[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1094795A - Treatment of waste water and device therefor - Google Patents

Treatment of waste water and device therefor

Info

Publication number
JPH1094795A
JPH1094795A JP8250224A JP25022496A JPH1094795A JP H1094795 A JPH1094795 A JP H1094795A JP 8250224 A JP8250224 A JP 8250224A JP 25022496 A JP25022496 A JP 25022496A JP H1094795 A JPH1094795 A JP H1094795A
Authority
JP
Japan
Prior art keywords
reaction tank
carrier
oxygen
wastewater treatment
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8250224A
Other languages
Japanese (ja)
Other versions
JP3451849B2 (en
Inventor
Toshiaki Tsubone
俊明 局
Tatsuo Takechi
辰夫 武智
Hideki Yamada
英樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25022496A priority Critical patent/JP3451849B2/en
Publication of JPH1094795A publication Critical patent/JPH1094795A/en
Application granted granted Critical
Publication of JP3451849B2 publication Critical patent/JP3451849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove nitrogen in waste water by circulating a part of flow-out water from the downmost stream side reactor to the uppermost stream side reactor and making the upper most stream reactor into free from oxygen to keep a part of the generated NO2 -N in the oxygen free state in the prestage of the reactor thereby denitrificating the waste water by microorganism stuck to a carrier. SOLUTION: The reactor is divided into three stages and the flow-in waste 1 is charged to the 1st stage reactor 7 in the uppermost stream side, treated in the 2nd and 3rd stage reactor 8, 10, and discharged. A part of the discharged treated water 2 is circulated to the 1st stage reactor 7 through a circulating line 3. In such a case, a screen 4 for separating the carrier is provided between each state of the reactors and a microorganism-immobilizing carrier 5 is always kept in each reactor. In the 1st stage reactor 7, air is diffused by a coarse bubble generating device 6 and the carrier is stirred and fluidized. Since the diameter of the blown bubble is large, the oxygen is hardly dissolved into the reactor, and the reactor is kept in the oxygen free state sufficient to cause the denitrification.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は汚水の生物学的処理
方法に関する。
The present invention relates to a biological treatment method for wastewater.

【0002】[0002]

【従来の技術】微生物固定化担体を投入した反応槽に流
入水を導入し、反応槽には底部から酸素含有ガスを吹き
込むことによって、流入水中の汚濁物質を好気条件下で
担体に付着した微生物によって分解除去した後、ろ過池
等の固液分離装置で固液分離を行って処理水を得るシス
テムが実用化されている。
2. Description of the Related Art Influent water is introduced into a reaction tank containing a microorganism-immobilized carrier, and oxygen-containing gas is blown into the reaction tank from the bottom, whereby pollutants in the inflow water adhere to the carrier under aerobic conditions. A system has been put into practical use in which after being decomposed and removed by microorganisms, solid-liquid separation is performed by a solid-liquid separator such as a filtration pond to obtain treated water.

【0003】また、汚水中から生物学的に窒素成分を除
去する方法としては硝化液循環法が用いられてきた。こ
の方法は、脱窒槽及び最終沈殿池を設け、脱窒槽に硝化
槽処理水の一部と沈殿池からの返送汚泥を導入し、脱窒
槽で脱窒細菌の作用によりNO3 −NまたはNO2 −N
(以下、NO3 −NとNO2 −Nを総称してNOX −N
と記す)を窒素ガスに還元し、汚水からの窒素成分の除
去を行い、硝化槽で好気的条件下で硝化細菌の作用によ
りアンモニア性窒素(NH4 −N)や有機性窒素をNO
X −Nに酸化するもので、硝化槽処理液の一部は前述の
ように脱窒槽に循環し、残りの硝化槽処理液は最終沈殿
池に導入され、上澄液として処理水が得られ、沈殿汚泥
の一部は前述のように脱窒槽に返送される(返送汚
泥)。返送汚泥の一部は余剰汚泥として引き抜かれる。
As a method for biologically removing nitrogen components from wastewater, a nitrification liquid circulation method has been used. In this method, a denitrification tank and a final sedimentation tank are provided, a part of the nitrification tank treated water and return sludge from the sedimentation tank are introduced into the denitrification tank, and NO 3 -N or NO 2 -N
(Hereinafter, NO 3 -N and NO 2 -N are collectively referred to as NO X -N
Is reduced to nitrogen gas to remove nitrogen components from wastewater, and ammonia nitrogen (NH 4 —N) and organic nitrogen are reduced to NO by the action of nitrifying bacteria under aerobic conditions in a nitrification tank.
Those oxidized to X -N, some of nitrification tank treatment liquid circulated to the denitrification tank as described above, the remaining nitrification tank treatment liquid is introduced into the settling tank, the treated water is obtained as a supernatant Part of the settled sludge is returned to the denitrification tank as described above (returned sludge). Part of the returned sludge is extracted as excess sludge.

【0004】この処理過程では、脱窒槽で、脱窒のため
の還元剤として、残部のBOD成分が利用されるため、
脱窒槽でもBOD成分の一部が除去されるが、大部分の
汚水中のBOD成分は好気槽において好気的条件下で分
解除去される。
In this process, the remaining BOD component is used in the denitrification tank as a reducing agent for denitrification.
Although a part of the BOD component is also removed in the denitrification tank, most of the BOD component in the sewage is decomposed and removed under aerobic conditions in the aerobic tank.

【0005】[0005]

【発明が解決しようとする課題】廃水から窒素系汚濁物
質を生物学的に除去するためには、酸素の存在する好気
条件下で硝化細菌の作用によって廃水中のアンモニア性
窒素や有機性窒素をNOX −Nに酸化した後、酸素の存
在しない無酸素条件下で脱窒細菌の作用によってNOX
−Nを窒素ガスに変えた後大気放散を行うことが必要で
あるが、引用文献1に示されるような微生物固定化担体
を用いた廃水の処理方法では、すべての反応槽が好気条
件となっているためNOX −Nへの酸化は起こるが、窒
素ガスへの脱窒は起こらないため、窒素系汚濁物質の除
去は達成されないという問題がある。
In order to biologically remove nitrogen-based pollutants from wastewater, ammonia nitrogen and organic nitrogen in wastewater are subjected to the action of nitrifying bacteria under aerobic conditions in the presence of oxygen. the nO was oxidized to X -N, nO in oxygen-free conditions in the absence of oxygen by the action of denitrifying bacteria X
Although it is necessary to perform atmospheric emission after changing -N to nitrogen gas, in the method of treating wastewater using a microorganism-immobilized carrier as shown in Patent Document 1, all the reaction tanks are under aerobic conditions. is it is oxidized to nO X -N occurs because that, since the denitrification to nitrogen gas does not occur, the removal of nitrogen-based pollutants has a problem not achieved.

【0006】また、浮遊汚泥を用いた循環式硝化脱窒法
においては、反応槽内の微生物濃度を大とすることがで
きないため反応槽が大型のものとなるという問題があ
る。本発明は上記のような事情に鑑みてなされたもの
で、窒素系汚濁物質の除去を可能とし、また流入水質、
処理水質および処理水量に応じて、安定した高い窒素除
去率で、良好な処理水質が確保できるようにした廃水の
処理方法を提供することを課題とするものである。文献
1:包括固定化担体を用いた硝化促進型循環変法「ペガ
サス」の評価に関する報告書、日本下水道事業団技術開
発部編著、平成5年6月
[0006] In the recirculation type nitrification and denitrification method using suspended sludge, there is a problem that the reaction tank becomes large because the concentration of microorganisms in the reaction tank cannot be increased. The present invention has been made in view of the above-described circumstances, and enables removal of nitrogen-based pollutants, and the quality of inflow water,
An object of the present invention is to provide a method for treating wastewater that can ensure a good quality of treated water with a stable high nitrogen removal rate according to the quality of treated water and the amount of treated water. Reference 1: A report on the evaluation of the modified nitrification-promoted circulation method "Pegasus" using a comprehensive immobilization carrier, edited by the Technology Development Department, Japan Sewerage Corporation, June 1993

【0007】[0007]

【課題を解決するための手段】本発明の廃水の処理方法
は、複数の反応槽に微生物固定化担体を投入した廃水の
処理方法において、最下流側反応槽の流出水の一部を、
最上流側反応槽に循環させ、かつ最上流側反応槽を無酸
素条件とすることを特徴とするものである。
The wastewater treatment method of the present invention is a wastewater treatment method in which a microorganism-immobilized carrier is charged into a plurality of reaction tanks.
It is characterized by being circulated to the most upstream side reaction tank and making the most upstream side reaction tank oxygen-free.

【0008】これにより、反応槽後段の好気部分で硝化
反応によって生成したNOX −Nの一部が、反応槽前段
で無酸素状態におかれ、反応槽前段の担体に付着した微
生物によって脱窒されるため廃水からの窒素除去がなさ
れる。
[0008] Thus, removal part of the NO X -N generated by nitrification under aerobic part of the reaction vessel subsequent stage, placed in anoxic conditions in the reaction vessel front, by microorganisms adhering to the reaction vessel preceding carrier Nitrogen is removed from wastewater due to nitrification.

【0009】そして、廃水の処理装置は、微生物固定化
担体を投入した複数の反応槽からなる廃水の処理装置に
おいて、最下流側反応槽の流出水の一部を最上流側反応
槽に循環させる装置と、最上流側反応槽を無酸素条件と
する装置とを有することを特徴とするものである。
The wastewater treatment apparatus is a wastewater treatment apparatus comprising a plurality of reaction tanks charged with a microorganism-immobilized carrier, wherein a part of the effluent of the most downstream reaction tank is circulated to the most upstream reaction tank. It is characterized by having an apparatus and an apparatus for making the uppermost-stream side reaction tank anoxic.

【0010】また、この装置において、無酸素条件及び
好気条件のいずれにも制御可能な、少なくとも一つの中
間反応槽を有することを特徴とするものである。こうし
て、反応槽の中段を流入水質や流入水量に応じて無酸素
条件及び好気条件のいずれにも制御することを可能とす
ることにより、好気部分と無酸素部分の槽容積を適切に
設定することがことができるので、負荷が変動した場合
にも安定して良好な水質を確保できるという効果が得ら
れる。
[0010] This apparatus is characterized in that it has at least one intermediate reaction tank which can be controlled under both anoxic conditions and aerobic conditions. In this way, the middle stage of the reaction tank can be controlled under both anoxic condition and aerobic condition according to the inflow water quality and the inflow water amount, so that the tank volumes of the aerobic portion and the anoxic portion are appropriately set. Therefore, it is possible to obtain an effect of stably ensuring good water quality even when the load fluctuates.

【0011】また、微生物固定化担体を使用しているの
で、反応槽内の微生物濃度を大とすることができる。さ
らに、浮遊汚泥法では反応槽内に保持することの難しか
った硝化細菌が好気層の担体に優先的に付着するため、
硝化処理が安定し、全体の処理装置を小型化することが
できる。
Further, since the microorganism-immobilized carrier is used, the concentration of microorganisms in the reaction tank can be increased. Furthermore, in the suspended sludge method, nitrifying bacteria, which were difficult to hold in the reaction tank, preferentially adhere to the aerobic layer carrier,
The nitrification treatment is stabilized, and the size of the entire processing apparatus can be reduced.

【0012】さらに、微生物固定化担体は形状が中空形
状であり、かつ担体の主成分はポリプロピレンであり、
担体の比重が0.99から1.03であるものを用い
る。こうして、中空形状の担体を用いた場合には、中空
部も微生物の固定化に利用できるので、有効微生物濃度
が高まり、また、中空部では酸素の拡散が制限されるた
め中空部は無酸素状態となり易く、脱窒反応が起き易く
なり窒素除去率が向上する。あるいは、反応槽を小型化
できるという効果が得られる。
[0012] Further, the microorganism-immobilized carrier has a hollow shape, and the main component of the carrier is polypropylene.
A carrier having a specific gravity of 0.99 to 1.03 is used. Thus, when a hollow-shaped carrier is used, the hollow portion can also be used for immobilizing microorganisms, so that the effective microorganism concentration increases, and diffusion of oxygen in the hollow portion is restricted, so that the hollow portion is in an oxygen-free state. And a denitrification reaction is likely to occur, and the nitrogen removal rate is improved. Alternatively, the effect of reducing the size of the reaction tank can be obtained.

【0013】さらに、担体の比重を0.99から1.0
3とすることによって、小さい撹拌強度でも担体が流動
化するという効果が得られる。さらに、担体の主成分が
ポリプロピレンであれば、担体の強度が大であるため、
無酸素条件での撹拌装置として、機械式の水中撹拌機を
使用しても担体の破損が起こらないという利点があり、
無酸素条件における撹拌装置として水中撹拌機あるいは
反応槽内部循環用ポンプを用いることができる。
Further, the specific gravity of the carrier is from 0.99 to 1.0.
By setting to 3, the effect that the carrier is fluidized even with a small stirring intensity can be obtained. Furthermore, if the main component of the carrier is polypropylene, the strength of the carrier is large,
As a stirrer under oxygen-free conditions, there is an advantage that breakage of the carrier does not occur even if a mechanical underwater stirrer is used,
As a stirrer under anoxic conditions, a submersible stirrer or a pump for circulating the inside of the reaction tank can be used.

【0014】また、反応槽を無酸素条件で運転するため
に、反応槽に粗大気泡発生装置を設置する。粗大気泡の
場合には、酸素溶解効率が低いため、反応槽を無酸素条
件に保ちつつ、反応槽内の撹拌を行うために有効であ
る。
In order to operate the reactor under oxygen-free conditions, a coarse bubble generator is installed in the reactor. In the case of coarse bubbles, since the oxygen dissolving efficiency is low, it is effective to stir the inside of the reaction tank while keeping the reaction tank free of oxygen.

