lower forming mold members combined with the body die is adopted. Then, the molded glass material in the heat-softened state is pressed, a shape corresponding to the molding surface of the mold member is transferred to the surface of the molded glass material, and then cooled, and the glass element is taken out from the mold member. It is.
【0003】また、特公昭48−22977号公報や特
開昭59−195541号公報には、型部材として多孔
質材を用い、また、超音波振動を用いて、成形型の表面
にガス膜を作り、そのガス膜を介して、前記成形型の成
形面と軟化状態の成形ガラス素材とを、非接触の状態
で、前述同様の工程を経て、レンズなどのガラス素子を
得る技術が、開示されている。Further, Japanese Patent Publication No. 48-22977 and Japanese Patent Application Laid-Open No. Sho 59-195541 disclose that a porous material is used as a mold member, and a gas film is formed on the surface of a molding die by using ultrasonic vibration. A technique for obtaining a glass element such as a lens through the same process as described above, in which the molding surface of the molding die and the molded glass material in a softened state are in a non-contact state through the gas film, is disclosed. ing.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、成形型
の成形面の形状を、成形ガラス素材の表面に接触、転写
させる光学ガラス素子の成形方法(従来例)では、加熱
された成形型と成形ガラス素材が、互いに直接、接触す
るために、両者の間に融着が起こり、また、成形時の両
者の温度差により、成形ガラス素材が、不均一な熱収縮
を起こし、それが原因で、成形面の形状の転写不良が発
生するなどの問題があった。However, in a method of forming an optical glass element in which the shape of a molding surface of a mold is brought into contact with and transferred to the surface of a molded glass material (conventional example), a heated mold and a molded glass are used. Because the materials are in direct contact with each other, fusion occurs between them, and due to the temperature difference between the two during molding, the molded glass material undergoes non-uniform heat shrinkage. There have been problems such as poor transfer of the surface shape.
【0005】特に、素材がガラスでは、その成形温度が
高いために、このような問題が顕著であって、成形温度
を上げて成形時間を短縮したり、高温の溶融ガラスから
直接に、精密な形状のガラス素子を得るには、可成り大
きな困難をともなっていた。また、成形ガラス素材と成
形型の成形面との接触による両者間の反応や、成形型表
面の摩耗などにより、成形型が劣化し易く、融着や反応
防止のための離型剤の使用とも相俟って、精度の良いガ
ラス素子を得る条件が厳しく、従って、使用できる成形
型の素材も可成り限定され、それを成形できるガラスの
種類も大幅に制約されたものとなるという問題があっ
た。[0005] In particular, when the material is glass, such a problem is remarkable because the molding temperature is high, and the molding temperature is increased to shorten the molding time, or the precision is directly increased from the high-temperature molten glass. In order to obtain a glass element having a shape, considerable difficulty was involved. Also, the reaction between the molding glass material and the molding surface of the molding die due to the contact between them and the abrasion of the molding die surface tend to cause the molding die to deteriorate, and the use of a release agent to prevent fusion and reaction. In addition, the conditions for obtaining a high-precision glass element are severe, and accordingly, there is a problem that the material of a mold that can be used is considerably limited, and the type of glass from which the mold can be formed is greatly restricted. Was.
【0006】上記のような問題を避けるために、前述の
ように、特公昭48−22977号公報や特開昭59−
195541号公報に所載には、成形型と成形ガラス素
材とを相互に接触させない技術が開示されている。確か
に、このように、成形型と成形ガラス素材とを非接触の
状態で成形することは、融着防止に対して、充分な効果
を発揮するが、軟化状態にある、温度の高いガラス素材
を、加圧成形し、冷却すると、出来上がった成形品の肉
厚形状が一定でなかったり、成形品への冷却が不均一で
あると、冷却中に成形品の内部の温度分布に差を生じ、
冷却中の熱収縮が均等に起こらず、その収縮が温度の比
較的高い部分に集中するため、冷却後にその部分が窪ん
だ状態に変形してしまう、所謂、ヒケと呼ばれる現象が
生じ、本来の目的とする表面形状と大きくかけ離れた成
形品ができてしまうという問題があった。In order to avoid the above problems, as described above, Japanese Patent Publication No. 48-22977 and Japanese Patent Application Laid-Open No.
Japanese Patent Application Publication No. 195541 discloses a technique in which a molding die and a molded glass material are not brought into contact with each other. Certainly, forming the molding die and the molded glass material in a non-contact state has a sufficient effect for preventing fusion, but the glass material in a softened state and having a high temperature. When press molding and cooling, if the thickness of the finished molded product is not constant or the cooling to the molded product is not uniform, there will be a difference in the temperature distribution inside the molded product during cooling. ,
Heat shrinkage during cooling does not occur evenly, and the shrinkage is concentrated in a relatively high temperature part, so that part is deformed into a recessed state after cooling, a phenomenon called so-called sink occurs, and the original There is a problem in that a molded product greatly different from the intended surface shape is formed.
【0007】更に、非接触状態を維持するために用いら
れる、成形型からの噴出ガスの圧力分布の違い及び温度
のバラツキにより、転写されるべき成形ガラス素材の表
面の形状が不安定になり、前述のヒケの発生と合せて、
所望の表面形状を得ることが困難となり、まして、精度
の良いガラス素子を作り出すことが、非常に困難である
という問題があった。Further, due to the difference in pressure distribution of the gas ejected from the mold and the variation in temperature used for maintaining the non-contact state, the shape of the surface of the molded glass material to be transferred becomes unstable, In conjunction with the occurrence of the sink described above,
There is a problem that it is difficult to obtain a desired surface shape, and it is very difficult to produce a glass element with high accuracy.
【0008】本発明は、上記事情に基づいてなされたも
ので、その目的とするところは、前述のような種々の問
題点を解決し、軟化状態にある成形ガラス素材から、直
接に精度の良い表面形状を有する光学ガラス素子などの
ガラス素子を得られるガラス素子の成形方法を提供する
にある。The present invention has been made on the basis of the above circumstances, and aims to solve the above-mentioned various problems and to directly improve the precision of a molded glass material in a softened state. An object of the present invention is to provide a method for forming a glass element capable of obtaining a glass element such as an optical glass element having a surface shape.
【0009】また、本発明の他の目的とするところは、
より安定的に、非接触で加圧成形する際のガラス素子の
成形方法における幾つかの手段を提供することにある。Another object of the present invention is as follows.
It is an object of the present invention to provide some means in a method for forming a glass element in a more stable and non-contact pressure forming.
【0010】[0010]
【課題を解決するための手段】前述のような問題を解決
するためには、冷却完了後の形状が安定するように、成
形ガラス素材にかかる圧力、その分布、成形中及び冷却
中の温度、その分布などを安定させる必要があり、更
に、成形ガラス素材と成形型の成形面との間に存在する
非接触用の流体の厚さを均一にし、成形型と成形ガラス
素材とを、常に、均等な非接触状態に保つ必要がある。In order to solve the above-mentioned problems, the pressure applied to the formed glass material, its distribution, the temperature during forming and cooling, and It is necessary to stabilize the distribution and the like, and furthermore, the thickness of the non-contact fluid existing between the molding glass material and the molding surface of the molding die is made uniform, and the molding die and the molding glass material are always It is necessary to keep an even non-contact state.
【0011】以上のことを考慮して、前記目的を達成す
るため、本発明では、軟化状態の成形ガラス素材を多孔
質の成形型を用いて加圧成形する際に、前記成形型の成
形面から流体を噴出させることにより、成形ガラス素材
と上記成形面とを互いに非接触の状態に保ちながら、上
記成形面に倣うように成形ガラス素材の形状を整えるガ
ラス素子の成形方法において、前記成形型に、前記成形
面に連なるガス抜き用の溝を設けると共に、成形型と成
形ガラス素材とを相対的に回転させながら、加圧成形を
することを特徴とする。In consideration of the above, in order to achieve the above object, according to the present invention, when a softened molded glass material is subjected to pressure molding using a porous molding die, a molding surface of the molding die is formed. The method of forming a glass element, wherein the shape of the molded glass material is adjusted to follow the molding surface while maintaining the molded glass material and the molding surface in a non-contact state by ejecting a fluid from the molding die, In addition, a groove for venting gas is provided continuously with the molding surface, and pressure molding is performed while relatively rotating the molding die and the molding glass material.
【0012】なお、上記構成において、多孔質の成形面
の一部にガス抜き用の溝を設けることにより、成形面か
ら成形ガラス素材にかかるガス圧力を制御し易くなり、
特に、中央部が周辺部より高くなる傾向を防ぐことが可
能となる。ここで考慮すべきことは、成形面に対して単
に溝を設けただけでは、被成形ガラス塊の表面に溝の形
状が転写してしまうので、上述のような、成形型と成形
ガラス素材との相対的回転が必要になる。In the above configuration, by providing a gas vent groove in a part of the porous molding surface, it becomes easy to control the gas pressure applied to the molding glass material from the molding surface,
In particular, it is possible to prevent a tendency that the central part is higher than the peripheral part. What should be considered here is that simply providing a groove on the molding surface causes the shape of the groove to be transferred to the surface of the glass lump to be molded. Relative rotation is required.
【0013】その上、上記問題を解決できるだけでな
く、その相対回転は、圧力分布、特に、回転軸周りの実
質的にガラス素材にかかる圧力を均一にでき、同時に、
成形面全体の温度分布も均一にすることが可能となり、
ヒケが発生しにくく、表面の滑らかなガラス素子を得る
ことができる。In addition, not only can the above-mentioned problem be solved, but also the relative rotation can equalize the pressure distribution, in particular the pressure substantially on the glass material about the axis of rotation, and at the same time,
It is also possible to make the temperature distribution of the entire molding surface uniform,
It is possible to obtain a glass element which does not easily cause sink marks and has a smooth surface.
【0014】この時の適正な回転速度は、成形ガラス素
材の粘度や形状の大小にも左右されるが、高速の方が温
度、圧力も安定し、良好な結果が得られる。また、溝は
回転の中心部から外周に向かって形成されることが必要
であるが、溝の形状を工夫することで、中央部や外周縁
部における圧力の分布を制御することが可能となる。The proper rotation speed at this time depends on the viscosity and the shape of the molded glass material, but the higher the speed, the more stable the temperature and pressure, and a good result can be obtained. Further, the groove needs to be formed from the center of rotation to the outer periphery, but by devising the shape of the groove, it is possible to control the pressure distribution at the center and the outer peripheral edge. .
【0015】更に、本発明では、前記溝は、成形面の中
央部から半径方向に延びる形状で、1もしくは、複数
個、形成されており、前記成形ガラス素材の表面は、前
記成形型との相対回転で、成形面の形状に倣うように加
圧成形されることで、換言すれば、成形に係わる成形面
を、その回転の法線方向に対する長さを短くして、その
部分を素材に対して非接触で押し当てながら、回転させ
ることにより、軸対称の転写面を成形ガラス素材塊の表
面に形成させるのである。Further, in the present invention, one or a plurality of the grooves are formed in a shape extending in a radial direction from a central portion of a molding surface, and a surface of the molding glass material is formed with a surface of the molding die. By the relative rotation, pressure molding is performed so as to follow the shape of the molding surface, in other words, the molding surface involved in molding is reduced in length in the normal direction of the rotation, and that part is made into a material. By rotating while pressing against the non-contact, an axisymmetric transfer surface is formed on the surface of the formed glass material block.
【0016】前記の方法では、成形型の成形面を実質的
に小さくすることができ、そのことにより、成形面上で
の圧力分布のむらを少なくし、圧力に対する制御も容易
となるため、ガラス素材と成形面との間隔を、安定させ
易くなる。また、成形面積が少ないために、成形面の加
工精度を上げ易く、成形品の精度を上げることが容易に
なる。但し、この時、ガラス素材を成形する面積が、成
形される面積に対して小さくなるため、それを補う意味
で、回転速度を早くする必要があり、また、そうするこ
とで、成形品の形状精度をより向上し、安定させること
が可能となる。According to the above method, the molding surface of the molding die can be made substantially small, whereby the unevenness of the pressure distribution on the molding surface is reduced and the control over the pressure is facilitated. It is easy to stabilize the distance between the mold and the molding surface. Further, since the molding area is small, it is easy to increase the processing accuracy of the molding surface, and it is easy to increase the precision of the molded product. However, at this time, since the area for molding the glass material is smaller than the area to be molded, it is necessary to increase the rotation speed in a sense of compensating for this, and by doing so, the shape of the molded article Accuracy can be further improved and stabilized.
【0017】なお、溝を複数個設けることで、成形型の
成形面全体における圧力バランスが取り易くなり、成形
品の高い形状精度を確保し易くなり、また、圧力バラン
スが良くない成形型に対しても、溝を複数個追加加工す
ることによって、バランスを補正する便宜もある。By providing a plurality of grooves, it is easy to balance the pressure on the entire molding surface of the mold, and to easily secure high shape accuracy of the molded product. However, it is convenient to correct the balance by additionally processing a plurality of grooves.
【0018】従って、本発明の成形方法によれば、流体
を噴出させる事が可能な多孔質材からなる成形面を持つ
成形型を用いて非接触でガラス素子を得る際に、成形面
に流体を逃がす為の溝を設け、成形面と成形素材とを相
対的に回転させる事により、成形品の形状精度に大きく
影響を及ぼす成形素材と成形面との間に存在する流体の
圧力分布や膜厚や温度分布に対して、均一化、制御性を
大幅に向上させる事が可能となり、高精度な形状を有す
るガラス素子を得る事が出来るようになり、特に回転軸
を中心とした軸対象に膜厚が容易に均一化する事によ
り、レンズ等の機能面が軸対称の形状のガラス素子に対
しては大きな効果がある。Therefore, according to the molding method of the present invention, when a glass element is obtained in a non-contact manner using a molding die having a molding surface made of a porous material from which a fluid can be ejected, the fluid is applied to the molding surface. The pressure distribution of the fluid between the molding material and the molding surface, which greatly affects the shape accuracy of the molded product, is provided by providing a groove for allowing air to escape and rotating the molding surface and the molding material relatively. It is possible to greatly improve the uniformity and controllability of thickness and temperature distribution, and it is possible to obtain a glass element with a highly accurate shape, especially for axial objects around the rotation axis. By easily making the film thickness uniform, there is a great effect on a glass element having a functional surface such as a lens having an axially symmetric shape.
【0019】[0019]
【発明の実施の形態】以下、本発明の第一の実施の形態
を、図面を参照して具体的に説明する。図1、2は、そ
れぞれ、本発明で用いられる成形装置の概略図、およ
び、本発明に用いられる成形型の説明図である。図1に
おいて、符号1は型ユニットであり、下型構成部材2と
上型構成部材3とから成り立っており、更に、構成部材
2、3は、それぞれ、下型部材11と、上型部材21
と、それらを、それぞれ保持する下型ホルダー12と、
上型ホルダー22とで構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be specifically described with reference to the drawings. 1 and 2 are a schematic diagram of a molding apparatus used in the present invention and an explanatory view of a molding die used in the present invention, respectively. In FIG. 1, reference numeral 1 denotes a mold unit, which is composed of a lower mold member 2 and an upper mold member 3, and further, the constituent members 2 and 3 are a lower mold member 11 and an upper mold member 21, respectively.
And a lower mold holder 12 for holding them respectively,
The upper mold holder 22 is provided.
【0020】なお、ホルダー12、22には、これらに
流体(気体)をバランスよく供給・分配するための圧力
室12a、22aが設けられており、更に、ヒーター1
3、23および測温手段(図示せず)が、それぞれ埋め
込まれており、下型部材11、上型部材12並びに流体
の温度を、最終的に調整することができるようになって
いる。The holders 12 and 22 are provided with pressure chambers 12a and 22a for supplying and distributing a fluid (gas) to the holders 12 and 22 in a well-balanced manner.
3, 23 and a temperature measuring means (not shown) are respectively embedded, so that the temperatures of the lower mold member 11, the upper mold member 12, and the fluid can be finally adjusted.
【0021】また、符号11a、21aは、それぞれ、
ガラス素子としての成形品の表面形状を決定する下型部
材11と上型部材21の成形面を示しており、上型部材
21には、図2に示すように、成形面21a上に位置し
て、その一部に流体の抜き出し用の溝21bが設けられ
ている。また、符号31は流体の供給パイプであり、図
示の矢印:Aの部位より供給された流体を、圧力・流量
調節器32a、32bへ供給するように構成され、更
に、圧力・流量調節器32a、32bの先には、それぞ
れ、流体の温度調整を目的として、加熱ヒーター33
a、33bが取り付けられている。Reference numerals 11a and 21a represent, respectively,
FIG. 2 shows a molding surface of a lower mold member 11 and an upper mold member 21 which determine the surface shape of a molded product as a glass element, and the upper mold member 21 is located on a molding surface 21a as shown in FIG. In addition, a groove 21b for extracting a fluid is provided in a part thereof. Reference numeral 31 denotes a fluid supply pipe, which is configured to supply the fluid supplied from the portion indicated by the arrow A in the drawing to the pressure / flow rate regulators 32a and 32b, and further, the pressure / flow rate regulator 32a. , 32b are provided with heaters 33 for the purpose of adjusting the temperature of the fluid.
a and 33b are attached.
【0022】また、構成部材2、3には、駆動装置(図
示せず)が、それぞれ、備えられていて、図示の矢印:
Ba、Bbのように、構成部材2、3が、それぞれ、独
立に上下・左右方向に移動できようになっており、更
に、矢印:Ca、Cbのように、下型部材11及び上型
部材21の各センターを中心として、任意の回転数で、
互いに、反対方向に回転できるようになっている。この
ため、構成部材2、3は、耐熱性のあるフレキシブルチ
ューブ34a、34bおよびロータリージョイント1
4、24を介して、加熱ヒーター33a、33bに接続
されている。Each of the constituent members 2 and 3 is provided with a driving device (not shown).
As in Ba and Bb, the constituent members 2 and 3 can be independently moved in the vertical and horizontal directions. Further, as shown by arrows: Ca and Cb, the lower die member 11 and the upper die member Around each center of 21 at an arbitrary rotation speed,
They can rotate in opposite directions. For this reason, the constituent members 2 and 3 are made of the heat-resistant flexible tubes 34 a and 34 b and the rotary joint 1.
The heaters 33a and 33b are connected via the heaters 4 and 24, respectively.
【0023】また、符号41は、流体の流量圧力や温度
を制御する流体制御器であり、信号線42a、42bお
よび制御線43a、43bにより、圧力・流量調節器3
2a、32bおよび加熱ヒーター33a、33bを、自
由に制御できるようになっている。Reference numeral 41 denotes a fluid controller for controlling the flow pressure and temperature of the fluid, and the pressure / flow controller 3 is controlled by signal lines 42a and 42b and control lines 43a and 43b.
2a, 32b and the heaters 33a, 33b can be freely controlled.
【0024】図3は、溶融軟化状態の成形ガラス素材
を、成形素材供給ノズルより型ユニットに供給し、更
に、供給された成形ガラス素材を、ノズルより切断分離
する時の工程説明図であり、同図において、符号101
は溶融・軟化状態の成形ガラス素材102の成形素材供
給ノズルであり、102bは下型部材11の成形面11
aの上に供給された、切断前の成形ガラス素材塊を、ま
た、102cは成形素材供給ノズル101から流下され
た成形ガラス素材102と切断前の成形ガラス素材塊1
02bの間に作られる、切断のためのくびれを、更に、
102aは下型部材11の成形面11a上にて得られた
成形ガラス素材塊を表わす。FIG. 3 is an explanatory view of a process when the molten glass material in a melt-softened state is supplied to a mold unit from a molding material supply nozzle, and the supplied molded glass material is cut and separated from the nozzle. In FIG.
Reference numeral 102 denotes a molding material supply nozzle for the molded glass material 102 in a molten and softened state, and 102 b denotes a molding surface 11 of the lower mold member 11.
a, the molded glass material lump before cutting, and 102c the molded glass material 102 flowing down from the molding material supply nozzle 101 and the molded glass material lump 1 before cutting.
The constriction created during 02b,
Reference numeral 102a denotes a molded glass material lump obtained on the molding surface 11a of the lower mold member 11.
【0025】[0025]
(第1の実施例)次に、上記の成形装置を使用してガラ
ス素子を成形する工程を、図面を用いて具体的に説明す
る。なお、ここで成形されるガラス素子は、ビデオカメ
ラに用いられる両凸球面レンズのための近似形状ブラン
クであり、例えば、外径が14mmφで、それぞれの面
の曲率がR:20mmとR:35mm、中心肉厚が3m
mである。そして、この近似形状ブランクを更に追加加
工することで、所望の機能を持つレンズにすることがで
きる。該光学ガラス素子についてのガラス素材には、そ
の温度が1300℃の時に101.5 dPa・s、120
0℃の時に101.6dPa・s、1100℃の時に10
1.8 dPa・s、1000℃の時に102.2dPa・
s、890℃の時に102.9 dPa・s、720℃の時
に105 dPa・s、610℃の時に107.6 dPa・
s、498℃の時に1013dPa・sとなるガラス粘度
となる粘性特性を持つ光学ガラスが用いられる。(First Embodiment) Next, the steps of forming a glass element using the above-described forming apparatus will be specifically described with reference to the drawings. The glass element molded here is an approximate shape blank for a biconvex spherical lens used for a video camera. For example, the outer diameter is 14 mmφ, and the curvature of each surface is R: 20 mm and R: 35 mm. , Center thickness is 3m
m. Further, by further processing this approximate shape blank, a lens having a desired function can be obtained. The glass material for optical glass element, 10 1.5 dPa · s at the time of the temperature of 1300 ° C., 120
10 1.6 dPa · s at 0 ° C, 10 at 1100 ° C
1.8 dPa · s, 10 2.2 dPa · at 1000 ° C
s, 10 2.9 dPa · s at 890 ° C., 10 5 dPa · s at 720 ° C., 10 7.6 dPa · s at 610 ° C.
An optical glass having a viscosity characteristic of a glass viscosity of 10 13 dPa · s at 498 ° C. is used.
【0026】また、型部材11、21の材料としては、
気孔率が30%、最大穴径が12ミクロンである多孔質
カーボンが用いられ、流体には、型部材11、21の酸
化を防ぐために、窒素ガスが用いられる。更に、型部材
21には、図2に示すように、ガス抜きをよくするため
に、その外周縁部に近づくにつれて、幅と深さが大きく
なっているガス抜き用の溝21bが、型部材21の成形
面21aの中央部より若干離れた部位より成形面21a
の外周に至る範囲で、放射状に延出させている。The materials of the mold members 11 and 21 are as follows.
Porous carbon having a porosity of 30% and a maximum hole diameter of 12 microns is used. Nitrogen gas is used as a fluid in order to prevent oxidation of the mold members 11 and 21. Further, as shown in FIG. 2, the mold member 21 is provided with a gas vent groove 21b having a width and a depth that increase with approaching the outer peripheral edge thereof in order to improve gas venting. 21 from a portion slightly away from the center of the molding surface 21a.
Are radially extended to the outer periphery of the.
【0027】このように準備された型部材11、21
を、図1に示す成形装置に取り付け、図3に示すような
ガラス流出による切断方法で、軟化状態のままの成形ガ
ラス素材塊102aを得た。ここで、この行程を図3を
用いて、より具体的に説明する。まず、ガラス溶融炉
(図示せず)で、上記ガラス素材を溶融し、その後、脱
泡、均質化の行程を経て、軟化状態の成形ガラス素材で
ある、均質な溶融ガラス素材102を準備する。更に、
それをガラス溶融炉の未端に設けられている成形ガラス
素材供給ノズル101へと導く。The mold members 11, 21 thus prepared
Was attached to the molding apparatus shown in FIG. 1, and a molded glass material block 102a in a softened state was obtained by a cutting method using glass outflow as shown in FIG. Here, this process will be described more specifically with reference to FIG. First, the above glass material is melted in a glass melting furnace (not shown), and thereafter, through a process of defoaming and homogenizing, a homogeneous molten glass material 102 which is a softened molded glass material is prepared. Furthermore,
It is guided to a forming glass material supply nozzle 101 provided at the end of the glass melting furnace.
【0028】ここでは、供給ノズル101を1200℃
の温度に調節・設定し、ガラス素材102を流出させる
と共に、下型構成部材2を101の直下に持って行き、
図3の(a)に示すように、成形面11a上に所定の容
量まで受けた後、図3の(b)に示すように、下型構成
部材2を矢印:Dのように、下方へ少し下げ、流下する
成形ガラス素材102と、切断前の成形ガラス素材塊1
02bとの間に、くびれ102cを発生させ、このくび
れ102cがガラスの自重と表面張力により、それ自体
で切断に到るまで待機し(図3の(c)の状態)、軟化
状態の成形ガラス素材塊102aを得た。このように、
くびれ102の切断工程において、下型構成部材2を一
旦停止させることにより、くびれ102cの部分が冷や
されることが少なくなり、自重と表面張力により、自然
に切断することが可能となる。Here, the supply nozzle 101 is set at 1200 ° C.
Is adjusted and set to the temperature, and the glass material 102 is caused to flow out, and the lower mold component 2 is taken directly below 101,
After receiving a predetermined volume on the molding surface 11a as shown in FIG. 3A, the lower mold component 2 is moved downward as shown by the arrow D in FIG. The molded glass material 102 which is slightly lowered and flows down, and the molded glass material lump 1 before cutting
02b, a constriction 102c is generated, and the constriction 102c waits for cutting by itself due to its own weight and surface tension (the state shown in FIG. 3 (c)). A material mass 102a was obtained. in this way,
In the cutting step of the constriction 102, by temporarily stopping the lower mold component 2, the portion of the constriction 102c is less likely to be cooled, and it is possible to cut naturally by its own weight and surface tension.
【0029】このために、成形ガラス素材の切断部位に
は、従来のような、糸状に固化した切断痕や、破断痕が
残らないので、成形ガラス素材塊102aの表面には、
有害な欠陥が生じておらず、下型構成部材2の下降タイ
ミングや、供給ノズル101の温度を任意に調整するこ
とで、常に、目的の重量に成形ガラス素材塊102aを
合わすことが可能となる。[0029] For this reason, since a cut mark or a break mark hardened in a thread like a conventional one does not remain at the cut portion of the molded glass material, the surface of the molded glass material block 102a
There is no harmful defect, and by adjusting the lowering timing of the lower mold component 2 and the temperature of the supply nozzle 101 arbitrarily, it is possible to always adjust the molded glass material block 102a to a target weight. .
【0030】なお、この時の流体(窒素ガス)の温度
は、ガラス素材を成形面11aに受ける時、ガラスの転
移点以下の温度である200℃に、その直後には、転移
点近くの温度である450℃になるように、加熱ヒータ
ー33a、13の温度を調整し、更に、窒素ガスの流量
も、ガラス素材102を成形面11aに受ける直前まで
に毎分:20リッター、その後は、毎分:5リッターと
なるように、圧力・流量調節器32aで制御した。The temperature of the fluid (nitrogen gas) at this time is 200 ° C., which is lower than the transition point of the glass when the glass material is received on the molding surface 11a. The temperature of the heaters 33a and 13 is adjusted so as to be 450 ° C., and the flow rate of the nitrogen gas is also set to 20 liters per minute until immediately before the glass material 102 is received on the molding surface 11a. Minute: Controlled by the pressure / flow controller 32a so as to be 5 liters.
【0031】このようにすることで、ガラス素材102
が成形面11aに達する前に、ガラス素材102の先端
が、多少固化し、窒素ガスの流量も増えるため、そのガ
ラス素材102の先端が、全く成形面11aに接触する
ことなく、また、上述または前記の切断方法を用いるこ
とも併せて、表面には、全く欠陥がない成形ガラス素材
塊102aが得られた。By doing so, the glass material 102
Before reaching the molding surface 11a, the tip of the glass material 102 is slightly solidified and the flow rate of the nitrogen gas is increased, so that the tip of the glass material 102 does not contact the molding surface 11a at all, and Together with the use of the above cutting method, a molded glass material block 102a having no defect on the surface was obtained.
【0032】次に、下型構成部材2を上型構成部材3の
直下に移動し、下型部材11で成形ガラス素材塊102
aを受けている部位で、その成形ガラス素材塊102a
の下面近傍の粘度が106  ̄7.5 dPa・s、その他の
表面近傍の粘度が103  ̄6dPa・sにおいて、中心
付近が十分に柔らかい内に、成形面に対して、非接触状
態で加圧成形するのである。Next, the lower mold component 2 is moved directly below the upper mold component 3 and the lower
a at the part receiving the
Of the lower surface viscosity in the vicinity of 10 6 ¯ 7.5 dPa · s, the viscosity of the other near the surface in 10 3 ¯ 6 dPa · s, within a sufficiently soft near the center, on the molding surface, in a non-contact state pressurized It is pressed.
【0033】この際、成形面11a、21aから噴出す
る窒素ガスの流量を、毎分:2リッターとし、また、ガ
ラス温度を、そのガラスの粘度で1013dPa・sに相
当する500℃となるように、圧力・流量調節器32
a、32bと、加熱ヒーター33a、33bとを、流体
制御器41により設定し、上型部材21のみを、Cbの
方向に、毎分:120回転の速度で回転させながら、冷
間時のレンズの中心肉厚が3mmに相当する部位になる
まで、約20秒かけて、型ユニット1を閉じ、成形ガラ
ス素材塊102aに成形面11a、21aの形状を間接
的に転写させたのである。At this time, the flow rate of the nitrogen gas ejected from the molding surfaces 11a and 21a is set to 2 liters per minute, and the glass temperature becomes 500 ° C. corresponding to 10 13 dPa · s in terms of the viscosity of the glass. As shown in FIG.
a, 32b and the heaters 33a, 33b are set by the fluid controller 41, and only the upper mold member 21 is rotated in the direction of Cb at a speed of 120 rotations per minute while the lens is in a cold state. The mold unit 1 was closed and the shape of the molding surfaces 11a and 21a was indirectly transferred to the molded glass material lump 102a over about 20 seconds until the central thickness of the molded glass material became 3 mm.
【0034】その後、成形された近似形状ブランク(成
形ガラス素材塊)の表面近傍の粘度が1012dPa・s
(温度で約515℃)となった時点で、型ユニットを開
き、下型部材11から窒素ガスを噴出させたままの状態
で、上記近似形状ブランクを吸着ハンド(図示せず)で
取り出した。更に、このようにして得られた近似形状ブ
ランクを、研磨した後、芯取をして、所望の形状のレン
ズを得た。Thereafter, the viscosity in the vicinity of the surface of the shaped blank (a lump of shaped glass material) having a viscosity of 10 12 dPa · s
When the temperature reached (about 515 ° C. in temperature), the mold unit was opened, and the approximate shape blank was taken out with a suction hand (not shown) while the nitrogen gas was jetted from the lower mold member 11. Further, the blank having the approximate shape thus obtained was polished and then centered to obtain a lens having a desired shape.
【0035】その結果は、本発明の製法によれば、近似
形状ブランク(成形品)の上面側に、うねりや欠陥が殆
ど無く、研削加工の必要性が全く無い上、直接の研磨加
工によって、約10μmほど、表層を研磨除去するだけ
で、十分な光学レンズとしての性能が得られることが確
認できた。As a result, according to the manufacturing method of the present invention, there is almost no undulation or defect on the upper surface side of the approximate shape blank (molded product), there is no necessity of grinding, and by the direct polishing, It was confirmed that sufficient performance as an optical lens can be obtained only by polishing and removing the surface layer by about 10 μm.
【0036】(第2の実施例)次に、図2、図4に示す
形状の型部材を、それぞれ下型部材、上型部材として、
第1の実施例で用いた成形装置を用いて、成形ガラス素
材塊を得る場合を説明する。ここでは、直径が10mm
φ、凸面の曲率をR:20mm、凹面の曲率をR:30
mm、中心部の肉厚が3.3mm、コバ部の厚さが約
3.1mmである凸メニスカス形状のレンズを成形し
た。(Second Embodiment) Next, mold members having the shapes shown in FIGS. 2 and 4 are used as a lower mold member and an upper mold member, respectively.
A case where a molded glass material block is obtained by using the molding apparatus used in the first embodiment will be described. Here, the diameter is 10 mm
φ, the curvature of the convex surface is R: 20 mm, and the curvature of the concave surface is R: 30
A convex meniscus lens having a thickness of 3.3 mm and a thickness of 3.3 mm at the center and a thickness of about 3.1 mm at the edge was molded.
【0037】なお、図4において、符号221は上型部
材であり、その中心部から外周縁にかけて、レンズの光
学面を形成する成形面221aが形成されており、その
成形面221aは、図示のように、極く一部を除いて、
逃げ部の溝221bとして、除去されている。更に成形
面221aは、Y2 −Y2 の断面で示すように、頂点の
一部を残して、エッジの無いように加工されていて、成
形型の回転の際に、ガラス素材塊に対して食い込みを生
じないような、滑らかな形状となっている。In FIG. 4, reference numeral 221 denotes an upper mold member, and a molding surface 221a for forming an optical surface of the lens is formed from the center to the outer peripheral edge of the upper mold member. Like, except for a very small portion,
It is removed as the groove 221b of the escape portion. Furthermore the molding surface 221a, as shown in cross section Y 2 -Y 2, leaving a part of the vertex, have been processed so as not edges, when the mold rotation, the glass material mass It has a smooth shape that does not bite.
【0038】更に、溝221bの部分に対応する上型部
材221の表面の多孔質の孔は、通気を阻止するよう
に、潰されており、その部分から流体が噴出しないよう
に処置してある。また、下型部材には、前述の第1の実
施例の下型部材に用いた型部材と同形状の型部材を用い
ている。更に、上下型部材のどちらの成形面も、冷却時
の収縮を考慮して、完成したレンズの形状が、所望の形
状にするように曲率の補正を加えてあり、成形面での多
孔質の孔を除いて、鏡面となるように仕上げてある。な
お、ガラス素材は、第1の実施例と同じガラス材を用
い、流体としては、窒素ガスを用い、型材としては、気
孔率が20〜25%、最大孔径が5μm程度の多孔質カ
ーボンを用いた。Further, a porous hole on the surface of the upper die member 221 corresponding to the groove 221b is crushed so as to prevent airflow, and is treated so that fluid does not squirt out of the hole. . As the lower mold member, a mold member having the same shape as the mold member used for the lower mold member of the first embodiment is used. Further, both molding surfaces of the upper and lower mold members have been corrected for curvature so that the shape of the completed lens has a desired shape in consideration of shrinkage during cooling, and a porous surface on the molding surface is provided. Except for the hole, it is finished to be mirror surface. The same glass material as in the first embodiment was used as the glass material, nitrogen gas was used as the fluid, and porous carbon having a porosity of 20 to 25% and a maximum pore diameter of about 5 μm was used as the mold material. Was.
【0039】而して、このように準備した型部材2を、
第1の実施例と同様に、図1に示すような成形装置に取
り付け、既述した同じ方法で、軟化ガラス素材塊を得
た。この時の窒素ガスの温度は、溶融ガラス素材を成形
面21aに受ける時、ガラスの転移点付近の温度である
500℃に、その直後には、ガラスの粘度で107.3 d
Pa・sに相当する620℃の温度になるように調整
し、更に、窒素ガスの流量を、溶融ガラス素材102を
成形面21aに受ける直前まで、成形面21aに対し
て、毎分:18リッター、その後は、毎分:5リッター
となるように制御した。Thus, the mold member 2 thus prepared is
In the same manner as in the first embodiment, a softened glass material mass was obtained by attaching the device to a molding apparatus as shown in FIG. 1 and using the same method as described above. The temperature of the nitrogen gas at this time is 500 ° C., which is the temperature near the transition point of the glass when the molten glass material is received on the molding surface 21a, and immediately thereafter, the viscosity of the glass is 10 7.3 d.
The temperature was adjusted to 620 ° C. corresponding to Pa · s, and the flow rate of the nitrogen gas was further increased to 18 liters per minute with respect to the molding surface 21a until immediately before the molten glass material 102 was received by the molding surface 21a. After that, the control was performed so as to be 5 liters per minute.
【0040】次に、下型構成部材2を上型構成部材3の
直下に移動して、下型部材11で受けている成形ガラス
素材塊102aの下面近傍の粘度が105.6  ̄7 dPa
・s、その他の表面近傍の粘度が103  ̄5.6 dPa・
sであり、中心付近が十分に柔らかい内に、成形面21
a、221aから噴出する窒素ガスの流量を毎分:2リ
ッターとし、ガラスの粘度で107.6 dPa・sに相当
する温度、610℃となるように設定し、更に、下型構
成部材2と上型構成部材3が、互いに逆回転となるよう
な回転方向で、それぞれの回転数が200rpmとなる
ように、その回転速度を設定し、成形ガラス素材塊10
2aの中心肉厚が3.4mmとなるまで、毎秒:8mm
の速度で、型ユニット1を閉じた。Next, the lower mold component 2 is moved to a position immediately below the upper mold component 3, and the viscosity near the lower surface of the molded glass material block 102 a received by the lower mold member 11 becomes 10 5.6  ̄ 7 dPa.
· S, the viscosity of the other near the surface 10 3 ¯ 5.6 dPa ·
s, and while the vicinity of the center is sufficiently soft, the molding surface 21
a, the flow rate of the nitrogen gas ejected from the 221a is set to 2 liters per minute, the temperature of the glass is set to 610 ° C. corresponding to the viscosity of 10 7.6 dPa · s, and the lower mold member 2 and the upper The rotational speed of the mold component 3 is set such that the rotational speeds thereof are 200 rpm in the rotational directions that are opposite to each other.
8 mm per second until the center thickness of 2a becomes 3.4 mm
The mold unit 1 was closed at the speed shown in FIG.
【0041】次いで、下型構成部材2と上型構成部材3
の回転を保った状態で、窒素ガスの温度を580℃、成
形面21a、221aからの流量がそれぞれ毎分:1リ
ッターとなるように設定し、冷間時のレンズの中心肉厚
が3.3mmに相当する位置になった時に、レンズの表
面近傍の粘度が108.0 dPa・sとなるように、閉じ
る速度を調整しながら、型ユニット1を閉じるのであ
る。これによって、レンズ素材としての成形ガラス塊の
表面に、成形面21a、221aの形状を転写させた。Next, the lower component 2 and the upper component 3
, The temperature of the nitrogen gas is set to 580 ° C., and the flow rates from the molding surfaces 21a and 221a are set to 1 liter per minute, respectively. At the position corresponding to 3 mm, the mold unit 1 is closed while adjusting the closing speed so that the viscosity near the lens surface becomes 10 8.0 dPa · s. As a result, the shape of the molding surfaces 21a and 221a was transferred to the surface of the molded glass block as the lens material.
【0042】上記の形状転写の工程の後、窒素ガスの流
量、および、下型構成部材2と上型構成部材3の回転を
そのままで、温度を150℃に設定し、冷却を開始し
た。冷却開始後、レンズの表面近傍の粘度が1012dP
a・s(約515℃に相当する温度)となった時に、下
型構成部材2と上型構成部材3の回転を停止し、同時
に、型ユニット1を開き、下型部材21から窒素ガスを
噴出させたままの状態で、レンズを吸着ハンド(図示せ
ず)で取り出した。その後、成形の完了した複数のレン
ズの精度を測定したが、全て、アス:0.8本、クセ:
0.5本以下に収まり、このままで、通常の光学レンズ
としての十分な精度を得ることができた。After the above-described shape transfer step, the temperature was set to 150 ° C. while keeping the flow rate of the nitrogen gas and the rotation of the lower mold member 2 and the upper mold member 3 unchanged, and cooling was started. After the start of cooling, the viscosity near the lens surface becomes 10 12 dP
When the temperature reaches a · s (a temperature corresponding to about 515 ° C.), the rotation of the lower mold component 2 and the upper mold component 3 is stopped, and at the same time, the mold unit 1 is opened and nitrogen gas is supplied from the lower mold member 21. The lens was taken out with a suction hand (not shown) in a state where it was jetted. After that, the accuracy of a plurality of lenses that had been molded was measured.
It was less than 0.5 or less, and as it was, sufficient accuracy as a normal optical lens could be obtained.
【0043】(第3の実施例)次に、図5に示すような
下型部材221と上型部材321を用いて、第1の実施
例と同じ成形装置、並びに、ガラス材料を用いて、片面
がR:50mm、もう一方の面がR:40mmを基準と
する非球面形状をなす、コンパクトカメラ用の両凸のガ
ラス非球面レンズを成形した。なお、ここでは、当該レ
ンズの中心肉厚が4.3mm、直径が23mmφであ
る。(Third Embodiment) Next, using a lower mold member 221 and an upper mold member 321 as shown in FIG. 5, the same molding apparatus and glass material as those of the first embodiment are used. A bi-convex glass aspheric lens for a compact camera, having an aspheric shape based on R: 50 mm on one side and R: 40 mm on the other side, was molded. Here, the center thickness of the lens is 4.3 mm and the diameter is 23 mmφ.
【0044】下型部材221は、転写形状を形成する成
形面221aに対して湾曲した放射状の3本の溝221
bを有し、上型部材321は、成形面321aが溝部3
21bに対して、突き出ているような形状を有してい
る。そして、それぞれの溝部では、多孔質の穴を潰し、
ガスが成形面以外から噴出しないように、加工してあ
る。The lower mold member 221 has three radial grooves 221 curved with respect to a molding surface 221a for forming a transfer shape.
b, and the upper mold member 321 has a molding surface 321 a
It has a shape protruding from 21b. And in each groove, crush the porous hole,
It is processed so that gas does not blow out from the surface other than the molding surface.
【0045】更に、成形面221a、321aの形状
は、コンピュータ・シミュレーションと予備テストで得
られたデータにより、予め溝部の形状と共に補正されて
いて、第2の実施例に用いた型の場合と同様に、穴部以
外の成形面は、平滑に仕上げられており、成形したレン
ズ素材が所望の形状になるように加工されている。Further, the shapes of the molding surfaces 221a and 321a have been corrected in advance together with the shape of the groove portion by data obtained by computer simulation and preliminary test, and are the same as in the case of the mold used in the second embodiment. In addition, the molding surface other than the holes is finished smoothly, and is processed so that the molded lens material has a desired shape.
【0046】次に、このように加工準備した型部材22
1、321を、図1に示すような成形装置に取り付け
て、第1の実施例と全く同様にして、成形ガラス素材塊
102aを得た。Next, the mold member 22 prepared in this manner is prepared.
1 and 321 were attached to a molding apparatus as shown in FIG. 1, and a molded glass material lump 102a was obtained in exactly the same manner as in the first embodiment.
【0047】なお、加圧成形に先立って、図3に示す工
程で、溶融ガラス素材102bを下型部材11に受けた
後、下型構成部材2を上型構成部材3の直下に移動し、
成形ガラス素材塊102aの下面近傍の粘度が106  ̄
7.5 dPa・s、その他の表面近傍の粘度が103  ̄6
dPa・sであり、中心付近が十分に柔らかい内に、成
形面221a、321aから噴出する窒素ガスの流量を
毎分:2.5リッター、その温度をガラスの粘度で10
7.6 dPa・sに相当する610℃となるよう、圧力・
流量調節器32a、32bと、加熱ヒーター33a、3
3bとを、流体制御器41により設定した。Prior to the pressure molding, in the step shown in FIG. 3, after the molten glass material 102b is received by the lower mold member 11, the lower mold member 2 is moved directly below the upper mold member 3, and
The viscosity near the lower surface of the molded glass material block 102a is 10 6
7.5 dPa · s, other viscosity near the surface is 10 3  ̄ 6
dPa · s, and while the vicinity of the center is sufficiently soft, the flow rate of nitrogen gas ejected from the molding surfaces 221a and 321a is 2.5 liters per minute, and the temperature is 10 liters of glass viscosity.
The pressure is adjusted to 610 ° C, which is equivalent to 7.6 dPa · s.
The flow controllers 32a, 32b, the heaters 33a, 3
3b was set by the fluid controller 41.
【0048】また、下型部材221と上型部材321の
回転を225rpmとし、成形ガラス素材102aの中
心肉厚が4.4mmとなるまで、毎秒:8mmの速度で
型ユニット1を閉じた。次いで、噴出窒素ガスの温度を
600℃とし、流量を毎分:1.5リッターに設定し、
冷間時のレンズの中心肉厚が4.3mmに相当する位置
になるまで、型ユニット1を閉じ、成形ガラス素材の表
面に、成形面221aおよび成形面321aの形状を、
それぞれ転写させた。The rotation of the lower mold member 221 and the upper mold member 321 was set to 225 rpm, and the mold unit 1 was closed at a speed of 8 mm per second until the center thickness of the molded glass material 102a became 4.4 mm. Next, the temperature of the ejected nitrogen gas was set to 600 ° C., and the flow rate was set to 1.5 liters per minute.
The mold unit 1 is closed until the center thickness of the cold lens reaches 4.3 mm, and the shapes of the molding surface 221a and the molding surface 321a are formed on the surface of the molding glass material.
Each was transcribed.
【0049】その後、窒素ガスの流量はそのままで、温
度を150℃に設定して、冷却を開始し、ガラス塊の表
面の温度が498℃(ガラスの粘度1013dPa・sに
相当)で切った所で、型ユニット1を開き、レンズを取
り出した。型ユニット1を開き、下型部材221から窒
素ガスを噴出させたままの状態で、レンズを吸着ハンド
(図示せず)で取り出した。この後で、完成した複数の
レンズを、20℃の温度下において、その光学的な精度
を測定したが、全てアス:0.8本、クセ:0.5本以
下に収まり、良好な結果を得ることができた。Thereafter, while keeping the flow rate of the nitrogen gas unchanged, the temperature was set to 150 ° C., cooling was started, and the temperature of the surface of the glass block was turned off at 498 ° C. (corresponding to a glass viscosity of 10 13 dPa · s). Then, the mold unit 1 was opened and the lens was taken out. The mold unit 1 was opened, and the lens was taken out with a suction hand (not shown) while the nitrogen gas was jetted from the lower mold member 221. After that, the optical accuracy of the completed plurality of lenses was measured at a temperature of 20 ° C., but all were within 0.8 ass and 0.5 or less habit, showing good results. I got it.
【0050】(第4の実施例)次に第1の実施例と全く
同じものを、予め重量調整されたガラス素材塊より成形
した実施例を述べる。即ち、第1の実施例で用いたのと
同じ材質のガラスブロックから、ガラス塊を切り出し、
それを、更に研削加工により、容積で311mm3 とな
るようなガラス塊に仕上げ、次いで、窒素ガスを毎分:
30リッター、噴出させている成形面11aの上に載置
した後、ヒーター13、33aにより、窒素ガスの温度
を、ガラスの粘度で105.4 dPa・sに相当する70
0℃の温度に上げて、これにより、ガラス素材塊を加熱
した。(Fourth Embodiment) Next, an embodiment in which exactly the same as the first embodiment is formed from a glass material block whose weight has been adjusted in advance will be described. That is, a glass block is cut out from a glass block of the same material as used in the first embodiment,
It is further ground by grinding to a glass lump with a volume of 311 mm 3, and then nitrogen gas per minute:
30 liters, was placed on the molding surface 11a that is ejected by a heater 13,33A, the temperature of the nitrogen gas, equivalent to 10 5.4 dPa · s in viscosity of the glass 70
The temperature was raised to 0 ° C., thereby heating the glass mass.
【0051】この時、上型構成部材3も下型構成部材2
の真上に移動させ、上型構成部材3を、図1に示すよう
に、Cbの方向に30rpmの回転速度でまわしなが
ら、同様の温度の窒素ガスを流し、ガラス素材塊を上部
からも加熱した。このようにすることで、有害な欠陥が
無く、滑らかな表面を持ち、粘度が106 dPa・sの
軟化ガラス素材塊102aを得た。At this time, the upper mold member 3 is also connected to the lower mold member 2
, And while rotating the upper mold component 3 at a rotation speed of 30 rpm in the direction of Cb as shown in FIG. 1, a nitrogen gas at a similar temperature is flown to heat the glass material block from above. did. By doing so, a softened glass material mass 102a having no harmful defects, having a smooth surface, and having a viscosity of 10 6 dPa · s was obtained.
【0052】次に、第1の実施例と同様に、成形面11
a、21aから噴出する窒素ガスの流量を毎分:2リッ
ター、温度を、ガラスの粘度で1013dPa・sに相当
する500℃となるように、圧力・流量調節器32a、
32bと加熱ヒーター33a、33bを、流体制御器4
1により設定した。なお、ここでは、上型部材21のみ
を、Cbの方向に毎分:120回転の速度で回転させな
がら、冷間時のブランクの中心肉厚が3mmに相当する
位置になるまで、約20秒かけて、型ユニット1を閉じ
ておき、成形ガラス素材塊102aの表面に、成形面1
1a、21aの形状を転写させた。その後、第1の実施
例と同様にして、近似形状ブランクを取り出し、研磨加
工を行ったが、その成果は、第1の実施例で得られたの
と同様であった。Next, similarly to the first embodiment, the molding surface 11
a, the flow rate of the nitrogen gas ejected from 21a: 2 liters per minute, and the pressure / flow rate regulator 32a so that the temperature becomes 500 ° C., which is equivalent to 10 13 dPa · s in glass viscosity.
32b and the heaters 33a and 33b are connected to the fluid controller 4
Set by 1. Here, while rotating only the upper mold member 21 in the direction of Cb at a speed of 120 revolutions per minute, it takes about 20 seconds until the center thickness of the blank at the time of cold becomes a position corresponding to 3 mm. The mold unit 1 is closed, and the molding surface 1 is placed on the surface of the molded glass material block 102a.
The shapes of 1a and 21a were transferred. Thereafter, a blank having an approximate shape was taken out and polished in the same manner as in the first embodiment. The result was the same as that obtained in the first embodiment.
【0053】[0053]
【発明の効果】以上説明したように、本発明によれば、
流体を噴出させることが可能な成形面を持つ、多孔質材
からなる成形型を用いて、非接触で、成形ガラス素材塊
を得る際に、成形面に、成形面から噴出した流体を逃が
すための溝を設けると共に、成形面と成形ガラス素材塊
とを、相対的に回転させることにより、成形品の形状精
度に大きく影響を及ぼすところの、成形ガラス素材と成
形面との間に存在する流体の圧力分布や膜厚や温度分布
に対して、容易に均一化が図れ、更に、制御性も向上さ
せることが可能で、その結果、形状精度の良いガラス素
子、特に、レンズなどの軸対称の形状を持つガラス素子
が、容易に成形加工でき、更に、従来から行われてきた
研削・研磨加工による、スラッジなどの廃棄物を極端に
削減することが可能となって、レンズなどのガラス素子
を大量に、かつ、安価に提供することができる。As described above, according to the present invention,
When using a mold made of a porous material with a molding surface capable of ejecting fluid, using a molding die made of porous material, in order to escape the fluid ejected from the molding surface to the molding surface when obtaining a molded glass material mass The fluid existing between the molding glass material and the molding surface, which greatly affects the shape accuracy of the molded article by relatively rotating the molding surface and the molding glass material block while providing the groove of The pressure distribution, film thickness and temperature distribution can be easily uniformized, and the controllability can be improved. As a result, glass elements with good shape accuracy, especially axially symmetrical elements such as lenses Glass elements with shapes can be easily formed, and furthermore, it is possible to extremely reduce waste such as sludge by conventional grinding and polishing. In large quantities, and It is possible to provide to the valence.
【図1】本発明で用いられる成形装置の概略図である。FIG. 1 is a schematic view of a molding apparatus used in the present invention.
【図2】本発明で用いられる型部材の一例の図である。FIG. 2 is a diagram of an example of a mold member used in the present invention.
【図3】本発明で用いられる成形ガラス素材の切断方法
の説明図である。FIG. 3 is an explanatory view of a method for cutting a molded glass material used in the present invention.
【図4】本発明の他の事例で用いられる型部材の説明図
である。FIG. 4 is an explanatory view of a mold member used in another case of the present invention.
【図5】本発明の更に別の事例で用いられる型部材の説
明図である。FIG. 5 is an explanatory view of a mold member used in still another case of the present invention.
1 型ユニット 2 下型構成部材 3 上型構成部材 11,12,21,221,321 型部材 21a,221a,321a 成形面 21b,221b,321b 溝部 13,23 ヒーター 31 流体の供給パイプ 32a,32b 圧力・流量調節器 33a,33b 加熱ヒーター 41 流体制御器 101 成形ガラス素材供給ノズル 102 成形ガラス素材 102a 成形ガラス素材塊 102b 切断前の成形ガラス素材塊 102c くびれ Reference Signs List 1 mold unit 2 lower mold component 3 upper mold component 11, 12, 21, 221, 321 mold member 21a, 221a, 321a molding surface 21b, 221b, 321b groove 13, 23 heater 31 fluid supply pipe 32a, 32b pressure -Flow controllers 33a, 33b Heater 41 Fluid controller 101 Molded glass material supply nozzle 102 Molded glass material 102a Molded glass material lump 102b Molded glass material lump before cutting 102c Neck
───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨田 昌之 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 余語 瑞和 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayuki Tomita 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Aizuka Mizuka 3-30-2 Shimomaruko, Ota-ku, Tokyo Non Corporation
Claims (3)
形型を用いて加圧成形する際に、前記成形型の成形面か
ら流体を噴出させることにより、成形ガラス素材と上記
成形面とを互いに非接触の状態に保ちながら、上記成形
面に倣うように成形ガラス素材の形状を整える光学ガラ
ス素子の成形方法において、前記成形型に、前記成形面
に連なるガス抜き用の溝を設けると共に、成形型と成形
ガラス素材とを相対的に回転させながら、加圧成形をす
ることを特徴とするガラス素子の成形方法。When a molded glass material in a softened state is subjected to pressure molding using a porous molding die, a fluid is ejected from a molding surface of the molding die, so that the molded glass material and the molding surface are separated from each other. In a method of molding an optical glass element, which adjusts the shape of a molded glass material so as to follow the molding surface while maintaining the non-contact state with each other, the molding die is provided with a gas vent groove connected to the molding surface, A method for forming a glass element, comprising: performing pressure forming while relatively rotating a forming die and a formed glass material.
に延びる形状で形成されており、前記成形ガラス素材の
表面は、前記成形型との相対回転で、成形面の形状に倣
うように加圧成形されることを特徴とする請求項1に記
載のガラス素子の成形方法。2. The groove is formed in a shape extending in a radial direction from a central portion of a molding surface, and a surface of the molding glass material follows a shape of the molding surface by relative rotation with the molding die. The method for forming a glass element according to claim 1, wherein the glass element is pressed.
に延びる形状で、円周方向に対して均等に、複数個形成
されており、前記成形ガラス素材の表面は、前記成形型
との相対回転で、成形面の形状に倣うように加圧成形さ
れることを特徴とする請求項1に記載のガラス素子の成
形方法。3. The groove is formed in a shape extending in a radial direction from a central portion of a molding surface, and a plurality of the grooves are formed uniformly in a circumferential direction. 2. The method for forming a glass element according to claim 1, wherein the molding is performed under pressure so as to follow the shape of the forming surface by the relative rotation of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26964797A JPH11106221A (en) | 1997-10-02 | 1997-10-02 | Molding of glass element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26964797A JPH11106221A (en) | 1997-10-02 | 1997-10-02 | Molding of glass element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11106221A true JPH11106221A (en) | 1999-04-20 |
Family
ID=17475269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26964797A Pending JPH11106221A (en) | 1997-10-02 | 1997-10-02 | Molding of glass element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11106221A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009120457A (en) * | 2007-11-19 | 2009-06-04 | Konica Minolta Opto Inc | Lower mold, production method for glass gob, and production method for glass molded article |
-
1997
- 1997-10-02 JP JP26964797A patent/JPH11106221A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009120457A (en) * | 2007-11-19 | 2009-06-04 | Konica Minolta Opto Inc | Lower mold, production method for glass gob, and production method for glass molded article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3853622B2 (en) | Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body | |
JPH08259242A (en) | Flotation softening method for glass material, manufacture of optical device and optical device | |
JP3714360B1 (en) | Optical glass element and manufacturing method thereof | |
EP1008562A2 (en) | Method and apparatus for press molding a glass product | |
JP2000007360A (en) | Production of glass element | |
JPH11106221A (en) | Molding of glass element | |
JP3768796B2 (en) | Apparatus for producing glass lump for optical element, and method for producing optical element from the glass lump | |
JP3974376B2 (en) | Method for producing glass lump, method for producing glass molded product, and method for producing optical element | |
JP3689586B2 (en) | Optical element manufacturing method | |
TWI551553B (en) | Method for manufacturing glass preform and glass preform, method for manufacturing optical element and optical element | |
JPH08319124A (en) | Formation of glass gob | |
JP4289716B2 (en) | Glass element molding method | |
JP3618937B2 (en) | Optical element molding method and precision element molding method | |
JP3630829B2 (en) | Manufacturing method of optical element molding material | |
JP4026868B2 (en) | Optical element manufacturing method | |
JP4076251B2 (en) | Glass gob for optical element molding, molding apparatus therefor, molding method therefor, and optical element forming method using glass gob | |
JP3634898B2 (en) | Manufacturing method and apparatus for preforming glass optical element | |
JP2002137925A (en) | Forming method for glass element | |
JP2002128535A (en) | Forming method of glass gob for optical element | |
JP2000233934A (en) | Method for press-forming glass product and device therefor | |
JP2986603B2 (en) | Method and apparatus for forming glass molded product | |
JPH11322349A (en) | Molding of glass product | |
JP2008074636A (en) | Method and device for producing optical element | |
KR102578361B1 (en) | glass molding mold structure for vehicle display | |
JPH08245223A (en) | Method for forming optical element |