JPH1093154A - Piezoelectric element - Google Patents
Piezoelectric elementInfo
- Publication number
- JPH1093154A JPH1093154A JP24505096A JP24505096A JPH1093154A JP H1093154 A JPH1093154 A JP H1093154A JP 24505096 A JP24505096 A JP 24505096A JP 24505096 A JP24505096 A JP 24505096A JP H1093154 A JPH1093154 A JP H1093154A
- Authority
- JP
- Japan
- Prior art keywords
- face
- piezoelectric
- plane
- single crystal
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 claims abstract description 57
- 239000002131 composite material Substances 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims description 12
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 239000000523 sample Substances 0.000 abstract description 42
- 230000008878 coupling Effects 0.000 abstract description 17
- 238000010168 coupling process Methods 0.000 abstract description 17
- 238000005859 coupling reaction Methods 0.000 abstract description 17
- 238000005520 cutting process Methods 0.000 abstract description 12
- 230000010287 polarization Effects 0.000 abstract description 6
- 230000028161 membrane depolarization Effects 0.000 abstract description 4
- 238000012856 packing Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 239000011701 zinc Substances 0.000 description 10
- 239000004020 conductor Substances 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 8
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 238000005476 soldering Methods 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000005162 X-ray Laue diffraction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 3
- JQJCSZOEVBFDKO-UHFFFAOYSA-N lead zinc Chemical compound [Zn].[Pb] JQJCSZOEVBFDKO-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 238000000462 isostatic pressing Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超音波診断装置や
超音波探傷装置などに用いられる圧電素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric element used for an ultrasonic diagnostic apparatus, an ultrasonic flaw detector and the like.
【0002】[0002]
【従来の技術】超音波診断装置や超音波探傷装置などの
に用いられる超音波プローブは、圧電素子を主体として
構成され、超音波を対象物に向けて照射し、その対象物
における音響インピーダンスの異なる界面からの反射エ
コーを受信することにより前記対象物の内部状態を画像
化することができる。従来、圧電素子としては、電気機
械結合係数(k33´,ktなど)が大きく、かつケーブ
ルや装置浮遊容量による損失が少ない送受信回路とのマ
ッチングが取りやすい誘電率の大きなチタン酸ジルコン
酸鉛(PZT)系セラミックが用いられている。2. Description of the Related Art An ultrasonic probe used for an ultrasonic diagnostic apparatus or an ultrasonic flaw detector is mainly composed of a piezoelectric element, irradiates an ultrasonic wave toward an object, and obtains an acoustic impedance of the object. By receiving reflected echoes from different interfaces, the internal state of the object can be imaged. Conventionally, as a piezoelectric element, lead zirconate titanate having a large dielectric constant and having a large electromechanical coupling coefficient (k 33 ′, kt, etc.) and a large dielectric constant which is easy to match with a transmission / reception circuit having a small loss due to a cable or device stray capacitance (PZT) -based ceramics are used.
【0003】現在、超音波プローブは厚さが数10μm
〜数100μmの短冊状の圧電素子を数10〜200個
程度配列したアレイプローブが主流であり、圧電素子数
は高分解能化の要求と共に増加する傾向にある。また、
超音波プローブの高感度化や高帯域化の要求に対しても
圧電素子自体の圧電特性の向上が求められている。これ
らの要求に対しては大きな電気機械結合係数を有するP
b[(Zn1/3 Nb2/3 )1-x Tix ]O3 (ただし、
xは0.05≦x≦0.20を示す)、Pb[(Mg
1/3 Nb2/3 )1-y Tiy ]O3 (ただし、yは0.2
0≦y≦0.40を示す)、Pb[(Ni1/3 Nb
2/3 )1-z Tiz ]O3 (ただし、zは0.30≦z≦
0.50を示す)、Pb[(Co1/3 Nb2/3 )1-u T
iu ]O3 (ただし、uは0.10≦u≦0.30を示
す)、Pb[(A1/2 Nb1/2 )1-w Tiw ]O3 (た
だし、AはSc、In、Fe、Yおよび希土類元素から
選ばれる1種、wは0.30≦w≦0.50を示す)等
の2価または3価の金属元素を含む複合酸化物、これら
の複合酸化物においてNbの一部をTaで置換したタン
タル酸−チタン酸鉛の複合酸化物、およびこれらを組み
合わせた複合酸化物などのペロブスカイト型酸化物単結
晶を圧電体として用いた超音波プローブが期待されてい
る。例えば、亜鉛酸ニオブ酸鉛Pb(Zn1/3 Nb
2/3 )O3 −チタン酸鉛PbTiO3 の固溶系単結晶で
は電気機械結合係数(k33´)が85〜90%と大き
く、PZT系圧電セラミックのk33´の70%と比べて
圧電特性が優れていることが知られている。この単結晶
を用いると、高感度信号が得られる低周波でも圧電素子
を薄くできる。また、短冊状の圧電素子を作製するため
の裁断において、ダイシングマシンのブレードの切り込
み深さを浅くでき、薄いブレードでも垂直に切り込める
ので製造歩留まりを向上できる。その上、サイドローブ
が低減された超音波プローブを提供できる。さらに比誘
電率が従来のPZT系圧電セラミックと同等以上である
ため、送受信回路とのマッチングが良好になり、ケーブ
ルや装置浮遊容量分による損失が低減された高感度な信
号を得ることができる。特に、前記固溶体においてチタ
ン酸鉛のモル分率を20%以下の組成からなる単結晶を
圧電体として用いた圧電素子を備えた超音波プローブは
従来のPZT系圧電セラミックを圧電体として用いた超
音波プローブに比べて6dB以上の大きい高感度な信号
が得られる。このため、Bモード像の場合、身体的変化
による小さな病変や空隙が明瞭に深部まで見ることが可
能な高分解能の画像が得られる。また、CFM像などを
得ることができるドプラモードの場合には、直径が数μ
m程度の微小な血球からの反射エコーも大きい信号とし
て得られるようになる。At present, an ultrasonic probe has a thickness of several tens μm.
An array probe in which tens to hundreds of strip-shaped piezoelectric elements of up to several hundreds of μm are arranged is mainstream, and the number of piezoelectric elements tends to increase with the demand for higher resolution. Also,
Improvements in the piezoelectric characteristics of the piezoelectric element itself are also required in response to demands for higher sensitivity and higher bandwidth of the ultrasonic probe. For these demands, P with a large electromechanical coupling coefficient
b [(Zn 1/3 Nb 2/3) 1-x Ti x] O 3 ( where
x represents 0.05 ≦ x ≦ 0.20), Pb [(Mg
1/3 Nb 2/3 ) 1-y Ti y ] O 3 (where y is 0.2
0 ≦ y ≦ 0.40), Pb [(Ni 1/3 Nb
2/3) 1-z Ti z] O 3 ( however, z is 0.30 ≦ z ≦
0.50), Pb [(Co 1/3 Nb 2/3 ) 1-u T
i u ] O 3 (where u represents 0.10 ≦ u ≦ 0.30), Pb [(A 1/2 Nb 1/2 ) 1-w Ti w ] O 3 (where A is Sc, One kind selected from In, Fe, Y and rare earth elements, w represents 0.30 ≦ w ≦ 0.50), a complex oxide containing a divalent or trivalent metal element, and the like. An ultrasonic probe using a perovskite-type oxide single crystal such as a composite oxide of tantalate-lead titanate in which a part of Nb is replaced with Ta and a composite oxide obtained by combining these as a piezoelectric material is expected. . For example, lead zinc niobate Pb (Zn 1/3 Nb)
2/3 ) The solid solution single crystal of O 3 -lead titanate PbTiO 3 has a large electromechanical coupling coefficient (k 33 ′) of 85 to 90%, which is larger than that of k 33 ′ of the PZT piezoelectric ceramic by 70%. It is known that the characteristics are excellent. When this single crystal is used, the piezoelectric element can be made thin even at a low frequency at which a high-sensitivity signal can be obtained. Further, in cutting for manufacturing a strip-shaped piezoelectric element, the cutting depth of the blade of the dicing machine can be made shallow, and even a thin blade can be cut vertically, so that the production yield can be improved. Moreover, an ultrasonic probe with reduced side lobes can be provided. Further, since the relative dielectric constant is equal to or higher than that of the conventional PZT-based piezoelectric ceramic, matching with the transmission / reception circuit is improved, and a highly sensitive signal with reduced loss due to cables and stray capacitance of the device can be obtained. In particular, an ultrasonic probe including a piezoelectric element using a single crystal having a composition in which the molar fraction of lead titanate is 20% or less in the solid solution as a piezoelectric material is an ultrasonic probe using a conventional PZT-based piezoelectric ceramic as a piezoelectric material. A high-sensitivity signal that is 6 dB or more larger than that of the acoustic probe can be obtained. For this reason, in the case of the B-mode image, a high-resolution image is obtained in which small lesions and voids due to physical changes can be clearly seen to the deep part. In the case of the Doppler mode in which a CFM image or the like can be obtained, the diameter is several μm.
A reflected echo from a minute blood cell of about m can be obtained as a large signal.
【0004】ところで、超音波プローブの圧電素子に用
いられる圧電材料は、大きさが10mm角以上の面積を
持つ板状で、さらに大きい電気機械結合係数および高い
誘電率を有し、かつ個々の圧電素子において圧電・誘電
体の特性が均一であることが望まれている。ブリッジマ
ン法による単結晶の育成方法では、実用上、問題のない
レベルまで組成変動を抑制することができている。この
ように前述した単結晶からなる圧電体を用いて低周波数
駆動の超音波プローブを製造する場合では薄い単結晶を
用いることができ、薄いブレードにより寸法精度の高い
短冊状の圧電素子の作製が可能で製造歩留まりの向上、
高感度化、サイドローブの低減が可能になった。A piezoelectric material used for a piezoelectric element of an ultrasonic probe is a plate having a size of 10 mm square or more, has a larger electromechanical coupling coefficient and a higher dielectric constant, and has an individual piezoelectric material. It is desired that the element has uniform characteristics of piezoelectric and dielectric materials. In the method of growing a single crystal by the Bridgman method, the composition fluctuation can be suppressed to a level at which there is no problem in practical use. As described above, in the case of manufacturing an ultrasonic probe driven at a low frequency using the piezoelectric body made of a single crystal as described above, a thin single crystal can be used, and a strip-shaped piezoelectric element with high dimensional accuracy can be manufactured using a thin blade. Possible to improve production yield,
Higher sensitivity and reduced side lobes are now possible.
【0005】しかしながら、前述した方法で製造した超
音波プローブの中で信号レベルが低く、高分解能の画像
が得られないものが混在する場合がある。感度の低い超
音波プローブを構成する圧電素子は電気機械結合係数
(k33´)の値が初期値より低下し、このk33´の低下
が信号レベルを小さくする原因になっている。信号レベ
ルの小さい圧電単結晶を有する圧電素子は脱分極されて
いたり、または分極不足であったりするため、圧電単結
晶本来の電気機械結合係数(k33´)を示さない。この
ように超音波プローブを製造する際、短冊状の圧電素子
の圧電体が脱分極したり、分極不足が生じると、その感
度が実質的に低下したり、帯域が狭くなるという問題が
あった。したがって、前述したペロブスカイト型酸化物
単結晶は優れた電気機械結合係数を有するにもかかわら
ず、この単結晶から超音波プローブを量産的に製造する
ことが困難であった。[0005] However, among the ultrasonic probes manufactured by the above-mentioned method, there are cases in which the signal level is low and a high-resolution image cannot be obtained. The value of the electromechanical coupling coefficient (k 33 ′) of the piezoelectric element constituting the low-sensitivity ultrasonic probe is lower than the initial value, and this decrease in k 33 ′ causes the signal level to decrease. A piezoelectric element having a piezoelectric single crystal with a small signal level does not exhibit the original electromechanical coupling coefficient (k 33 ′) of the piezoelectric single crystal because it is depolarized or insufficiently polarized. As described above, when the ultrasonic probe is manufactured, when the piezoelectric body of the strip-shaped piezoelectric element is depolarized or insufficiently polarized, there is a problem that the sensitivity is substantially reduced or the band is narrowed. . Therefore, although the above-mentioned perovskite oxide single crystal has an excellent electromechanical coupling coefficient, it has been difficult to mass-produce an ultrasonic probe from this single crystal.
【0006】[0006]
【発明が解決しようとする課題】例えば、Pb[(Zn
1/3 Nb2/3 )1-x Tix ]O3 (ただし、xは0.0
5≦x≦0.20を示す)のようなペロブスカイト型鉛
複合酸化物単結晶を超音波プローブの圧電体として用い
ると、従来のPZT系圧電セラミックと異なり、裁断
時、または電極の形成時に電気機械結合係数の値がばら
ついたり、本来の値より低下する。このため、従来のP
ZT系圧電セラミックを用いた超音波プローブと同程度
の感度しか得られない、または超音波プローブの性能の
ばらつきが生じるという問題があった。本発明は、脱分
極の抑制および分極不足を改善した高い電気機械結合係
数を有する圧電素子を提供しようとするものである。For example, Pb [(Zn
1/3 Nb 2/3) 1-x Ti x] O 3 ( here, x is 0.0
When a single crystal of a perovskite-type lead composite oxide (such as 5 ≦ x ≦ 0.20) is used as a piezoelectric body of an ultrasonic probe, unlike a conventional PZT-based piezoelectric ceramic, electric power is generated when cutting or forming electrodes. The value of the mechanical coupling coefficient varies or falls below the original value. For this reason, the conventional P
There has been a problem that only the same sensitivity as that of an ultrasonic probe using a ZT-based piezoelectric ceramic can be obtained, or the performance of the ultrasonic probe varies. An object of the present invention is to provide a piezoelectric element having a high electromechanical coupling coefficient in which depolarization is suppressed and polarization insufficiency is improved.
【0007】[0007]
【課題を解決するための手段】本発明に係わる圧電素子
は、ペロブスカイト型鉛複合酸化物単結晶から裁断され
た裁断面を有する圧電体に電極を形成した圧電素子にお
いて、前記圧電体の電極形成面は、{100}面であ
り、かつ前記圧電体の裁断面は{100}面または{1
10}面であることを特徴とするものである。According to the present invention, there is provided a piezoelectric element in which an electrode is formed on a piezoelectric body having a cut surface cut from a perovskite-type lead composite oxide single crystal. The plane is a {100} plane, and the cut surface of the piezoelectric body is a {100} plane or a {1} plane.
It is characterized by a 10-degree plane.
【0008】ここで、{100}面とは(100)面,
(010)面,(001)面,(−100)面,(0−
10)面,(00−1)面を意味する。また、{11
0}面とは(110)面,(101)面,(011)
面,(−1−10)面,(−10−1)面,(0−1−
1)面,(−110)面,(−101)面,(0−1
1)面,(1−10)面,(10−1)面,(01−
1)面を意味する。Here, the {100} plane is the (100) plane,
(010) plane, (001) plane, (-100) plane, (0-
10) plane and (00-1) plane. Also, $ 11
The 0 ° plane is (110) plane, (101) plane, (011) plane
Plane, (-1-10) plane, (-10-1) plane, (0-1-
1) plane, (-110) plane, (-101) plane, (0-1) plane
1) plane, (1-10) plane, (10-1) plane, (01-
1) Mean plane.
【0009】このような本発明によれば、ペロブスカイ
ト型鉛複合酸化物単結晶からなる圧電体の電極形成面を
{100}面とし、かつ前記圧電体の裁断面を{10
0}面または{110}面とすることによって脱分極を
抑制ないし防止できるため、高い電気機械結合係数を有
する圧電素子を得ることができる。このような圧電素子
は、例えば電気機械結合係数(k33´)が85%以上
で、個々の圧電素子間のばらつきも小さいが、前記裁断
面が{100}面または{110}面を外れる圧電体を
有する圧電素子では電気機械結合係数(k33´)が80
%を低下すると同時に個々の圧電素子間のばらつきも大
きくなる。According to the present invention, the electrode forming surface of the piezoelectric body made of a perovskite-type lead composite oxide single crystal is {100}, and the cut surface of the piezoelectric body is {10}.
Since the depolarization can be suppressed or prevented by setting the plane to {0} or {110}, a piezoelectric element having a high electromechanical coupling coefficient can be obtained. Such a piezoelectric element has, for example, an electromechanical coupling coefficient (k 33 ′) of 85% or more and a small variation between the individual piezoelectric elements, but the piezoelectric element whose cut surface deviates from the {100} plane or the {110} plane. In a piezoelectric element having a body, the electromechanical coupling coefficient (k 33 ′) is 80
%, The variation among the individual piezoelectric elements also increases.
【0010】前記ペロブスカイト型鉛複合酸化物単結晶
を用いると、高感度信号が得られる低周波でも圧電素子
を薄くできる。また、短冊状の圧電素子を作製するため
の裁断において、ダイシングマシンのブレードの切り込
み深さを浅くでき、薄いブレードでも垂直に切り込める
ので製造歩留まりを向上できる。その上、サイドローブ
が低減された超音波プローブを提供できる。さらに比誘
電率が従来のPZT系圧電セラミックと同等以上である
ため、送受信回路とのマッチングが良好になり、ケーブ
ルや装置浮遊容量分による損失が低減された高感度な信
号を得ることができる。When the perovskite-type lead composite oxide single crystal is used, the piezoelectric element can be made thin even at a low frequency at which a high-sensitivity signal can be obtained. Further, in cutting for manufacturing a strip-shaped piezoelectric element, the cutting depth of the blade of the dicing machine can be made shallow, and even a thin blade can be cut vertically, so that the production yield can be improved. Moreover, an ultrasonic probe with reduced side lobes can be provided. Further, since the relative dielectric constant is equal to or higher than that of the conventional PZT-based piezoelectric ceramic, matching with the transmission / reception circuit is improved, and a highly sensitive signal with reduced loss due to cables and stray capacitance of the device can be obtained.
【0011】したがって、圧電体の電極形成面を{10
0}面とし、かつ前記圧電体の裁断面を{100}面ま
たは{110}面とすることによって、前記ペロブスカ
イト型鉛複合酸化物単結晶本来の圧電特性を損なうこと
なく、高感度で広帯域の超音波プローブを実現できる。Therefore, the electrode forming surface of the piezoelectric body is reduced by $ 10.
0} plane, and by setting the cut surface of the piezoelectric body to {100} plane or {110} plane, high sensitivity and wide band without impairing the original piezoelectric characteristics of the perovskite type lead composite oxide single crystal. An ultrasonic probe can be realized.
【0012】[0012]
【発明の実施の形態】以下、本発明に係わる圧電素子を
詳細に説明する。この圧電素子は、ペロブスカイト型鉛
複合酸化物単結晶から裁断された裁断面を有する圧電体
に電極を形成した構造で、前記圧電体の電極形成面を
{100}面とし、かつ前記圧電体の裁断面を{10
0}面または{110}面とした較正を有する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a piezoelectric element according to the present invention will be described in detail. This piezoelectric element has a structure in which an electrode is formed on a piezoelectric body having a cut surface cut from a perovskite-type lead composite oxide single crystal, and the electrode forming surface of the piezoelectric body is a {100} plane, and the piezoelectric body is Cut surface is $ 10
It has a calibration of 0 or {110} plane.
【0013】前記ペロブスカイト型鉛複合酸化物単結晶
は、例えばPb[(Zn1/3 Nb2/3 )1-x Tix ]O
3 (ただし、xは0.05≦x≦0.20を示す)、P
b[(Mg1/3 Nb2/3 )1-y Tiy ]O3 (ただし、
yは0.20≦y≦0.40を示す)、Pb[(Ni
1/3 Nb2/3 )1-z Tiz ]O3 (ただし、zは0.3
0≦z≦0.50を示す)、Pb[(Co1/3 Nb
2/3 )1-u Tiu ]O3 (ただし、uは0.10≦u≦
0.30を示す)、Pb[(A1/2 Nb1/2 )1-w Ti
w ]O3 (ただし、AはSc、In、Fe、Yおよび希
土類元素から選ばれる1種、wは0.30≦w≦0.5
0を示す)にて表される組成物、もしくは前記式中のP
bの一部を10モル%以内の量でNa、Sr、Ca、お
よびLaの少なくとも1種で置換した組成物、または前
記式中のNbの一部をTaで置換した組成物であること
が好ましい。The perovskite-type lead composite oxide single crystal is, for example, Pb [(Zn 1/3 Nb 2/3 ) 1-x Ti x ] O
3 (where x indicates 0.05 ≦ x ≦ 0.20), P
b [(Mg 1/3 Nb 2/3 ) 1-y Ti y ] O 3 (However,
y represents 0.20 ≦ y ≦ 0.40), Pb [(Ni
1/3 Nb 2/3) 1-z Ti z] O 3 ( however, z is 0.3
0 ≦ z ≦ 0.50), Pb [(Co 1/3 Nb
2/3 ) 1-u Ti u ] O 3 (where u is 0.10 ≦ u ≦
0.30), Pb [(A 1/2 Nb 1/2 ) 1-w Ti
w ] O 3 (where A is one selected from Sc, In, Fe, Y and rare earth elements, w is 0.30 ≦ w ≦ 0.5
0) or P in the above formula
a composition in which a part of b is substituted with at least one of Na, Sr, Ca, and La in an amount of 10 mol% or less, or a composition in which a part of Nb in the above formula is substituted with Ta. preferable.
【0014】前記ペロブスカイト型鉛複合酸化物単結晶
は、100℃以下の温度で菱面晶を示すものが好まし
い。前記単結晶からなる圧電体の厚さ(t)は0.05
mm≦t≦0.50mmにすることが好ましい。Preferably, the perovskite-type lead composite oxide single crystal exhibits a rhombohedral crystal at a temperature of 100 ° C. or less. The thickness (t) of the single-crystal piezoelectric body is 0.05
It is preferable that mm ≦ t ≦ 0.50 mm.
【0015】前記電極としては、導電性材料であれば特
に制限されず、例えばTi/Au(Ti;10〜50n
m、Au100〜1000nm)電極、Cr/Au(C
r;10〜50nm、Au;100〜1000nm)電
極等を用いることができる。これら電極は、スパッタ
法、蒸着法、塗布法等により形成される。The electrode is not particularly limited as long as it is a conductive material. For example, Ti / Au (Ti; 10 to 50 n) is used.
m, Au 100 to 1000 nm) electrode, Cr / Au (C
r; 10 to 50 nm, Au; 100 to 1000 nm). These electrodes are formed by a sputtering method, a vapor deposition method, a coating method, or the like.
【0016】次に、本発明に係わる圧電素子を備える超
音波プローブ(アレー型超音波プローブ)を図1を参照
して詳細に説明する。ペロブスカイト型鉛複合酸化物単
結晶からなる複数の圧電体1は、バッキング材2上に互
いに分離して接着されている。前記各々の圧電体1は図
の矢印A方向に振動する。第1電極3は、前記各々の圧
電体1の超音波送受信面からその側面および前記送受信
面と反対側の面の一部に亘ってそれぞれ形成されてい
る。第2電極4は、前記各々の圧電体1の前記送受信面
と反対側の面に前記第1電極3と所望の距離隔ててそれ
ぞれ形成されている。このような前記圧電体1、前記第
1、第2の電極3、4により圧電素子(超音波送受信素
子)が構成される。音響マッチング層5は、前記各々の
第1電極3を含む前記各圧電体1の超音波送受信面にそ
れぞれ形成されている。音響レンズ6は、前記各音響マ
ッチング層5の全体に亘って形成されている。フレキシ
ブル印刷配線板7は、前記各々の第1電極3に接続され
ている。アース電極板8は、前記各々の第2電極4に例
えばはんだ付けにより接続されている。図示しない複数
の導体(ケーブル)は前記フレキシブル印刷配線板7お
よびアース電極板8にそれぞれ接続される。Next, an ultrasonic probe (array type ultrasonic probe) including the piezoelectric element according to the present invention will be described in detail with reference to FIG. A plurality of piezoelectric bodies 1 made of a perovskite-type lead composite oxide single crystal are separately bonded on a backing material 2. Each of the piezoelectric bodies 1 vibrates in the direction of arrow A in the figure. The first electrode 3 is formed from the ultrasonic transmitting and receiving surface of each of the piezoelectric bodies 1 to a side surface thereof and a part of a surface opposite to the transmitting and receiving surface. The second electrode 4 is formed on a surface of each of the piezoelectric bodies 1 opposite to the transmission / reception surface at a desired distance from the first electrode 3. The piezoelectric element 1 and the first and second electrodes 3 and 4 constitute a piezoelectric element (ultrasonic transmitting / receiving element). An acoustic matching layer 5 is formed on each of the ultrasonic transmitting and receiving surfaces of each of the piezoelectric bodies 1 including each of the first electrodes 3. The acoustic lens 6 is formed over the entire acoustic matching layer 5. The flexible printed wiring board 7 is connected to each of the first electrodes 3. The ground electrode plate 8 is connected to each of the second electrodes 4 by, for example, soldering. A plurality of conductors (cables) not shown are connected to the flexible printed wiring board 7 and the ground electrode plate 8, respectively.
【0017】このような図1に示す構造の超音波プロー
ブは、例えば次のような方法により作製される。まず、
直方体形状のペロブスカイト型鉛複合酸化物単結晶片に
導電膜をスパッタ法により蒸着し、選択エッチング技術
により超音波送受信面および前記送受信面と反対側の面
に導電膜を残す。つづいて、前記単結晶片の超音波送受
信面となる面に音響マッチング層を形成し、これらをバ
ッキング材2上に接着する。ひきつづき、ブレードを用
いて前記音響マッチング層から前記単結晶片に亘って複
数回切断することにより前記バッキング材2上に第1、
第2電極3、4を有する互いに分離された複数の圧電体
1と前記各圧電体1上にそれぞれ配置された複数の音響
マッチング層5が形成される。この時、図2に示すよう
に前記圧電体1の電極形成面は{100}面、例えば
(001)面、(00−1)面を示し、裁断面は{10
0}面、例えば(100)面、(−100)面を示す。The ultrasonic probe having the structure shown in FIG. 1 is manufactured by, for example, the following method. First,
A conductive film is deposited by sputtering on a perovskite-type lead composite oxide single crystal piece having a rectangular parallelepiped shape, and the conductive film is left on the ultrasonic transmitting / receiving surface and the surface opposite to the transmitting / receiving surface by a selective etching technique. Subsequently, an acoustic matching layer is formed on the surface of the single crystal piece that will be the ultrasonic transmitting / receiving surface, and these are adhered onto the backing material 2. Subsequently, the first and second cuts are made on the backing material 2 by cutting a plurality of times from the acoustic matching layer to the single crystal piece using a blade.
A plurality of separated piezoelectric bodies 1 having second electrodes 3 and 4 and a plurality of acoustic matching layers 5 arranged on the respective piezoelectric bodies 1 are formed. At this time, as shown in FIG. 2, the electrode forming surface of the piezoelectric body 1 shows a {100} plane, for example, a (001) plane and a (00-1) plane, and the cut plane is a {10} plane.
0 ° plane, for example, (100) plane, (-100) plane.
【0018】次いで、前記音響マッチング層5に音響レ
ンズ6を形成した後、フレキシブル印刷配線板7を前記
第1電極3にそれぞれ接続し、前記第2電極4にアース
電極板8を例えばはんだ付けにより接続し、さらに図示
しない複数の導体(ケーブル)を前記フレキシブル印刷
配線板7およびアース電極板8にそれぞれ接続すること
により超音波プローブを作製する。Next, after an acoustic lens 6 is formed on the acoustic matching layer 5, a flexible printed wiring board 7 is connected to each of the first electrodes 3, and an earth electrode plate 8 is attached to the second electrode 4 by, for example, soldering. Then, an ultrasonic probe is manufactured by connecting a plurality of conductors (cables) (not shown) to the flexible printed wiring board 7 and the ground electrode plate 8, respectively.
【0019】[0019]
【実施例】以下、本発明の好ましい実施例を詳細に説明
する。 (実施例1)まず、純度が99.9%以上のPbO、Z
nO、Nb2 O5 およびTiO2 を、亜鉛酸ニオブ酸鉛
(Pb[Zn1/3 Nb2/3 ]O3 ;PZNと略す)とチ
タン酸鉛(PbTiO3 ;PTと略す)のモル比が9
1:9(つまりPb[(Zn1/3 Nb2/3 )1-x Ti
x ]O3 ,x=0.09、91PZN−9PTと略す)
になるように秤量し、この秤量物にフラックスとして同
量の酸化鉛(PbO)を加えた。これらの粉末に純水を
加え、ジルコニアボ−ルを用いてボールミルで1時間混
合した。この混合物を乾燥し、ライカイ機で十分に混合
粉砕した後、ゴム製容器に入れて2トン/cm2 の圧力
で静水圧プレスを行って成形した。この塊状物1100
gを250ccの有底筒状白金容器内に入れ、さらに前
記容器を電気炉に入れ、1250℃の温度まで5時間昇
温した後、0.8℃/hrの冷却速度で800℃まで徐
冷し、その後室温まで徐冷した。つづいて、前記白金容
器を20%硝酸で8時間煮沸し、フラックスを溶かし出
して結晶を取り出した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. (Example 1) First, PbO, Z having a purity of 99.9% or more
The molar ratio of nO, Nb 2 O 5 and TiO 2 to lead zinc niobate (Pb [Zn 1/3 Nb 2/3 ] O 3 ; abbreviated as PZN) and lead titanate (PbTiO 3 ; abbreviated as PT) Is 9
1: 9 (that is, Pb [(Zn 1/3 Nb 2/3 ) 1-x Ti
x] abbreviated as O 3, x = 0.09,91PZN-9PT )
And the same amount of lead oxide (PbO) was added as a flux to the weighed material. Pure water was added to these powders and mixed for 1 hour in a ball mill using a zirconia ball. The mixture was dried, sufficiently mixed and pulverized by a raikai machine, and then placed in a rubber container and formed by isostatic pressing at a pressure of 2 ton / cm 2 . This lump 1100
g in a 250 cc cylindrical platinum container with a bottom, and the container is further placed in an electric furnace, heated to a temperature of 1250 ° C. for 5 hours, and then gradually cooled to 800 ° C. at a cooling rate of 0.8 ° C./hr. Then, it was gradually cooled to room temperature. Subsequently, the platinum container was boiled with 20% nitric acid for 8 hours to dissolve the flux and take out crystals.
【0020】得られた単結晶は、約40mm角×30m
mLであるほぼ直方体のブロックであった。この結晶構
造をX線回折法により調べ、かつ組成をICPに組成分
析した。その結果、室温で菱面体のペロブスカイト型構
造で、かつPb[(Zn1/3Nb2/3 )1-x Tix ]O3
,xが0.89〜0.91あることがわかった。The obtained single crystal is about 40 mm square × 30 m
It was a substantially rectangular parallelepiped block of mL. The crystal structure was examined by an X-ray diffraction method, and the composition was analyzed by ICP. As a result, it has a rhombohedral perovskite structure at room temperature and Pb [(Zn 1/3 Nb 2/3 ) 1-x Ti x ] O 3
, X is 0.89 to 0.91.
【0021】次いで、得られた単結晶についてX線ラウ
エカメラを用いて<100>方位軸を出し、この軸に垂
直にスライスして厚さ0.8mmの{100}面単結晶
片を切り出した。さらに、全面が{100}面でかつ平
面寸法が11mm×22mmになるように切り出した。
つづいて、前記単結晶片の{100}面を#2000の
砥粒により研磨して0.3mm厚さに仕上げた。ひきつ
づき、前記単結晶片の両面{100}面にTi/Au電
極をスパッタ法により形成し、150〜250℃の絶縁
オイル中で1kV/mmの電界を30分間印加した後電
界冷却して分極を行なった。容量および共振、反共振周
波数を測定した。その結果、比誘電率が2200、音速
2850m/s、電気機械結合係数k33´は85〜87
%であることが確認された。Next, an <100> azimuthal axis was set for the obtained single crystal using an X-ray Laue camera, and a {100} plane single crystal piece having a thickness of 0.8 mm was cut out by slicing perpendicular to this axis. . Further, the whole surface was cut out so as to be a {100} surface and the plane size was 11 mm × 22 mm.
Subsequently, the {100} plane of the single crystal piece was polished with # 2000 abrasive grains to finish to a thickness of 0.3 mm. Subsequently, a Ti / Au electrode was formed on both surfaces {100} of the single crystal piece by sputtering, and an electric field of 1 kV / mm was applied in an insulating oil at 150 to 250 ° C. for 30 minutes, followed by electric field cooling and polarization. Done. The capacitance and the resonance and antiresonance frequencies were measured. As a result, the relative dielectric constant is 2200, the sound speed is 2850 m / s, and the electromechanical coupling coefficient k 33 ′ is 85 to 87.
%.
【0022】さらに、前記単結晶を用いて前述した図1
に示すアレイ形超音波プローブを作製した。すなわち、
前記91PZT−9PTの圧電単結晶を加工して厚さ2
50μmの角板を作製した。得られた角板の上下面およ
び側面にTi/Au導体膜をスパッタ法により蒸着し、
選択エッチング技術により前記角板の一方の側面に位置
する前記導電膜部分および超音波送受信面となる面と反
対側の面に位置する前記導電膜の一部を除去した。つづ
いて、前記角板の超音波送受信面となる面に音響マッチ
ング層を形成し後、これらをバッキング材2上に接着し
た。ひきつづき、厚さ30μmのダイヤモンドブレード
を用いて前記音響マッチング層から前記角板に亘って切
り込み、190μmのピッチ短冊状に切断した。この切
断により、前記バッキング材2上に第1、第2電極3、
4を有する互いに分離された100個の圧電体1と前記
各圧電体1上にそれぞれ配置された複数の音響マッチン
グ層5が形成された。なお、前記圧電体1は図2に示す
ように電極形成面は(001)面、(00−1)面を示
し、対向する裁断面は(100)面、(−100)面を
示した。Further, FIG. 1 described above using the single crystal is used.
The array type ultrasonic probe shown in FIG. That is,
The 91PZT-9PT piezoelectric single crystal was processed to a thickness of 2
A 50 μm square plate was produced. A Ti / Au conductor film is deposited on the upper and lower surfaces and side surfaces of the obtained square plate by a sputtering method,
By the selective etching technique, a part of the conductive film located on one side surface of the square plate and a part of the conductive film located on a surface opposite to a surface to be an ultrasonic transmitting / receiving surface were removed. Subsequently, an acoustic matching layer was formed on the surface of the square plate that would be an ultrasonic transmitting / receiving surface, and these were adhered onto the backing material 2. Subsequently, a 30 μm-thick diamond blade was used to cut the acoustic matching layer from the acoustic matching layer over the square plate, and cut into 190 μm-pitch strips. By this cutting, the first and second electrodes 3 on the backing material 2
In this manner, 100 separated piezoelectric bodies 1 each having a plurality of piezoelectric elements 4 and a plurality of acoustic matching layers 5 disposed on the respective piezoelectric bodies 1 were formed. As shown in FIG. 2, the piezoelectric body 1 has the (001) plane and the (00-1) plane on which the electrode is formed, and the (100) plane and the (-100) plane facing each other.
【0023】次いで、前記音響マッチング層5に音響レ
ンズ6を形成した後、フレキシブル印刷配線板7を前記
各々の第1電極3にそれぞれ半田付け接続し、アース電
極板8を前記各第2電極4に半田付けにより接続し、さ
らに図示しない110pF/m、長さ2mの複数の導体
(ケーブル)をフレキシブル印刷配線板7およびアース
電極板8にそれぞれ接続することにより前述した図1に
示す構造のアレイ形超音波プローブを製造した。Next, after an acoustic lens 6 is formed on the acoustic matching layer 5, a flexible printed wiring board 7 is connected to each of the first electrodes 3 by soldering, and an earth electrode plate 8 is connected to each of the second electrodes 4 1 by soldering, and by connecting a plurality of conductors (cables) (not shown) each having a length of 110 mF / m and a length of 2 m to the flexible printed wiring board 7 and the ground electrode plate 8, respectively. An ultrasonic probe was manufactured.
【0024】得られたアレイ形超音波プローブについ
て、パルスエコー法により反射エコーを測定した。その
結果、中心周波数が2.5MHzのエコーが全素子に亘
って得られた。With respect to the obtained array type ultrasonic probe, the reflection echo was measured by the pulse echo method. As a result, an echo having a center frequency of 2.5 MHz was obtained over all the elements.
【0025】(実施例2)まず、純度が99.9%以上
のPbO、ZnO、Nb2 O5 およびTiO2 を、亜鉛
酸ニオブ酸鉛(Pb[Zn1/3 Nb2/3 ]O3 ;PZN
と略す)とチタン酸鉛(PbTiO3 ;PTと略す)の
モル比が91:9(つまりPb[(Zn1/3 Nb2/3 )
1-x Tix ]O3 ,x=0.09、91PZN−9PT
と略す)になるように秤量し、この秤量物にフラックス
として同量の酸化鉛(PbO)を加えた。これらの粉末
に純水を加え、ジルコニアボ−ルを用いてボールミルで
1時間混合した。この混合物を乾燥し、ライカイ機で十
分に混合粉砕した後、ゴム製容器に入れて2トン/cm
2 の圧力で静水圧プレスを行って成形した。この塊状物
1100gを250ccの有底筒状白金容器内に入れ、
さらに前記容器を電気炉に入れ、1250℃の温度まで
5時間昇温した後、0.8℃/hrの冷却速度で800
℃まで徐冷し、その後室温まで徐冷した。つづいて、前
記白金容器を20%硝酸で8時間煮沸し、フラックスを
溶かし出して結晶を取り出した。Example 2 First, PbO, ZnO, Nb 2 O 5 and TiO 2 having a purity of 99.9% or more were converted to lead zinc niobate (Pb [Zn 1/3 Nb 2/3 ] O 3 ; PZN
) And lead titanate (PbTiO 3 ; abbreviated as PT) in a molar ratio of 91: 9 (that is, Pb [(Zn 1/3 Nb 2/3 )).
1-x Ti x ] O 3 , x = 0.09, 91PZN-9PT
), And the same amount of lead oxide (PbO) was added as a flux to the weighed material. Pure water was added to these powders and mixed for 1 hour in a ball mill using a zirconia ball. This mixture was dried and thoroughly mixed and pulverized with a raikai machine, and then placed in a rubber container and placed at 2 ton / cm.
It was formed by isostatic pressing at a pressure of 2 . 1100 g of this lump is placed in a 250 cc cylindrical platinum container with a bottom,
Further, the vessel was placed in an electric furnace, heated to a temperature of 1250 ° C. for 5 hours, and then cooled at a cooling rate of 0.8 ° C./hr.
C., and then gradually cooled to room temperature. Subsequently, the platinum container was boiled with 20% nitric acid for 8 hours to dissolve the flux and take out crystals.
【0026】得られた単結晶は、約40mm角×35m
mLであるほぼ直方体のブロックであった。この結晶構
造をX線回折法により調べ、かつ組成をICPに組成分
析した。その結果、室温で菱面体のペロブスカイト型構
造で、かつPb[(Zn1/3Nb2/3 )1-x Tix ]O3
,xが0.89〜0.91あることがわかった。The obtained single crystal is about 40 mm square × 35 m
It was a substantially rectangular parallelepiped block of mL. The crystal structure was examined by an X-ray diffraction method, and the composition was analyzed by ICP. As a result, it has a rhombohedral perovskite structure at room temperature and Pb [(Zn 1/3 Nb 2/3 ) 1-x Ti x ] O 3
, X is 0.89 to 0.91.
【0027】次いで、得られた単結晶についてX線ラウ
エカメラを用いて<100>方位軸を出し、この軸に垂
直にスライスして厚さ0.4mmの{100}面単結晶
片を切り出した。さらに、他の2つの側面が{110}
面でかつ平面寸法が11mm×22mmになるように切
り出した。つづいて、前記単結晶片の{100}面を#
2000の砥粒により研磨して0.22mm厚さに仕上
げた。ひきつづき、前記単結晶片の両面{100}面に
Ti/Au電極をスパッタ法により形成し、150〜2
50℃の絶縁オイル中で1kV/mmの電界を30分間
印加した後電界冷却して分極を行なった。容量および共
振、反共振周波数を測定した。その結果、比誘電率が2
100、音速2800m/s、電気機械結合係数k33´
は88〜89%であることが確認された。Next, an <100> azimuthal axis was set for the obtained single crystal using an X-ray Laue camera, and sliced perpendicularly to this axis to cut out a {100} plane single crystal piece having a thickness of 0.4 mm. . In addition, the other two aspects are {110}
It was cut out so as to have a plane size of 11 mm × 22 mm. Subsequently, the {100} plane of the single crystal piece was #
It was polished with 2000 abrasive grains and finished to a thickness of 0.22 mm. Subsequently, Ti / Au electrodes were formed on both surfaces {100} surfaces of the single crystal piece by a sputtering method.
An electric field of 1 kV / mm was applied in an insulating oil at 50 ° C. for 30 minutes and then cooled by electric field to perform polarization. The capacitance and the resonance and antiresonance frequencies were measured. As a result, the relative dielectric constant becomes 2
100, sound speed 2800 m / s, electromechanical coupling coefficient k 33 ′
Was found to be 88-89%.
【0028】さらに、前記単結晶を用いて前述した図1
に示すアレイ形超音波プローブを作製した。すなわち、
前記91PZT−9PTの圧電単結晶を加工して厚さ2
20μmの角板を作製した。得られた角板の上下面およ
び側面にTi/Au導体膜をスパッタ法により蒸着し、
選択エッチング技術により前記角板の一方の側面に位置
する前記導電膜部分および超音波送受信面となる面と反
対側の面に位置する前記導電膜の一部を除去した。つづ
いて、前記角板の超音波送受信面となる面に音響マッチ
ング層を形成し後、これらをバッキング材2上に接着し
た。ひきつづき、厚さ25μmのダイヤモンドブレード
を用いて前記音響マッチング層から前記角板に亘って切
り込み、200μmのピッチ短冊状に切断した。この切
断により、前記バッキング材2上に第1、第2電極3、
4を有する互いに分離された100個の圧電体1と前記
各圧電体1上にそれぞれ配置された複数の音響マッチン
グ層5が形成された。なお、前記圧電体1は図2に示す
ように電極形成面は(001)面、(00−1)面を示
し、対向する裁断面は(110)面、(−1−10)面
を示した。Further, the above-described single crystal shown in FIG.
The array type ultrasonic probe shown in FIG. That is,
The 91PZT-9PT piezoelectric single crystal was processed to a thickness of 2
A 20 μm square plate was produced. A Ti / Au conductor film is deposited on the upper and lower surfaces and side surfaces of the obtained square plate by a sputtering method,
By the selective etching technique, a part of the conductive film located on one side surface of the square plate and a part of the conductive film located on a surface opposite to a surface to be an ultrasonic transmitting / receiving surface were removed. Subsequently, an acoustic matching layer was formed on the surface of the square plate that would be an ultrasonic transmitting / receiving surface, and these were adhered onto the backing material 2. Subsequently, using a diamond blade having a thickness of 25 μm, the acoustic matching layer was cut across the square plate, and cut into 200 μm pitch strips. By this cutting, the first and second electrodes 3 on the backing material 2
In this manner, 100 separated piezoelectric bodies 1 each having a plurality of piezoelectric elements 4 and a plurality of acoustic matching layers 5 disposed on the respective piezoelectric bodies 1 were formed. As shown in FIG. 2, the piezoelectric body 1 has a (001) plane and a (00-1) plane on which an electrode is formed, and a (110) plane and a (-1-10) plane. Was.
【0029】次いで、前記音響マッチング層5に音響レ
ンズ6を形成した後、フレキシブル印刷配線板7を前記
各々の第1電極3にそれぞれ半田付け接続し、アース電
極板8を前記各第2電極4に半田付けにより接続し、さ
らに図示しない110pF/m、長さ2mの複数の導体
(ケーブル)をフレキシブル印刷配線板7およびアース
電極板8にそれぞれ接続することにより前述した図1に
示す構造のアレイ形超音波プローブを製造した。Next, after the acoustic lens 6 is formed on the acoustic matching layer 5, the flexible printed wiring board 7 is connected to each of the first electrodes 3 by soldering, and the ground electrode plate 8 is connected to each of the second electrodes 4. 1 by soldering, and by connecting a plurality of conductors (cables) (not shown) each having a length of 110 mF / m and a length of 2 m to the flexible printed wiring board 7 and the ground electrode plate 8, respectively. An ultrasonic probe was manufactured.
【0030】得られたアレイ形超音波プローブについ
て、パルスエコー法により反射エコーを測定した。その
結果、中心周波数が2.5MHzのエコーが全素子に亘
って得られた。With respect to the obtained array type ultrasonic probe, the reflection echo was measured by the pulse echo method. As a result, an echo having a center frequency of 2.5 MHz was obtained over all the elements.
【0031】(比較例1)実施例2と同様な単結晶につ
いてX線ラウエカメラを用いて<100>方位軸を出
し、この軸に垂直にスライスして厚さ0.4mmの{1
00}面単結晶片を切り出した。さらに、他の2つの側
面が{100}面から10゜ずれた面になるように11
mm×22mmの矩形状に切り出した。つづいて、前記
単結晶片の{100}面を#2000の砥粒により研磨
して0.25mm厚さに仕上げた。ひきつづき、前記単
結晶片の両面{100}面にTi/Au電極をスパッタ
法により形成し、150〜250℃の絶縁オイル中で1
kV/mmの電界を30分間印加した後電界冷却して分
極を行なった。容量および共振、反共振周波数を測定し
た。その結果、比誘電率が2300〜2600、音速2
800〜3000m/s、電気機械結合係数k33´は6
5〜77%で、k33´が小さく、各特性値もばらつくこ
とが確認された。(Comparative Example 1) An <100> azimuthal axis was determined for the same single crystal as in Example 2 using an X-ray Laue camera, and sliced perpendicularly to this axis to form a 0.4 mm thick # 1.
A single crystal piece of the 00 ° plane was cut out. Further, the other two side surfaces are shifted by 10 ° from the {100} surface so that 11
It was cut out into a rectangular shape of mm × 22 mm. Subsequently, the {100} face of the single crystal piece was polished with # 2000 abrasive to finish to a thickness of 0.25 mm. Subsequently, a Ti / Au electrode was formed on both surfaces {100} of the single crystal piece by sputtering, and the Ti / Au electrode was formed in an insulating oil at 150 to 250 ° C.
After applying an electric field of kV / mm for 30 minutes, the electric field was cooled and polarization was performed. The capacitance and the resonance and antiresonance frequencies were measured. As a result, the relative dielectric constant was 2300 to 2600, and the sound velocity was 2
800 to 3000 m / s, the electromechanical coupling coefficient k 33 ′ is 6
At 5 to 77%, it was confirmed that k 33 ′ was small and each characteristic value also varied.
【0032】さらに、前記単結晶を用いて前述した図1
に示すアレイ形超音波プローブを作製した。すなわち、
前記91PZT−9PTの圧電単結晶を加工して厚さ2
50μmの角板を作製した。得られた角板の上下面およ
び側面にTi/Au導体膜をスパッタ法により蒸着し、
選択エッチング技術により前記角板の一方の側面に位置
する前記導電膜部分および超音波送受信面となる面と反
対側の面に位置する前記導電膜の一部を除去した。つづ
いて、前記角板の超音波送受信面となる面に音響マッチ
ング層を形成し後、これらをバッキング材2上に接着し
た。ひきつづき、厚さ25μmのダイヤモンドブレード
を用いて前記音響マッチング層から前記角板に亘って切
り込み、200μmのピッチ短冊状に切断した。この切
断により、前記バッキング材2上に第1、第2電極3、
4を有する互いに分離された100個の圧電体1と前記
各圧電体1上にそれぞれ配置された複数の音響マッチン
グ層5が形成された。なお、前記圧電体1は電極形成面
が(001)面、(00−1)面を示し、対向する裁断
面が(110)面、(−1−10)面からそれぞれ10
゜ずれたていた。また、前記切断後に切り込み部を上面
および側面から顕微鏡で観察した。その結果、蛇行や斜
めの切り込みは認められなかったが、部分的に幾つかの
割れや欠けが認められた。Further, FIG. 1 described above using the single crystal is used.
The array type ultrasonic probe shown in FIG. That is,
The 91PZT-9PT piezoelectric single crystal was processed to a thickness of 2
A 50 μm square plate was produced. A Ti / Au conductor film is deposited on the upper and lower surfaces and side surfaces of the obtained square plate by a sputtering method,
By the selective etching technique, a part of the conductive film located on one side surface of the square plate and a part of the conductive film located on a surface opposite to a surface to be an ultrasonic transmitting / receiving surface were removed. Subsequently, an acoustic matching layer was formed on the surface of the square plate that would be an ultrasonic transmitting / receiving surface, and these were adhered onto the backing material 2. Subsequently, using a diamond blade having a thickness of 25 μm, the acoustic matching layer was cut across the square plate, and cut into 200 μm pitch strips. By this cutting, the first and second electrodes 3 on the backing material 2
In this manner, 100 separated piezoelectric bodies 1 each having a plurality of piezoelectric elements 4 and a plurality of acoustic matching layers 5 disposed on the respective piezoelectric bodies 1 were formed. In the piezoelectric body 1, the electrode forming surface indicates the (001) plane and the (00-1) plane, and the opposing cut planes are 10 planes from the (110) plane and the (-1-10) plane, respectively.
゜ It was out of alignment. Further, after the cutting, the cut portion was observed with a microscope from the upper surface and the side surface. As a result, meandering and oblique cuts were not recognized, but some cracks and chips were partially recognized.
【0033】次いで、前記音響マッチング層5に音響レ
ンズ6を形成した後、フレキシブル印刷配線板7を前記
各々の第1電極3にそれぞれ半田付け接続し、アース電
極板8を前記各第2電極4に半田付けにより接続し、さ
らに図示しない110pF/m、長さ2mの複数の導体
(ケーブル)をフレキシブル印刷配線板7およびアース
電極板8にそれぞれ接続することにより前述した図1に
示す構造のアレイ形超音波プローブを製造した。Next, after the acoustic lens 6 is formed on the acoustic matching layer 5, the flexible printed wiring board 7 is connected to each of the first electrodes 3 by soldering, and the ground electrode plate 8 is connected to each of the second electrodes 4 1 by soldering, and by connecting a plurality of conductors (cables) (not shown) each having a length of 110 mF / m and a length of 2 m to the flexible printed wiring board 7 and the ground electrode plate 8, respectively. An ultrasonic probe was manufactured.
【0034】得られたアレイ形超音波プローブについ
て、パルスエコー法により反射エコーを測定した。その
結果、中心周波数が2.5MHzのエコーが全素子の9
0%しか認められなかった。短冊状に切断した後のイン
ピーダンス特性を測定すると、10%の素子が不良であ
った。エコーが得られた素子でも感度は従来のPZT系
圧電セラミックよりも1dB高いが、実施例1、2より
も感度が3〜4dB低く、感度ばらつきもアレイ素子で
最大3dBと大きかった。その結果、周波数帯域も−6
dBで比帯域の平均値が80%と狭いことが確認され
た。With respect to the obtained array type ultrasonic probe, the reflection echo was measured by the pulse echo method. As a result, echoes having a center frequency of 2.5 MHz
Only 0% was found. When the impedance characteristics after being cut into strips were measured, 10% of the elements were defective. The sensitivity of the element from which the echo was obtained was 1 dB higher than that of the conventional PZT piezoelectric ceramic, but the sensitivity was 3 to 4 dB lower than those of Examples 1 and 2, and the sensitivity variation was as large as 3 dB at maximum in the array element. As a result, the frequency band is also -6.
It was confirmed that the average value of the fractional band was as narrow as 80% in dB.
【0035】さらに、実施例1、2および比較例1の超
音波プローブについて音場測定を行い、印加パルスの遅
延時間を制御してビームを60゜偏向させた状態でのサ
イドローブレベルを調べた。その結果、実施例1、2の
超音波プローブは比較例1の超音波プローブに比べて4
dBサイドローブレベルが低く、良好な特性を示した。Further, sound field measurements were performed on the ultrasonic probes of Examples 1 and 2 and Comparative Example 1, and the side lobe level when the beam was deflected by 60 ° by controlling the delay time of the applied pulse was examined. . As a result, the ultrasonic probes of Examples 1 and 2 were 4 times as compared with the ultrasonic probe of Comparative Example 1.
The dB side lobe level was low, indicating good characteristics.
【0036】なお、前記実施例ではペロブスカイト型鉛
複合酸化物単結晶として91PZN−9PTを用いた
が、Pb[(Mg1/3 Nb2/3 )1-y Tiy ]O3 (た
だし、yは0.20≦y≦0.40を示す)、Pb
[(Ni1/3 Nb2/3 )1-z Tiz]O3 (ただし、z
は0.30≦z≦0.50を示す)、Pb[(Co1/3
Nb2/3 )1-u Tiu ]O3 (ただし、uは0.10≦
u≦0.30を示す)、Pb[(A1/2 Nb1/2 )1-w
Tiw ]O3 (ただし、AはSc、In、Fe、Yおよ
び希土類元素から選ばれる1種、wは0.30≦w≦
0.50を示す)の単結晶を用いた場合でも同様な優れ
た特性を有する圧電素子、超音波プローブを実現できる
ことを確認した。前記実施例では、単結晶をフラックス
法により作製したが、ブリッジマン法やキロプーロス
法、水熱育成法などで作製してもよい。In the above embodiment, 91PZN-9PT was used as the perovskite-type lead composite oxide single crystal, but Pb [(Mg 1/3 Nb 2/3 ) 1-y Ti y ] O 3 (where y Represents 0.20 ≦ y ≦ 0.40), Pb
[(Ni 1/3 Nb 2/3) 1 -z Ti z] O 3 ( provided that, z
Represents 0.30 ≦ z ≦ 0.50), Pb [(Co 1/3
Nb 2/3 ) 1-u Ti u ] O 3 (where u is 0.10 ≦
u ≦ 0.30), Pb [(A 1/2 Nb 1/2 ) 1-w
Ti w ] O 3 (where A is one selected from Sc, In, Fe, Y and a rare earth element, w is 0.30 ≦ w ≦
(Showing 0.50), it was confirmed that a piezoelectric element and an ultrasonic probe having the same excellent characteristics can be realized even when a single crystal of 0.50) was used. In the above embodiment, the single crystal is manufactured by the flux method, but may be manufactured by the Bridgman method, the kiloproth method, the hydrothermal growth method, or the like.
【0037】[0037]
【発明の効果】以上説明したように、本発明に係わる圧
電素子は脱分極の抑制および分極不足を改善した高い電
気機械結合係数を有する。また、前記圧電素子は幅、長
さが20mm以上の大面積にしても圧電特性のばらつき
を1%以下に抑えることができる。その結果、高感度、
広帯域の大型の超音波プローブを実現でき、ひいては超
音波診断装置や超音波探傷装置等に有効に利用できる等
顕著な効果を奏する。As described above, the piezoelectric element according to the present invention has a high electromechanical coupling coefficient in which depolarization is suppressed and polarization insufficiency is improved. Further, even if the piezoelectric element has a large area having a width and a length of 20 mm or more, the variation in piezoelectric characteristics can be suppressed to 1% or less. As a result, high sensitivity,
It is possible to realize a large-sized ultrasonic probe having a wide band, and it is possible to achieve a remarkable effect such that the ultrasonic probe can be effectively used for an ultrasonic diagnostic apparatus and an ultrasonic flaw detector.
【図1】本発明に係わる圧電素子を備えたアレイ形超音
波プローブを示す斜視図。FIG. 1 is a perspective view showing an array type ultrasonic probe provided with a piezoelectric element according to the present invention.
【図2】図1のアレイ形超音波プローブに組み込まれる
複数の圧電素子を示す斜視図。FIG. 2 is a perspective view showing a plurality of piezoelectric elements incorporated in the array type ultrasonic probe of FIG. 1;
1…圧電体、 2…バッキング材、 3、4…電極、 5…音響マッチング層、 6…音響レンズ、 7…フレキシブル印刷配線板、 8…アース電極。 DESCRIPTION OF SYMBOLS 1 ... Piezoelectric body, 2 ... Backing material, 3, 4 ... Electrode, 5 ... Acoustic matching layer, 6 ... Acoustic lens, 7 ... Flexible printed wiring board, 8 ... Ground electrode.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 41/22 H01L 41/22 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 41/22 H01L 41/22 Z
Claims (3)
ら裁断された裁断面を有する圧電体に電極を形成した圧
電素子において、 前記圧電体の電極形成面は、{100}面であり、かつ
前記圧電体の裁断面は{100}面または{110}面
であることを特徴とする圧電素子。1. A piezoelectric element in which an electrode is formed on a piezoelectric body having a cut surface cut from a perovskite-type lead composite oxide single crystal, wherein the electrode forming surface of the piezoelectric body is a {100} plane, and A piezoelectric element, wherein a cut surface of the piezoelectric body is a {100} plane or a {110} plane.
晶は、 Pb[(Zn1/3 Nb2/3 )1-x Tix ]O3 (ただ
し、xは0.05≦x≦0.20を示す)、 Pb[(Mg1/3 Nb2/3 )1-y Tiy ]O3 (ただ
し、yは0.20≦y≦0.40を示す)、 Pb[(Ni1/3 Nb2/3 )1-z Tiz ]O3 (ただ
し、zは0.30≦z≦0.50を示す)、 Pb[(Co1/3 Nb2/3 )1-u Tiu ]O3 (ただ
し、uは0.10≦u≦0.30を示す)、 Pb[(A1/2 Nb1/2 )1-w Tiw ]O3 (ただし、
AはSc、In、Fe、Yおよび希土類元素から選ばれ
る1種、wは0.30≦w≦0.50を示す)にて表さ
れる組成物、もしくは前記式中のPbの一部を10モル
%以内の量でNa、Sr、Ca、およびLaの少なくと
も1種で置換した組成物または前記式中のNbの一部を
Taで置換した組成物であることを特徴とする請求項1
記載の圧電素子。Wherein said perovskite lead composite oxide single crystal, Pb [(Zn 1/3 Nb 2/3 ) 1-x Ti x] O 3 ( here, x is 0.05 ≦ x ≦ 0.20 Pb [(Mg 1/3 Nb 2/3 ) 1-y Ti y ] O 3 (where y represents 0.20 ≦ y ≦ 0.40), Pb [(Ni 1/3 Nb 2/3) 1-z Ti z] O 3 ( provided that, z represents a 0.30 ≦ z ≦ 0.50), Pb [(Co 1/3 Nb 2/3) 1-u Ti u] O 3 (However, u indicates 0.10 ≦ u ≦ 0.30), Pb [(A 1/2 Nb 1/2 ) 1-w Ti w ] O 3 (However,
A is one kind selected from Sc, In, Fe, Y and a rare earth element, w represents 0.30 ≦ w ≦ 0.50) or a part of Pb in the above formula. The composition according to claim 1, wherein the composition is a composition in which at least one of Na, Sr, Ca, and La has been substituted in an amount of 10 mol% or less, or a composition in which a part of Nb in the above formula has been substituted with Ta.
The piezoelectric element as described in the above.
晶は、100℃以下の温度で菱面晶を示すものである請
求項1または2記載の圧電素子。3. The piezoelectric element according to claim 1, wherein the perovskite-type lead composite oxide single crystal exhibits a rhombohedral crystal at a temperature of 100 ° C. or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24505096A JP3413025B2 (en) | 1996-09-17 | 1996-09-17 | Piezoelectric element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24505096A JP3413025B2 (en) | 1996-09-17 | 1996-09-17 | Piezoelectric element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1093154A true JPH1093154A (en) | 1998-04-10 |
JP3413025B2 JP3413025B2 (en) | 2003-06-03 |
Family
ID=17127842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24505096A Expired - Lifetime JP3413025B2 (en) | 1996-09-17 | 1996-09-17 | Piezoelectric element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3413025B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005317831A (en) * | 2004-04-30 | 2005-11-10 | Jfe Mineral Co Ltd | Piezo-electric single crystal element and its manufacturing method |
JP2005322673A (en) * | 2004-05-06 | 2005-11-17 | Jfe Mineral Co Ltd | Piezoelectric single-crystal element and its manufacturing method |
CN105200522A (en) * | 2015-08-13 | 2015-12-30 | 陕西师范大学 | Large-area perovskite thin sheet and preparation and application thereof |
-
1996
- 1996-09-17 JP JP24505096A patent/JP3413025B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005317831A (en) * | 2004-04-30 | 2005-11-10 | Jfe Mineral Co Ltd | Piezo-electric single crystal element and its manufacturing method |
WO2005106986A1 (en) * | 2004-04-30 | 2005-11-10 | Jfe Mineral Company, Ltd. | Piezoelectric single crystal element and process for fabricating the same |
JP4568529B2 (en) * | 2004-04-30 | 2010-10-27 | Jfeミネラル株式会社 | Piezoelectric single crystal element |
JP2005322673A (en) * | 2004-05-06 | 2005-11-17 | Jfe Mineral Co Ltd | Piezoelectric single-crystal element and its manufacturing method |
WO2005109537A1 (en) * | 2004-05-06 | 2005-11-17 | Jfe Mineral Company,Ltd. | Piezoelectric single crystal element and method for fabricating the same |
CN100448048C (en) * | 2004-05-06 | 2008-12-31 | 杰富意矿物股份有限公司 | Piezoelectric single crystal element and method for fabricating the same |
JP4613032B2 (en) * | 2004-05-06 | 2011-01-12 | Jfeミネラル株式会社 | Piezoelectric single crystal element and manufacturing method thereof |
US7888848B2 (en) | 2004-05-06 | 2011-02-15 | Jfe Mineral Company, Ltd. | Piezoelectric single crystal device and fabrication method thereof |
CN105200522A (en) * | 2015-08-13 | 2015-12-30 | 陕西师范大学 | Large-area perovskite thin sheet and preparation and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3413025B2 (en) | 2003-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6020675A (en) | Ultrasonic probe | |
US5402791A (en) | Piezoelectric single crystal, ultrasonic probe, and array-type ultrasonic probe | |
US5295487A (en) | Ultrasonic probe | |
US7572224B2 (en) | Ultrasonic probe and ultrasonic diagnostic apparatus | |
JP3345580B2 (en) | Ultrasonic probe manufacturing method | |
US9972766B2 (en) | Piezoelectric transducer, ultrasonic probe, and piezoelectric transducer manufacturing method | |
US6153967A (en) | Ultrasonic probe and ultrasonic diagnostic apparatus | |
JP3420866B2 (en) | Ultrasonic probe | |
US5410209A (en) | Piezoelectric material and ultrasonic probe | |
JP3397538B2 (en) | Manufacturing method of oxide piezoelectric single crystal | |
KR100480876B1 (en) | Ultrasonic probe comprising new piezoelectric single crystal | |
JP2001276067A (en) | Ultrasonic probe, method for manufacturing the same and ultrasonic diagnostic device | |
JP3362966B2 (en) | Piezoelectric single crystal, ultrasonic probe and array type ultrasonic probe | |
JP3258111B2 (en) | Ultrasonic transmitting / receiving element, ultrasonic probe, and ultrasonic transmitter | |
JP3413025B2 (en) | Piezoelectric element | |
JP3943731B2 (en) | Piezoelectric plate for ultrasonic transducer and manufacturing method thereof | |
JP3529600B2 (en) | Ultrasonic probe and ultrasonic diagnostic apparatus using the same | |
JP3679957B2 (en) | Ultrasonic probe and manufacturing method thereof | |
JP2004104629A (en) | Ultrasonic probe | |
JP3251727B2 (en) | Ultrasonic probe | |
JP3343014B2 (en) | Method for producing oxide single crystal | |
JP3560998B2 (en) | Piezoelectric materials and ultrasonic probes | |
JPH10251093A (en) | Production of oxide piezoelectric substance | |
JP3477028B2 (en) | Method for producing oxide single crystal and method for producing ultrasonic probe | |
JP2001328867A (en) | Piezoelectric material and ultrasonic probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080328 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090328 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100328 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100328 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110328 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120328 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140328 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |