[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH11104492A - Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure - Google Patents

Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure

Info

Publication number
JPH11104492A
JPH11104492A JP9291637A JP29163797A JPH11104492A JP H11104492 A JPH11104492 A JP H11104492A JP 9291637 A JP9291637 A JP 9291637A JP 29163797 A JP29163797 A JP 29163797A JP H11104492 A JPH11104492 A JP H11104492A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
gas purifying
alumina
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9291637A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Taiji Sugano
泰治 菅野
Atsushi Kagakui
敦 加岳井
Masaki Funabiki
正起 船曳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, NE Chemcat Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9291637A priority Critical patent/JPH11104492A/en
Publication of JPH11104492A publication Critical patent/JPH11104492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purifying and catalytic process for purifying NOx in dilute combustion exhaust gas with high efficiency and high reliability. SOLUTION: An exhaust gas purifying catalyst layer is composed of a catalyst A containing alumina and/or alumina and at least one kind selected from alkaline earth metals and a catalyst B composed of an alumina carrier containing silver or silver and silica or titanium and having a pore structure in which the relation between the pore radius and the pore volume measured by the nitrogen gas adsorption method, is satisfied as: Y is 70% or more of X and Z is 20% or less of X when the total value of pore volume occupied by pores of pore radius of 300 angstrom or less is set as X, the total value of pore volume occupied by pores of pore radius of >=25 angstrom to <=100 angstrom is set as Y and the total value of pore volume occupied by pores of pore radius of >=100 angstrom or larger to <=300 angstrom is set as Z.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃焼排ガス、特に自
動車、ボイラー、ガスエンジン、ガスタービン、船舶な
どの移動式および固定式内燃機関の燃焼排ガス中に含ま
れる窒素酸化物の浄化に用いられる排ガス浄化用触媒層
および排ガス浄化用触媒被覆構造体に関し、さらに詳細
には希薄燃焼領域で運転される内燃機関から排出される
排ガス中の窒素酸化物を高い空間速度で、かつ高効率で
浄化可能な排ガス浄化用触媒層および排ガス浄化用触媒
被覆構造体とこれらを使用しての排ガス浄化方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to exhaust gas used for purifying nitrogen oxides contained in combustion exhaust gas of mobile and stationary internal combustion engines of automobiles, boilers, gas engines, gas turbines, ships and the like. The present invention relates to a purification catalyst layer and an exhaust gas purification catalyst-coated structure, and more specifically, it can purify nitrogen oxides in exhaust gas discharged from an internal combustion engine operated in a lean burn region at a high space velocity and with high efficiency. The present invention relates to an exhaust gas purifying catalyst layer, an exhaust gas purifying catalyst coated structure, and an exhaust gas purifying method using the same.

【0002】[0002]

【従来の技術】自動車をはじめとする内燃機関から排出
される各種の燃焼排ガス中には、燃焼生成物である水や
二酸化炭素と共に一酸化窒素や二酸化窒素などの窒素酸
化物(NOx)が含まれている。NOxは人体、特に呼
吸器系に悪影響を及ぼすばかりでなく、地球環境保全の
上からも問題視される酸性雨の原因の1つとなつてい
る。そのため、これら各種の排ガスから効率よく窒素酸
化物を除去する脱硝技術の開発が望まれている。
2. Description of the Related Art Various combustion exhaust gases emitted from internal combustion engines such as automobiles contain nitrogen oxides (NOx) such as nitric oxide and nitrogen dioxide together with water and carbon dioxide as combustion products. Have been. NOx not only adversely affects the human body, especially the respiratory system, but also becomes one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection. Therefore, development of a denitration technology for efficiently removing nitrogen oxides from these various exhaust gases is desired.

【0003】他方において、地球温暖化防止の観点から
近年希薄燃焼方式の内燃機関が注目されている。従来の
自動車用ガソリンエンジンは、空燃比(A/F)=1
4.7付近で制御された化学量論比での燃焼であり、そ
の排ガス処理に対しては排ガス中の一酸化炭素、炭化水
素とNOxとを、主として白金、ロジウム、パラジウム
およびセリアを含むアルミナ触媒に接触させて有害三成
分を同時に除去する三元触媒方式が採用されてきた。
On the other hand, in view of the prevention of global warming, lean-burn internal combustion engines have recently attracted attention. A conventional gasoline engine for an automobile has an air-fuel ratio (A / F) = 1.
Combustion at a controlled stoichiometric ratio near 4.7. For exhaust gas treatment, carbon monoxide, hydrocarbons and NOx in the exhaust gas are converted to alumina mainly containing platinum, rhodium, palladium and ceria. A three-way catalyst system has been employed in which three harmful components are simultaneously removed by contact with a catalyst.

【0004】しかしながら、この三元触媒方式は、エン
ジンが化学量論比で運転されることが絶対条件であるた
め、希薄空燃比で運転される希薄燃焼ガソリンエンジン
の排ガス浄化には適用することができない。また、ディ
ーゼルエンジンは本来希薄燃焼エンジンであるが、その
排ガスに対しては浮遊粒子状物質とNOxの両方に厳し
い規制がかけられようとしている。
[0004] However, since the absolute condition is that the engine is operated at a stoichiometric ratio, the three-way catalyst system can be applied to exhaust gas purification of a lean burn gasoline engine operated at a lean air-fuel ratio. Can not. In addition, diesel engines are originally lean burn engines, but strict regulations are being imposed on both the suspended particulate matter and NOx in the exhaust gas.

【0005】従来、酸素過剰雰囲気下でΝOxを還元除
去する方法としては、還元ガスとして僅かな量でも選択
的に触媒に吸着するNHを使用する技術が既に確立さ
れている。この技術は、いわゆる固定発生源であるボイ
ラーやディーゼルエンジンからの排ガス脱硝方法として
工業化されている。しかし、この方法においては未反応
の還元剤の回収処理のための特別な装置を必要とするば
かりでなく、臭気が強く有害なアンモニアを用いるの
で、特に自動車などの移動発生源からの排ガス脱硝技術
としては危険性があり適用できない。
Conventionally, as a method of reducing and removing the ΝOx in an oxygen-rich atmosphere, a technique of using NH 3 also adsorb selectively catalyst small amount as the reducing gas has already been established. This technology has been industrialized as a method for denitration of exhaust gas from boilers and diesel engines, which are so-called stationary sources. However, this method requires not only a special device for the recovery treatment of the unreacted reducing agent, but also the use of ammonia, which has a strong odor and is harmful. It is dangerous and cannot be applied.

【0006】近年、酸素過剰雰囲気の希薄燃焼排ガス中
に残存する未燃の炭化水素を還元剤として用いることに
より、NOx還元反応を促進させることができるという
報告がなされて以来、この反応を促進するための触媒が
種々開発され報告されている。例えば、アルミナやアル
ミナに遷移金属を担持した触媒が、炭化水素を還元剤と
して用いるNOx還元反応に有効であるとする数多くの
報告がある。また、特開平4−284848号公報には
0.1〜4重量%のCu、Fe、Cr、Zn、Ni、V
を含有するアルミナあるいはシリカ−アルミナをΝOx
還元触媒として使用した例が報告されている。
In recent years, it has been reported that a NOx reduction reaction can be promoted by using unburned hydrocarbons remaining in a lean combustion exhaust gas in an oxygen-excess atmosphere as a reducing agent. Various catalysts have been developed and reported. For example, there are many reports that alumina or a catalyst in which a transition metal is supported on alumina is effective for a NOx reduction reaction using a hydrocarbon as a reducing agent. JP-A-4-284848 discloses that 0.1 to 4% by weight of Cu, Fe, Cr, Zn, Ni, V
Or silica-alumina containing ΝOx
An example of use as a reduction catalyst has been reported.

【0007】更に、Ρtをアルミナに担持した触媒を用
いると、NOx還元反応が200〜300℃程度の低温
領域で進行することが特開平4−267946号公報、
特開平5−68855号公報や特開平5−103949
号公報などに報告されている。しかしながら、これらの
担持貴金属触媒を用いた場合、還元剤である炭化水素の
燃焼反応が過度に促進されたり、地球温暖化の原因物質
の1つといわれているNOが多量に副生し、無害なΝ
への還元反応を選択的に進行させることが困難である
といった欠点を有していた。
[0007] Further, Japanese Patent Application Laid-Open No. 4-267946 discloses that when a catalyst in which Δt is supported on alumina is used, the NOx reduction reaction proceeds in a low temperature range of about 200 to 300 ° C.
JP-A-5-68855 and JP-A-5-103949
No., etc. However, when these supported noble metal catalysts are used, the combustion reaction of hydrocarbons as a reducing agent is excessively promoted, and N 2 O which is one of the substances causing global warming is by-produced, Harmless
However, it had a drawback that it was difficult to selectively advance the reduction reaction to 2 .

【0008】本出願人の一方は、先に酸素過剰雰囲気下
で炭化水素を還元剤として銀を含有する触媒を用いると
NOx還元反応が選択的に進行することを見出し、この
技術を特開平4−281844号公報に開示した。この
開示が行われた後においても、銀を含有する触媒を用い
る類似のΝOx還元除去技術が特開平4−354536
号公報、特開平5−92124号公報、特開平5−92
125号公報および特開平6−277454号公報など
に開示されている。
One of the present applicants has previously found that the use of a catalyst containing silver with a hydrocarbon as a reducing agent in an oxygen-excess atmosphere causes the NOx reduction reaction to proceed selectively. -281844. Even after this disclosure was made, a similar ΝOx reduction and removal technique using a catalyst containing silver was disclosed in Japanese Patent Application Laid-Open No. 4-354536.
JP-A-5-92124, JP-A-5-92124
No. 125 and JP-A-6-277454.

【0009】[0009]

【発明の解決しようとする課題】しかし、これら従来の
公報に記載されたアルミナ担持銀触媒は、水蒸気および
SOx共存下での脱硝性能が実用的に未だ不十分であっ
た。
However, the alumina-supported silver catalysts described in these conventional publications still have a practically insufficient denitration performance in the presence of steam and SOx.

【0010】本発明は上記従来技術の欠点を解決すべく
なされたものであり、その目的とするところは、希薄燃
焼排ガス中のNOxを効率よく除去することができる排
ガス浄化触媒層および触媒被覆構造体と、これらを使用
しての希薄燃焼排ガス中のNOxを高効率、高信頼性を
もって浄化する排ガス浄化方法を提供することにある。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide an exhaust gas purifying catalyst layer and a catalyst coating structure capable of efficiently removing NOx in lean combustion exhaust gas. An object of the present invention is to provide an exhaust gas purifying method for purifying NOx in lean combustion exhaust gas with high efficiency and high reliability by using the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは、水蒸気と
SOxが共存する希薄燃焼領域において高い脱硝性能を
有する排ガス浄化用触媒層および排ガス浄化用触媒被覆
構造体と、これらを使用しての排ガス浄化方法について
鋭意研究を重ねた結果、排ガスの流通方向に対してアル
ミナおよび/またはアルカリ土類金属(マグネシウム、
カルシウム、ストロンチウム、バリウム)から選択され
た少なくとも1種を含有させてなる触媒Aを前段に、特
定の細孔構造を有するアルミナに、銀を含有するかもし
くは銀と微量のシリカまたはチタニアとを含有する触媒
Bを後段になるように区分して配置させることにより上
記した問題点を解決できることを見出し本発明を完成す
るに至った。
Means for Solving the Problems The present inventors have developed an exhaust gas purifying catalyst layer and an exhaust gas purifying catalyst coating structure having high denitration performance in a lean burn region where steam and SOx coexist, and using these. As a result of diligent research on exhaust gas purification methods for alumina, alumina and / or alkaline earth metals (magnesium,
Calcium, strontium, barium), and before the catalyst A containing at least one selected from the group consisting of alumina having a specific pore structure, and silver containing silver or a trace amount of silica or titania. The inventors have found that the above-mentioned problems can be solved by arranging the catalyst B separately in the latter stage so that the present invention has been completed.

【0012】すなわち、上記課題を解決するための本発
明の第1の実施態様は、アルミナおよび/またはアルカ
リ土類金属から選択された少なくとも1種を含有させて
なる触媒Aと、窒素ガス吸着法により測定された細孔半
径と細孔容積の関係が、細孔半径300オングストロー
ム以下の細孔の占める細孔容積の合計値をXとし、細孔
半径25オングストローム以上で100オングストロー
ム未満の細孔の占める細孔容積の合計値をYとし、細孔
半径100オングストローム以上で300オングストロ
ーム以下の細孔の占める細孔容積の合計値をZとしたと
き、YがXの70%以上であり、ZがXの20%以下で
あるような細孔構造を有するアルミナ担体に銀を含有さ
せてなる触媒Bとから構成されることを特徴とするもの
であり、また前記触媒Bのアルミナ担体に、さらにシリ
カまたはチタニアを含有させてなることを特徴とし、さ
らに前記触媒Aのアルカリ土類金属は、マグネシウム、
カルシウム、ストロンチウムおよびバリウムである排ガ
ス浄化用触媒層を特徴とするものである。前記触媒層
は、粉体または成型した状態で排ガスの流通空間に配置
するのが好ましい。
That is, a first embodiment of the present invention for solving the above-mentioned problems is to provide a catalyst A containing at least one selected from alumina and / or an alkaline earth metal, and a nitrogen gas adsorption method. The relationship between the pore radius and the pore volume measured by the following formula is defined as X, where the total value of the pore volumes occupied by pores having a pore radius of 300 Å or less is X, and pores having a pore radius of 25 Å or more and less than 100 Å are obtained. Assuming that the total value of the pore volume occupied by Y is Y and the total value of the pore volume occupied by pores having a pore radius of 100 Å or more and 300 Å or less is Z, Y is 70% or more of X, and Z is A catalyst B comprising silver contained in an alumina carrier having a pore structure not more than 20% of X. The alumina support medium B, and further contain silica or titania is characterized by comprising, additionally alkaline earth metal of the catalyst A, magnesium,
It is characterized by an exhaust gas purifying catalyst layer comprising calcium, strontium and barium. The catalyst layer is preferably disposed in a flow space of the exhaust gas in a powdered or molded state.

【0013】また、本発明の第2の実施態様は、多数の
貫通孔を有する耐火性材料からなる一体構造の支持基質
における少なくとも貫通孔の内表面に前記した触媒を区
分して被覆してなる排ガス浄化用触媒被覆構造体を特徴
とするものである。
According to a second embodiment of the present invention, at least the inner surface of the through-hole in a support substrate having an integral structure made of a refractory material having a large number of through-holes is coated with the above-mentioned catalyst in a divided manner. It is characterized by an exhaust gas purifying catalyst-coated structure.

【0014】またさらに、本発明の第3の実施態様は、
希薄空燃比で運転される内燃機関の燃焼排ガスを触媒含
有層と接触させることからなる炭化水素を還元剤とする
排ガス中のNOxを除去する方法において、該触媒含有
層に含まれる触媒は前記第1の実施態様における触媒層
または第2の実施態様における触媒被覆構造体であり、
排ガスの流通方向に対して触媒Aが前段に、触媒Bが後
段になるように区分して配置させた排ガス浄化方法を特
徴とするものである。
Still further, a third embodiment of the present invention provides:
A method for removing NOx in exhaust gas using a hydrocarbon as a reducing agent, comprising contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer, wherein the catalyst contained in the catalyst-containing layer is A catalyst layer according to one embodiment or a catalyst coating structure according to a second embodiment,
The method is characterized by an exhaust gas purifying method in which the catalyst A is disposed in the front stage and the catalyst B is disposed in the rear stage with respect to the flow direction of the exhaust gas.

【0015】[0015]

【発明の実施の形態】以下、本発明の詳細およびその作
用についてさらに具体的に説明する。 (触媒の構造およびその製法)本発明の排ガス浄化用触
媒層における触媒Aと、触媒Bの主成分の1つであるア
ルミナは、例えば鉱物学上ベーマイト、擬ベーマイト、
バイアライト、あるいはノルストランダイトに分類され
る水酸化アルミニウムの粉体やゲルを、空気中あるいは
真空中300〜800℃、好ましくは400〜900℃
で加熱脱水することによって、結晶学的にγ一型、η−
型、δ−型、χ−型あるいはその混合型に分類されるア
ルミナに相転移させたものが脱硝性能上好ましい。他の
結晶構造をとるアルミナ、例えばα−型のアルミナは極
端に比表面積が小さく固体酸性にも乏しいので本発明の
触媒成分としては不適当である。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention and its operation will be more specifically described below. (Catalyst Structure and Method for Producing the Same) Alumina, which is one of the main components of the catalyst A and the catalyst B in the exhaust gas purifying catalyst layer of the present invention, is, for example, boehmite, pseudo-boehmite,
Vialite or aluminum hydroxide powder or gel classified as norstrandite is placed in air or vacuum at 300 to 800 ° C, preferably 400 to 900 ° C.
By heating and dehydration, crystallographically γ-type, η-
It is preferable from the viewpoint of denitration performance that the phase transition is made to alumina classified into type, δ-type, χ-type or a mixed type thereof. Alumina having another crystal structure, for example, α-type alumina, is unsuitable as the catalyst component of the present invention because of its extremely small specific surface area and poor solid acidity.

【0016】また触媒Bのアルミナは、窒素ガス吸着法
により測定された細孔半径が300オングストローム以
下の細孔の占める細孔容積の合計値をXとし、細孔半径
が25オングストローム以上で100オングストローム
未満の細孔の占める細孔容積の合計値をYとし、細孔半
径が100オングストローム以上で300オングストロ
ーム以下の細孔の占める細孔容積の合計値をZとしたと
き、YがΧの70%以上であり、ZがXの20%以下で
あるような細孔構造を有するアルミナであることが望ま
しい。細孔構造が、上記した条件を満たさないアルミナ
を本発明の触媒における担体として用いた場合には、こ
れにより構成される排ガス浄化用触媒層は水蒸気とSO
xとの共存下での排ガスの脱硝性能が不十分であった。
したがって本発明の触媒Bの成分として有効なアルミナ
は、上記した結晶構造および細孔特性を有するものが適
切であるといえる。
The alumina of the catalyst B has a total pore volume occupied by pores having a pore radius of 300 angstroms or less measured by a nitrogen gas adsorption method as X, and a pore radius of 25 angstroms or more and 100 angstroms or more. When the total value of the pore volume occupied by pores smaller than less than Y is Y, and the total value of the pore volume occupied by pores having a pore radius of 100 Å or more and 300 Å or less is Z, Y is 70% of Χ. As described above, it is preferable that the alumina is a alumina having a pore structure in which Z is 20% or less of X. When alumina having a pore structure not satisfying the above-mentioned conditions is used as a carrier in the catalyst of the present invention, the exhaust gas purifying catalyst layer constituted by the alumina has water vapor and SO 2.
The denitration performance of exhaust gas in the presence of x was insufficient.
Therefore, it can be said that alumina having the above-mentioned crystal structure and pore characteristics is suitable as the alumina effective as a component of the catalyst B of the present invention.

【0017】本発明の排ガス浄化用触媒層は、以下のよ
うな触媒である。本発明にかかる触媒層はアルミナおよ
び/またはマグネシウム、カルシウム、ストロンチウ
ム、バリウムのようなアルカリ土類金属より選ばれた少
なくとも1種を含有させてなる触媒Aと、上記した結晶
構造および細孔特性を有するアルミナに銀もしくは銀と
微量のシリカまたはチタニアを含有させてなる触媒Bと
から構成されるものである。触媒Aの一構成成分である
アルカリ土類金属、特にマグネシウム、カルシウム、ス
トロンチウムおよびバリウムからなる群より選択された
少なくとも1種の状態は特に限定されない。また、触媒
Bのアルミナに含有される銀もしくはシリカまたはチタ
ニアの状態も特に限定されず、例えば銀の場合は金属状
態、酸化物状態およびこれらの混合状態などが挙げら
れ、シリカまたはチタニアの場合は酸化物状態、局所的
な複合酸化物状態およびこれらの混合状態などが挙げら
れる。特に、希薄燃焼ガソリン自動車などの内燃機関の
燃焼排ガス組成は運転状態によってその都度変化するた
め、触媒は還元雰囲気および酸化雰囲気に曝される。し
たがって触媒を構成する活性金属の状態は雰囲気により
変化することが想定される。なお、触媒Aにおけるアル
ミナおよび/またはアルカリ土類金属、特にマグネシウ
ム、カルシウム、ストロンチウムおよびバリウムからな
る群より選択された少なくとも1種および触媒Bにおけ
る銀とシリカまたはチタニアの出発原料は特に限定され
ない。
The exhaust gas purifying catalyst layer of the present invention is the following catalyst. The catalyst layer according to the present invention has a catalyst A containing at least one selected from the group consisting of alumina and / or alkaline earth metals such as magnesium, calcium, strontium and barium, and has the above-mentioned crystal structure and pore characteristics. The catalyst comprises alumina or silver and silver and a small amount of silica or titania. At least one state selected from the group consisting of alkaline earth metals, particularly magnesium, calcium, strontium and barium, which are one component of catalyst A, is not particularly limited. Further, the state of silver or silica or titania contained in the alumina of the catalyst B is not particularly limited. For example, in the case of silver, a metal state, an oxide state, and a mixed state thereof can be mentioned. In the case of silica or titania, An oxide state, a local composite oxide state, a mixed state thereof, and the like can be given. In particular, since the composition of the combustion exhaust gas of an internal combustion engine such as a lean burn gasoline automobile changes depending on the operating conditions, the catalyst is exposed to a reducing atmosphere and an oxidizing atmosphere. Therefore, it is assumed that the state of the active metal constituting the catalyst changes depending on the atmosphere. The starting material of the catalyst A is at least one selected from the group consisting of alumina and / or alkaline earth metal, particularly magnesium, calcium, strontium and barium, and the starting material of silver and silica or titania in the catalyst B is not particularly limited.

【0018】そして、本発明にかかる触媒Aにおけるア
ルミナおよび/またはアルカリ土類金属(マグネシウ
ム、カルシウム、ストロンチウムおよびバリウム)より
選択された少なくとも1種のいずれかを含有させる方法
や触媒Bにおけるアルミナに銀もしくは銀とシリカまた
はチタニアを含有させる方法は特に限定されず、従来か
ら行われている手法、例えば吸着法、ポアフィリング
法、インシピエントウェットネス法、蒸発乾固法、スプ
レー法などの含浸法、混練法、物理混合法およびこれら
の組み合わせ法など通常採用されている公知の方法を任
意に採用することができる。
The method of adding at least one selected from the group consisting of alumina and / or alkaline earth metals (magnesium, calcium, strontium and barium) in the catalyst A according to the present invention, and silver in the alumina in the catalyst B Alternatively, the method for containing silver and silica or titania is not particularly limited, and conventionally used methods such as an adsorption method, a pore filling method, an incipient wetness method, an evaporation to dryness method, and an impregnation method such as a spray method. Any known method, such as a kneading method, a physical mixing method, or a combination thereof, may be used.

【0019】例えば触媒Aを、アルミナおよびアルカリ
土類金属としてのマグネシウム、カルシウム、ストロン
チウムおよびバリウムからなる群より選択された少なく
とも1種とから構成させる場合は、アルミナと、マグネ
シウム源、カルシウム源、ストロンチウム源およびバリ
ウム源からなる群より選択された少なくとも1種を混合
した後、乾燥、焼成する。また、アルミナ担体の製造時
にマグネシウム源、カルシウム源、ストロンチウム源お
よびバリウム源からなる群より選択された少なくとも1
種を含有させる触媒製造法、例えば、アルミニウムアル
コキシドのアルコール溶液とマグネシウム源、カルシウ
ム源、ストロンチウム源およびバリウム源からなる群よ
り選択された少なくとも1種を含有するアルコール溶液
を混合後、加熱し加水分解させるアルコキシド法やアル
ミナ源と、マグネシウム源、カルシウム源、ストロンチ
ウム源およびバリウム源より選択された少なくとも1種
との混合水溶液にアルカリを添加して沈殿させる共沈法
も適用できる。
For example, when the catalyst A is composed of alumina and at least one selected from the group consisting of magnesium, calcium, strontium and barium as alkaline earth metals, alumina and a magnesium source, a calcium source, a strontium After mixing at least one selected from the group consisting of a source and a barium source, the mixture is dried and fired. Further, at the time of manufacturing the alumina carrier, at least one selected from the group consisting of a magnesium source, a calcium source, a strontium source, and a barium source.
A method for producing a catalyst containing seeds, for example, mixing an alcohol solution of aluminum alkoxide with an alcohol solution containing at least one selected from the group consisting of a magnesium source, a calcium source, a strontium source and a barium source, followed by heating and hydrolysis Alternatively, a coprecipitation method in which an alkali is added to an aqueous solution of a mixture of an alkoxide method and an alumina source and at least one selected from a magnesium source, a calcium source, a strontium source, and a barium source to cause precipitation, can be applied.

【0020】つぎに触媒Bの場合、アルミナあるいはア
ルミナ前躯体物質に銀源もしくは銀源とシリカ源または
チタニア源を同時に担持させた後、乾燥・焼成してもよ
いし、銀源とシリカ源またはチタニア源を逐次的に担持
させた後、乾燥・焼成してもよい。また、前記のような
特定の細孔構造をとるアルミナまたはアルミナ担体の製
造時に活性金属種を含有させる触媒製造法、例えば、ア
ルミニウムアルコキシドのアルコール溶液と、銀源もし
くは銀源とシリカ源またはチタニア源のアルコール溶液
を混合後、加熱し加水分解させるアルコキシド法や、ア
ルミニウム源、銀源もしくは銀源およびシリカ源または
チタニア源の混合水溶液にアルカリを添加して沈殿させ
る共沈法も適用できる。
Next, in the case of the catalyst B, a silver source or a silver source and a silica source or a titania source may be simultaneously supported on alumina or an alumina precursor material, and then dried and calcined. After sequentially supporting the titania source, drying and firing may be performed. Further, a method for producing a catalyst containing an active metal species at the time of producing alumina or an alumina carrier having a specific pore structure as described above, for example, an alcohol solution of aluminum alkoxide, a silver source or a silver source and a silica source or a titania source An alkoxide method in which an alcohol solution is mixed and then heated and hydrolyzed, or a coprecipitation method in which an alkali is added to an aluminum source, a silver source, or a mixed aqueous solution of a silver source and a silica source or a titania source to cause precipitation, can be applied.

【0021】触媒Aにおけるアルミナおよび/またはア
ルカリ土類金属(マグネシウム、カルシウム、ストロン
チウムおよびバリウム)より選択された少なくとも1種
の含有量は特に限定されず、要求性能に応じて任意に選
択できるが、特にマグネシウム、カルシウム、ストロン
チウムおよびバリウムからなる群より選択された1種の
含有量はSOx吸収性能上10〜80重量%であること
が好ましい。触媒Bにおけるアルミナに対する金属換算
での銀の含有量は特に限定されないが、脱硝性能上0.
1〜10重量%の範囲が好ましく、2〜8重量%の範囲
が特に好ましい。また、触媒全体に対する酸化物換算で
のシリカまたはチタニアの含有量も脱硝性能上0.05
重量%以上で5重量%未満の範囲が好ましい。シリカま
たはチタニアの含有量が5重量%以上であると脱硝性能
が低下する。また、0.05重量%未満の場合、シリカ
またはチタニアの添加による相乗効果が十分に発揮され
ないので上記範囲とするのが好ましい。
The content of at least one selected from alumina and / or alkaline earth metals (magnesium, calcium, strontium and barium) in the catalyst A is not particularly limited, and can be arbitrarily selected according to required performance. In particular, the content of one selected from the group consisting of magnesium, calcium, strontium and barium is preferably 10 to 80% by weight in terms of SOx absorption performance. The silver content of the catalyst B in terms of metal with respect to alumina in the catalyst B is not particularly limited.
A range of 1 to 10% by weight is preferred, and a range of 2 to 8% by weight is particularly preferred. Further, the content of silica or titania in terms of oxide with respect to the entire catalyst was 0.05% in terms of denitration performance.
The range is preferably not less than 5% by weight and not less than 5% by weight. When the content of silica or titania is 5% by weight or more, the denitration performance is reduced. If the content is less than 0.05% by weight, the synergistic effect due to the addition of silica or titania is not sufficiently exhibited, so that the content is preferably in the above range.

【0022】触媒Aの乾燥温度は、特に限定されるもの
ではなく通常80〜120℃程度で乾燥する。また、焼
成温度は200〜900℃、好ましくは400〜800
℃程度である。焼成温度900℃を超えると、アルミナ
の比表面積の減少とともにマグネシウム、カルシウム、
ストロンチウムおよびバリウムからなる群より選択され
た少なくとも1種の分散性も低下するため好ましくな
い。一方触媒Bの乾燥温度は、特に限定されるものでは
なく通常80〜120℃程度で乾燥する。また、焼成温
度は300〜1000℃、好ましくは400〜900℃
程度である。焼成温度が1000℃を超えると、α−型
のアルミナへの相変態が起こるので好ましくない。この
ときの雰囲気は特に限定されないが、触媒組成に応じて
空気中、不活性ガス中、酸素中などの各雰囲気を適宜選
択すればよい。また、各雰囲気を一定時間毎に交互に代
えてもよい。
The drying temperature of the catalyst A is not particularly limited, and it is usually dried at about 80 to 120 ° C. The firing temperature is 200 to 900 ° C, preferably 400 to 800.
It is about ° C. When the firing temperature exceeds 900 ° C., the specific surface area of alumina decreases, and magnesium, calcium,
The dispersibility of at least one selected from the group consisting of strontium and barium also decreases, which is not preferable. On the other hand, the drying temperature of the catalyst B is not particularly limited and is usually dried at about 80 to 120 ° C. The firing temperature is 300 to 1000 ° C, preferably 400 to 900 ° C.
It is about. If the firing temperature exceeds 1000 ° C., phase transformation to α-type alumina occurs, which is not preferable. The atmosphere at this time is not particularly limited, but each atmosphere such as in air, in an inert gas, or in oxygen may be appropriately selected according to the catalyst composition. In addition, each atmosphere may be alternately changed at regular intervals.

【0023】本発明の第1の実施態様において、排ガス
浄化用の触媒層を形成するに際し、該触媒層は上記した
触媒を所定の形状に成型または粉末状態のまま目的とす
る排ガスが流通する一定の空間内に充填する。触媒層を
成型体とするに際して、その形状は特に制限されず、例
えば球状、円筒状、ハニカム状、螺旋状、粒状、ペレッ
ト状、リング状など種々の形状を採用することができ
る。これらの形状、大きさなどは使用条件に応じて任意
に選択すればよい。
In the first embodiment of the present invention, when forming a catalyst layer for purifying exhaust gas, the catalyst layer is formed by molding the above-mentioned catalyst into a predetermined shape or in a powdered state to allow a target exhaust gas to flow therethrough. Fill in the space. When the catalyst layer is formed into a molded body, its shape is not particularly limited, and various shapes such as a spherical shape, a cylindrical shape, a honeycomb shape, a spiral shape, a granular shape, a pellet shape, and a ring shape can be adopted. These shapes, sizes, and the like may be arbitrarily selected according to use conditions.

【0024】次に、本発明の第2の実施態様の排ガス浄
化用触媒被覆構造体について説明する。ここでいう触媒
被覆構造体とは、多数の貫通孔を有する耐火性材料で構
成された一体構造の支持基質の少なくとも該貫通孔の内
表面に上記した触媒を区分して被覆した構造を有するも
のである。
Next, an exhaust gas purifying catalyst-coated structure according to a second embodiment of the present invention will be described. Here, the catalyst-coated structure has a structure in which at least the inner surface of the through-hole is coated with the above-mentioned catalyst in a unitary support substrate made of a refractory material having a large number of through-holes. It is.

【0025】該支持基質には、多数の貫通孔が排ガスの
流通方向に沿って設けられるが、その流通方向に垂直な
断面において、通常、開孔率60〜90%、好ましくは
70〜90%であって、その数は1平方インチ(5.0
6cm)当り30〜700個、好ましくは200〜6
00個である。触媒は、少なくとも該貫通孔の内表面上
に区分して被覆されるが、その支持基質の端面や側面に
区分して被覆されていてもよい。
The support substrate is provided with a large number of through-holes along the flow direction of the exhaust gas. In a cross section perpendicular to the flow direction, the porosity is usually 60 to 90%, preferably 70 to 90%. And the number is one square inch (5.0
30 to 700, preferably 200 to 6, 6 cm 2 )
00. The catalyst is separately coated on at least the inner surface of the through-hole, but may be separately coated on the end surface or side surface of the supporting substrate.

【0026】該耐火性支持基質の材質としては、α−型
のアルミナ、ムライト、コージェライト、シリコンカー
バイトなどのセラミックスやオーステナイト系、フェラ
イト系のステンレス鋼などの金属などが使用される。形
状もハニカムやフォームなどの慣用のものが使用できる
が好ましいものは、コージェライト製やステンレス鋼製
のハニカム状の支持基質である。
As the material of the refractory support substrate, ceramics such as α-type alumina, mullite, cordierite and silicon carbide, and metals such as austenitic and ferritic stainless steels are used. The shape may be a conventional one such as a honeycomb or a foam, but a preferable one is a honeycomb-shaped support substrate made of cordierite or stainless steel.

【0027】該支持基質への触媒の被覆方法としては、
一定の粒度に整粒した本発明の触媒をバインダーと共
に、またはバインダーを用いないで前記支持基質の内表
面に区分して被覆する、いわゆる通常のウォッシュコー
ト法やゾル−ゲル法が適用できる。また、上記の支持基
質に予めアルミナを被覆しておいて、これに本発明の触
媒活性物質の担持処理を行って触媒被覆層を形成しても
よい。支持基質への触媒層の被覆量は限定されないが、
支持基質単位体積当り50〜250g/リットル程度が
好ましく、100〜200g/リットル程度とすること
がより好ましい。
As a method for coating the support substrate with a catalyst,
A so-called ordinary wash coat method or a sol-gel method, in which the catalyst of the present invention sized to a certain particle size is separately coated on the inner surface of the supporting substrate with or without a binder, can be applied. Alternatively, the support substrate may be coated with alumina in advance, and then the catalyst active layer of the present invention may be subjected to a treatment to form a catalyst coating layer. The coating amount of the catalyst layer on the supporting substrate is not limited,
The amount is preferably about 50 to 250 g / L, more preferably about 100 to 200 g / L, per unit volume of the supporting substrate.

【0028】次に、本発明の第3の実施態様の排ガス浄
化方法について説明する。本発明の第3の実施態様は、
第1の実施態様の触媒層や第2の実施態様の触媒被覆構
造体を使用して、これと排ガス中のCO、HCおよびH
といった還元性成分をΝOxおよびOといった酸化
性成分で完全酸化するに要する化学量論量近傍から過剰
の酸素を含有する排ガスとを接触させることによって、
ΝOxはNとΗOまで還元分解されると同時に、H
Cなどの還元剤もCOとHOに酸化される。
Next, an exhaust gas purifying method according to a third embodiment of the present invention will be described. A third embodiment of the present invention provides:
Using the catalyst layer of the first embodiment or the catalyst-coated structure of the second embodiment, CO, HC and H in the exhaust gas are used.
By contacting the exhaust gas containing excess oxygen from the stoichiometry near requiring 2 such reducing component to be completely oxidized in the oxidizing components such ΝOx and O 2,
ΝOx simultaneously is reduced decomposed N 2 until Eta 2 O, H
Reducing agents such as C are also oxidized to CO 2 and H 2 O.

【0029】また本発明において触媒Aを前段に、触媒
Bを後段に配置させる理由は、前段の触媒AでSOxを
吸着除去することにより、トータル触媒システムでのS
Ox耐久性を向上させるためである。触媒Aと触媒Bの
割合は、SOx耐久性能とNOx除去性能に応じて任意
に選択すればよい。
In the present invention, the catalyst A is arranged at the front stage and the catalyst B is arranged at the rear stage.
This is for improving the Ox durability. The ratio between the catalyst A and the catalyst B may be arbitrarily selected according to the SOx durability performance and the NOx removal performance.

【0030】ディーゼルエンジンの排ガスのように、排
ガスそのもののHC/NOx比が低い場合には、排ガス
中にメタン換算濃度で数百〜数千ppm程度の燃料ΗC
を追加添加した後、本発明の触媒と接触させるシステム
を採用すれば充分に高いNOx除去率を達成できる。な
お、ここでいうHCとは、パラフィン系炭化水素、オレ
フィン系炭化水素および芳香族系炭化水素、アルコー
ル、アルデヒド、ケトン、エーテルなどの含酸素有機化
合物、ガソリン、灯油、軽油、A重油などを含んだもの
を意味する。
When the HC / NOx ratio of the exhaust gas itself is low, such as the exhaust gas of a diesel engine, the fuel ΗC having a concentration of about several hundreds to several thousands ppm in terms of methane concentration in the exhaust gas.
If the system for contacting with the catalyst of the present invention is added after additionally adding, a sufficiently high NOx removal rate can be achieved. Note that HC referred to here includes paraffinic hydrocarbons, olefinic hydrocarbons and aromatic hydrocarbons, oxygen-containing organic compounds such as alcohols, aldehydes, ketones, and ethers, gasoline, kerosene, light oil, heavy oil A, and the like. Means something.

【0031】本発明による触媒層を用いて、希薄空燃比
の領域で運転される内燃機関の燃焼排ガスを浄化する際
のガス空間速度(SV)は特に限定されるものではない
が、SV5,000h−1以上で200,000h−1
以下とすることが好ましい。
The gas space velocity (SV) at the time of purifying the combustion exhaust gas of the internal combustion engine operated in the lean air-fuel ratio region using the catalyst layer according to the present invention is not particularly limited. 200,000h -1 at -1 or more
It is preferable to set the following.

【0032】そして、ガス組成を一定とした場合の脱硝
率は触媒の種類とHCの種類に依存するが、本発明の触
媒層を用いた場合は、例えばC〜Cのパラフィン、
オレフィンおよびC〜Cの芳香族HCに対しては4
50〜600℃、C〜Cのパラフィンおよびオレフ
ィンに対しては350〜550℃、C10〜C25のパ
ラフィンおよびオレフィンに対しては250〜500℃
で高い脱硝率を示すため触媒層入口温度を100℃以上
で700℃以下、好ましくは200℃以上で600℃以
下にすることが必要である。
The denitration rate when the gas composition is constant depends on the type of catalyst and the type of HC. When the catalyst layer of the present invention is used, for example, C 2 to C 6 paraffin,
For aromatic HC olefins and C 6 -C 9 4
50-600 ° C., 350-550 ° C. for C 6 -C 9 paraffins and olefins, 250-500 ° C. for C 10 -C 25 paraffins and olefins.
In order to exhibit a high denitrification rate, it is necessary to set the catalyst layer inlet temperature at 100 ° C. or higher to 700 ° C. or lower, preferably at 200 ° C. to 600 ° C.

【0033】[0033]

【実施例】以下に実施例および比較例により、本発明を
さらに詳細に説明する。但し、本発明は下記実施例に限
定されるものでない。 (1)触媒Bのアルミナの選定 触媒Bの使用アルミナ担体の選定のために、表1に示す
ような比表面積と細孔分布を有する種々のγ−型のアル
ミナにおいて、a〜cが本発明の範囲に入るアルミナで
あり、d〜gが本発明の範囲外のアルミナである。な
お、a〜gのアルミナの細孔分布は、カルロエルバ社製
のソープトマチックにより測定した。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the present invention is not limited to the following examples. (1) Selection of Alumina for Catalyst B In order to select an alumina carrier to be used for Catalyst B, a to c of the present invention are used in various γ-type aluminas having specific surface areas and pore distributions as shown in Table 1. And d to g are aluminas outside the scope of the present invention. In addition, the pore distribution of alumina of a to g was measured by a soapmatic manufactured by Carlo Elba.

【0034】[0034]

【表1】 ───────────────────────────────── アルミナ 比表面積 細 孔 分 布 (m/g) Y/Χ(%) Z/Χ(%) ───────────────────────────────── a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22.7 ─────────────────────────────────[Table 1] ア ル ミ ナ Alumina specific surface area pore distribution (m 2 / g) Y / Χ (%) Z / Χ (%) ─────────────────────────────────a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22. 7 ─────────────────────────────────

【0035】(2)触媒層の調製 以下に、本発明の触媒層を構成するための各触媒の調製
についての調製例を参考例として示す。 (イ)触媒Bの製造: [参考例1]表1のγ一型のアルミナaの前駆体物質で
あるアルミナ水和物300gを硝酸銀16.1gを含む
900ミリリットルの水溶液に浸漬した後、攪拌しなが
ら加熱し水分を蒸発させた。これを110℃で通風乾燥
後、空気中600℃で3時間焼成して触媒1を得た。な
お、触媒1における金属換算でのAgの含有量は触媒全
体に対して4.5重量%であった。
(2) Preparation of Catalyst Layer Hereinafter, preparation examples of preparation of each catalyst for constituting the catalyst layer of the present invention will be shown as reference examples. (A) Production of Catalyst B: [Reference Example 1] 300 g of alumina hydrate, which is a precursor of alumina of type γ-a in Table 1, was immersed in a 900 ml aqueous solution containing 16.1 g of silver nitrate, and then stirred. While heating, water was evaporated. This was air-dried at 110 ° C., and then calcined in air at 600 ° C. for 3 hours to obtain Catalyst 1. Incidentally, the content of Ag in terms of metal in Catalyst 1 was 4.5% by weight based on the entire catalyst.

【0036】[参考例2〜参考例16]同様に、表1に
示すγ一型のアルミナb〜gが得られる前駆体物質であ
るアルミナ水和物を用いた以外は、参考例1と同様にし
てそれぞれ触媒2(参考例2)、触媒3(参考例3)、
触媒4(参考例4)、触媒5(参考例5)、触媒6(参
考例6)、触媒7(参考例7)を得た。また、参考例1
の触媒1の調製に際し、銀の含有量を0重量%、1重量
%、3重量%、8重量%とした以外は参考例1と同様に
して、それぞれ触媒8(参考例8)、触媒9(参考例
9)、触媒10(参考例10)、触媒11(参考例1
1)を、シリカの含有量を0.1重量%、0.8重量
%、1.2重量%、5重量%になるように、シリカゾル
(SiO:20重量%)を添加した以外は参考例1と
同様にして、それぞれ触媒12(参考例12)、触媒1
3(参考例13)、触媒14(参考例14)、触媒15
(参考例15)を、参考例13の触媒13の調製に際し
シリカゾルの代わりにチタニアゾル(TiO:30重
量%)を用いた以外は参考例13と同様にして触媒16
(参考例16)を得た。
Reference Example 2 to Reference Example 16 Similarly to Reference Example 1, except that alumina hydrate which is a precursor substance from which γ-type aluminas b to g shown in Table 1 were obtained was used. Catalyst 2 (Reference Example 2), Catalyst 3 (Reference Example 3),
Catalyst 4 (Reference Example 4), Catalyst 5 (Reference Example 5), Catalyst 6 (Reference Example 6), and Catalyst 7 (Reference Example 7) were obtained. Reference Example 1
Catalyst 8 (Reference Example 8) and Catalyst 9 were prepared in the same manner as in Reference Example 1 except that the silver content was changed to 0% by weight, 1% by weight, 3% by weight, and 8% by weight. (Reference Example 9), Catalyst 10 (Reference Example 10), Catalyst 11 (Reference Example 1)
1) is the same as the reference except that silica sol (SiO 2 : 20% by weight) was added so that the silica content was 0.1%, 0.8%, 1.2%, and 5% by weight. Catalyst 12 (Reference Example 12), Catalyst 1
3 (Reference Example 13), Catalyst 14 (Reference Example 14), Catalyst 15
(Reference Example 15) was prepared in the same manner as in Reference Example 13 except that titania sol (TiO 2 : 30% by weight) was used instead of silica sol in preparing Catalyst 13 of Reference Example 13.
(Reference Example 16) was obtained.

【0037】(ロ)触媒Aの製造: [参考例17]表1のγ−型のアルミナaの前駆体物質
であるアルミナ水和物を空気中550℃で3時間焼成し
て触媒17(参考例17)を得た。
(B) Production of Catalyst A: [Reference Example 17] Catalyst 17 (Reference Example 17) was obtained by calcining alumina hydrate, which is a precursor of γ-type alumina a in Table 1, in air at 550 ° C. for 3 hours. Example 17) was obtained.

【0038】[参考例18]イオン交換水300ミリリ
ットルに、表1のγ−型のアルミナaの前駆体物質であ
るアルミナ水和物55.3gと水酸化カルシウム79.
3gを添加し、室温で1時間攪拌した後、攪拌した後加
熱し水分を蒸発させた。これを110℃で通風乾燥後、
空気中550℃で3時間焼成して触媒18(参考例1
8)を得た。なお、触媒18における金属換算でのCa
の含有量はアルミナに対して43重量%である。
REFERENCE EXAMPLE 18 In 300 ml of ion-exchanged water, 55.3 g of alumina hydrate, which is a precursor of γ-type alumina a shown in Table 1, and 79.times. Of calcium hydroxide.
3 g was added, and the mixture was stirred at room temperature for 1 hour. After stirring, the mixture was heated to evaporate water. After drying this at 110 ° C with ventilation,
The catalyst 18 was calcined at 550 ° C. for 3 hours in the air (Reference Example 1).
8) was obtained. The metal in the catalyst 18 in terms of Ca
Is 43% by weight with respect to the alumina.

【0039】[参考例19〜参考例26]上記参考例1
8における金属換算でのCaの含有量をアルミナに対し
て48重量%とした以外は参考例18と同様にして触媒
19(参考例19)と、参考例18の水酸化カルシウム
に代えて、水酸化マグネシウム、水酸化ストロンチウ
ム、水酸化バリウムを用いた以外は参考例18と同様に
してそれぞれ触媒20(参考例20)、触媒21(参考
例21)、触媒22(参考例22)と、参考例21の触
媒21の調製に際し、アルミナを用いず酸化ストロンチ
ウムのみで構成した触媒を触媒23(参考例23)と、
市販のシリカのみで構成した触媒を触媒24(参考例2
4)とした。また、表1のγ−型のアルミナfの前駆体
物質であるアルミナ水和物を用いた以外は参考例18と
同様にして触媒25(参考例25)を得た。さらに参考
例18のγ−型のアルミナaの前駆体物質であるアルミ
ナ水和物に代えて、表1のγ−型のアルミナfの前駆体
物質であるアルミナ水和物を用いてアルミナのみで構成
した触媒とした以外は参考例17と同様にして触媒26
(参考例26)を得た。
Reference Examples 19 to 26 Reference Example 1 above
In the same manner as in Reference Example 18, except that the content of Ca in terms of metal in Example 8 was changed to 48% by weight based on alumina, water was used instead of the catalyst 19 (Reference Example 19) and the calcium hydroxide of Reference Example 18. Catalyst 20 (Reference Example 20), Catalyst 21 (Reference Example 21), Catalyst 22 (Reference Example 22), and Reference Example 18 in the same manner as in Reference Example 18 except that magnesium oxide, strontium hydroxide, and barium hydroxide were used. In the preparation of Catalyst 21 of No. 21, a catalyst composed only of strontium oxide without using alumina was designated as Catalyst 23 (Reference Example 23),
The catalyst composed of commercially available silica alone was replaced with Catalyst 24 (Reference Example 2).
4). Further, a catalyst 25 (Reference Example 25) was obtained in the same manner as in Reference Example 18 except that alumina hydrate which was a precursor substance of γ-type alumina f in Table 1 was used. Further, instead of the alumina hydrate which is the precursor substance of the γ-type alumina a in Reference Example 18, the alumina hydrate which is the precursor substance of the γ-type alumina f in Table 1 was used and only alumina was used. Catalyst 26 was prepared in the same manner as in Reference Example 17 except that the catalyst was constituted.
(Reference Example 26) was obtained.

【0040】(ハ)ハニカム触媒の製造: [参考例27および28]上記の粉末触媒1の60g
を、アルミナゾル(Αl固形分10重量%)8g
および水120ミリリットルと共にボールミルポットに
仕込み、湿式粉砕してスラリーを得た。このスラリーの
中に、市販の400cpsi(セル/inch)コー
ジェライトハニカム基質からくり貫かれた直径1イン
チ、長さ2.5インチの円筒状コアを浸漬し、引き上げ
た後余分のスラリーをエアーブローで除去し乾燥した。
その後、500℃で30分間焼成し、ハニカム1リット
ル当たりドライ換算で150gの固形分を被覆して参考
例27のハニカム触媒27を得た。また、触媒1の代わ
りに参考例18の触媒18を用いた以外は、前記と同様
の調製法にて参考例28のハニカム触媒28を得た。
(C) Production of honeycomb catalyst: [Reference Examples 27 and 28] 60 g of the above powdered catalyst 1
To 8 g of alumina sol (Αl 2 O 3 solid content 10% by weight)
And 120 ml of water were charged into a ball mill pot and wet-pulverized to obtain a slurry. A cylindrical core having a diameter of 1 inch and a length of 2.5 inches penetrated from a commercially available 400 cpsi (cell / inch 2 ) cordierite honeycomb substrate is immersed in the slurry, and the excess slurry is air blown. And dried.
Thereafter, the resultant was baked at 500 ° C. for 30 minutes, and was coated with 150 g of solid content in terms of dry weight per liter of honeycomb to obtain a honeycomb catalyst 27 of Reference Example 27. Further, a honeycomb catalyst 28 of Reference Example 28 was obtained by the same preparation method as described above except that the catalyst 18 of Reference Example 18 was used instead of the catalyst 1.

【0041】以下に上記した参考例1〜28の触媒を用
いて形成した排ガス浄化用触媒層について、種々の条件
下において脱硝性能を評価した結果について述べる。 [実施例1]参考例17の触媒17と参考例1の触媒1
をそれぞれ加圧成型した後、粉砕して粒度を350〜5
00μmに整粒し、排ガスの流通方向に対して触媒17
が前段に、触媒1が後段になるように内径21mmのス
テンレス製反応管に充填して触媒層を形成し、これを常
圧固定床流通反応装置に装着した。なお、触媒17と触
媒1の重量比は1:1であった。
The results of evaluating the denitration performance of the catalyst layers for purifying exhaust gas formed using the catalysts of Reference Examples 1 to 28 under various conditions will be described below. Example 1 Catalyst 17 of Reference Example 17 and Catalyst 1 of Reference Example 1
Is press-molded, and then pulverized to a particle size of 350 to 5
The particle size is adjusted to 00 μm, and the catalyst 17
Was filled in a stainless steel reaction tube having an inner diameter of 21 mm so that the catalyst 1 was placed in the former stage to form a catalyst layer, and this was attached to a normal pressure fixed bed flow reactor. The weight ratio between the catalyst 17 and the catalyst 1 was 1: 1.

【0042】[性能評価例1]この触媒層に、モデル排
ガスとしてNO:750ppm、灯油(C):450
0ppm、O:10%、HO:10%、残部:N
からなる混合ガスを空間速度78,000h−1で通過
させた。反応管出口ガス組成の分析において、NOとN
の濃度については化学発光式NOx計で測定し、N
O濃度はΡorapack Qカラムを装着したガス
クロマトグラフ・熱伝導度検出器を用いて測定した。触
媒層入口温度を100〜700℃の範囲の所定温度に設
定し、各所定温度毎に反応管出口ガス組成が安定した時
点の値を用い、脱硝率を以下の式で定義した。また、本
発明のいずれの触媒層でもNOおよびNOは殆ど生
成しなかった。
[Performance Evaluation Example 1] In this catalyst layer, NO: 750 ppm and kerosene (C 1 ): 450 as model exhaust gas
0 ppm, O 2 : 10%, H 2 O: 10%, balance: N 2
Was passed at a space velocity of 78,000 h -1 . In the analysis of the gas composition at the outlet of the reaction tube, NO and N
The concentration of O 2 was measured with a chemiluminescent NOx meter,
The 2O concentration was measured using a gas chromatograph / thermal conductivity detector equipped with a Ρorapack Q column. The catalyst layer inlet temperature was set to a predetermined temperature in the range of 100 to 700 ° C., and the value at the time when the gas composition at the outlet of the reaction tube became stable at each predetermined temperature was used to define the denitration rate by the following equation. Further, N 2 O and NO 2 were hardly generated in any of the catalyst layers of the present invention.

【0043】[0043]

【式1】 (Equation 1)

【0044】[実施例2〜20および比較例1〜8]参
考例2、3、9〜14、16の触媒2、3、9〜14、
16および参考例4〜8、15、の触媒4〜8、15を
それぞれ実施例1の触媒1の代わりに用いて、上記と同
様の触媒層を形成し、同様にしてモデルガスによる評価
試験を行った。触媒2、3、9〜14、16を用いた触
媒層を、それぞれ実施例2〜10とし、触媒4〜8、1
5を用いた触媒層を、それぞれ比較例1〜6とした。ま
た、参考例18〜23、25、26および24の触媒1
8〜23、25、26および24をそれぞれ実施例1の
触媒17の代わりに用いて、上記と同様の触媒層を形成
し、同様にしてモデルガスによる評価試験を行った。触
媒18〜23、25、26を用いた触媒層を、それぞれ
実施例11、実施例14〜実施例20とし、触媒24を
用いた触媒層を比較例7とした。さらに参考例13の触
媒13を単独で用いた触媒層を比較例8、触媒18を前
段として触媒9、10をそれぞれ実施例1の触媒1の代
わりに用いて前記同様の触媒層を形成し、同様にしてモ
デルガスによる評価試験を行った。触媒9、10を用い
た触媒層をそれぞれ実施例12、実施例13とした。表
2に、上記実施例および比較例の触媒層について触媒層
温度425℃のときの脱硝率C425(%)を示す。本
発明の実施例1〜20および比較例6〜8の触媒層は、
比較例1〜5の触媒層に比べて70%以上の高い脱硝性
能を示した。
Examples 2 to 20 and Comparative Examples 1 to 8 Catalysts 2, 3, 9 to 14 of Reference Examples 2, 3, 9 to 14 and 16
Using the catalysts 4 to 8 and 15 of Reference Examples 4 to 8 and 15 in place of the catalyst 1 of Example 1, a catalyst layer similar to the above was formed, and an evaluation test using a model gas was performed in the same manner. went. The catalyst layers using catalysts 2, 3, 9 to 14, and 16 were referred to as Examples 2 to 10, respectively, and catalysts 4 to 8, 1
The catalyst layers using No. 5 were Comparative Examples 1 to 6, respectively. Further, Catalyst 1 of Reference Examples 18 to 23, 25, 26 and 24
8 to 23, 25, 26, and 24 were each used in place of the catalyst 17 of Example 1, a catalyst layer similar to the above was formed, and an evaluation test using a model gas was performed in the same manner. The catalyst layers using catalysts 18 to 23, 25, and 26 were Example 11 and Examples 14 to 20, respectively, and the catalyst layer using catalyst 24 was Comparative Example 7. Further, the same catalyst layer as that described above was formed by using the catalyst layer of Reference Example 13 alone using the catalyst 13 alone in Comparative Example 8, using the catalyst 18 as the former stage, and using the catalysts 9 and 10 in place of the catalyst 1 in Example 1, respectively. Similarly, an evaluation test using a model gas was performed. The catalyst layers using the catalysts 9 and 10 were referred to as Example 12 and Example 13, respectively. Table 2 shows the denitration ratio C 425 (%) at the catalyst layer temperature of 425 ° C. for the catalyst layers of the above Examples and Comparative Examples. The catalyst layers of Examples 1 to 20 and Comparative Examples 6 to 8 of the present invention
Compared to the catalyst layers of Comparative Examples 1 to 5, the denitration performance was 70% or higher.

【0045】[性能評価例2(実施例21)]性能評価
例1において、参考例27のハニカム触媒27と参考例
28のハニカム触媒28を、それぞれ直径1.5cm、
長さ3.2cmの円筒状に加工し、排ガスの流通方向に
対してハニカム触媒28が前段に、ハニカム触媒27が
後段になるように内径15mmのステンレス製反応管に
充填した(実施例21)。該後段の触媒層に対して、フ
ィードするガスの空間速度を13,000h−1とした
以外は性能評価例1と同様のモデルガスによる評価試験
を行い、その結果を併せて表2に示す。表2から、ハニ
カム触媒層でも70%以上の高い脱硝性能を示すことが
わかる。
Performance Evaluation Example 2 (Example 21) In Performance Evaluation Example 1, the honeycomb catalyst 27 of Reference Example 27 and the honeycomb catalyst 28 of Reference Example 28 were each
It was processed into a cylindrical shape having a length of 3.2 cm, and filled in a stainless steel reaction tube having an inner diameter of 15 mm such that the honeycomb catalyst 28 was at the front stage and the honeycomb catalyst 27 was at the rear stage in the flow direction of the exhaust gas (Example 21). . An evaluation test was performed on the latter catalyst layer using the same model gas as in Performance Evaluation Example 1 except that the space velocity of the gas to be fed was 13,000 h −1, and the results are shown in Table 2. Table 2 shows that the honeycomb catalyst layer also exhibits high denitration performance of 70% or more.

【0046】[0046]

【表2】 ─────────────────────────────────── 触 媒 層 触 媒 層 前段 後段 脱硝率 前段 後段 脱硝率 (%) (%) ─────────────────────────────────── 実施例1 触媒17 触媒1 78.7 実施例10 触媒17 触媒16 70.5 実施例2 触媒17 触媒2 74.9 実施例11 触媒18 触媒1 91.8 実施例3 触媒17 触媒3 74.2 実施例12 触媒18 触媒9 87.0 比較例1 触媒17 触媒4 17.6 実施例13 触媒18 触媒10 94.9 比較例2 触媒17 触媒5 2.5 実施例14 触媒19 触媒1 83.8 比較例3 触媒17 触媒6 27.1 実施例15 触媒20 触媒1 88.9 比較例4 触媒17 触媒7 23.1 実施例16 触媒21 触媒1 93.0 比較例5 触媒17 触媒8 33.7 実施例17 触媒22 触媒1 91.6 実施例4 触媒17 触媒9 83.1 実施例18 触媒23 触媒1 88.0 実施例5 触媒17 触媒10 87.3 比較例7 触媒24 触媒1 86.8 実施例6 触媒17 触媒11 75.9 実施例19 触媒25 触媒1 74.2 実施例7 触媒17 触媒12 70.1 実施例20 触媒26 触媒1 88.5 実施例8 触媒17 触媒13 80.3 比較例8 触媒13 87.7 実施例9 触媒17 触媒14 79.7 実施例21 触媒28 触媒27 70.1 比較例6 触媒17 触媒15 73.0 ───────────────────────────────────[Table 2] Catalyst layer Catalyst layer First stage Second stage Denitration rate First stage Second stage denitration rate (%) (%) ─────────────────────────────────── Example 1 Catalyst 17 Catalyst 177.8 Example 10 Catalyst 17 Catalyst 16 70.5 Example 2 Catalyst 17 Catalyst 2 74.9 Example 11 Catalyst 18 Catalyst 1 91.8 Example 3 Catalyst 17 Catalyst 3 74.2 Example 12 Catalyst 18 Catalyst 9 87.0 Comparative Example 1 Catalyst 17 Catalyst 4 17.6 Example 13 Catalyst 18 Catalyst 10 94.9 Comparative Example 2 Catalyst 17 Catalyst 5 2.5 Example 14 Catalyst 19 Catalyst 1 83.8 Comparative Example 3 Catalyst 17 Catalyst 6 27.1 Example 15 Catalyst 20 Catalyst 1 88.9 Comparative Example 4 Catalyst 17 Catalyst 7 23.1 Example 16 Catalyst 21 Catalyst 1 93.0 Comparative Example 5 Catalyst 17 Catalyst 8 33.7 Example 17 Catalyst 22 Catalyst 1 91.6 Example 4 Catalyst 17 Catalyst 9 83.1 Example 18 Catalyst 23 Catalyst 1 88.0 Example 5 Catalyst 17 Catalyst 10 87.3 Comparative Example 7 Catalyst 24 Catalyst 1 86.8 Example 6 Catalyst 17 Catalyst 11 75.9 Example 19 Catalyst 25 Catalyst 1 74.2 Example 7 Catalyst 17 Catalyst 12 70.1 Example 20 Catalyst 26 Catalyst 1 88.5 Example 8 Catalyst 17 Catalyst 13 80.3 Comparative Example 8 Catalyst 13 87.7 Example 9 Catalyst 17 Catalyst 14 79.7 Example 21 Catalyst 28 Catalyst 27 70.1 Comparative Example 6 Catalyst 17 Catalyst 15 73.0 ──────────────────

【0047】[性能評価例3]実施例1、実施例8、実
施例9、実施例11、実施例15、実施例18および比
較例6〜8、の触媒層について、性能評価例1のガス組
成にさらにSOを50ppm共存させて耐久試験を行
った。表3に、1時間後の各触媒の触媒層温度425℃
での各触媒の脱硝率C425(%)を示す。本発明の実
施例1、8、9、11、15および18の触媒層の活性
値は、いずれも50%以上であるのに対して比較例6〜
8の触媒層は50%未満であった。
[Performance Evaluation Example 3] For the catalyst layers of Example 1, Example 8, Example 9, Example 11, Example 15, Example 18, and Comparative Examples 6 to 8, the gas of Performance Evaluation Example 1 was used. An endurance test was carried out in the presence of 50 ppm of SO 2 in the composition. Table 3 shows that the catalyst layer temperature of each catalyst after one hour was 425 ° C.
Shows the denitration rate C 425 (%) of each catalyst in FIG. The activity values of the catalyst layers of Examples 1, 8, 9, 11, 15, and 18 of the present invention are all 50% or more, while Comparative Examples 6 to
The catalyst layer of No. 8 was less than 50%.

【0048】[0048]

【表3】 ────────────────── 触 媒 脱硝率C425(%) ────────────────── 実施例1 61.6 実施例8 72.3 実施例9 73.2 実施例11 81.9 実施例15 79.8 実施例18 53.4 比較例6 40.8 比較例7 43.6 比較例8 31.4 ──────────────────[Table 3] ────────────────── Catalyst NOx removal rate C 425 (%) 実 施 Implementation Example 1 61.6 Example 8 72.3 Example 9 73.2 Example 11 81.9 Example 15 79.8 Example 18 53.4 Comparative Example 6 40.8 Comparative Example 7 43.6 Comparative Example 8 31.4 ──────────────────

【0049】[0049]

【発明の効果】以上述べた通り本発明による排ガス浄化
用触媒層、排ガス浄化用触媒被覆構造体およびこれらを
使用しての排ガス浄化方法によれば、水蒸気とSOxが
共存する希薄燃焼排ガス中に含まれる窒素酸化物を高い
脱硝率で還元浄化できること、また優れたSOx耐久性
を有することから内燃機関の燃焼排ガス中の窒素酸化物
の浄化に有用である。
As described above, according to the exhaust gas purifying catalyst layer, the exhaust gas purifying catalyst coating structure and the exhaust gas purifying method using the same according to the present invention, the lean flue gas in which steam and SOx coexist is contained in the lean flue gas. Since it is possible to reduce and purify nitrogen oxides contained therein at a high denitration rate and has excellent SOx durability, it is useful for purifying nitrogen oxides in combustion exhaust gas of an internal combustion engine.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 35/10 301 F01N 3/24 C F01N 3/24 B01D 53/36 102H (72)発明者 加岳井 敦 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 (72)発明者 船曳 正起 静岡県沼津市一本松678 エヌ・イーケム キャット株式会社沼津工場内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 35/10 301 F01N 3/24 C F01N 3/24 B01D 53/36 102H (72) Inventor Atsushi Katakei Ichikawa, Chiba 3-18-5 China Sumitomo Metal Mining Co., Ltd. Central Research Laboratory (72) Inventor Masaki Funabiki 678 Ichihonmatsu, Numazu City, Shizuoka Prefecture N-Chem Cat Co., Ltd. Numazu Plant

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アルミナおよび/またはアルカリ土類金
属から選択された少なくとも1種を含有させてなる触媒
Aと、窒素ガス吸着法により測定された細孔半径と細孔
容積の関係が、細孔半径300オングストローム以下の
細孔の占める細孔容積の合計値をXとし、細孔半径25
オングストローム以上で100オングストローム未満の
細孔の占める細孔容積の合計値をYとし、細孔半径10
0オングストローム以上で300オングストローム以下
の細孔の占める細孔容積の合計値をZとしたとき、Yが
Xの70%以上であり、ZがXの20%以下であるよう
な細孔構造を有するアルミナ担体に銀を含有させてなる
触媒Bとから構成されることを特徴とする排ガス浄化用
触媒層。
1. The relationship between a catalyst A containing at least one selected from alumina and / or alkaline earth metal and a pore radius and a pore volume measured by a nitrogen gas adsorption method, X is the total value of the pore volume occupied by pores having a radius of 300 Å or less, and a pore radius of 25
The total value of the pore volume occupied by pores of not less than 100 Å and not less than 100 Å is defined as Y, and the pore radius is 10
When the total value of the pore volume occupied by the pores of 0 Å to 300 Å is Z, Y has a pore structure in which 70% or more of X and Z is 20% or less of X. An exhaust gas purifying catalyst layer comprising: a catalyst B comprising silver contained in an alumina carrier.
【請求項2】 前記触媒Bのアルミナ担体に、さらにシ
リカまたはチタニアを含有させてなることを特徴とする
請求項1記載の排ガス浄化用触媒層。
2. The exhaust gas purifying catalyst layer according to claim 1, wherein the alumina carrier of the catalyst B further contains silica or titania.
【請求項3】 前記触媒Aのアルカリ土類金属は、マグ
ネシウム、カルシウム、ストロンチウムおよびバリウム
であることを特徴とする請求項1記載の排ガス浄化用触
媒層。
3. The exhaust gas purifying catalyst layer according to claim 1, wherein the alkaline earth metal of the catalyst A is magnesium, calcium, strontium and barium.
【請求項4】 多数の貫通孔を有する耐火性材料からな
る一体構造の支持基質における少なくとも貫通孔の内表
面に請求項1〜3のいずれか1項記載の触媒を区分して
被覆してなることを特徴とする排ガス浄化用触媒被覆構
造体。
4. The catalyst according to claim 1, wherein at least the inner surface of the through-hole in the integral support substrate made of a refractory material having a large number of through-holes is separately coated. An exhaust gas purifying catalyst-coated structure characterized by the above-mentioned.
【請求項5】 希薄空燃比で運転される内燃機関の燃焼
排ガスを、触媒含有層と接触させることからなる炭化水
素を還元剤とする排ガス浄化方法において、前記触媒含
有層に含まれる触媒は請求項1〜3のいずれか1項記載
の排ガス浄化用触媒層であることを特徴とする排ガス浄
化方法。
5. A method for purifying exhaust gas using a hydrocarbon as a reducing agent, comprising contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer, wherein the catalyst contained in the catalyst-containing layer is Item 4. An exhaust gas purifying method comprising the exhaust gas purifying catalyst layer according to any one of Items 1 to 3.
【請求項6】 希薄空燃比で運転される内燃機関の燃焼
排ガスを、触媒含有層と接触させることからなる炭化水
素を還元剤とする排ガス浄化方法において、前記触媒含
有層に含まれる触媒は請求項4記載の排ガス浄化用触媒
被覆構造体で構成されていることを特徴とする排ガス浄
化方法。
6. A method for purifying exhaust gas using a hydrocarbon as a reducing agent, which comprises contacting flue gas from an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer, wherein the catalyst contained in the catalyst-containing layer is Item 5. An exhaust gas purifying method comprising the exhaust gas purifying catalyst-coated structure according to Item 4.
【請求項7】 排ガスの流通方向に対して排ガス浄化用
触媒層に含まれる触媒Aが前段に、触媒Bが後段に区分
して配置されていることを特徴とする請求項5または6
記載の排ガス浄化方法。
7. The catalyst according to claim 5, wherein the catalyst A contained in the exhaust gas purifying catalyst layer is disposed at a front stage and the catalyst B is disposed at a rear stage in a flow direction of the exhaust gas.
An exhaust gas purifying method as described in the above.
JP9291637A 1997-10-08 1997-10-08 Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure Pending JPH11104492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9291637A JPH11104492A (en) 1997-10-08 1997-10-08 Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9291637A JPH11104492A (en) 1997-10-08 1997-10-08 Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure

Publications (1)

Publication Number Publication Date
JPH11104492A true JPH11104492A (en) 1999-04-20

Family

ID=17771537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9291637A Pending JPH11104492A (en) 1997-10-08 1997-10-08 Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure

Country Status (1)

Country Link
JP (1) JPH11104492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062294A (en) * 1999-08-25 2001-03-13 Toyota Motor Corp Exhaust gas cleaning catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062294A (en) * 1999-08-25 2001-03-13 Toyota Motor Corp Exhaust gas cleaning catalyst

Similar Documents

Publication Publication Date Title
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH11128688A (en) Purification of waste gas
JPH09299763A (en) Denitration catalyst layer and denitrating method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JPH11104492A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure
JP2001205109A (en) Catalyst layer for cleaning exhaust gas, catalyst-coated structure for cleaning exhaust gas and method for cleaning exhaust gas by using both
JP2002370030A (en) Exhaust cleaning catalyst and exhaust cleaning method using the same
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JPH11128689A (en) Purification of waste gas
JPH10128126A (en) Catalyst bed for purifying exhaust gas, catalyst coated structure for purifying exhaust gas and purification of exhaust gas
JPH10118489A (en) Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby
JPH1176839A (en) Exhaust gas cleaning catalysis layer, exhaust gas cleaning catalysis coated structure, and exhaust gas cleaning method using them
JPH10137584A (en) Exhaust gas purifying catalytic layer, exhaust gas purifying catalytic coated structure and exhaust gas purifying method by the same
JPH10128070A (en) Exhaust gas purifying catalytic layer, exhaust gas purifying catalyst coated structure and exhaust gas purifying method thereby
JPH10235157A (en) Purification of nox in exhaust gas
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JPH10165822A (en) Catalyst layer for cleaning of exhaust gas, catalyst coated structure for purification of exhaust gas and purifying method of exhaust gas using them
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same
JPH1066871A (en) Catalyst for cleaning exhaust gas, structural body coated with catalyst and method for cleaning exhaust gas
JPH1110002A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst-coated structural body, and exhaust gas purifying method
JPH10174887A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH10113559A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them
JP2000153133A (en) Exhaust gas purification
JP2002370031A (en) Exhaust cleaning catalyst, catalyst body, exhaust- cleaning-catalyst-coated structure each using the catalyst, and exhaust cleaning method
JP2000070675A (en) Exhaust gas cleaning method