【0015】さらに、無酸素条件で運転する反応槽にド
ラフトチューブやバッフル板を設け、槽内を液が上昇す
る部分と下降する部分とに区分けする。これにより、気
泡が液の上昇流に同伴されて上昇し、かつ、気泡が液流
速に対して上向きのスリップ速度を有するため、気泡の
液中での滞留時間(気液接触時間)が短くなり、酸素の
溶解量をさらに低減させることができると共に、槽内の
撹拌エネルギも増大し、より良好な撹拌状態を得ること
ができる。
Further, a draft tube or a baffle plate is provided in a reaction tank operated under oxygen-free conditions, and the inside of the tank is divided into a part where liquid rises and a part where liquid descends. As a result, the bubbles rise with the upward flow of the liquid, and the bubbles have an upward slip speed with respect to the liquid flow velocity, so that the residence time of the bubbles in the liquid (gas-liquid contact time) is shortened. In addition, the amount of dissolved oxygen can be further reduced, and the stirring energy in the tank is increased, so that a better stirring state can be obtained.

【0016】さらに、無酸素条件で運転する最上流反応
槽の底部の少なくとも一部が凹形状になっている。これ
により、汚泥は凹部に沈降、集積し、エアリフト効果に
よって再び中間槽上部に移送されるため、底部への汚泥
の堆積を防ぎつつ、槽内の良好な撹拌状態を得ることが
できる。
Further, at least a part of the bottom of the most upstream reaction tank operated under anoxic condition has a concave shape. Thereby, the sludge settles and accumulates in the concave portion, and is again transferred to the upper portion of the intermediate tank by the air lift effect. Therefore, it is possible to obtain a good stirring state in the tank while preventing sludge from accumulating on the bottom portion.

【0017】また、無酸素条件で運転する最上流反応槽
における粗大気泡を発生する散気装置が間欠的に運転さ
れるようになっている。これにより、中間槽内への酸素
の溶解量を低減した運転が可能となり、良好な窒素除去
が達成される。
Further, a diffuser for generating coarse bubbles in the uppermost stream reaction tank operated under oxygen-free conditions is operated intermittently. As a result, an operation in which the amount of dissolved oxygen in the intermediate tank is reduced becomes possible, and good nitrogen removal is achieved.

【0018】また、無酸素条件で運転する最上流反応槽
の上部空間が密閉構造とされ、この槽の上部空間に存在
する気体を繰り返し槽内に吹き込む装置が設けられてい
る。この構成により、上部空間に存在する気体を繰り返
し槽内に吹き込むことによって、吹き込みガス中の酸素
濃度が徐々に低下し、無酸素条件で運転する反応槽内へ
の酸素の溶解量を大幅に低減させた運転が可能となり、
良好な窒素除去が達成される。
The upper space of the uppermost stream reaction tank operated under oxygen-free conditions has a closed structure, and a device for repeatedly blowing gas existing in the upper space of the tank into the tank is provided. With this configuration, the gas present in the upper space is repeatedly blown into the tank, whereby the oxygen concentration in the blown gas gradually decreases, and the amount of dissolved oxygen in the reaction tank operated under oxygen-free conditions is greatly reduced. It is possible to drive
Good nitrogen removal is achieved.

【0019】[0019]

【発明の実施の形態】図1は本発明の実施の形態の一例
を示す全体構成図である。反応槽は3段に仕切られてい
る。流入水1は最も上流の一段目反応槽7に投入され、
二段目反応槽8及び三段目反応槽10で処理を受けた
後、反応槽10から排出される。反応槽10から排出さ
れた処理水の一部は、循環ライン3を通って一段目反応
槽7に循環される。各反応槽には微生物固定化担体5が
投入されている。
FIG. 1 is an overall configuration diagram showing an example of an embodiment of the present invention. The reaction tank is divided into three stages. Inflow water 1 is introduced into the first-stage reaction tank 7 at the most upstream,
After undergoing treatment in the second-stage reaction tank 8 and the third-stage reaction tank 10, it is discharged from the reaction tank 10. Part of the treated water discharged from the reaction tank 10 is circulated to the first-stage reaction tank 7 through the circulation line 3. A microbe-immobilized carrier 5 is charged into each reaction tank.

【0020】微生物固定化担体の投入量は、担体の真容
積基準で1%から40%程度である。なお、ポリプロピ
レンを主成分とした長さが2から8mm、外形が2から8
mm程度の中空円筒状の担体を用いる場合には、微生物固
定化担体の投入量は、担体の真容積基準で3%から15
%程度が適当である。
The amount of the microorganism-immobilized carrier is about 1% to 40% based on the true volume of the carrier. The length of the main component is 2 to 8 mm mainly composed of polypropylene, and the outer shape is 2 to 8 mm.
When a hollow cylindrical carrier of about mm is used, the amount of the microorganism-immobilized carrier is 3% to 15% based on the true volume of the carrier.
% Is appropriate.

【0021】反応槽各段の間には担体分離用のスクリー
ン4が設置されており、微生物固定化担体5は常に各反
応槽内に維持される。一段目反応槽7には、粗大気泡発
生装置6から散気が行われ、担体の撹拌、流動化が行わ
れる。ここで吹き込まれる気泡の径が大であるため、反
応槽への酸素の溶解量は少なく、反応槽は脱窒反応が起
こるに十分な無酸素状態が保たれる。
A screen 4 for separating carriers is provided between each stage of the reaction tank, and the microorganism-immobilized support 5 is always maintained in each reaction tank. In the first-stage reaction tank 7, air is diffused from the coarse bubble generation device 6, and the carrier is stirred and fluidized. Here, since the diameter of the bubble blown is large, the amount of dissolved oxygen in the reaction tank is small, and the reaction tank is maintained in an oxygen-free state sufficient for the denitrification reaction to occur.

【0022】二段目反応槽8には、粗大気泡発生装置6
と散気装置9が設置されており、反応槽8を好気条件で
運転する場合には散気装置9から空気を吹き込み、一
方、反応槽8を無酸素条件で運転する場合には粗大気泡
発生装置6から空気を吹き込む。
The second-stage reaction tank 8 includes a coarse bubble generator 6
When the reaction tank 8 is operated under aerobic conditions, air is blown from the air diffusion apparatus 9, while when the reaction tank 8 is operated under oxygen-free conditions, coarse bubbles are formed. Air is blown from the generator 6.

【0023】反応槽8を好気条件とするか無酸素条件と
するかは、流入水質、反応槽7からの流出処理水質、水
温等を考慮して決定されるが、一般的には反応槽7から
の流出水のNOX −N濃度が小さい場合、具体的には流
入水質や要求処理水質にもよるが2(g/m3 )以下の
場合には好気条件で、それ以上の場合には無酸素条件で
運転することが一つの目安となる。
The condition of the reaction tank 8 under aerobic conditions or oxygen-free conditions is determined in consideration of the quality of the inflow water, the quality of the treated water discharged from the reaction tank 7, the temperature of the water, and the like. If NO X -N concentration of effluent water from 7 is small, specifically under aerobic conditions when depending on inflow water quality and request processing quality of 2 (g / m 3) or less, in the case of more One of the guidelines is to operate in anoxic condition.

【0024】また、アンモニア性窒素ゃNOX −Nの測
定装置、D0計、ORP計等を利用して、反応槽8の条
件設定を行うことも可能である。三段目反応槽10で
は、散気装置9から空気が吹き込まれ、担体の流動化と
担体に付着した微生物への酸素供給がなされる。
It is also possible to set the conditions of the reaction tank 8 using a measuring device for ammoniacal nitrogen ゃ NO x -N, a D0 meter, an ORP meter and the like. In the third-stage reaction tank 10, air is blown from the air diffuser 9 to fluidize the carrier and supply oxygen to microorganisms attached to the carrier.

【0025】なお、図1に示した構成は本発明の一形態
を示したものであり、本発明は図1に示した構成に限定
されるものではなく、本発明を利用した種々の処理形態
が考えられる。
The configuration shown in FIG. 1 shows one embodiment of the present invention, and the present invention is not limited to the configuration shown in FIG. 1, but various processing modes utilizing the present invention. Can be considered.

【0026】本発明において中間槽を好気条件で運転す
る方法としては反応槽に酸素供給装置を設置する。酸素
供給方法としてはジェットエアレータ等のエアレータを
用いる方法、散気板、ディフューザ等を反応槽内に設置
し、これらを通して酸素含有ガスを反応槽内に吹き込む
方法などがある。
In the present invention, as a method of operating the intermediate tank under aerobic conditions, an oxygen supply device is installed in the reaction tank. Examples of the oxygen supply method include a method using an aerator such as a jet aerator, a method in which a diffuser plate, a diffuser, and the like are installed in a reaction tank, and an oxygen-containing gas is blown into the reaction tank through these.

【0027】次に、無酸素条件で反応槽内を撹拌する方
法としては、反応槽内部に水中撹拌機を設置する方法、
反応槽上部に撹拌機を設置する方法、反応槽内部循環用
ポンプ設置する方法、反応槽上部空間を密閉構造とし、
反応槽に反応槽上部空間に存在する気体を繰り返し吹き
込む方法等がある。
Next, as a method of stirring the inside of the reaction tank under oxygen-free conditions, a method of installing a submersible stirrer inside the reaction tank,
A method of installing a stirrer at the top of the reaction tank, a method of installing a pump for internal circulation of the reaction tank, and making the space above the reaction tank a closed structure,
There is a method of repeatedly blowing gas existing in the upper space of the reaction tank into the reaction tank.

【0028】また、反応槽内に粗大径の気泡が発生する
散気装置6を設置し、この散気装置に空気を吹き込むこ
とによって反応槽内を撹拌することもできる。この方法
では、吹き込み空気中の酸素の溶解が問題となるが、散
気装置の気泡発散部の孔径を大として、散気される気泡
の径を大とすること、あるいは(および)散気水深を浅
くすることによって酸素の溶解量を低減し、反応槽内を
脱窒反応が生じる条件に保つこことも可能である。
Further, a diffuser 6 for generating bubbles having a large diameter can be provided in the reaction tank, and the inside of the reaction tank can be stirred by blowing air into the diffuser. In this method, although the dissolution of oxygen in the blown air poses a problem, the diameter of bubbles to be diffused should be increased by increasing the pore diameter of the bubble diffusion portion of the diffuser, or (and) the depth of the diffused water. It is also possible to reduce the amount of oxygen dissolved by reducing the depth of the reaction vessel and keep the inside of the reaction tank under conditions that cause a denitrification reaction.

【0029】なお、粗大径の散気装置から空気を吹き込
む方法において、酸素の溶解量を低減させるには吹き込
み空気量を低減すれば良いが、その場合には反応槽内部
の撹拌動力も低減するという問題がある。
In the method of blowing air from a diffuser having a large diameter, the amount of dissolved oxygen may be reduced by reducing the amount of blown air. In that case, the power for stirring inside the reaction tank is also reduced. There is a problem.

【0030】しかしながら、図2に示したように、反応
槽内の片側あるいは中心部等の一部のみから散気を行う
ことによって、反応槽内を液が上昇する部分と下降する
部分とに分け、反応槽内に旋回流を生じさせることによ
って酸素の溶解量を低減しつつ、反応槽内部に十分な撹
拌流速を得ることができる。
However, as shown in FIG. 2, by diffusing air from only one side or the center of the reaction tank, the reaction tank is divided into a part where the liquid rises and a part where the liquid descends. By generating a swirling flow in the reaction vessel, a sufficient stirring flow rate can be obtained inside the reaction vessel while reducing the amount of dissolved oxygen.

【0031】これは、旋回流が生じている場合には、液
の上昇流に同伴される形で気泡が上昇し、気泡自体も液
の流れに対してさらに上向きのスリップ速度を有するた
め、気泡の液中における滞留時間(気液接触時間)が減
少するために酸素溶解効率が低下することと、旋回流方
式の方が全面散気方式より高い撹拌力を有することによ
るものである。
This is because, when a swirling flow is generated, the bubbles rise in the form accompanied by the rising flow of the liquid, and the bubbles themselves have a further upward slip speed with respect to the flow of the liquid. This is because the residence time in the liquid (gas-liquid contact time) is reduced and the oxygen dissolving efficiency is reduced, and the swirling flow method has a higher stirring power than the full air diffusion method.

【0032】また、図3のように、ドラフトチューブや
バッフル板12を反応槽内部に設置するなどし、空気を
吹き込み、そのエアリフト効果によって反応槽内を液が
上昇する部分と下降する部分とに明確に分離することに
よっても同様の効果が得られる。
Also, as shown in FIG. 3, a draft tube or a baffle plate 12 is installed inside the reaction tank, and air is blown into the reaction tank. A similar effect can be obtained by clear separation.

【0033】さらに、図4及び図5に示すように、反応
槽の底部に凹部13を設け、沈降した汚泥を凹部に集め
た後、凹部からエアリフト効果を利用して底部に沈降し
た汚泥を反応槽上部に移送することによって、より底部
への汚泥の沈積のない反応槽内の撹拌が可能である。
Further, as shown in FIGS. 4 and 5, a concave portion 13 is provided at the bottom of the reaction tank, and the settled sludge is collected in the concave portion. By transferring to the upper part of the tank, it is possible to stir the inside of the reaction tank without depositing sludge on the bottom part.

【0034】ドラフトチューブや仕切り板を反応槽内に
設置するに当たっては、複数のドラフトチューブや仕切
り板を反応槽内に設置することによって反応槽内を細か
く区分することも可能である。
In installing a draft tube or a partition plate in the reaction tank, the inside of the reaction tank can be finely divided by installing a plurality of draft tubes or partition plates in the reaction tank.

【0035】さらに、粗大径の散気装置から空気を吹き
込む方法においては、曝気を間欠的に行うことも効果が
ある。これは間欠曝気によって、さらに酸素の反応槽内
への溶解量を低減でき、かつ間欠曝気方式においても十
分な反応槽内の撹拌が可能であるためである。
Further, in the method of blowing air from a diffuser having a large diameter, intermittent aeration is also effective. This is because the amount of oxygen dissolved in the reaction tank can be further reduced by intermittent aeration, and sufficient stirring in the reaction tank is possible even in the intermittent aeration method.

【0036】間欠曝気の周期の設定については、反応槽
の嫌気度と撹拌状態によって決められ、経験値から周期
を決定することも可能であるが、溶存酸素(DO)計、
酸化還元電位(ORP)計、汚泥濃度計および汚泥界面
計等を利用して自動制御することもできる。
The period of the intermittent aeration is determined by the anaerobic degree and the stirring state of the reaction tank, and the period can be determined from the empirical value.
Automatic control can also be performed using an oxidation-reduction potential (ORP) meter, a sludge concentration meter, a sludge interface meter, or the like.

【0037】なお、上述の散気による撹拌方式すべてに
共通する事項として、散気装置の水深を浅くすることに
よって、酸素の溶解量を低減することが可能である。ま
た、上述の散気による撹拌方式すべてに共通する事項と
して、生物学的脱窒反応は、液側に若干の溶存酸素が存
在しても反応が進行することが知られており、脱窒反応
を進行させるために反応槽内を完全に無酸素状態にする
必要はない。目安としては、反応槽内の溶存酸素濃度
(DO)を0.5(g/m3 )程度以下とすればよい。
It should be noted that as a matter common to all the above-described agitation methods using aeration, the amount of dissolved oxygen can be reduced by making the water depth of the aeration device shallow. In addition, as a matter common to all the above-described agitation methods using aeration, it is known that the biological denitrification reaction proceeds even if there is some dissolved oxygen on the liquid side. It is not necessary to make the inside of the reaction tank completely oxygen-free in order to advance the reaction. As a guide, the dissolved oxygen concentration (DO) in the reaction tank may be set to about 0.5 (g / m 3 ) or less.

【0038】なお、担体として中空形状の担体を用いる
場合には、中空部分は局所的にDO濃度が低くなるた
め、より脱窒反応が起こりやすいというメリットがあ
る。また、中間槽の上部空間を密閉構造として、上部空
間に存在する気体を繰り返し反応槽に吹き込むことによ
っても無酸素状態での撹拌が可能である。この場合、初
期においては反応槽上部に酸素ガスが存在していても、
酸素ガスは液側に溶解して、ガス中の酸素濃度は徐々に
低下するため無酸素条件が確保される。また、上部空間
へは、溶解した量に相当する体積分の空気を補充すれば
よい。なお、上述のように若干のDOが存在しても脱窒
反応は進行するため、上部空間の密閉度は完全である必
要はない。
When a hollow carrier is used as the carrier, there is a merit that the denitrification reaction is more likely to occur because the DO concentration is locally reduced in the hollow portion. Further, it is also possible to stir in an oxygen-free state by making the upper space of the intermediate tank a closed structure and repeatedly blowing gas present in the upper space into the reaction tank. In this case, even if oxygen gas is present at the top of the reaction tank at the beginning,
Oxygen gas is dissolved in the liquid side, and the oxygen concentration in the gas gradually decreases, so that anoxic conditions are ensured. In addition, the upper space may be supplemented with a volume of air corresponding to the dissolved amount. As described above, the denitrification reaction proceeds even if a small amount of DO is present, so that the airtightness of the upper space does not need to be perfect.

【0039】さらに、反応槽は3段である必要はなく、
2段でも4段でも、適用は可能であるが、より多段化す
ることで、より細かい制御を行うことが可能となり、よ
り大きな処理水質の向上が達成される。
Further, the reactor does not need to have three stages,
Although two or four stages can be applied, the more stages, the more precise control can be performed, and a greater improvement in treated water quality can be achieved.

【0040】なお、2段の場合には、1段目を無酸素条
件で運転するが、多段化した場合には、流入水質や各段
の処理水質を考慮して、各段を無酸素条件とするか好気
条件とするかを決めればよい。多段化した場合には、中
間の反応槽を処理状況に応じて無酸素条件あるいは好気
条件に設定することによって、流入水の水量および水質
の変動に対してより安定した高い窒素除去率が達成され
る。
In the case of the second stage, the first stage is operated under the oxygen-free condition. However, when the number of stages is increased, each stage is operated under the oxygen-free condition in consideration of the inflow water quality and the treated water quality of each stage. Or aerobic conditions may be determined. In the case of multiple stages, by setting the middle reaction tank to anoxic condition or aerobic condition according to the treatment situation, a high nitrogen removal rate more stable against fluctuations in the amount and quality of inflow water is achieved. Is done.

【0041】また、反応槽の水深は5m程度が一般的で
あるが、深層曝気方式と呼ばれるような水深10mから
20m程度の曝気槽においても適用可能であり、同様の
効果が得られる。
The water depth of the reaction tank is generally about 5 m, but the present invention can be applied to an aeration tank having a water depth of about 10 m to 20 m, which is called a deep aeration method, and the same effect can be obtained.

【0042】また、担体としては微生物固定化能力を有
するすべての担体が使用可能であるが、最適な微生物固
定化担体は、形状が中空形状だあり、かつ、担体の主成
分はポリプロピレンであり、担体の比重が0.99から
1.03であるものである。担体の比重が大である場合
には、流動化のために必要な吹き込み空気量が大とな
り、反応槽内への酸素の溶解量が大となるために、無酸
素条件が保てず、脱窒反応が抑制されるという問題点が
あるが、担体の比重が0.99から1.03であれば、
無酸素条件を保ったまま、担体の十分な流動が確保でき
る。
As the carrier, any carrier having the ability to immobilize microorganisms can be used. The most suitable carrier for immobilizing microorganisms is hollow and the main component of the carrier is polypropylene. The carrier has a specific gravity of 0.99 to 1.03. When the specific gravity of the carrier is large, the amount of blown air necessary for fluidization becomes large, and the amount of dissolved oxygen in the reaction tank becomes large. There is a problem that the nitrogen reaction is suppressed, but if the specific gravity of the carrier is 0.99 to 1.03,
A sufficient flow of the carrier can be secured while maintaining the oxygen-free condition.

【0043】また、反応槽内部に水中撹拌機を設置する
か、もしくは反応槽内部循環用ポンプを設置する方法
は、最も簡単に反応槽を無酸素条件で撹拌できる方法で
あるが、強度の小さい微生物固定化担体、具体的にはポ
リエチレングリコール、ポリプロピレングリコール、ポ
リビニルアルコールおよびポリアクリルアミドといった
水溶性高分子のゲルを主成分とする担体の場合には、担
体が破損するため、このような撹拌方法を採用すること
はできない。
The method of installing an underwater stirrer inside the reaction tank or installing a pump for circulating the inside of the reaction tank is the simplest method of stirring the reaction tank under oxygen-free conditions, but it has a low strength. In the case of a microorganism-immobilized carrier, specifically, a carrier mainly composed of a gel of a water-soluble polymer such as polyethylene glycol, polypropylene glycol, polyvinyl alcohol, and polyacrylamide, the carrier is damaged. Can not be adopted.

【0044】これに対して、ポリプロピレンを主成分と
する担体の場合には担体強度が大であり、反応槽内部に
水中撹拌機を設置する方法や、反応槽内部循環用ポンプ
を設置する方法を採用できることが確認されている。
On the other hand, in the case of a carrier containing polypropylene as a main component, the strength of the carrier is large, and a method of installing an underwater stirrer inside the reaction tank or a method of installing a pump for circulating the inside of the reaction tank is used. It has been confirmed that it can be adopted.

【0045】さらに、中空形状の担体を用いた場合に
は、中空部の微生物も処理に利用されるので、有効微生
物濃度が増大し、また、中空部には酸素の拡散が制限さ
れるため中空部は無酸素状態となり易く、脱窒反応が起
き易くなり処理水質が向上する、あるいは反応槽を小型
化できるという効果が得られる。
Further, when a hollow-shaped carrier is used, the microorganisms in the hollow portion are also used for the treatment, so that the effective microorganism concentration is increased. The part easily becomes anoxic and the denitrification reaction easily occurs, thereby improving the quality of treated water or reducing the size of the reaction tank.

【0046】以上に示したように、本法では従来法では
不可能であった窒素系汚濁物質の除去が小型の装置で可
能であるとともに、流入水の水量および水質の変動に対
してより安定した高い窒素除去率が達成される。
As described above, according to the present method, the removal of nitrogen-based pollutants, which was impossible with the conventional method, is possible with a small-sized apparatus, and more stable against fluctuations in the amount and quality of inflow water. A high nitrogen removal rate is achieved.

【0047】[0047]

【実施例】以下に本発明の一実施例を表1により説明す
る。
An embodiment of the present invention will be described below with reference to Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】表1のRUN1は、図1に示した本法を適
用した処理システム(本法A)と、従来法、即ち反応槽
1段目、2段目および3段目ともに好気条件で運転し、
処理水の循環を行わなかった場合の処理条件および処理
結果を示してものである。
RUN1 in Table 1 indicates the treatment system (the present method A) to which the present method shown in FIG. 1 is applied and the conventional method, that is, the first, second and third stages of the reaction tank under aerobic conditions. Drive,
It shows the processing conditions and processing results when the circulation of the processing water is not performed.

【0050】処理結果から明らかなように、従来法では
硝化反応のみが起こり、脱窒反応がほとんど起らないた
め、処理水に高濃度のNOX −Nが残存し、処理水の全
窒素(T−N)濃度は30(g/m3 )となったが、本
法Aでは、無酸素条件とした反応槽1段目に処理水を循
環しているため、処理水の全窒素(T−N)濃度は9.
0(g/m3 )と,従来法に比べ大幅に低減した。
As is clear from the treatment results, in the conventional method, only the nitrification reaction occurs and the denitrification reaction hardly occurs, so that a high concentration of NO X -N remains in the treated water and the total nitrogen ( Although the (TN) concentration was 30 (g / m 3 ), in the present method A, since the treated water was circulated in the first stage of the reaction tank under anoxic condition, the total nitrogen (T -N) concentration is 9.
0 (g / m 3 ), which is significantly reduced as compared with the conventional method.

【0051】さらに、従来の浮遊汚泥を用いた循環式硝
化脱窒法では、良好な窒素除去のために必要な反応槽全
体での流入水の滞留時間は14時間から16時間程度と
なるが、本法Aでは滞留時間が6時間で良好な処理が行
われた。これは、微生物固定化担体に、大量の微生物が
固定化されたことによる効果と考えられる。
Furthermore, in the conventional circulating nitrification denitrification method using suspended sludge, the residence time of inflow water in the entire reaction tank required for good nitrogen removal is about 14 to 16 hours. In method A, good treatment was performed with a residence time of 6 hours. This is considered to be the effect of immobilizing a large amount of microorganisms on the microorganism-immobilized carrier.

【0052】さらに、無酸素槽のDOは0.1(g/m
3 )以下となり、粗大気泡散気によって、反応槽を脱窒
が十分に起るだけの無酸素条件に保つことができた。次
に、表1のRUN2は、3段構成とした本法で2段目を
好気条件とした場合(本法A)と、2段目を無酸素条件
とした場合(本法B)との比較を行ったもので、本法B
の方が処理水T−N濃度は小さくなった。
Further, the DO of the oxygen-free tank is 0.1 (g / m
3 ) The following conditions were satisfied, and the reaction tank could be maintained in an oxygen-free condition enough for denitrification to occur sufficiently by coarse bubble aeration. Next, RUN2 in Table 1 shows a case where the second stage was subjected to aerobic conditions (this method A) and a case where the second stage was subjected to anoxic conditions (this method B) in the three-stage method. The method B
The TN concentration of the treated water was smaller in the case of.

【0053】RUN1と比較して、RUN2では流入水
のBODおよびT−N濃度が小さい値となっており、3
段目だけでも硝化は100%進行しており、また、流入
水のBOD濃度が低いため脱窒速度が小さくなった。こ
のため、2段目を好気条件とした本法Aの場合には、3
段目がほとんど反応に関与しない無駄な槽となってお
り、1段目だけで脱窒を行っているため脱窒が不十分と
なり、結果として処理水に残留するNOX −N濃度が大
となっていた。
As compared with RUN1, RUN2 has a smaller value of the BOD and TN concentration of the inflow water.
Nitrification had progressed 100% in the stage alone, and the denitrification rate was low due to the low BOD concentration of the influent. Therefore, in the case of the present method A in which the second stage is aerobic, 3
The stage is a useless tank that hardly participates in the reaction. Since the denitrification is performed only in the first stage, the denitrification becomes insufficient, and as a result, the concentration of NO X -N remaining in the treated water becomes large. Had become.

【0054】これに対して、本法Bでは、3段目だけで
も100%の硝化が進行しており、かつ、1段目と2段
目の2つの槽で脱窒が行われるために、処理水のT−N
は本法Aよりも小さい値となったものである。
On the other hand, in the present method B, nitrification of 100% proceeds in the third stage alone, and denitrification is performed in the two tanks of the first and second stages. TN of treated water
Is smaller than that of the method A.

【0055】以上、RUN2の結果から、2段目の反応
槽を流入水質、流入水量、要求処理水質および水温等に
応じて好気条件および無酸素条件に切り替えることがで
きるようにして、適切に切替えを行うことにより処理水
質の向上を図ることができることが示された。
As described above, based on the results of RUN2, the second-stage reaction tank can be switched to aerobic conditions and anoxic conditions in accordance with the inflow water quality, inflow water amount, required treatment water quality, water temperature, etc. It was shown that the quality of treated water can be improved by switching.

【0056】次に、RUN3は本法Bと本法Cの比較を
行ったもので、両者の違いは使用する担体にある。即
ち、本法Bではポリプロピレン製、比重1.01、外径
4mm、内径3mm、長さ5mmの中空円筒状担体を使用した
のに対して、本法Cではポリエチレングリコール製、比
重1.04、一辺3mmの立方体担体を使用した。
Next, RUN3 is a comparison between the present method B and the present method C, and the difference between the two is in the carrier used. That is, in the present method B, a hollow cylindrical carrier having a specific gravity of 1.01, an outer diameter of 4 mm, an inner diameter of 3 mm, and a length of 5 mm was used, whereas in the present method C, a polyethylene glycol, specific gravity of 1.04, A cubic carrier having a side of 3 mm was used.

【0057】処理水のNOX −Nは、本法Bでは7.2
(g/m3 )であったのに対して本法Cでは9.8(g
/m3 )、T−Nは本法Bでは8.2(g/m3 )であ
ったのに対して本法Cでは11.8(g/m3 )とな
り、両者とも60%以上の窒素除去率が得られている。
The NO X -N of the treated water is 7.2 in the present method B.
(G / m 3 ), whereas 9.8 (g
/ M 3 ) and T-N were 8.2 (g / m 3 ) in the present method B, whereas they were 11.8 (g / m 3 ) in the present method C, both of which were 60% or more. A nitrogen removal rate has been obtained.

【0058】しかし、ポリプロピレン製、比重1.0
1、外径4mm、内径3mm, 長さ5mmの中空円筒状担体を
使用した本法Bの場合の方が、処理水質は優れていた。
これは、中空担体の中空部がより無酸素状態になりやす
く脱窒がより起りやすいことと、ポリエチレングリコー
ル製、比重1.04、一辺3mmの立方体担体では、比重
が大きく、流動化しにくいために吹き込み空気量を大と
せざるをえず、無酸素槽におけるDOが高くなるため
に、脱窒が起り起こりにくくなるためであり、本法にお
いてはポリエチレングリコール等の担体を用いることも
できるが、ポリプロピレン製の中空円筒状担体を使用し
た方がより高い性能を得られることが確認された。
However, made of polypropylene, specific gravity 1.0
1. In the case of the present method B using a hollow cylindrical carrier having an outer diameter of 4 mm, an inner diameter of 3 mm and a length of 5 mm, the treated water quality was better.
This is because the hollow portion of the hollow carrier is more likely to be anoxic and denitrification is more likely to occur, and the specific gravity of the cubic carrier made of polyethylene glycol, 1.04, 3 mm on a side has a large specific gravity and is difficult to fluidize. This is because the amount of air blown must be large, and the DO in the oxygen-free tank is high, so that denitrification is unlikely to occur.In this method, a carrier such as polyethylene glycol can be used. It has been confirmed that higher performance can be obtained by using a hollow cylindrical carrier made of aluminum.

【0059】なお、本実験では各槽の容積は表1に記載
した値で行ったが、実施設での反応槽容積は流入水の水
質や、要求される処理水水質、施設面積の制限などを考
慮して決定される。
In this experiment, the capacity of each tank was set to the value shown in Table 1. However, the capacity of the reaction tank in the actual facility was determined based on the quality of the inflow water, the required quality of the treated water, and the facility area. Is determined in consideration of

【0060】[0060]

【発明の効果】以上のように、本発明によれば、微生物
固定化担体を投入した反応槽の前段側無酸素条件とし、
さらに、処理水を反応槽の前段側に循環させるように構
成したので、従来法では達成できなかった窒素系汚濁物
質の除去が可能となった。
As described above, according to the present invention, anoxic conditions are provided on the upstream side of the reaction tank into which the microorganism-immobilized carrier has been charged,
Further, since the treated water is configured to be circulated to the upstream side of the reaction tank, it is possible to remove nitrogen-based pollutants which cannot be achieved by the conventional method.

【0061】さらに、無酸素槽と好気槽の中間に、好気
条件および無酸素条件のいずれの条件にも設定可能な中
間槽を設け、流入水質および処理水質などに応じて中間
槽の運転条件を適切に管理することができるようにした
ため、良好な処理水質を安定的に確保できるという効果
が得られる。
Further, an intermediate tank which can be set under any of the aerobic condition and the anaerobic condition is provided between the anoxic tank and the aerobic tank, and the operation of the intermediate tank is controlled according to the inflow water quality and the treated water quality. Since the conditions can be appropriately managed, the effect of stably ensuring good treated water quality can be obtained.

【0062】また、流動性に優れた比重0.99〜1.
03の微生物固定化担体を用いたため、少ないエネルギ
消費かつ少ない無酸素槽への酸素溶解が達成され、処理
エネルギの低減と処理水質の向上が達成される。
Further, the specific gravity of 0.99-1.
Since the microorganism-immobilized carrier of No. 03 is used, low energy consumption and low oxygen dissolution in an oxygen-free tank are achieved, thereby reducing processing energy and improving processing water quality.

【0063】特に、中空形状の担体を用いた場合には、
中空内部が無酸素条件に維持されるため、脱窒速度が向
上し、処理水質が向上する、あるいは処理装置が小型化
されるという効果がある。
In particular, when a hollow carrier is used,
Since the hollow interior is maintained in an oxygen-free condition, there is an effect that the denitrification rate is improved, the quality of treated water is improved, or the size of the treatment apparatus is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の態様の一例を示す概略的フロー
図。
FIG. 1 is a schematic flow chart showing an example of an embodiment of the present invention.

【図2】粗大気泡吹き込み方式における反応槽構造の一
例。
FIG. 2 shows an example of a reaction tank structure in a coarse bubble blowing system.

【図3】粗大気泡吹き込み方式における反応槽構造の一
例。
FIG. 3 shows an example of a reaction tank structure in a coarse bubble blowing system.

【図4】粗大気泡吹き込み方式における反応槽構造の一
例。
FIG. 4 shows an example of a reaction tank structure in a coarse bubble blowing system.

【図5】粗大気泡吹き込み方式における反応槽構造の一
例。
FIG. 5 shows an example of a reaction tank structure in a coarse bubble blowing system.

【符号の説明】[Explanation of symbols]

1…流入水,2…処理水、3…循環ライン、4…担体分
離スクリーン、5…担体、6…粗大気泡発生装置,7…
一段目反応槽、8…二段目反応槽、9…散気装置、10
…三段目反応槽、11…粗大気泡発生装置、12…バッ
フル板あるいはドラフトチューブ、13…凹部。
DESCRIPTION OF SYMBOLS 1 ... Inflow water, 2 ... Treatment water, 3 ... Circulation line, 4 ... Carrier separation screen, 5 ... Carrier, 6 ... Large bubble generator, 7 ...
First-stage reaction tank, 8: Second-stage reaction tank, 9: Aeration device, 10
... third-stage reaction tank, 11 ... coarse bubble generator, 12 ... baffle plate or draft tube, 13 ... recess.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 複数の反応槽に微生物固定化担体を投入
した廃水の処理方法において、最下流側反応槽の流出水
の一部を、最上流側反応槽に循環させ、かつ最上流側反
応槽を無酸素条件とすることを特徴とする廃水の処理方
法。
1. A method for treating wastewater in which a microorganism-immobilized carrier is charged into a plurality of reaction vessels, wherein a part of the effluent of the most downstream reaction vessel is circulated to the most upstream reaction vessel, and A method for treating wastewater, wherein the tank is placed under anoxic conditions.
【請求項2】 微生物固定化担体を投入した複数の反応
槽からなる廃水の処理装置において、最下流側反応槽の
流出水の一部を最上流側反応槽に循環させる装置と、最
上流側反応槽を無酸素条件とする装置とを有することを
特徴とする廃水の処理装置。
2. A wastewater treatment apparatus comprising a plurality of reaction tanks charged with a microorganism-immobilized carrier, wherein a device for circulating a part of the effluent of the most downstream reaction tank to the most upstream reaction tank; A wastewater treatment device, comprising: a device for setting a reaction tank in an oxygen-free condition.
【請求項3】 請求項2に記載された廃水の処理装置に
おいて、無酸素条件及び好気条件のいずれにも制御可能
な、少なくとも一つの中間反応槽を有することを特徴と
する廃水の処理装置。
3. The wastewater treatment apparatus according to claim 2, further comprising at least one intermediate reaction tank that can be controlled under both anoxic conditions and aerobic conditions. .
【請求項4】 請求項2〜3のいずれかに記載された廃
水の処理装置において、投入した微生物固定化担体の形
状が中空形状であり、かつ担体の主成分はポリプロピレ
ンであり、担体の比重が0.99から1.03であるこ
とを特徴とする廃水の処理装置。
4. The wastewater treatment apparatus according to claim 2, wherein the microorganism-immobilized carrier charged has a hollow shape, the main component of the carrier is polypropylene, and the specific gravity of the carrier. Is from 0.99 to 1.03.
【請求項5】 請求項2〜4に記載された廃水の処理装
置において、前記最上流側反応槽を無酸素条件とする装
置が機械式撹拌機または反応槽内部循環用ポンプである
ことを特徴とする廃水の処理装置。
5. The wastewater treatment apparatus according to claim 2, wherein the apparatus for setting the uppermost stream side reaction tank in an oxygen-free condition is a mechanical stirrer or a pump for circulating the inside of the reaction tank. Wastewater treatment equipment.
【請求項6】 請求項2〜4に記載された廃水の処理装
置において、前記最上流側反応槽を無酸素条件とする装
置が粗大気泡発生装置であることを特徴とする廃水の処
理装置。
6. The wastewater treatment apparatus according to claim 2, wherein the apparatus that sets the uppermost-stream side reaction tank in an oxygen-free condition is a coarse bubble generator.
【請求項7】 請求項6に記載された廃水の処理装置に
おいて、前記最上流側反応槽を液が上昇する部分と下降
する部分に区分けするドラフトチューブやバッフル板等
を設けたことを特徴とする廃水の処理装置。
7. The wastewater treatment apparatus according to claim 6, further comprising a draft tube, a baffle plate, and the like that divide the uppermost reaction tank into a liquid rising part and a liquid falling part. Wastewater treatment equipment.
【請求項8】 請求項6〜7のいずれかに記載された廃
水の処理装置において、前記最上流側反応槽の底部の少
なくとも一部を凹形状としたことを特徴とする廃水の処
理装置。
8. The wastewater treatment apparatus according to claim 6, wherein at least a part of the bottom of the most upstream reaction tank has a concave shape.
【請求項9】 請求項6〜8のいずれか一つに記載され
た廃水の処理装置を用い、前記最上流側反応槽における
粗大気泡を発生させる散気を間欠的に行うことを特徴と
する廃水の処理方法。
9. An apparatus for treating wastewater according to claim 6, wherein the air is diffused intermittently to generate coarse bubbles in the most upstream reaction tank. Wastewater treatment method.
【請求項10】 請求項2〜9のいずれか一つに記載さ
れた廃水の処理装置において、前記最上流側反応槽の上
部空間に存在する気体を繰り返し槽内の液中に吹き込む
装置を設けたことを特徴とする廃水の処理装置。
10. The wastewater treatment apparatus according to claim 2, further comprising a device for repeatedly blowing gas present in an upper space of the uppermost-stream side reaction tank into a liquid in the tank. Waste water treatment apparatus characterized by the above-mentioned.
JP25022496A 1996-09-20 1996-09-20 Wastewater treatment method and apparatus Expired - Fee Related JP3451849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25022496A JP3451849B2 (en) 1996-09-20 1996-09-20 Wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25022496A JP3451849B2 (en) 1996-09-20 1996-09-20 Wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH1094795A true JPH1094795A (en) 1998-04-14
JP3451849B2 JP3451849B2 (en) 2003-09-29

Family

ID=17204692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25022496A Expired - Fee Related JP3451849B2 (en) 1996-09-20 1996-09-20 Wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3451849B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117583A (en) * 2001-10-12 2003-04-22 Kobe Steel Ltd Bioreaction chamber and agitating method for the same
JP2004141719A (en) * 2002-10-22 2004-05-20 Ebara Corp Treatment method of organic wastewater and equipment therefor
KR100441775B1 (en) * 2001-07-04 2004-07-30 (주)담덕 Tertiary sewage treatment apparatus and method using porous media
KR100488471B1 (en) * 2002-12-12 2005-05-16 (주)담덕 Backwashing apparatus of tertiary sewage treatment system
JP2010023036A (en) * 2009-10-30 2010-02-04 Nishihara Environment Technology Inc Sewage treatment apparatus
JP2011110501A (en) * 2009-11-27 2011-06-09 Hitachi Ltd Water treatment equipment
JP2015024369A (en) * 2013-07-26 2015-02-05 株式会社クボタ Aerobic-cum-anaerobic reaction tank and operation method of the same
EP3847135A4 (en) * 2018-09-07 2022-04-06 Pulsed Burst Systems, LLC Wastewater treatment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583447B2 (en) 2018-02-20 2019-10-02 株式会社明電舎 Bubble generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441775B1 (en) * 2001-07-04 2004-07-30 (주)담덕 Tertiary sewage treatment apparatus and method using porous media
JP2003117583A (en) * 2001-10-12 2003-04-22 Kobe Steel Ltd Bioreaction chamber and agitating method for the same
JP2004141719A (en) * 2002-10-22 2004-05-20 Ebara Corp Treatment method of organic wastewater and equipment therefor
KR100488471B1 (en) * 2002-12-12 2005-05-16 (주)담덕 Backwashing apparatus of tertiary sewage treatment system
JP2010023036A (en) * 2009-10-30 2010-02-04 Nishihara Environment Technology Inc Sewage treatment apparatus
JP2011110501A (en) * 2009-11-27 2011-06-09 Hitachi Ltd Water treatment equipment
JP2015024369A (en) * 2013-07-26 2015-02-05 株式会社クボタ Aerobic-cum-anaerobic reaction tank and operation method of the same
EP3847135A4 (en) * 2018-09-07 2022-04-06 Pulsed Burst Systems, LLC Wastewater treatment system

Also Published As

Publication number Publication date
JP3451849B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
JP4508694B2 (en) Water treatment method and apparatus
JP3336410B2 (en) Apparatus and method for treating sewage and wastewater by biological reaction
JPH02214597A (en) Device for nitrifying sewage
JP3451849B2 (en) Wastewater treatment method and apparatus
KR100937482B1 (en) Method and device for sewage disposal using the submersible hollow media
JP3136902B2 (en) Wastewater treatment method
JP5743448B2 (en) Sewage treatment equipment
JP3136900B2 (en) Wastewater treatment method
CN112678951A (en) Wastewater treatment system
JP3373015B2 (en) Wastewater nitrification denitrification treatment equipment
JP2020075224A (en) Sewage treatment device and method of sewage treatment
JP2000093992A (en) Wastewater treatment system
JP2016049512A (en) Anaerobic ammonia oxidation treatment method, anaerobic ammonia oxidation treatment apparatus, and denitrification method of organic waste water
JPH1094796A (en) Treatment of waste water and device therefor
JP3136901B2 (en) Wastewater treatment method
JP2004202387A (en) Sewage disposal treatment method
JP2759308B2 (en) Method and apparatus for treating organic wastewater
JP3246262B2 (en) Water treatment equipment
JP2000325992A (en) Waste water treatment apparatus with sludge concentrating means
JP3835323B2 (en) Biological treatment apparatus and biological treatment method
JP2984579B2 (en) Biological reaction tank
JP2006346580A (en) Water treatment method and apparatus of ammonia-containing wastewater
JPH027716B2 (en)
JPH07136678A (en) Wastewater treatment method and tank
JP2818081B2 (en) Sewage treatment equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees