JPH1089601A - Method of preventing adhesion of dust against waste heat boiler and self-melting furnace employing this method - Google Patents
Method of preventing adhesion of dust against waste heat boiler and self-melting furnace employing this methodInfo
- Publication number
- JPH1089601A JPH1089601A JP8269276A JP26927696A JPH1089601A JP H1089601 A JPH1089601 A JP H1089601A JP 8269276 A JP8269276 A JP 8269276A JP 26927696 A JP26927696 A JP 26927696A JP H1089601 A JPH1089601 A JP H1089601A
- Authority
- JP
- Japan
- Prior art keywords
- dust
- waste heat
- heat boiler
- furnace
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉱石の乾式製錬に
おいて採用される空気送入型のマット溶錬工程で出され
る排ガス中のダストの廃熱ボイラーへの付着を防止する
方法に関する。特に、本発明は、自溶炉に有利的に適用
できる排ガス中のダストの廃熱ボイラーへの付着防止方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing dust in exhaust gas discharged in an air-introduction type mat smelting process employed in ore dry smelting from adhering to a waste heat boiler. In particular, the present invention relates to a method for preventing dust in exhaust gas from adhering to a waste heat boiler, which can be advantageously applied to a flash furnace.
【0002】[0002]
【従来の技術】製錬炉を用いて行うマット溶錬操業にお
いては、空気又は酸素富化空気を吹き込みながら、硫化
鉱を予備処理してなる(粉状)精鉱を原料として溶剤
(SiO2)と共に製錬炉内に装入して、気相中で反応
を起こさせ、精鉱中の不要部分、特に大部分のFeを酸
化し溶剤として加えたSiO2と結合させてスラグと
し、CuやNi等は硫化物融体のマットとして濃縮させ
る。このとき、製錬炉として空気送入型のものを用いた
場合には、多量の排ガスが出される。排ガスはエーロゾ
ルであり、ガス(SO2、CO、CO2、N2、H2O等)
とそのガス流に乗って搬出されたダスト(フュームを含
む)とから成っているが、このうち、ダストにはPb、
Zn等の揮発し易い成分が揮発したものの他に、一部の
原料微粒子やその反応生成物が機械的に飛散したものが
含まれる。2. Description of the Related Art In a mat smelting operation using a smelting furnace, a solvent (SiO 2 ) is prepared by using (pulverized) concentrate obtained by pre-treating sulfide ore while blowing air or oxygen-enriched air. ) Together with the smelting furnace to cause a reaction in the gas phase, and oxidize unnecessary parts in the concentrate, especially most of Fe, and combine it with SiO 2 added as a solvent to form slag, And Ni are concentrated as a sulfide melt mat. At this time, when an air feeding type smelting furnace is used, a large amount of exhaust gas is emitted. The exhaust gas is an aerosol and is a gas (SO 2 , CO, CO 2 , N 2 , H 2 O, etc.)
And dust (including fumes) carried out on the gas stream. Of these, Pb,
In addition to those in which volatile components such as Zn are volatilized, those in which some raw material particles and their reaction products are mechanically scattered are included.
【0003】排ガスは高温で製錬炉を離れるのでそのガ
スの有する顕熱回収が行われ、また、大気汚染防止のた
めにSO2やダストの回収も行われている。顕熱回収に
は、大別すると、熱交換により炉に装入する原料鉱石や
空気を予熱する手法と、廃熱ボイラーに通し過熱水蒸気
を発生し、発電や暖房等に利用する手法が採用されてい
るが、後者の手法を採用した場合には、排ガスにはダス
トが含まれるので、通常は水管式の廃熱ボイラーが用い
られている。この場合、ダストは廃熱ボイラー内で排ガ
スから沈降分離されるが、その一部は水管に付着し、廃
熱ボイラーの冷却効率を低下させ、その結果として、廃
熱ボイラーの蒸気発生量を減少させ、廃熱ボイラーの出
口ガス温度の上昇をもたらす。そのような悪影響をなる
べく除くべく、水管に付着したダストを除去するため
に、ハンマリング装置の設置やスーツブローによるダス
ト付着防止策等が現在では実施されている。Since exhaust gas leaves the smelting furnace at a high temperature, sensible heat of the gas is recovered, and SO 2 and dust are also recovered to prevent air pollution. Sensible heat recovery is roughly classified into two methods: preheating raw ore and air charged into the furnace by heat exchange, and generating superheated steam through a waste heat boiler and using it for power generation and heating. However, when the latter method is adopted, since exhaust gas contains dust, a water tube type waste heat boiler is usually used. In this case, the dust is settled and separated from the exhaust gas in the waste heat boiler, but part of the dust adheres to the water pipe and reduces the cooling efficiency of the waste heat boiler, and as a result, reduces the amount of steam generated in the waste heat boiler And results in an increase in the gas temperature at the outlet of the waste heat boiler. In order to remove such adverse effects as much as possible, in order to remove dust adhering to the water pipe, installation of a hammering device and measures for preventing dust adhesion by a suit blow are currently being implemented.
【0004】しかしながら、製錬炉への硫化鉱、通常は
予備処理してなる硫化精鉱の装入速度を一定にしても、
製錬炉内での反応状況の変化により単位鉱石処理量当た
りのダスト発生率が大幅に上昇して水管へのダスト付着
量が増大したり、或いは、精鉱の装入速度を大幅に増大
した場合には、反応した原料の一部が機械的に飛散した
ことにより生成されるダストの量が大幅に増大するた
め、水管へのダストの付着量も増大して、結果的に廃熱
ボイラーの出口ガス温度が上昇することになるため、上
述のダスト付着防止策では不十分であり、確実に水管に
付着したダストを除去するために、定期的に製錬炉の操
業を停止して人手によるダスト除去作業を行っているの
が現状である。[0004] However, even if the charging rate of the sulfide ore, usually pretreated sulfide concentrate, to the smelting furnace is constant,
Changes in the reaction conditions in the smelting furnace significantly increased the dust generation rate per unit ore treatment amount and increased the amount of dust attached to the water pipe, or significantly increased the charging speed of the concentrate. In this case, the amount of dust generated due to the mechanical scattering of a part of the reacted raw material greatly increases, and the amount of dust attached to the water pipe also increases, resulting in the waste heat boiler. Since the outlet gas temperature will increase, the above-mentioned dust adhesion prevention measures are not sufficient, and in order to surely remove the dust adhering to the water pipe, the operation of the smelting furnace is periodically stopped and manual operation is performed. At present, dust removal is being carried out.
【0005】かかるダスト除去作業は、人的コストの増
大に加えて溶錬操業の中断に伴う生産性の低下という損
失をももたらす。また、一炉当たりの鉱石処理量の増
大、即ち、量産化を阻む要因ともなっている。[0005] Such dust removal operations result in a loss of productivity due to an interruption of the smelting operation, in addition to an increase in human costs. Further, this is a factor that hinders an increase in the amount of ore processed per furnace, that is, mass production.
【0006】[0006]
【発明が解決しようとする課題】それ故、本発明は、廃
熱ボイラーの水管へのダストの付着を極力阻止し、マッ
ト溶錬の良好な操業状態の長期にわたる維持を可能とす
る廃熱ボイラーへのダスト付着防止方法を提供すること
を目的とする。また、本発明は、簡便で経済性の良い廃
熱ボイラーへのダスト付着防止方法を提供することを目
的とする。SUMMARY OF THE INVENTION Accordingly, the present invention provides a waste heat boiler which minimizes dust from adhering to the water pipe of a waste heat boiler and enables a long-term maintenance of a good operating state of mat smelting. It is an object of the present invention to provide a method for preventing dust from adhering to a surface. Another object of the present invention is to provide a simple and economical method for preventing dust from adhering to a waste heat boiler.
【0007】更に、本発明は、上述のダスト付着防止方
法を適用した自溶炉を提供することを目的とする。Another object of the present invention is to provide a flash smelting furnace to which the above-described dust adhesion preventing method is applied.
【0008】[0008]
【課題を解決するための手段】本発明の発明者は、鋭意
研究の結果として、製錬炉内で排ガス中に含まれて浮遊
しているダストは装入された精鉱の反応により生成され
た硫化銅等の硫化物からなるマット成分粒子やスラグ成
分粒子が落下せずに機械的に飛散されてなるものが主体
であるのに対して、廃熱ボイラーの水管に付着したダス
ト、即ち、ボイラーダストは殆ど全てのマット成分粒子
が硫酸化されていることから、硫化物からなるマット成
分粒子が廃熱ボイラーに送られそこでフリーエア等によ
り酸化され、更に硫酸化物になっていることを見いだ
し、その知見に基づいて、マット成分粒子は、廃熱ボイ
ラー内で酸化発熱反応を起こし、廃熱ボイラーへの熱負
荷を増大させると共に、一部は水管表面に到達した後に
その表面上で酸化発熱反応を起こし、その際に発生する
熱により反応生成物が水管に強く付着する結果に至った
のであろうと推定するに至った。SUMMARY OF THE INVENTION As a result of earnest studies, the present inventors have found that dust suspended in exhaust gas in a smelting furnace is generated by a reaction of charged concentrate. Dust adhered to the water pipe of the waste heat boiler, whereas mat components and slag components composed of sulfides such as copper sulfide were mainly scattered mechanically without falling. In boiler dust, since almost all of the mat component particles are sulfated, it is found that the sulfide mat component particles are sent to a waste heat boiler, where they are oxidized by free air, etc., and further turned into sulfate oxides. Based on the findings, the mat component particles cause an oxidative exothermic reaction in the waste heat boiler, increasing the heat load on the waste heat boiler, and partially oxidizing on the surface of the water pipe after reaching the water pipe surface. The reaction caused the reaction product by heat generated at that time reaches the estimated and was probably led to the result that adheres strongly to the water pipe.
【0009】廃熱ボイラー能力に比較して廃熱ボイラー
内へ飛散する硫化物含有ダストの絶対量が少ないうち
は、該ダストの酸化発熱量のボイラー入熱量に対する割
合も小さいので、操業上特に問題とはならない。しかし
ながら、単位鉱石処理量当たりのダスト発生率が大幅に
上昇したり、或いは、鉱石処理速度が大幅に増大したり
した場合には、生成するダストの絶対量が増大するた
め、上述のようなダストの酸化発熱反応による影響、特
に水管への影響は無視できない。As long as the absolute amount of the sulfide-containing dust scattered into the waste heat boiler is smaller than the waste heat boiler capacity, the ratio of the calorific value of the dust to the heat input to the boiler is small. Does not. However, when the dust generation rate per unit ore processing amount is significantly increased, or when the ore processing speed is significantly increased, the absolute amount of generated dust is increased. The effects of the oxidative exothermic reaction of water, especially the effects on water tubes, cannot be ignored.
【0010】上述の知見及び推定に基づいて、発明者
は、ダストが廃熱ボイラーの水管の表面に付着したとし
ても、ダストのうち酸化発熱反応を起こすマット成分粒
子が予め酸化されていれば、例え、一旦ダストが水管の
表面に到達しても水管上で酸化発熱反応を起こすことは
ないので、水管に強く付着することはなくなり、従来と
同様なダスト除去対策を講じても従来に比べてダストの
水管への付着量を減らすことができ、結果として長期に
わたり連続的に製錬炉を操業することができると考え、
実操業下での実験を含む種々の実験を経て、以下の方法
を、廃熱ボイラー、特に水管へのダストの有効な付着防
止方法として提案するに至った。[0010] Based on the above knowledge and estimation, the inventor of the present invention has determined that even if dust adheres to the surface of a water pipe of a waste heat boiler, if the mat component particles that cause an oxidative exothermic reaction in the dust are previously oxidized, For example, once dust reaches the surface of the water pipe, it does not cause an oxidative exothermic reaction on the water pipe, so it does not adhere strongly to the water pipe. We believe that it is possible to reduce the amount of dust adhering to the water pipe, and as a result, it is possible to operate the smelting furnace continuously for a long time,
After various experiments including experiments under actual operation, the following method has been proposed as an effective method for preventing dust from adhering to a waste heat boiler, particularly to a water pipe.
【0011】即ち、本発明の廃熱ボイラーへのダスト付
着防止方法は、空気送入型のマット溶錬からの排ガスに
酸化性ガスを吹き込んで排ガス中のダストに含まれるマ
ット、即ち硫化物を酸化した上で、該排ガスを廃熱ボイ
ラーに通すことを特徴とする。この方法の好適な実施態
様は、セットラーに酸化性ガスの吹き込み口が備えられ
ていることを特徴とするマット溶錬用自溶炉である。That is, the method for preventing dust from adhering to a waste heat boiler according to the present invention is characterized in that an oxidizing gas is blown into exhaust gas from an air-introduction type mat smelting to remove mats, ie, sulfides, contained in dust in the exhaust gas. After the oxidation, the exhaust gas is passed through a waste heat boiler. A preferred embodiment of the method is a flash smelting furnace for mat smelting, wherein the settler is provided with a blowing port for oxidizing gas.
【0012】なお、本発明の方法は、廃熱ボイラーへの
熱負荷を有意的に下げるものでもあるから、特に水管式
の廃熱ボイラーに限定されず、ダストを含む排ガスを通
す廃熱ボイラーを付属設備として備えた製錬炉であれば
有利的に適用できることは言うまでもない。Since the method of the present invention significantly reduces the heat load on the waste heat boiler, the method is not particularly limited to the water tube type waste heat boiler. It goes without saying that a smelting furnace provided as an auxiliary equipment can be advantageously applied.
【0013】[0013]
【発明の実施の形態】本発明の廃熱ボイラーへのダスト
付着防止方法は、空気送入型の鉱石、典型的には硫化鉱
のマット溶錬において用いる。空気送入型には、自溶
炉、溶鉱炉、反射炉等がある。空気は、酸素富化空気で
も熱風でもよい。空気が送入される型の場合には、大量
の排ガスが出され、特に自溶炉はかなりの酸化を強いら
れるので大量のダストが出されるので、ダスト処理が円
滑な溶錬操業を図る上での重要な課題となる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention for preventing dust from adhering to a waste heat boiler is used in the mat smelting of ore, typically sulfide ore, of an air-feeding type. Examples of the air feeding type include a flash smelting furnace, a smelting furnace, and a reverberatory furnace. The air may be oxygen-enriched air or hot air. In the case of air-injection type, a large amount of exhaust gas is emitted, and in particular, the flash smelting furnace is subjected to considerable oxidation, which generates a large amount of dust. Will be an important issue.
【0014】酸化性ガスとしては、空気、酸素富化空気
等が用いられる。酸化性ガスは、直接製錬炉内の排ガス
に向けて、吹き込むのが好ましい。As the oxidizing gas, air, oxygen-enriched air or the like is used. Preferably, the oxidizing gas is blown directly toward the exhaust gas in the smelting furnace.
【0015】本発明の方法を、自溶炉に適用した場合の
自溶炉の構造を概略的に表したのが図1である。図1a
は自溶炉の側面の断面図であり、図1bは図1aに示し
た線A−A’に沿って切断した自溶炉の正面の断面図で
ある。両方の図において、1は精鉱バーナー、2は反応
シャフト、3はセットラー、4は酸化性ガス吹込口、5
はアップテイク、6はスラグホール、7はスラグ、8は
マットホール、9はマットを指す。FIG. 1 schematically shows the structure of a flash smelting furnace when the method of the present invention is applied to a flash smelting furnace. FIG.
Is a side sectional view of the flash smelting furnace, and FIG. 1b is a front cross sectional view of the flash smelting furnace cut along the line AA ′ shown in FIG. 1a. In both figures, 1 is a concentrate burner, 2 is a reaction shaft, 3 is a settler, 4 is an oxidizing gas inlet, 5
Denotes an uptake, 6 denotes a slag hole, 7 denotes a slag, 8 denotes a mat hole, and 9 denotes a mat.
【0016】反応シャフト2は、1〜3本の精鉱バーナ
ー1(ここでは2本)を備えている。精鉱バーナー1か
ら反応シャフト2に向けて、乾燥した微粉精鉱が酸素富
化空気又は高温熱風と共に吹き込まれ、そこで瞬間的に
酸化反応が起こり、反応生成物が落下し、融体であるス
ラグ7とマット9として互いに分離した状態で、炉の下
部に蓄積される。この炉は空気送入型なので、同時に、
ダストを含む高温の排ガスも大量に生成される。特に、
自溶炉の場合にはかなり酸化されるのでダストが大量に
生成される。生成された排ガスは、その後廃熱ボイラー
に通される。ここでは、図示されていないが、自溶炉の
場合にはダストの量が多いので、廃熱ボイラーは通常水
管式を用いている。廃熱ボイラーに排ガスが通される
と、そこで蒸気が発生する。更に、自溶炉の場合にはS
O2が発生するので、冷却された排ガスがコットレル
(図示せず)、更には生成されたSO3ミストを除くた
めミストコットレル(図示せず)に通され、触媒の存在
下で転化されてSO3が生成される。The reaction shaft 2 is provided with one to three concentrate burners 1 (here, two). From the concentrate burner 1 toward the reaction shaft 2, dry fine concentrate is blown together with oxygen-enriched air or high-temperature hot air, where instantaneous oxidation reaction occurs, reaction products drop, and slag as a melt is obtained. It is stored in the lower part of the furnace, separated from each other as 7 and mat 9. Since this furnace is air-feeding type,
A large amount of high-temperature exhaust gas containing dust is also generated. Especially,
In the case of a flash furnace, dust is generated in a large amount because it is considerably oxidized. The generated exhaust gas is then passed through a waste heat boiler. Although not shown here, the waste heat boiler is usually of a water tube type because the amount of dust is large in the case of a flash furnace. When exhaust gas is passed through a waste heat boiler, steam is generated there. Furthermore, in the case of a flash furnace, S
Since O 2 is generated, the cooled exhaust gas is passed through a cotter (not shown) and further through a mist cotter (not shown) to remove the generated SO 3 mist, and is converted in the presence of a catalyst to form SO 2. 3 is generated.
【0017】この自溶炉の場合には、酸化性ガス吹込口
4がセットラー3の側壁に備えられていることが重要な
特徴である。ダスト中の硫化物を酸化するための酸化性
ガスは廃熱ボイラーの入口で吹き込んでもよいが、その
場合には廃熱ボイラー内でガスの流速が遅くなり、排ガ
ス中のダストの一部はガス流から重力により分離される
ため、これらの分離されたダストも含めて全てのダスト
中の硫化物を酸化しようとすると酸化性ガスの酸化効率
が低下し、結果的にセットラーで酸化性ガスを吹き込ん
だ場合よりも多量でしかも過剰の酸化性ガスを必要とす
ることになる。未反応の酸素ガスが排ガス中に含まれる
と、同様に排ガスに含まれるSO2を酸化して硫酸ミス
トとするため、硫酸製造工程での廃酸発生率を上昇させ
る原因となる可能性がある。一方、図1に示したよう
に、セットラー3に酸化性ガス吹込口を備えさせると、
ダストとガスとの分離が殆ど起こらないため、効率良く
ダストに含まれる硫化物を廃熱ボイラー入口までの自溶
炉内で酸化することができ、硫酸製造工程での廃酸発生
率を有意的に上昇させるほどの量の未反応酸素ガスを廃
熱ボイラーにそのまま持ち込むことはない。従って、廃
熱ボイラー中で飛散するダストの量が増大した場合で
も、上述のような硫酸製造工程での悪影響はない。An important feature of the flash smelting furnace is that the oxidizing gas injection port 4 is provided on the side wall of the settler 3. The oxidizing gas for oxidizing the sulfide in the dust may be blown in at the inlet of the waste heat boiler, but in that case, the flow speed of the gas in the waste heat boiler becomes slow, and part of the dust in the exhaust gas becomes gaseous. Since it is separated from the stream by gravity, the oxidizing efficiency of oxidizing gas decreases when trying to oxidize sulfide in all dust including these separated dust, and as a result, the oxidizing gas is removed by settler. A larger amount and an excess of oxidizing gas than in the case of blowing are required. If unreacted oxygen gas is contained in the exhaust gas, SO 2 contained in the exhaust gas is similarly oxidized to form a sulfuric acid mist, which may cause an increase in the rate of waste acid generation in the sulfuric acid production process. . On the other hand, as shown in FIG. 1, when the setler 3 is provided with an oxidizing gas injection port,
Since there is almost no separation between dust and gas, sulfides contained in dust can be efficiently oxidized in the flash furnace up to the waste heat boiler inlet, significantly reducing the waste acid generation rate in the sulfuric acid production process. The unreacted oxygen gas is not brought into the waste heat boiler as much as possible. Therefore, even if the amount of dust scattered in the waste heat boiler increases, there is no adverse effect in the sulfuric acid production process as described above.
【0018】なお、図1に示した自溶炉においては、酸
化性ガスの吹込口はセットラーの側壁に2カ所設けられ
ているが、吹込口を設ける位置はセットラーの側壁に限
定されず天井でもよい。また、吹込口の数も2に限定さ
れない。In the flash smelting furnace shown in FIG. 1, the oxidizing gas inlet is provided at two places on the side wall of the settler, but the position of the inlet is not limited to the side wall of the settler. It may be the ceiling. Further, the number of the blowing ports is not limited to two.
【0019】セットラーで吹き込む酸化性ガス中の酸素
量は、自溶炉での単位鉱石処理量当たりのダスト発生率
が一定又は鉱石処理速度が一定の場合にはダスト中に含
まれる硫化物の量も大きく変化しないため、略一定にし
てよい。なお、大きく変化する場合には、酸化性ガス中
に含まれる酸素量を変えても或いは酸化性ガス自体の吹
き込み量を変えてもよい。吹き込む酸化性ガスの量は、
自溶炉のアップテイクにおいて排ガス中の酸素濃度を測
定し、そのデータに基づいて制御することができる。The amount of oxygen in the oxidizing gas blown by the settler is determined by the amount of sulfide contained in the dust when the dust generation rate per unit ore processing amount in the flash smelting furnace or the ore processing speed is constant. Since the amount does not greatly change, it may be substantially constant. In the case of a large change, the amount of oxygen contained in the oxidizing gas may be changed or the blowing amount of the oxidizing gas itself may be changed. The amount of oxidizing gas blown is
The oxygen concentration in the exhaust gas is measured during the uptake of the flash furnace, and control can be performed based on the measured data.
【0020】図1に示した構造の自溶炉を用いた場合に
は、水管にダストが付着してもダストが脱離し易いの
で、ダスト除去のために慣用されているハンマリング装
置の設置やスーツブローによるダスト付着防止策が有効
に実施されるので、製錬炉の操業を停止した上で人手に
より行うダスト除去作業の頻度は従来に比べて大幅に減
る。In the case of using the flash furnace having the structure shown in FIG. 1, even if dust adheres to the water pipe, the dust is easily detached. Since the measures to prevent dust adhesion by suit blow are effectively implemented, the frequency of dust removal work performed manually after the operation of the smelting furnace is stopped is greatly reduced as compared with the conventional case.
【0021】[0021]
【実施例】以下、図1に示した自溶炉(付属設備として
慣用的な水管式の廃熱ボイラーが備えられている)を用
いた実施(操業)例により、本発明を更に詳しく説明す
るが、本発明の範囲は実施例の記載により限定されるも
のではない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to an embodiment (operation) using a flash smelting furnace (provided with a conventional water tube type waste heat boiler as an accessory equipment) shown in FIG. However, the scope of the present invention is not limited by the description of the examples.
【0022】本発明の方法に従う操業例 精鉱バーナー1から、原料鉱石(硫化銅精鉱)を145
t/hの割合で装入し、酸素富化空気(O2:約75
%)を流量440m3/minで装入した。更に、酸化
性ガスとして空気(O2:約21%)を、セットラー3
の側壁の2カ所に設けられた酸化性ガス吹込口4を通し
て、合わせて流量75m3/minで吹き込んだ。操業
開始後、アップテイク5の出口から出された排ガスに含
まれるダストを水中で急冷して採取した。採取されたダ
ストの化学分析値は、表1に示す。また、採取されたダ
ストを樹脂に埋込み、切断研磨した断面の光学顕微鏡写
真(倍率200倍)を図2に示す。[0022] From operation examples concentrate burner 1 according to the method of the present invention, the raw material ore (sulfide copper concentrate) 145
t / h, and oxygen-enriched air (O 2 : about 75
%) At a flow rate of 440 m 3 / min. Further, air (O 2 : about 21%) is used as an oxidizing gas,
Was injected at a flow rate of 75 m 3 / min through the oxidizing gas injection ports 4 provided at two places on the side wall of the oxidizing gas. After the start of the operation, dust contained in the exhaust gas discharged from the exit of the uptake 5 was rapidly cooled in water and collected. Table 1 shows the chemical analysis values of the collected dust. FIG. 2 shows an optical microscope photograph (magnification: 200 times) of a section in which the collected dust is embedded in a resin, cut and polished.
【表1】 表1に示されるように、そのまま廃熱ボイラーに送り込
まれるはずだったダスト中のS(硫黄)分は、0.9重
量%程度であった。また、図2に示されるように、ダス
ト粒子の一部にはマット、即ち、Cu2S−FeSが残
っているものの、ダスト粒子の大部分は、白かわ(Cu
2S)、金属銅(Cu)、銅鉄複合酸化物(CuFe
O2)、マグネタイト(Fe3O4)及びスラグ(Fe2S
iO4等)から成っていた。これらの結果から、マット
の成分であった硫化銅及び硫化鉄は略完全に酸化された
ことが判明した。また、廃熱ボイラーの出口における排
ガスの温度は390℃であった。比較例の操業例 精鉱バーナー1から、本発明の方法に従う操業例で用い
たものと同じ原料鉱石(硫化銅精鉱)を125t/hの
割合で装入し、酸素富化空気(O2:約73%)を流量
410m3/minで装入した。しかしながら、酸化性
ガスは吹き込まなかった。そして、上述の本発明に従う
操業例と同様にして、ダストを採取し、評価した。採取
されたダストの化学分析値は、表2に示す。また、採取
されたダストを樹脂に埋込み、切断研磨した断面の光学
顕微鏡写真(倍率200倍)を図3に示す。[Table 1] As shown in Table 1, the S (sulfur) content in the dust that was to be sent to the waste heat boiler as it was was about 0.9% by weight. Further, as shown in FIG. 2, a mat, that is, Cu 2 S—FeS remains in a part of the dust particles, but most of the dust particles are white glue (Cu
2 S), metallic copper (Cu), copper-iron composite oxide (CuFe
O 2 ), magnetite (Fe 3 O 4 ) and slag (Fe 2 S)
iO 4 ). From these results, it was found that copper sulfide and iron sulfide, which were components of the mat, were almost completely oxidized. The temperature of the exhaust gas at the outlet of the waste heat boiler was 390 ° C. From operation examples concentrate burner 1 of the comparative example, the same ore as used in operation example according to the method of the present invention (sulfide copper concentrate) was charged at a rate of 125t / h, oxygen-enriched air (O 2 : About 73%) at a flow rate of 410 m 3 / min. However, no oxidizing gas was blown. Then, dust was collected and evaluated in the same manner as in the operation example according to the present invention described above. Table 2 shows the chemical analysis values of the collected dust. Further, FIG. 3 shows an optical microscope photograph (magnification: 200 times) of a cross section obtained by embedding the collected dust in a resin and cutting and polishing the resin.
【表2】 表2に示されるように、そのまま廃熱ボイラーに送り込
まれるはずだったダスト中のS(硫黄)分は、8.8重
量%にも上った。また、図3に示されるように、ダスト
粒子は、マット(Cu2SーFeS)、白かわ(Cu
2S)、マグネタイト(Fe3O4)及びスラグ(Fe2S
iO4等)から成っており、マット成分がかなり含まれ
ていた。ダスト粒子は、反応シャフト2内から採取した
落下粒子と略同じ形状であることから、セットラーの浴
に落下せずにそのまま機械的に飛散していることが判明
した。また、廃熱ボイラーの出口における排ガスの温度
は、廃熱ボイラーの後部で温度が急激に上昇したため、
結局450℃にも上っていた。廃熱ボイラーの出口で管
理できる温度である管理値の上限は現在のところ400
℃程度なので、このように排ガスが高温となっては操業
が困難となる。従って、自溶炉の操業を続けるには、原
料鉱石の装入量を125t/hから、従来から慣用され
ている装入量である110t/h程度まで下げる必要が
ある。なお、従来の酸化性ガスを吹き込まずにマット溶
錬する自溶炉では、原料鉱石の装入量は110t/h程
度であり、また、原料鉱石と共に吹き込む酸素富化空気
の流量は最大で360m3/min程度であった。そし
て、廃熱ボイラーの出口における排ガスの温度は370
℃程度であった。[Table 2] As shown in Table 2, the amount of S (sulfur) in the dust that was to be sent to the waste heat boiler as it was was as high as 8.8% by weight. Further, as shown in FIG. 3, the dust particles are matte (Cu 2 S—FeS) and white glue (Cu
2 S), magnetite (Fe 3 O 4 ) and slag (Fe 2 S)
iO 4 etc.) and contained a considerable amount of matte components. Since the dust particles have substantially the same shape as the falling particles collected from the inside of the reaction shaft 2, it was found that the dust particles were mechanically scattered without falling into the settler bath. Also, the temperature of the exhaust gas at the outlet of the waste heat boiler suddenly rose at the rear of the waste heat boiler,
Eventually it was 450 ° C. The upper limit of the control value, which is the temperature that can be controlled at the outlet of the waste heat boiler, is currently 400
Since the temperature of the exhaust gas is high, the operation becomes difficult. Therefore, in order to continue the operation of the flash smelting furnace, it is necessary to reduce the charged amount of the raw ore from 125 t / h to about 110 t / h, which is a conventionally used charged amount. In a conventional flash smelting furnace that performs mat smelting without blowing oxidizing gas, the charged amount of the raw material ore is about 110 t / h, and the flow rate of the oxygen-enriched air blown together with the raw material ore is 360 m at maximum. It was about 3 / min. The temperature of the exhaust gas at the outlet of the waste heat boiler is 370
° C.
【発明の効果】本発明の方法によれば、廃熱ボイラー、
特に水管へのダストの付着を効率良く防止できる。従っ
て、製錬炉1炉当たりの鉱石処理量を更に増大するこ
と、即ち、マットの量産化への途を開くことができる。According to the method of the present invention, a waste heat boiler,
In particular, dust can be efficiently prevented from adhering to the water pipe. Therefore, it is possible to further increase the amount of ore processed per smelting furnace, that is, to open the way to mass production of mats.
【図1】本発明の方法を自溶炉に適用した場合の自溶炉
の構造を概略的に表した図であり、図1aは自溶炉の側
面の断面図であり、図1bは図1aに示した線A−A’
に沿って切断した自溶炉の正面の断面図である。FIG. 1 is a diagram schematically showing the structure of a flash smelting furnace when the method of the present invention is applied to a flash smelting furnace, FIG. 1a is a cross-sectional view of the side of the flash smelting furnace, and FIG. Line AA ′ shown in 1a
FIG. 3 is a cross-sectional view of the front of the flash smelting furnace taken along the line.
【図2】実施例で採取した排ガス中のダスト粒子の粒子
構造を示す写真である。FIG. 2 is a photograph showing a particle structure of dust particles in exhaust gas collected in an example.
【図3】比較例で採取した排ガス中のダスト粒子の粒子
構造を示す写真である。FIG. 3 is a photograph showing a particle structure of dust particles in exhaust gas collected in a comparative example.
1:精鉱バーナー、2:反応シャフト、3:セットラ
ー、4:酸化性ガス吹込口、5:アップテイク、6:ス
ラグホール、7:スラグ、8:マットホール、9:マッ
ト1: concentrate burner, 2: reaction shaft, 3: settler, 4: oxidizing gas inlet, 5: uptake, 6: slag hole, 7: slag, 8: mat hole, 9: mat
Claims (2)
酸化性ガスを吹き込んで排ガス中のダストに含まれる硫
化物を酸化した上で、該排ガスを廃熱ボイラーに通すこ
とを特徴とする廃熱ボイラーへのダスト付着防止方法。An oxidizing gas is blown into exhaust gas from an air-introduction type mat smelter to oxidize sulfide contained in dust in the exhaust gas, and then the exhaust gas is passed through a waste heat boiler. To prevent dust from adhering to waste heat boilers.
備えられていることを特徴とするマット溶錬用自溶炉。2. A flash smelting furnace for mat smelting, wherein a oxidizing gas injection port is provided in a settler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26927696A JP3748955B2 (en) | 1996-09-19 | 1996-09-19 | Method for preventing dust adhesion to waste heat boiler and flash smelting furnace using the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26927696A JP3748955B2 (en) | 1996-09-19 | 1996-09-19 | Method for preventing dust adhesion to waste heat boiler and flash smelting furnace using the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1089601A true JPH1089601A (en) | 1998-04-10 |
JP3748955B2 JP3748955B2 (en) | 2006-02-22 |
Family
ID=17470108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26927696A Expired - Fee Related JP3748955B2 (en) | 1996-09-19 | 1996-09-19 | Method for preventing dust adhesion to waste heat boiler and flash smelting furnace using the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3748955B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2002024A1 (en) * | 2006-04-04 | 2008-12-17 | Outotec Oyj | Method and equipment for treating process gas |
CN102061396A (en) * | 2010-12-10 | 2011-05-18 | 中南大学 | Method and device for smelting recycled copper in reverberator |
JP2011117709A (en) * | 2009-03-26 | 2011-06-16 | Pan Pacific Copper Co Ltd | Method and equipment for treating exhaust gas in water-granulation of slag |
US8377513B2 (en) | 2006-09-27 | 2013-02-19 | Outotec Oyj | Method for coating a cooling element |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI124714B (en) * | 2013-10-25 | 2014-12-15 | Outotec Finland Oy | METHOD AND ARRANGEMENTS FOR SUPPLY OF PROCESS GAS FROM A SUSPENSION DEFROSTING FURNACE TO A WASTE BOILER |
-
1996
- 1996-09-19 JP JP26927696A patent/JP3748955B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2002024A1 (en) * | 2006-04-04 | 2008-12-17 | Outotec Oyj | Method and equipment for treating process gas |
EP2002024A4 (en) * | 2006-04-04 | 2010-07-21 | Outotec Oyj | Method and equipment for treating process gas |
CN103851640A (en) * | 2006-04-04 | 2014-06-11 | 奥图泰有限公司 | Method and equipment for treating process gas |
KR101414499B1 (en) * | 2006-04-04 | 2014-07-04 | 오토텍 오와이제이 | Method and equipment for treating process gas |
US9322552B2 (en) | 2006-04-04 | 2016-04-26 | Outotec Oyj | Method and equipment for treating process gas |
US8377513B2 (en) | 2006-09-27 | 2013-02-19 | Outotec Oyj | Method for coating a cooling element |
JP2011117709A (en) * | 2009-03-26 | 2011-06-16 | Pan Pacific Copper Co Ltd | Method and equipment for treating exhaust gas in water-granulation of slag |
CN102061396A (en) * | 2010-12-10 | 2011-05-18 | 中南大学 | Method and device for smelting recycled copper in reverberator |
Also Published As
Publication number | Publication date |
---|---|
JP3748955B2 (en) | 2006-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5467142B2 (en) | Method for producing crude copper directly from copper concentrate | |
JPS59166637A (en) | Continuous copper refinement and conversion by blowing oxygen | |
AU2007281012B2 (en) | Lead slag reduction | |
US4362561A (en) | Method for the smelting of material such as ore concentrates | |
US5372630A (en) | Direct sulphidization fuming of zinc | |
US4414022A (en) | Method and apparatus for smelting sulfidic ore concentrates | |
JPH1089601A (en) | Method of preventing adhesion of dust against waste heat boiler and self-melting furnace employing this method | |
RU2060284C1 (en) | Method for production of matte and/or metal and device for its embodiment | |
US4391632A (en) | Process for the separation of lead from a sulfidic concentrate | |
BG64002B1 (en) | Method for heat regeneration of waste acid | |
JP3336167B2 (en) | Electric furnace dust treatment method | |
JPH1163401A (en) | Method of operating autogenous melting waste heat boiler | |
US5131944A (en) | Method and apparatus for treating zinc concentrates | |
JP5614056B2 (en) | Method of operating copper smelting furnace and copper smelting furnace | |
US5192487A (en) | Apparatus for treating zinc concentrates | |
WO1993024666A1 (en) | Oxygen smelting | |
JPH06212298A (en) | Treatment of fine raw material in copper smelting | |
RU2100459C1 (en) | Method of processing antimony sulfide raw material containing precious metals | |
AU650471B2 (en) | Method of extracting valuable metals from leach residues | |
RU2020170C1 (en) | Method of continuous fusion of sulfide materials | |
US5358548A (en) | Condensation of metal vapors in a fluidized bed and apparatus | |
WO1992002648A1 (en) | Method of extracting valuable metals from leach residues | |
CN118272665A (en) | Method for inhibiting generation of sulfur trioxide and dirty acid in high-arsenic copper mine smelting flue gas | |
CN118696137A (en) | Method for processing zinc concentrate | |
AU646510C (en) | Direct sulphidization fuming of zinc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051130 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111209 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121209 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |