[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH109622A - Air conditioner using absorption type refrigerating machine - Google Patents

Air conditioner using absorption type refrigerating machine

Info

Publication number
JPH109622A
JPH109622A JP8162142A JP16214296A JPH109622A JP H109622 A JPH109622 A JP H109622A JP 8162142 A JP8162142 A JP 8162142A JP 16214296 A JP16214296 A JP 16214296A JP H109622 A JPH109622 A JP H109622A
Authority
JP
Japan
Prior art keywords
heat exchanger
liquid
heat
dehumidifying
dehumidifying operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8162142A
Other languages
Japanese (ja)
Inventor
Katsuto Ikeda
克人 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP8162142A priority Critical patent/JPH109622A/en
Publication of JPH109622A publication Critical patent/JPH109622A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform dehumidifying operation at low operating cost. SOLUTION: The cold liquid side of a liquid-liquid heat exchanger 35 is situated on a cooling water flow path 34 connected to a cooling tower CT from an absorber 3 and the other liquid side on a dehumidifying circuit 60. A dehumidifying heat exchanger 61 of the dehumidifying circuit 60 is arranged parallel with an air conditioning heat exchanger 44 of an indoor unit RU. Waste heat of the absorber 3 is transferred to the dehumidifying circuit 60 by heat exchanging at the liquid-liquid heat exchanger 35 and then to the dehumidifying heat exchanger 61. In the indoor unit RU, the air inside a room is cooled to form dew by the air-conditioner heat exchanger 44 and then heated by the dehumidifying heat exchanger 61. Therefore, dehumidifying alone can take place without a drop in the room temperature. As the waste heat of the absorber 3 is used to re-heat the air inside the room, a heat source for re-heating is not necessary or the quantity of heat of the heat source can be diminished, resulting in a reduction in operating expenses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、臭化リチウムなど
の水溶液を吸収液とする吸収式冷凍装置を用いた空調装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using an absorption refrigerating apparatus using an aqueous solution of lithium bromide or the like as an absorbing liquid.

【0002】[0002]

【従来の技術】吸収式冷凍装置では、再生器においてバ
ーナで低濃度吸収液を加熱して沸騰させ、高濃度吸収液
と冷媒液とを生成する。高濃度吸収液が吸収器において
吸収コイルの表面に散布され、他方、冷媒液が蒸発器に
おいて蒸発コイルに散布されると、蒸発コイル表面で
は、冷媒液が蒸発コイルから気化熱を奪って蒸発し、吸
収コイル表面では、高濃度吸収液が冷媒蒸気を吸収して
発熱する。なお、吸収器において、冷媒を吸収して低濃
度化した吸収液は、吸収液ポンプによって再生器に戻
る。
2. Description of the Related Art In an absorption refrigeration system, a low-concentration absorbent is heated and boiled by a burner in a regenerator to produce a high-concentration absorbent and a refrigerant liquid. When the high-concentration absorbing liquid is sprayed on the surface of the absorbing coil in the absorber, while the refrigerant liquid is sprayed on the evaporating coil in the evaporator, on the evaporating coil surface, the refrigerant liquid evaporates by taking heat of vaporization from the evaporating coil. On the surface of the absorbing coil, the high-concentration absorbing liquid absorbs the refrigerant vapor and generates heat. Note that, in the absorber, the absorbent that has absorbed the refrigerant and has been reduced in concentration returns to the regenerator by the absorbent pump.

【0003】上記の吸収サイクルにおいて、蒸発コイル
で熱が奪われた冷温水は、ポンプの作動により室内機に
設けられた熱交換器を循環して室内機における冷却源と
なる。室内機は、熱交換器とブロワからなり、室内空気
は、蒸発コイルから供給された冷温水が循環する熱交換
器により冷却されて、ブロワにより室内に吹き出す。こ
のとき、室内機の熱交換器で逆に温度が上昇した冷温水
は、蒸発コイルで再び冷却される。
[0003] In the above absorption cycle, the cold and hot water whose heat has been removed by the evaporating coil circulates through a heat exchanger provided in the indoor unit by the operation of the pump and becomes a cooling source in the indoor unit. The indoor unit includes a heat exchanger and a blower, and the indoor air is cooled by a heat exchanger in which cold and hot water supplied from an evaporating coil circulates, and is blown into the room by the blower. At this time, the cold / hot water whose temperature has risen conversely in the heat exchanger of the indoor unit is cooled again by the evaporating coil.

【0004】他方、吸収コイルの表面で吸収液が冷媒蒸
気を吸収する際に発生した熱は、吸収コイル内をポンプ
の作動により通過する排熱用冷却水により、外部に設け
られた冷却塔へ移動し、冷却塔で放出される。冷却塔で
は、冷却効率を大きくするために、例えば、落下する冷
却水を大気中に一部蒸発させて、残りの冷却水を冷却す
る自己冷却がなされており、また、送風機からの送風に
より、水の蒸発を促進させている。
On the other hand, heat generated when the absorbing liquid absorbs the refrigerant vapor on the surface of the absorbing coil is transferred to a cooling tower provided outside by the exhaust cooling water passing through the absorbing coil by the operation of the pump. Moves and is released at the cooling tower. In the cooling tower, in order to increase the cooling efficiency, for example, self-cooling to cool the remaining cooling water by partially evaporating the falling cooling water into the atmosphere, and by blowing air from a blower, Promotes water evaporation.

【0005】[0005]

【発明が解決しようとする課題】昨今では、空調装置に
おいて、室内機により単に冷却するのみでなく、室内温
度を下げないで湿度だけを下げるアメニティドライ運転
が望まれている。しかし、上記の構成からなる吸収式冷
凍装置を用いた空調装置において、アメニティドライ運
転を行うためには、室内空気を室内機の熱交換器で冷却
して結露させた後に、冷却された空気を再加熱する必要
があり、そのために、除湿運転の運転コストが割高にな
る問題が生じる。
In recent years, there has been a demand for an amenity dry operation of an air conditioner that not only cools down by an indoor unit but also lowers humidity without lowering indoor temperature. However, in the air conditioner using the absorption refrigeration apparatus having the above configuration, in order to perform the amenity dry operation, after cooling the indoor air with the heat exchanger of the indoor unit to form dew, the cooled air is cooled. It is necessary to reheat, which causes a problem that the operating cost of the dehumidifying operation is relatively high.

【0006】本発明は、安価な運転経費で、快適な除湿
運転が可能な吸収式冷凍装置を用いた空調装置を提供す
ることを目的とする。
It is an object of the present invention to provide an air conditioner using an absorption refrigeration system capable of performing a comfortable dehumidifying operation at a low operating cost.

【0007】[0007]

【課題を解決するための手段】本発明は、請求項1で
は、吸収液による吸収サイクルを形成した吸収式冷凍装
置の蒸発器の蒸発コイル内を通過する空調用冷温水を室
内機に備えられた空調熱交換器に循環させる空調装置に
おいて、前記吸収式冷凍装置の吸収器の吸収コイル内を
循環する排熱用冷却水の放熱をするための排熱回路に前
記排熱用冷却水の排熱を放出するための液・液熱交換器
を設けるとともに、該液・液熱交換器によって熱交換さ
れた排熱を前記室内機の前記空調熱交換器に並設された
除湿運転用熱交換器へ供給するための温水を循環させる
除湿運転用循環回路を設け、除湿運転を行う場合には、
前記室内機において、室内空気を前記空調熱交換器で冷
却した後に前記除湿運転用熱交換器で加熱することを技
術的手段とする。
According to the first aspect of the present invention, an indoor unit is provided with cold and hot water for air-conditioning, which passes through the inside of an evaporator coil of an evaporator of an absorption refrigerating apparatus having an absorption cycle using an absorption liquid. In the air conditioner which circulates through the air-conditioning heat exchanger, the heat-discharging circuit for radiating the heat-dissipating cooling water circulating in the absorption coil of the absorber of the absorption refrigeration apparatus discharges the cooling water for exhaust heat. A liquid-liquid heat exchanger for releasing heat is provided, and the waste heat exchanged by the liquid-liquid heat exchanger is subjected to heat exchange for dehumidification operation arranged in parallel with the air conditioning heat exchanger of the indoor unit. If a dehumidifying operation circulation circuit is provided to circulate hot water to supply to the
In the indoor unit, technical means is that indoor air is cooled by the air conditioning heat exchanger and then heated by the dehumidifying operation heat exchanger.

【0008】上記構成により、本発明では、吸収サイク
ルにおいて吸収液が冷媒を吸収する際に発生する熱が、
排熱回路を循環する排熱用冷却水によって排熱回路に設
けられた液・液熱交換器へ移動し、さらに、液・液熱交
換器で、除湿運転用循環回路の温水へ伝達される。除湿
運転用循環回路においては、伝達された熱は温水によっ
て除湿運転用熱交換器へ移動し、加熱用の熱源となる。
室内機では、室内空気は、空調熱交換器で冷却される
と、結露して水分が低下し、その後、除湿運転用熱交換
器によって加熱されて、再び温度が上昇する。この結
果、湿度が低下し、温度が低下がない空気を室内へ放出
させることができる。以上のとおり、本発明では、吸収
サイクルにおける吸収器で発生した吸収熱を利用して、
除湿運転時における室内空気の再加熱を行うため、一旦
冷却された空気を再加熱するための、新たな熱源を必要
としない。従って、室内温度を低下させない、あるいは
低下の程度を抑えた除湿運転における運転経費を抑える
ことができる。
With the above arrangement, according to the present invention, the heat generated when the absorbing liquid absorbs the refrigerant in the absorption cycle is:
The cooling water for exhaust heat circulating in the exhaust heat circuit moves to the liquid / liquid heat exchanger provided in the exhaust heat circuit, and is further transmitted to the hot water in the circulation circuit for dehumidifying operation by the liquid / liquid heat exchanger. . In the dehumidifying operation circulation circuit, the transferred heat is transferred to the dehumidifying operation heat exchanger by hot water and becomes a heat source for heating.
In the indoor unit, when the indoor air is cooled by the air-conditioning heat exchanger, the moisture is reduced due to dew condensation, and thereafter, the indoor air is heated by the dehumidifying operation heat exchanger, and the temperature rises again. As a result, air whose humidity is reduced and whose temperature is not reduced can be discharged indoors. As described above, in the present invention, utilizing the absorption heat generated in the absorber in the absorption cycle,
Since the indoor air is reheated during the dehumidifying operation, a new heat source for reheating the air once cooled is not required. Therefore, it is possible to suppress the operating cost in the dehumidifying operation in which the room temperature is not reduced or the degree of the reduction is suppressed.

【0009】請求項2では、請求項1において、前記除
湿運転用循環回路に、前記液・液熱交換器で前記排熱用
冷却水の排熱が熱交換され前記除湿運転用熱交換器へ向
かう前記温水を加熱するための加熱手段を備えたことを
技術的手段とする。これにより、一旦冷却された室内空
気の温度を、元の温度に確実に戻すことができる。ま
た、除湿運転用循環回路は、液・液熱交換器と室内機の
除湿運転用熱交換器とによって閉回路を形成しているた
め、除湿運転用循環回路の断熱処理を十分に施すことに
よって、加熱手段によって与えた熱の除湿運転用循環回
路からの放出を抑制できる。従って、加熱手段によって
与える熱量を抑制でき、除湿運転における運転経費を最
小限に抑制できる。
According to a second aspect of the present invention, in the first aspect, the exhaust heat of the cooling water for exhaust heat is exchanged with the circulation circuit for the dehumidifying operation by the liquid / liquid heat exchanger, and the heat is transferred to the heat exchanger for the dehumidifying operation. Technical means is provided with a heating means for heating the warm water going there. Thereby, the temperature of the room air once cooled can be reliably returned to the original temperature. In addition, since the dehumidifying operation circulation circuit forms a closed circuit by the liquid / liquid heat exchanger and the indoor unit dehumidification operation heat exchanger, sufficient heat insulation treatment of the dehumidification operation circulation circuit is performed. Further, the release of the heat given by the heating means from the circulation circuit for the dehumidifying operation can be suppressed. Therefore, the amount of heat given by the heating means can be suppressed, and the operating cost in the dehumidifying operation can be suppressed to a minimum.

【0010】[0010]

【発明の実施の形態】図1は、本発明に関わる空調装置
を示す。空調装置は、室外機としての吸収式冷凍装置1
00と室内機RUとからなり、吸収式冷凍装置100
は、冷凍機本体101と冷却塔(クーリングタワー)C
Tとから構成される。なお、空調装置は、制御装置10
2により制御される。
FIG. 1 shows an air conditioner according to the present invention. The air conditioner is an absorption refrigeration system 1 as an outdoor unit.
00 and the indoor unit RU, and the absorption refrigeration system 100
Is the refrigerator main body 101 and the cooling tower (cooling tower) C
And T. The air conditioner is controlled by the control device 10
2 is controlled.

【0011】冷凍機本体101は、冷媒及び吸収液とし
ての臭化リチウム水溶液の吸収サイクルを形成するもの
で、加熱源としてのガスバーナBが下方に備えられた高
温再生器1と、この高温再生器1の外側に被さるように
配置された低温再生器2と、さらに低温再生器2の外周
に向かって二重に配置された吸収器3および蒸発器4
と、低温再生器2の外周で吸収器3の上方に配置された
凝縮器5とを、幾つかの通路で接続してなる。
The refrigerator main body 101 forms an absorption cycle of a refrigerant and an aqueous solution of lithium bromide as an absorbing liquid, and includes a high-temperature regenerator 1 provided with a gas burner B as a heating source below, and a high-temperature regenerator 1 1, a low-temperature regenerator 2 disposed so as to cover the outside of the low-temperature regenerator 2, and an absorber 3 and an evaporator 4 double-arranged toward the outer periphery of the low-temperature regenerator 2
And a condenser 5 arranged above the absorber 3 on the outer periphery of the low-temperature regenerator 2 through several passages.

【0012】高温再生器1は、ガスバーナBによって加
熱される加熱タンク11の上方に中濃度吸収液分離筒1
2を延長させて設け、中濃度吸収液分離筒12の上方か
らその外周に覆い被さるように縦型円筒形の気密性の冷
媒回収タンク10が設けられている。これにより、高温
再生器1では、加熱タンク11の内部に収容された低濃
度吸収液をガスバーナBによって加熱して、低濃度吸収
液中の冷媒としての水を蒸発させて冷媒蒸気(水蒸気)
として中濃度吸収液分離筒12の外側へ分離させ、冷媒
蒸気の蒸発により濃化した中濃度吸収液を中濃度吸収液
分離筒12の内側の貯留部121に残し、分離した冷媒
蒸気を冷媒回収タンク10で回収する。
The high-temperature regenerator 1 is provided above the heating tank 11 heated by the gas burner B with the medium-concentration absorbent separating cylinder 1.
2, a vertical cylindrical airtight refrigerant recovery tank 10 is provided so as to cover the outer periphery of the medium-concentration absorbing liquid separation tube 12 from above. Thus, in the high-temperature regenerator 1, the low-concentration absorbing liquid contained in the heating tank 11 is heated by the gas burner B, and water as a refrigerant in the low-concentration absorbing liquid is evaporated to form refrigerant vapor (water vapor).
As a result, the separated medium vapor is separated outside the medium-concentration absorption liquid separation cylinder 12, the medium-concentration absorption liquid concentrated by evaporation of the refrigerant vapor is left in the storage section 121 inside the medium-concentration absorption liquid separation cylinder 12, and the separated refrigerant vapor is collected as refrigerant. Collected in tank 10.

【0013】低温再生器2は、冷媒回収タンク10の外
周に偏心して設置した縦型円筒形の低温再生器ケース2
0を有し、低温再生器ケース20の天井の周囲には冷媒
蒸気出口21が設けられている。低温再生器ケース20
の天井の頂部は、中濃度吸収液流路L1により熱交換器
Hを介して中濃度吸収液分離筒12の貯留部121と連
結されている。中濃度吸収液流路L1には、吸収液を制
限するためのオリフィス(図示なし)が設けられてい
て、低温再生器ケース20内へは中濃度吸収液分離筒1
2との圧力差により中濃度吸収液が供給される。これに
より、低温再生器2では、低温再生器ケース20内に供
給された中濃度吸収液を、冷媒回収タンク10の外壁を
熱源として再加熱し、中濃度吸収液は低温再生器ケース
20の上部の気液分離部22で冷媒蒸気と高濃度吸収液
とに分離され、高濃度吸収液は、高濃度吸収液受け部2
3に貯留される。
The low-temperature regenerator 2 is a vertical cylindrical low-temperature regenerator case 2 installed eccentrically on the outer periphery of the refrigerant recovery tank 10.
0, a refrigerant vapor outlet 21 is provided around the ceiling of the low-temperature regenerator case 20. Low temperature regenerator case 20
The top of the ceiling is connected to the storage part 121 of the middle-concentration absorbent separation cylinder 12 via the heat exchanger H by the middle-concentration absorbent flow path L1. An orifice (not shown) for restricting the absorption liquid is provided in the medium-concentration absorption liquid flow path L1.
The medium concentration absorbing liquid is supplied by the pressure difference from the pressure absorbing liquid 2. Thereby, in the low-temperature regenerator 2, the medium-concentration absorbing liquid supplied into the low-temperature regenerator case 20 is reheated by using the outer wall of the refrigerant recovery tank 10 as a heat source. Is separated into the refrigerant vapor and the high-concentration absorbent by the gas-liquid separation section 22, and the high-concentration absorbent is
It is stored in 3.

【0014】低温再生器ケース20の外周下部には、縦
型円筒形で気密性の蒸発・吸収ケース30が、外周上部
には凝縮器ケース50がそれぞれ同心的に配されてお
り、冷媒回収タンク10、低温再生器ケース20、蒸発
・吸収ケース30は、各底板部13で一体に溶接されて
冷凍機本体101を形成している。なお、低温再生器ケ
ース20は、冷媒蒸気出口21および隙間5Aを介して
凝縮器ケース50内と連通している。
A low-temperature regenerator case 20 has a vertical cylindrical air-tight evaporation / absorption case 30 disposed concentrically at the lower part thereof, and a condenser case 50 concentrically disposed at the upper part thereof. The low-temperature regenerator case 20 and the evaporating / absorbing case 30 are integrally welded to each other at the bottom plate portions 13 to form the refrigerator main body 101. The low-temperature regenerator case 20 communicates with the inside of the condenser case 50 via the refrigerant vapor outlet 21 and the gap 5A.

【0015】吸収器3は、蒸発・吸収ケース30内の内
側部分内に縦型円筒状に巻設され内部を排熱用冷却水が
流れる吸収コイル31が配置され、吸収コイル31の上
方には、高濃度吸収液を吸収コイル31に散布するため
の高濃度吸収液散布具32が配置されている。高濃度吸
収液散布具32は、熱交換器Hを介して低温再生器2の
高濃度吸収液受け部23と連結された高濃度吸収液流路
L2の開口部から供給される高濃度吸収液を受けて散布
し、吸収コイル31内には、冷房運転時に、冷却塔CT
で冷却された排熱用冷却水が循環する。
The absorber 3 is provided with an absorption coil 31 which is wound in a vertical cylindrical shape inside an evaporating / absorbing case 30 and through which cooling water for exhaust heat flows. A high-concentration absorbent spraying device 32 for dispersing the high-concentration absorbent to the absorption coil 31 is provided. The high-concentration absorbent sprayer 32 is provided with a high-concentration absorbent supplied from an opening of a high-concentration absorbent flow path L2 connected to the high-concentration absorbent reception section 23 of the low-temperature regenerator 2 via the heat exchanger H. In the cooling coil CT during the cooling operation.
The cooling water for exhaust heat cooled in the above is circulated.

【0016】吸収器3では、高濃度吸収液が圧力差によ
り高濃度吸収液流路L2から流入し、流入した高濃度吸
収液は、高濃度吸収液散布具32により吸収コイル31
の上端に散布され、吸収コイル31の表面に付着して薄
膜状になり、重力の作用で下方に流下し、水蒸気を吸収
して低濃度吸収液となる。この水蒸気を吸収する際に吸
収コイル31の表面で発熱するが、吸収コイル31を循
環する排熱用冷却水により冷却される。なお、高濃度吸
収液に吸収される水蒸気は後述する蒸発器4で冷媒蒸気
として発生したものである。吸収器3の底部33は、熱
交換器Hおよび吸収液ポンプP1が装着された低濃度吸
収液流路L3で加熱タンク11の底部と連結されてお
り、吸収液ポンプP1の作動により吸収器3内の低濃度
吸収液は加熱タンク11内へ供給される。
In the absorber 3, the high-concentration absorbing liquid flows in from the high-concentration absorbing liquid flow path L2 due to the pressure difference, and the high-concentration absorbing liquid flowing in is absorbed by the high-concentration absorbing liquid spraying device 32 into the absorbing coil 31.
At the upper end of the coil 31 and adheres to the surface of the absorption coil 31 to form a thin film, flows downward by the action of gravity, absorbs water vapor, and becomes a low concentration absorbent. When absorbing the water vapor, heat is generated on the surface of the absorption coil 31, but is cooled by cooling water for exhaust heat circulating through the absorption coil 31. The water vapor absorbed by the high-concentration absorbent is generated as refrigerant vapor in an evaporator 4 described later. The bottom 33 of the absorber 3 is connected to the bottom of the heating tank 11 by a low-concentration absorbent flow path L3 to which a heat exchanger H and an absorbent pump P1 are attached, and the absorber 3 is operated by the operation of the absorbent pump P1. The low-concentration absorbing liquid in the tank is supplied into the heating tank 11.

【0017】蒸発器4は、蒸発・吸収ケース30内の吸
収コイル31の外周に設けた縦型円筒形で連通口付きの
仕切壁40の外周に、内部を冷暖房用の冷温水が流れる
縦型円筒形の蒸発コイル41を配設し、その上方に冷媒
液散布具42を取り付けてなる。なお、蒸発器4の底部
43は、暖房用電磁弁6を有する暖房用吸収液流路L4
により中濃度吸収液分離筒12の貯留部121と連通し
ている。
The evaporator 4 is a vertical type in which cooling / heating water for cooling and heating flows inside the vertical cylindrical partition wall 40 having a communication port provided on the outer circumference of the absorption coil 31 in the evaporation / absorption case 30. A cylindrical evaporating coil 41 is provided, and a refrigerant liquid sprayer 42 is attached above the evaporating coil 41. In addition, the bottom part 43 of the evaporator 4 is provided with a heating absorbing liquid flow path L4 having a heating electromagnetic valve 6.
Communicates with the storage section 121 of the medium-concentration absorbing liquid separation cylinder 12 by means of.

【0018】蒸発器4では、冷房運転時に冷媒液散布具
42より冷媒液(水)を蒸発コイル41の上に滴下させ
ると、滴下された冷媒液は、表面張力で蒸発コイル41
の表面を濡らして膜状となり、重力の作用で下方へ降下
しながら低圧(例えば、6.5mmHg)となっている
蒸発・吸収ケース30内で蒸発コイル41から気化熱を
奪って蒸発し、蒸発コイル41内を流れる空調用の冷温
水を冷却する。
In the evaporator 4, when the refrigerant liquid (water) is dropped on the evaporating coil 41 from the refrigerant liquid dispersing tool 42 during the cooling operation, the dropped refrigerant liquid is subjected to surface tension to the evaporating coil 41.
Of the vaporizing coil 41 in the evaporating / absorbing case 30 at a low pressure (for example, 6.5 mmHg) while evaporating by evaporating and evaporating. The air-conditioning cold / hot water flowing in the coil 41 is cooled.

【0019】凝縮器5は、凝縮器ケース50の内部に冷
却塔CTで冷却された排熱用冷却水が内部を循環する冷
却コイル51を配設してなる。凝縮器ケース50は、冷
媒流路L5により冷媒回収タンク10の底部14と連通
し、冷媒流路L5には、冷媒回収タンク10から凝縮器
ケース50への冷媒流量を制限するためのオリフィス
(図示なし)が設けられているとともに、凝縮器ケース
50内は冷媒蒸気出口21および隙間5Aを介して低温
再生器2と連通していて、いずれも圧力差(凝縮器ケー
ス内では約70mmHg)により冷媒が供給される。凝
縮器5では、凝縮器ケース50内に供給された冷媒蒸気
は、冷却コイル51により冷却されて液化する。凝縮器
5の下部と蒸発器4の蒸発コイル41の上方に配置され
た冷媒液散布具42とは、冷媒液供給路L6で連通して
いる。液化した冷媒液は、冷媒液供給路L6に設けられ
た冷媒冷却器52を経て冷媒液散布具42に供給され
る。
The condenser 5 is provided with a cooling coil 51 in which cooling water for exhaust heat cooled by the cooling tower CT circulates inside a condenser case 50. The condenser case 50 communicates with the bottom portion 14 of the refrigerant recovery tank 10 through a refrigerant flow path L5. The refrigerant flow path L5 has an orifice (not shown) for restricting the flow rate of the refrigerant from the refrigerant recovery tank 10 to the condenser case 50. None), and the inside of the condenser case 50 communicates with the low-temperature regenerator 2 through the refrigerant vapor outlet 21 and the gap 5A. Is supplied. In the condenser 5, the refrigerant vapor supplied into the condenser case 50 is cooled by the cooling coil 51 and liquefied. The lower part of the condenser 5 and the refrigerant liquid disperser 42 disposed above the evaporator coil 41 of the evaporator 4 communicate with each other through a refrigerant liquid supply path L6. The liquefied refrigerant liquid is supplied to the refrigerant liquid sprayer 42 via the refrigerant cooler 52 provided in the refrigerant liquid supply path L6.

【0020】以上の構成により、吸収液は、高温再生器
1→中濃度吸収液流路L1→低温再生器2→高濃度吸収
液流路L2→吸収器3→吸収液ポンプP1→低濃度吸収
液流路L3→高温再生器1の順に循環する。また、冷媒
は、高温再生器1(冷媒蒸気)→冷媒流路L5(冷媒蒸
気)又は低温再生器2(冷媒蒸気)→凝縮器5(冷媒
液)→冷媒供給路L6(冷媒液)→冷媒冷却器52(冷
媒液)→冷媒液散布具42(冷媒液)→蒸発器4(冷媒
蒸気)→吸収器3(吸収液)→吸収液ポンプP1→低濃
度吸収液流路L3→高温再生器1の順に循環する。
With the above configuration, the absorbent is supplied to the high-temperature regenerator 1 → the medium-concentration absorbent flow path L1 → the low-temperature regenerator 2 → the high-concentration absorbent flow path L2 → the absorber 3 → the absorbent pump P1 → the low-concentration absorbent. The liquid circulates in the order of the liquid flow path L3 and the high temperature regenerator 1. The refrigerant is a high-temperature regenerator 1 (refrigerant vapor) → refrigerant flow path L5 (refrigerant vapor) or a low-temperature regenerator 2 (refrigerant vapor) → condenser 5 (refrigerant liquid) → refrigerant supply path L6 (refrigerant liquid) → refrigerant Cooler 52 (refrigerant liquid) → refrigerant liquid sprayer 42 (refrigerant liquid) → evaporator 4 (refrigerant vapor) → absorber 3 (absorbent liquid) → absorbent pump P1 → low concentration absorbent liquid flow path L3 → high temperature regenerator Circulate in the order of 1.

【0021】上記、吸収液と熱交換する吸収器3の吸収
コイル31と凝縮器5の冷却コイル51は、接続されて
連続コイルを形成しており、連続コイルは、冷却水流路
34によって冷却塔CTと接続されて冷却水循環路を形
成している。この冷却水循環路において、吸収コイル3
1の入口と冷却塔CTとの間の冷却水流路34には、連
続コイル内へ冷却水を送り込むための冷却水ポンプP2
が装着され、他方、冷却コイル51の出口と冷却塔CT
との間の冷却水流路34には、液・液熱交換器35が装
着され、冷却水ポンプP2の作動により連続コイルを通
過する冷却水は、吸収コイル31で吸収熱を、冷却コイ
ル51で凝縮熱をそれぞれ吸熱して比較的高温となっ
て、液・液熱交換器35でその熱の一部を放出した後
に、冷却塔CTに供給される。
The absorption coil 31 of the absorber 3, which exchanges heat with the absorption liquid, and the cooling coil 51 of the condenser 5 are connected to form a continuous coil. The cooling water circulation path is formed by being connected to the CT. In this cooling water circuit, the absorption coil 3
A cooling water pump P2 for sending cooling water into the continuous coil is provided in a cooling water flow path 34 between the inlet of the cooling tower CT and the cooling tower CT.
Is attached, while the outlet of the cooling coil 51 and the cooling tower CT
A liquid / liquid heat exchanger 35 is attached to the cooling water flow path 34 between the cooling water pump P2 and the cooling water passing through the continuous coil by the operation of the cooling water pump P2. The condensed heat is each absorbed to become a relatively high temperature, and a part of the heat is released by the liquid / liquid heat exchanger 35, and then supplied to the cooling tower CT.

【0022】上記の構成により、冷房運転時及び後述す
る除湿運転時には、冷却水ポンプP2の作動により冷却
塔CT内の冷却水が、冷却塔CT→冷却水ポンプP2→
吸収コイル31→冷却コイル51→液・液熱交換器35
→冷却塔CTの順に循環する。冷却塔CTでは、落下す
る冷却水を大気中に一部蒸発させて、残りの冷却水を冷
却する自己冷却がなされており、上記液・液熱交換器3
5でその熱の一部を放出した冷却水は、大気中に放熱し
て低温度になる排熱サイクルを形成している。なお、送
風機Sからの送風により、水の蒸発を促進させている。
With the above configuration, during the cooling operation and the dehumidifying operation described below, the cooling water in the cooling tower CT is operated by the operation of the cooling water pump P2 to cause the cooling tower CT → the cooling water pump P2 →
Absorption coil 31 → Cooling coil 51 → Liquid / liquid heat exchanger 35
→ Circulate in the order of the cooling tower CT. In the cooling tower CT, self-cooling is performed to partially evaporate the falling cooling water into the atmosphere and cool the remaining cooling water.
The cooling water that has released a part of the heat in Step 5 forms a waste heat cycle in which heat is released to the atmosphere and the temperature becomes low. Note that the air from the blower S promotes the evaporation of water.

【0023】蒸発器4の蒸発コイル41には、室内機R
Uに設けられた空調熱交換器44がゴムホース等で形成
された冷温水流路47で連結されていて、冷温水流路4
7には、冷温水ポンプP3が設けられている。以上の構
成により、蒸発コイル41で低温度となった冷温水は、
蒸発コイル41→冷温水流路47→空調熱交換器44→
冷温水流路47→冷温水ポンプP3→蒸発コイル41の
順で循環する。
The evaporator coil 41 of the evaporator 4 includes an indoor unit R
U is connected by a cold / hot water flow path 47 formed of a rubber hose or the like.
7, a cold / hot water pump P3 is provided. With the above configuration, the cold / hot water that has become low in the evaporating coil 41 is
Evaporation coil 41 → cold and hot water channel 47 → air conditioning heat exchanger 44 →
The circulation is performed in the order of the cold / hot water flow path 47 → the cold / hot water pump P3 → the evaporating coil 41.

【0024】室内機RUには、空調熱交換器44ととも
に除湿運転用熱交換器61が設けられているとともに、
これらの熱交換器44、61に対して、室内空気を空調
熱交換器44→除湿運転用熱交換器61→室内の順に通
過させるブロワ46が備えられている。
The indoor unit RU is provided with a dehumidifying operation heat exchanger 61 together with the air conditioning heat exchanger 44.
For these heat exchangers 44 and 61, a blower 46 for passing indoor air in order of the air conditioning heat exchanger 44 → the heat exchanger 61 for dehumidifying operation → the room is provided.

【0025】除湿運転用熱交換器61は、除湿運転時に
室内温度の低下を防止するアメニティドライを行うため
に設けられたもので、液・液熱交換器35において冷却
水流路34側の配管に対向して設けられた配管を有する
除湿運転用回路60によって循環回路が形成されてい
る。液・液熱交換器35と除湿運転用熱交換器61とを
接続する除湿運転用回路60には、温水を循環させるた
めの温水循環ポンプ62と、供給する温水の温度をより
高くするための補助バーナ63を備えた加熱器64とが
配設されている。
The heat exchanger 61 for dehumidifying operation is provided for performing amenity drying for preventing a decrease in the room temperature during the dehumidifying operation, and is connected to a pipe on the side of the cooling water passage 34 in the liquid / liquid heat exchanger 35. A circulation circuit is formed by the dehumidification operation circuit 60 having pipes provided to face each other. The dehumidifying operation circuit 60 connecting the liquid / liquid heat exchanger 35 and the dehumidifying operation heat exchanger 61 has a hot water circulation pump 62 for circulating hot water and a hot water circulation pump 62 for increasing the temperature of the supplied hot water. A heater 64 having an auxiliary burner 63 is provided.

【0026】以上の構成により、除湿運転時には、冷却
水流路34の排熱が液・液熱交換器35によって除湿運
転用回路60側へ伝達され、さらに、加熱器64によっ
て温度が高められた温水が除湿運転用熱交換器61へ供
給されて、室内機RUでは、空調熱交換器44で冷却さ
れて結露した後の室内空気が、除湿運転用熱交換器61
で加熱される。これにより、室内空気の除湿のみを行
い、温度を低下させることなく再び室内へ吹き出すこと
ができる。
With the above configuration, during the dehumidification operation, the exhaust heat of the cooling water flow path 34 is transmitted to the dehumidification operation circuit 60 side by the liquid / liquid heat exchanger 35, and the temperature of the hot water is increased by the heater 64. Is supplied to the dehumidifying operation heat exchanger 61, and in the indoor unit RU, the indoor air that has been cooled and dewed by the air conditioning heat exchanger 44 is discharged into the dehumidifying operation heat exchanger 61.
Heated. Thereby, only the indoor air is dehumidified, and the indoor air can be blown into the room again without lowering the temperature.

【0027】なお、吸収液流路L4および暖房用電磁弁
6は、暖房運転用に設けられたもので、暖房運転時に
は、暖房用電磁弁6を開弁し、吸収液ポンプP1を作動
させる。これにより、中濃度吸収液分離筒12内の高温
度の中濃度吸収液が、蒸発器4の底部43から蒸発器4
内へ流入し、蒸発コイル41内の冷温水が加熱され、加
熱された蒸発コイル41内の冷温水は、冷温水ポンプP
3の作動により冷温水流路47から空調用熱交換器44
へ供給され、暖房の熱源となる。蒸発器4内の中濃度吸
収液は、仕切板40の連通口から吸収器3側へ入り、低
濃度吸収液流路L3を経て、吸収液ポンプP1により加
熱タンク11へ戻される。
The absorbing liquid flow path L4 and the heating electromagnetic valve 6 are provided for a heating operation. During the heating operation, the heating electromagnetic valve 6 is opened and the absorbing liquid pump P1 is operated. As a result, the high-temperature medium-concentration absorbing liquid in the medium-concentration absorbing liquid separation cylinder 12 flows from the bottom 43 of the evaporator 4 to the evaporator 4.
The hot and cold water in the evaporating coil 41 is heated by the cold and hot water in the evaporating coil 41.
3, the air-conditioning heat exchanger 44 is transferred from the cold / hot water flow path 47
And heat source for heating. The medium-concentration absorbent in the evaporator 4 enters the absorber 3 through the communication port of the partition plate 40, and is returned to the heating tank 11 by the absorbent pump P1 via the low-concentration absorbent flow path L3.

【0028】以上のとおり、本発明によれば、除湿運転
時に、吸収コイル31及び冷却コイル51で発生した熱
を、冷却水流路34によって液・液熱交換器35へ排熱
として伝達し、さらに、熱交換して加熱された温水を除
湿運転用回路60によって室内機RUの除湿運転用熱交
換器61へ伝達して利用するため、除湿運転用回路60
の温水を加熱する加熱器64の熱源となる補助バーナ6
3の熱量を抑制することができる。従って、除湿運転に
おける運転経費を抑制できる。また、本実施例では、冷
却水流路34の排熱が液・液熱交換器35を介して除湿
運転用回路60へ伝達され、冷却水流路34の排熱を利
用するための除湿運転用回路60が冷却水流路34と完
全に別回路を形成しているため、冷却水流路34に設け
られた冷却塔CTにおいて混入する恐れのある塵、埃等
が除湿運転用回路60及び除湿運転用熱交換器61へ混
入することがない。従って、除湿運転用回路60及び除
湿運転用熱交換器61に詰まりが発生する不具合が生じ
ることがなく、除湿運転用回路60及び除湿運転用熱交
換器61の保守、整備の負担がなく、保守費用を抑える
ことができる。
As described above, according to the present invention, during the dehumidifying operation, the heat generated in the absorption coil 31 and the cooling coil 51 is transmitted to the liquid / liquid heat exchanger 35 through the cooling water passage 34 as waste heat. In order to use the hot water heated by heat exchange by transferring it to the heat exchanger 61 for the dehumidifying operation of the indoor unit RU by the circuit 60 for the dehumidifying operation, the circuit 60 for the dehumidifying operation is used.
Auxiliary burner 6 serving as a heat source of heater 64 for heating hot water
3 can be suppressed. Therefore, the operating cost in the dehumidifying operation can be suppressed. Further, in the present embodiment, the exhaust heat of the cooling water flow path 34 is transmitted to the dehumidifying operation circuit 60 via the liquid / liquid heat exchanger 35, and the dehumidifying operation circuit for utilizing the exhaust heat of the cooling water flow path 34. Since the cooling water passage 34 forms a completely separate circuit from the cooling water passage 34, dust and dirt that may enter the cooling tower CT provided in the cooling water passage 34 are subjected to the dehumidifying operation circuit 60 and the heat for the dehumidifying operation. There is no mixing into the exchanger 61. Therefore, there is no trouble that the clogging occurs in the dehumidifying operation circuit 60 and the dehumidifying operation heat exchanger 61, and there is no burden of maintenance and maintenance of the dehumidifying operation circuit 60 and the dehumidifying operation heat exchanger 61. Costs can be reduced.

【0029】上記実施例では、冷却水流路34の冷却塔
CTを、冷却水の一部を蒸発させて冷却水を自己冷却す
る開放式のものとしたが、図2に示すように、冷却水流
路34を循環する冷却水が、大気に開放されていない密
閉回路を形成した水冷装置70でもよい。図2では、水
冷装置70は、冷却水流路34の一部を形成する水冷熱
交換器71の上方に放熱用の散水タンク72を配し、水
冷熱交換器71には放熱フィン73を付設し、散水タン
ク72から水冷熱交換器71に放水された放熱用水を水
冷熱交換器71の下方に設置した水受けタンク74によ
って受けて、揚水ポンプP4を備えた揚水管路75から
再び散水タンク72へ揚水する。揚水管路75は水源管
路76と接続されており、水受けタンク74内に備えら
れた水位センサ77により水受けタンク74内の水量が
設定レベルより低下すると、水源管路76から水が供給
される。78は、送風機である。
In the above embodiment, the cooling tower CT of the cooling water flow path 34 is of an open type in which a part of the cooling water is evaporated to self-cool the cooling water, but as shown in FIG. The cooling water circulating in the passage 34 may be a water cooling device 70 that forms a closed circuit that is not open to the atmosphere. In FIG. 2, the water cooling device 70 is provided with a water spray tank 72 for heat radiation above a water cooling heat exchanger 71 forming a part of the cooling water flow path 34, and the water cooling heat exchanger 71 is provided with a radiation fin 73. The radiating water discharged from the water spray tank 72 to the water-cooled heat exchanger 71 is received by the water receiving tank 74 installed below the water-cooled heat exchanger 71, and is again returned from the water pumping line 75 provided with the water pump P4 to the water spray tank 72. Pump water to The pumping line 75 is connected to the water source line 76, and when the water level in the water receiving tank 74 falls below a set level by a water level sensor 77 provided in the water receiving tank 74, water is supplied from the water source line 76. Is done. 78 is a blower.

【0030】上記各実施例では、加熱器64の熱源とし
てバーナを示したが、電気ヒータ等他の熱源でよい。ま
た、加熱器64は必ずしも設ける必要はない。尚、上記
実施例では、二重効用型で説明したが一重効用型でもよ
い。
In each of the above embodiments, a burner is shown as a heat source of the heater 64, but another heat source such as an electric heater may be used. Further, the heater 64 need not always be provided. In the above embodiment, the double effect type is described, but a single effect type may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す空調装置の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of an air conditioner showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す空調装置の概略構成
図である。
FIG. 2 is a schematic configuration diagram of an air conditioner showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100 吸収式冷凍装置 4 蒸発器 41 蒸発コイル RU 室内機 44 空調熱交換器 3 吸収器 31 吸収コイル 34 冷却水流路(排熱回路) 35 液・液熱交換器 61 除湿運転用熱交換器 60 除湿運転用回路(除湿運転用循環回路) 64 加熱器(加熱手段) REFERENCE SIGNS LIST 100 Absorption refrigeration unit 4 Evaporator 41 Evaporation coil RU Indoor unit 44 Air conditioning heat exchanger 3 Absorber 31 Absorption coil 34 Cooling water flow path (heat exhaust circuit) 35 Liquid / liquid heat exchanger 61 Dehumidifying operation heat exchanger 60 Dehumidification Operation circuit (circulation circuit for dehumidification operation) 64 Heater (heating means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸収液による吸収サイクルを形成した吸
収式冷凍装置の蒸発器の蒸発コイル内を通過する空調用
冷温水を室内機に備えられた空調熱交換器に循環させる
空調装置において、 前記吸収式冷凍装置の吸収器の吸収コイル内を循環する
排熱用冷却水の放熱をするための排熱回路に前記排熱用
冷却水の排熱を放出するための液・液熱交換器を設ける
とともに、該液・液熱交換器によって熱交換された排熱
を前記室内機の前記空調熱交換器に並設された除湿運転
用熱交換器へ供給するための温水を循環させる除湿運転
用循環回路を設け、除湿運転を行う場合には、前記室内
機において、室内空気を前記空調熱交換器で冷却した後
に前記除湿運転用熱交換器で加熱することを特徴とする
吸収式冷凍装置を用いた空調装置。
An air conditioner for circulating cold and hot water for air conditioning passing through an evaporator coil of an evaporator of an absorption refrigerating apparatus having an absorption cycle using an absorbing liquid, to an air conditioning heat exchanger provided in an indoor unit, A liquid-liquid heat exchanger for releasing the exhaust heat of the exhaust heat cooling water is provided to an exhaust heat circuit for radiating the exhaust heat cooling water circulating in the absorption coil of the absorber of the absorption refrigeration apparatus. A dehumidifying operation for circulating hot water for supplying exhaust heat heat exchanged by the liquid / liquid heat exchanger to a dehumidifying operation heat exchanger arranged in parallel with the air conditioning heat exchanger of the indoor unit. Providing a circulation circuit, when performing a dehumidifying operation, in the indoor unit, an absorption refrigeration apparatus characterized by heating the indoor air in the dehumidifying operation heat exchanger after cooling the indoor air in the air conditioning heat exchanger. The air conditioner used.
【請求項2】 前記除湿運転用循環回路に、前記液・液
熱交換器で前記排熱用冷却水の排熱が熱交換され前記除
湿運転用熱交換器へ向かう前記温水を加熱するための加
熱手段を備えたことを特徴とする請求項1記載の吸収式
冷凍装置を用いた空調装置。
2. A liquid-liquid heat exchanger, wherein the exhaust heat of the cooling water for exhaust heat is heat-exchanged in the circulation circuit for dehumidifying operation to heat the hot water toward the heat exchanger for dehumidifying operation. The air conditioner using the absorption refrigeration apparatus according to claim 1, further comprising a heating means.
JP8162142A 1996-06-21 1996-06-21 Air conditioner using absorption type refrigerating machine Pending JPH109622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8162142A JPH109622A (en) 1996-06-21 1996-06-21 Air conditioner using absorption type refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8162142A JPH109622A (en) 1996-06-21 1996-06-21 Air conditioner using absorption type refrigerating machine

Publications (1)

Publication Number Publication Date
JPH109622A true JPH109622A (en) 1998-01-16

Family

ID=15748841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8162142A Pending JPH109622A (en) 1996-06-21 1996-06-21 Air conditioner using absorption type refrigerating machine

Country Status (1)

Country Link
JP (1) JPH109622A (en)

Similar Documents

Publication Publication Date Title
JPH0684822B2 (en) Indirect air conditioner
US7340912B1 (en) High efficiency heating, ventilating and air conditioning system
JP2001227874A (en) System for dehumidifying air in enclosure
JPH07233968A (en) Air conditioner system
JP3373948B2 (en) Air conditioner
JPH1078265A (en) Air-cooled absorption air conditioner
KR100222104B1 (en) Air cooling machine
JPH109622A (en) Air conditioner using absorption type refrigerating machine
JP3226460B2 (en) Regenerator for absorption refrigeration system
KR100321582B1 (en) Absorption air conditioner
JPH1089814A (en) Absorption refrigerator
JP3184072B2 (en) Air conditioner using absorption refrigeration system
JP2520975Y2 (en) Absorption cold water heater
JP3904726B2 (en) Absorption refrigeration system
JP3886641B2 (en) Double-effect absorption refrigeration system
JP3660493B2 (en) Absorption refrigeration system controller
JPH109707A (en) Absorption type refrigerating device
JP3328156B2 (en) Absorption air conditioner
KR100308381B1 (en) Solution Heat Exchanger of Absorption Chiller
JPH07851Y2 (en) Air conditioner
JPH1073336A (en) Absorption type refrigerator
JP3966443B2 (en) Absorption refrigeration system
JPH0560414A (en) Cold and hot air directly blowing type absorption space heater and cooler, and absorption type air conditioning system
JPS61167429A (en) Regenerating method of liquid moisture-absorbent in air-conditioning equipment
JP3790360B2 (en) Absorption refrigeration system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041109