[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1088230A - Production of high tensile strength steel material excellent in toughness - Google Patents

Production of high tensile strength steel material excellent in toughness

Info

Publication number
JPH1088230A
JPH1088230A JP23887196A JP23887196A JPH1088230A JP H1088230 A JPH1088230 A JP H1088230A JP 23887196 A JP23887196 A JP 23887196A JP 23887196 A JP23887196 A JP 23887196A JP H1088230 A JPH1088230 A JP H1088230A
Authority
JP
Japan
Prior art keywords
less
toughness
temperature
ceq
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23887196A
Other languages
Japanese (ja)
Other versions
JP3635803B2 (en
Inventor
Akio Omori
章夫 大森
Yasushi Morikage
康 森影
Kenji Oi
健次 大井
Fumimaru Kawabata
文丸 川端
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23887196A priority Critical patent/JP3635803B2/en
Publication of JPH1088230A publication Critical patent/JPH1088230A/en
Application granted granted Critical
Publication of JP3635803B2 publication Critical patent/JP3635803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high tensile strength steel material excellent in strength and toughness while obviating the necessity of the addition of large amounts of expensive elements by subjecting a steel stock, in which the contents of V and N and the value of Ceq are respectively specified, to hot rolling at respectively specified temp. and draft and then to air cooling. SOLUTION: A steel, having a composition which consists of, by weight, 0.05-0.18% C, 0.10-0.60% Si, 0.80-1.80% Mn, <=0.030% P, <=0.015% S, 0.005-0.050% Al, 0.04-0.15% V, 0.0050-0.0150% N, and the balance Fe with inevitable impurities and in which V/N is regulated to 4.0-12.0 and also the value of Ceq defined by equation I is regulated to 0.34-0.48%, is used. This stock is heated to 1050-1350 deg.C and then hot worked while regulating the cumulative draft, in the temp. range between the temp. Tps ( deg.C) defined by equation II and 830 deg.C, to >=30% and also regulating hot working finishing temp. to a temp. between the Ar3 point ( deg.C) defined by equation III and 900 deg.C. Subsequently, air cooling is performed down to room temp. Moreover, in the course of hot working, accelerated cooling can be applied once or twice or more times at a cooling velocity not lower than air cooling velocity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高張力鋼材の製造
方法に関し、とくに靱性に優れた引張強さ490MPa以上の
高張力鋼材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-tensile steel material, and more particularly to a high-tensile steel material having excellent toughness and a tensile strength of 490 MPa or more.

【0002】[0002]

【従来の技術】厚鋼板において強度、靱性をバランスよ
く確保する方法として、TMCP(Thermo Mechanical
Control Process )による厚鋼板の製造方法が知られて
いる。例えば、特開平3-223419号公報には、Nbを含有す
る鋼素材を(Ar3 +150 ℃)以上の再結晶温度域で30%
以上の圧下を施したのち、(Ar3 +150 ℃)〜Ar3 の温
度域で50%以上の圧下を加える厚鋼板の製造方法が提案
されている。この方法では、未再結晶域での強圧下によ
り変形帯を導入し組織の微細化を図っている。また、特
開平2-25968 号公報には、Ca、TiとNbまたはVを含有す
る鋼片を900 〜1100℃に加熱し、900 ℃以下の圧下量が
30%以上で、かつ圧延仕上温度が680 〜860 ℃の熱間圧
延を施したのち、3 〜10℃/secの冷却速度で500 ℃以下
まで冷却する厚肉高張力鋼の製造方法が提案されてい
る。
2. Description of the Related Art As a method for securing strength and toughness in a well-balanced manner in a thick steel plate, TMCP (Thermo Mechanical) is used.
2. Description of the Related Art A method of manufacturing a thick steel plate by a control process is known. For example, Japanese Unexamined Patent Publication No. 3-223419 discloses that a steel material containing Nb is reduced by 30% in a recrystallization temperature range of (Ar 3 + 150 ° C.) or higher.
After subjected to more pressure it has been proposed a manufacturing method of a steel plate adding (Ar 3 +150 ℃) reduction of 50% or more in a temperature range of to Ar 3. In this method, a deformation zone is introduced by applying a strong pressure in a non-recrystallized region to make the structure finer. Japanese Patent Application Laid-Open No. 2-25968 discloses that a steel slab containing Ca, Ti and Nb or V is heated to 900 to 1100 ° C., and the rolling reduction is 900 ° C. or less.
A method of manufacturing a high-strength high-strength steel has been proposed in which hot rolling is performed at a rolling finish temperature of 680 to 860 ° C at a temperature of 30% or more, and then cooled to 500 ° C or less at a cooling rate of 3 to 10 ° C / sec. ing.

【0003】しかしながら、上記したような未再結晶温
度域での圧延の効果を十分に発揮させるためには、より
低温で高圧下を加える必要があり、圧延機に多大な負荷
が掛かるため多大のエネルギーを消費するうえ、厚鋼板
の場合には温度調節の待ち時間が増大して圧延能率が低
下するなどの問題が残されていた。また、極厚鋼板のよ
うに低温での高圧下が確保できない場合には、変形帯の
導入が不十分となりフェライト核が減少し組織の微細化
が達成できず、一方、薄肉鋼板の場合には、集合組織の
形成による音響の異方性や、500 ℃以下といった低温ま
で冷却されるため残留応力・残留歪が大きくなるなどの
問題があった。
However, in order to sufficiently exert the effect of the rolling in the non-recrystallization temperature range as described above, it is necessary to apply a high pressure at a lower temperature, and a great load is applied to the rolling mill, so that a great load is applied. In addition to consuming energy, in the case of a thick steel plate, there have been problems such as an increase in waiting time for temperature control and a reduction in rolling efficiency. In addition, when high pressure under low temperature cannot be ensured as in the case of an extremely thick steel sheet, the introduction of the deformation zone is insufficient, ferrite nuclei are reduced, and the structure cannot be refined.On the other hand, in the case of a thin steel sheet, However, there are problems such as the anisotropy of sound due to the formation of texture, and the increase in residual stress and residual strain due to cooling to a low temperature of 500 ° C. or less.

【0004】一方、上記した方法とは異なり、VNを利
用して、組織を微細化して圧延のままの強度靱性を向上
させた高強度鋼が、従来から知られている(例えば、鉄
と鋼、Vol.77(1991)No.1、p171. )。また、特開平5-18
6848号公報には、V、Nに加えTiを添加し、TiN-MnS-VN
の複合析出物を分散させ、フェライト生成機能を有効に
作用させHAZ 部靱性を向上させる技術が示されている。
しかしながら、これらの技術では、とくに極厚鋼板の場
合には、必ずしもVNの作用が効率良く発揮されてはおら
ず、圧延のままの母材特性は不十分であるという問題を
残していた。
On the other hand, unlike the above-mentioned method, a high-strength steel using VN to refine the structure and improve the strength toughness as rolled has been conventionally known (for example, iron and steel). , Vol.77 (1991) No.1, p171.). Also, JP-A-5-18
No. 6848 discloses that TiN-MnS-VN
There is disclosed a technique for dispersing the composite precipitates of the above and effectively acting a ferrite generating function to improve the HAZ toughness.
However, in these techniques, particularly in the case of an extremely thick steel plate, the effect of VN is not always efficiently exhibited, and there is a problem that the properties of the base material as-rolled are insufficient.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記した
問題を有利に解決し、高価な元素を多量に添加すること
なく、また、低温での強圧下を施すことなく、引張強さ
490MPa以上の強度を有し靱性に優れた高張力鋼材の製造
方法を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and does not require the addition of a large amount of expensive elements and does not apply a high-temperature low-temperature, and has a low tensile strength.
An object of the present invention is to propose a method for producing a high-tensile steel material having a strength of 490 MPa or more and excellent toughness.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を達成するために、鋭意検討した結果、つぎのような知
見を得た。 V、N量を制御して、VN析出物を適量、オーステナイ
ト中に析出分散させることにより、これら析出物がフェ
ライトの核として作用し、微細なフェライト+パーライ
ト組織が形成される。さらに、このVNによる組織の微細
化作用は、Ceqを0.34〜0.48%の範囲に調整することに
より強化される。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and have obtained the following findings. By controlling the amounts of V and N and dispersing an appropriate amount of VN precipitates in austenite, these precipitates act as ferrite nuclei to form a fine ferrite + pearlite structure. Furthermore, the tissue refining effect of this VN is enhanced by adjusting Ceq to a range of 0.34 to 0.48%.

【0007】VNは、フェライト変態後、フェライト中
にも多量に微細析出するため、強度増加に大きく寄与す
る。また、VNは、比較的緩冷却でも多量に微細析出する
ため、鋼板断面内の強度・靱性のばらつきや、残留応力
・残留歪の発生を抑制できる。 素材のV、N量を制御することに加えて、かかる素材
にV、N量に関係する特定温度範囲の圧下を累積圧下率
で30%以上、熱間加工終了温度をAr3 点(℃)以下900
℃以上とする熱間加工を施すことにより、フェライト析
出核となりうる10nm以上の大きさのVNの析出が促進さ
れ、より一層の組織の微細化が図れる。
[0007] After the ferrite transformation, VN is finely precipitated in a large amount in ferrite, and thus greatly contributes to an increase in strength. Further, since VN is finely precipitated in a large amount even with relatively slow cooling, it is possible to suppress variations in strength and toughness in the cross section of the steel sheet and occurrence of residual stress and residual strain. In addition to controlling the amount of V and N of the material, the rolling of the material in a specific temperature range related to the amount of V and N is 30% or more in cumulative rolling reduction, and the hot working end temperature is Ar 3 points (° C). Less than 900
By performing hot working at a temperature of not less than ° C., precipitation of VN having a size of 10 nm or more, which can be a ferrite precipitation nucleus, is promoted, and the structure can be further refined.

【0008】本発明は、上記した知見をもとに完成させ
たものである。すなわち、本発明は、重量%で、C:0.
05〜0.18%、Si:0.10〜0.60%、Mn:0.80〜1.80%、
P:0.030 %以下、S:0.015 %以下、Al:0.005 〜0.
050 %、V:0.04〜0.15%、N:0.0050〜0.0150%を含
み、かつ、 V/N:4.0 〜12.0を満足し、次(1)式 Ceq =C+Si/24 +Mn/6+Ni/40 +Cr/5+Mo/4+V/14 ………(1) で定義されるCeq を0.34〜0.48%とした、残部Feおよび
不可避的不純物からなる素材を、1050〜1350℃に加熱
し、次(2)式 Tps ={V(N−0.292Ti )×105 +397 }/0.480 ………(2) で定義されるTps温度(℃)以下830 ℃以上の温度範囲
における累積圧下率を30%以上、熱間加工終了温度を次
(3)式 Ar3 =910 −273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu −1620Nb…(3) で定義されるAr3点(℃)以上900 ℃以下とする熱間加
工を施したのち、室温まで空冷することを特徴とする靱
性に優れた高張力鋼材の製造方法である。
The present invention has been completed based on the above findings. That is, in the present invention, C: 0.
05 ~ 0.18%, Si: 0.10 ~ 0.60%, Mn: 0.80 ~ 1.80%,
P: 0.030% or less, S: 0.015% or less, Al: 0.005-0.
050%, V: 0.04 to 0.15%, N: 0.0050 to 0.0150%, and V / N: 4.0 to 12.0 are satisfied, and the following equation (1) is used: Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 A material consisting of the balance of Fe and unavoidable impurities, with Ceq defined by (1) being 0.34 to 0.48%, is heated to 1050 to 1350 ° C., and the following equation (2) Tps = { V (N−0.292Ti) × 10 5 +397 mm / 0.480 ……………………………………………………………………………………………………………………………………………………………………………………… (2) Is subjected to hot working in which Ar 3 = 910-273 C + 25Si-74Mn-56Ni-16Cr-9Mo-5Cu-1620Nb defined by the following equation (3): not less than Ar 3 points (° C) and not more than 900 ° C. After that, it is a method for producing a high-tensile steel material excellent in toughness, characterized by air-cooling to room temperature.

【0009】また、本発明では、前記熱間加工の途中
で、1回または2回以上、空冷以上の冷却速度で加速冷
却を施してもよい。また、本発明では、前記室温まで空
冷するに代えて、空冷以上30℃/sec以下の冷却速度で
(Ar3−60℃)以下600 ℃以上の温度まで冷却してもよ
い。また、本発明では、前記素材を、重量%で、C:0.
05〜0.18%、Si:0.10〜0.60%、Mn:0.80〜1.80%、
P:0.030 %以下、S:0.015 %以下、Al:0.005 〜0.
050 %、V:0.04〜0.15%、N:0.0050〜0.0150%を含
み、さらに、Nb:0.003 〜0.030 %、Ti:0.005 〜0.03
%のうちから選ばれた1種または2種を含有し、かつ、
(V+Ti) /N:4.0 〜12.0を満足し、前記Ceq を0.34
〜0.48%とした、残部Feおよび不可避的不純物からなる
素材とするのが好適である。
Further, in the present invention, accelerated cooling may be performed once or twice or more at a cooling rate higher than air cooling during the hot working. Further, in the present invention, instead of the air cooling to the room temperature, the cooling may be performed at a cooling rate of not less than air cooling and not more than 30 ° C./sec to a temperature not more than (Ar 3 −60 ° C.) and not less than 600 ° C. Further, in the present invention, the above-mentioned raw material is expressed as C: 0.
05 ~ 0.18%, Si: 0.10 ~ 0.60%, Mn: 0.80 ~ 1.80%,
P: 0.030% or less, S: 0.015% or less, Al: 0.005-0.
050%, V: 0.04-0.15%, N: 0.0050-0.0150%, Nb: 0.003-0.030%, Ti: 0.005-0.03%
% Or one or two selected from
(V + Ti) / N: 4.0 to 12.0 was satisfied, and the Ceq was 0.34.
It is preferable to use a material containing the balance of Fe and unavoidable impurities with a content of about 0.48%.

【0010】また、本発明では、前記素材を、重量%
で、C:0.05〜0.18%、Si:0.10〜0.60%、Mn:0.80〜
1.80%、P:0.030 %以下、S:0.015 %以下、Al:0.
005 〜0.050 %、V:0.04〜0.15%、N:0.0050〜0.01
50%を含み、Cu:0.05〜0.50%、Ni:0.05〜0.50%、C
r:0.05〜0.50%、Mo:0.02〜0.20%のうちから選ばれ
た1種または2種以上を含有し、かつ、V/N:4.0 〜
12.0を満足し、前記Ceq を0.34〜0.48%とした、残部Fe
および不可避的不純物からなる素材としてもよい。
[0010] In the present invention, the material may be used in an amount of
And C: 0.05-0.18%, Si: 0.10-0.60%, Mn: 0.80-
1.80%, P: 0.030% or less, S: 0.015% or less, Al: 0.
005 to 0.050%, V: 0.04 to 0.15%, N: 0.0050 to 0.01
Including 50%, Cu: 0.05-0.50%, Ni: 0.05-0.50%, C
r: 0.05 to 0.50%, Mo: 0.02 to 0.20%, one or more selected from among them, and V / N: 4.0 to
12.0 was satisfied, and the Ceq was 0.34 to 0.48%.
Alternatively, the material may be made of unavoidable impurities.

【0011】また、本発明では、前記素材を、重量%
で、C:0.05〜0.18%、Si:0.10〜0.60%、Mn:0.80〜
1.80%、P:0.030 %以下、S:0.015 %以下、Al:0.
005 〜0.050 %、V:0.04〜0.15%、N:0.0050〜0.01
50%を含み、Cu:0.05〜0.50%、Ni:0.05〜0.50%、C
r:0.05〜0.50%、Mo:0.02〜0.20%、のうちから選ば
れた1種または2種以上、およびNb:0.003 〜0.030
%、Ti:0.005 〜0.03%、のうちから選ばれた1種また
は2種を含有し、かつ、(V+Ti) /N:4.0 〜12.0を
満足し、前記Ceq を0.34〜0.48%とした、残部Feおよび
不可避的不純物からなる素材としてもよい。
Further, in the present invention, the material may be contained in a
And C: 0.05-0.18%, Si: 0.10-0.60%, Mn: 0.80-
1.80%, P: 0.030% or less, S: 0.015% or less, Al: 0.
005 to 0.050%, V: 0.04 to 0.15%, N: 0.0050 to 0.01
Including 50%, Cu: 0.05-0.50%, Ni: 0.05-0.50%, C
r: 0.05 to 0.50%, Mo: 0.02 to 0.20%, one or more selected from the group consisting of: Nb: 0.003 to 0.030
%, Ti: 0.005 to 0.03%, and one or two selected from the group consisting of: (V + Ti) / N: 4.0 to 12.0, and the Ceq being 0.34 to 0.48%. It may be a material composed of Fe and inevitable impurities.

【0012】また、本発明では、前記素材が上記素材組
成に加えて、B:0.0003〜0.0020%、REM :0.0010〜0.
010 %、Ca:0.0010〜0.010 %のうちから選ばれた1種
または2種以上を含有してもよい。
In the present invention, in addition to the above-mentioned material composition, the material has a composition of B: 0.0003 to 0.0020% and REM: 0.0010 to 0.
010%, Ca: 0.0010 to 0.010%, may contain one or more kinds selected from them.

【0013】[0013]

【発明の実施の形態】本発明でいう鋼材とは厚鋼板、熱
延鋼板、鋼管、形鋼、棒鋼を含む鋼材を意味する。本発
明において、好適な素材の化学組成について説明する。 C:0.05〜0.18% Cは鋼の強度を増加させる元素であり、強度確保のため
に0.05%以上の添加が必要である。しかし、0.18%を超
えて添加すると、母材靱性および耐溶接割れ性、溶接熱
影響部(HAZ 部)靱性が劣化するため、Cは0.05〜0.18
%の範囲に制限した。なお、好ましくは0.08〜0.16%の
範囲である。
BEST MODE FOR CARRYING OUT THE INVENTION The steel material referred to in the present invention means a steel material including a thick steel plate, a hot-rolled steel plate, a steel pipe, a shape steel, and a steel bar. In the present invention, the chemical composition of a suitable material will be described. C: 0.05 to 0.18% C is an element that increases the strength of steel, and it is necessary to add 0.05% or more to secure the strength. However, if added in excess of 0.18%, the base material toughness, weld cracking resistance, and weld heat affected zone (HAZ) toughness deteriorate, so that C is 0.05 to 0.18%.
% Range. In addition, it is preferably in the range of 0.08 to 0.16%.

【0014】Si:0.10〜0.60% Siは脱酸剤として作用し、さらに固溶強化により鋼の強
度を増加させる元素である。この効果を得るためには、
0.10%以上の添加を必要とするが、0.60%を超えると、
HAZ 部靱性を著しく劣化させる。このため、Siは0.10〜
0.60%の範囲とした。なお、好ましくは0.20〜0.45%で
ある。
Si: 0.10 to 0.60% Si is an element that acts as a deoxidizing agent and further increases the strength of steel by solid solution strengthening. To get this effect,
It is necessary to add 0.10% or more, but if it exceeds 0.60%,
Significantly degrades HAZ toughness. For this reason, Si is 0.10 ~
The range was 0.60%. In addition, it is preferably 0.20 to 0.45%.

【0015】Mn:0.80〜1.80% Mnは鋼の強度を増加させる元素であり、強度確保のため
に0.80%以上の添加が必要である。しかし、1.80%を超
えると、組織がフェライト+パーライトからベイナイト
等の低温生成物を主体とする組織になり、母材靱性が劣
化する。このため、Mnは0.80〜1.80%の範囲とした。な
お、好ましくは1.00〜1.70%である。
Mn: 0.80 to 1.80% Mn is an element that increases the strength of steel, and it is necessary to add 0.80% or more to secure the strength. However, if the content exceeds 1.80%, the structure becomes a structure mainly composed of low-temperature products such as bainite from ferrite + pearlite, and the base material toughness deteriorates. Therefore, Mn is set in the range of 0.80 to 1.80%. In addition, it is preferably 1.00 to 1.70%.

【0016】P:0.030 %以下 Pは粒界に偏析し、靱性を低下させる。このため、でき
るだけ低減するが、0.030 %までは許容できる。なお、
0.015 %以下とするのが好ましい。 S:0.015 %以下 Sは非金属介在物を形成し、延性・靱性を劣化させるた
め、0.015 %以下に制限した。なお、好ましくは0.010
%以下である。
P: not more than 0.030% P segregates at the grain boundaries and lowers toughness. For this reason, it is reduced as much as possible, but up to 0.030% is acceptable. In addition,
The content is preferably set to 0.015% or less. S: 0.015% or less Since S forms nonmetallic inclusions and deteriorates ductility and toughness, it is limited to 0.015% or less. Incidentally, preferably 0.010
% Or less.

【0017】Al:0.005 〜0.050 % Alは脱酸剤として作用するが、多量に添加すると非金属
介在物が多くなり、清浄度が低下し、靱性が劣化する。
また、AlはNと結合しAlN を形成しやすく、VNの安定
析出を阻害する。このため、Alは0.005 〜0.050 %の範
囲とした。なお、好ましくは0.010 〜0.040 %である。
Al: 0.005 to 0.050% Al acts as a deoxidizing agent, but when added in a large amount, nonmetallic inclusions increase, the cleanliness decreases, and the toughness deteriorates.
In addition, Al easily bonds with N to form AlN, and inhibits stable deposition of VN. Therefore, the content of Al is set in the range of 0.005 to 0.050%. Incidentally, the content is preferably 0.010 to 0.040%.

【0018】V:0.04〜0.15% Vは、本発明では重要な元素であり、Nと結合しVNを形
成し、圧延後冷却中にオーステナイト中に析出する。こ
のVNは、フェライト析出核として作用し、結晶粒を微細
化し靱性を向上させる。また、フェライト変態後フェラ
イト中にも微細析出し、冷却を強化することなく母材強
度を高めることができ、また、鋼板板厚内の特性の均一
性、残留応力・残留歪を軽減できる。これらの効果を得
るためには、0.04%以上の添加を必要とするが、0.15%
を超えて添加すると、母材靱性、溶接性が劣化する。こ
のため、Vは0.04〜0.15%の範囲に限定した。なお、好
ましくは0.04〜0.12%である。
V: 0.04 to 0.15% V is an important element in the present invention, and combines with N to form VN, which precipitates in austenite during cooling after rolling. This VN acts as a ferrite precipitation nucleus, refines crystal grains and improves toughness. Further, after the ferrite transformation, fine precipitates are also formed in the ferrite, whereby the strength of the base material can be increased without strengthening the cooling, and the uniformity of the properties within the thickness of the steel sheet, the residual stress and the residual strain can be reduced. To achieve these effects, 0.04% or more is required, but 0.15%
If added in excess of, the base metal toughness and weldability deteriorate. For this reason, V is limited to the range of 0.04 to 0.15%. In addition, it is preferably 0.04 to 0.12%.

【0019】N:0.0050〜0.0150% NはVおよび/またはTiと結合し窒化物を形成し、加熱
時のオーステナイト粒の成長を抑制するとともに、フェ
ライト析出核として作用し、結晶粒を微細化し靱性を向
上させる作用を有している。0.0050%未満では、必要と
する窒化物量が不足する。一方、0.0150%を超えると、
固溶N量が増加し、母材靱性、HAZ 部靱性を劣化させ
る。このため、Nは0.0050〜0.0150%の範囲に制限し
た。なお、好ましい範囲は0.0060〜0.0120%である。
N: 0.0050 to 0.0150% N combines with V and / or Ti to form a nitride, suppresses the growth of austenite grains during heating, acts as a ferrite precipitation nucleus, refines crystal grains, and reduces toughness. Has the effect of improving If it is less than 0.0050%, the required amount of nitride is insufficient. On the other hand, if it exceeds 0.0150%,
The amount of solute N increases, deteriorating the base metal toughness and the HAZ toughness. For this reason, N was limited to the range of 0.0050 to 0.0150%. The preferred range is 0.0060 to 0.0120%.

【0020】(V+Ti)/N:4.0 〜12.0 本発明では、Tiを添加しないときは(V+Ti)/Nは、
V/Nとして計算する。V、Nを上記した範囲とし、さ
らに、V/Nを4.0 〜12.0の範囲となるようにV、N量
を調整する。Tiを添加する場合には、V/Nのかわりに
(V+Ti)/Nを用いて計算し、同じく、4.0 〜12.0の
範囲となるようにV、Ti、N量を調整する。V/Nある
いは(V+Ti)/Nが4.0 未満では、固溶N量が増加
し、歪時効を生じさせ、さらにHAZ 部靱性を低下させ
る。また、V/Nあるいは(V+Ti)/Nが12.0を超え
ると、VあるいはVとTi、がCと結合し母材靱性を低下
させる。このため、V/Nあるいは(V+Ti)/Nを4.
0 〜12.0の範囲とした。なお、好ましくは、5.0 〜10.0
である。
(V + Ti) / N: 4.0 to 12.0 In the present invention, when no Ti is added, (V + Ti) / N becomes
Calculate as V / N. V and N are set in the above ranges, and the V and N amounts are adjusted so that V / N is in the range of 4.0 to 12.0. When adding Ti, the calculation is performed using (V + Ti) / N instead of V / N, and the amounts of V, Ti, and N are similarly adjusted to be in the range of 4.0 to 12.0. If V / N or (V + Ti) / N is less than 4.0, the amount of solute N increases, causing strain aging and further reducing the HAZ toughness. On the other hand, if V / N or (V + Ti) / N exceeds 12.0, V or V and Ti combine with C to lower the base material toughness. Therefore, V / N or (V + Ti) / N is set to 4.
The range was 0 to 12.0. Preferably, 5.0 to 10.0
It is.

【0021】Ceq :0.34〜0.48% Ceq は次(1)式で定義される。 Ceq =C+Si/24 +Mn/6+Ni/40 +Cr/5+Mo/4+V/14 ………(1) Ceq は、化学組成を調整し、0.34〜0.48%の範囲に限定
する、Ceq をこの範囲とすることにより、鋼の焼入性、
変態点が調節され、VNの析出を促進し、高強度と良好な
靱性、溶接性を確保できる。Ceq が、0.34%未満では母
材およびHAZ 軟化部の強度確保が困難となり、0.48%を
超えると溶接割れ感受性が高くなり、HAZ 部靱性が劣化
する。
Ceq: 0.34 to 0.48% Ceq is defined by the following equation (1). Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1) Ceq is obtained by adjusting the chemical composition and limiting it to the range of 0.34 to 0.48%. , Steel hardenability,
The transformation point is adjusted, VN precipitation is promoted, and high strength, good toughness and weldability can be secured. If the Ceq is less than 0.34%, it is difficult to secure the strength of the base metal and the softened portion of the HAZ, and if it exceeds 0.48%, the susceptibility to weld cracking increases and the toughness of the HAZ deteriorates.

【0022】Nb:0.003 〜0.030 %、Ti:0.005 〜0.03
%のうちから選ばれた1種または2種 Nbは、Ar3点を低下させ、VNのオーステナイト中への析
出を促進させる作用を有するとともに、Nb化合物の析出
と結晶粒の細粒化により強度、靱性をともに向上させ
る。この効果を得るためには、0.003 %以上の添加を必
要とするが、0.030 %を超えるとHAZ 部靱性、溶接性を
劣化させる。このため、Nbは0.003 〜0.030 %の範囲に
限定した。なお、好ましくは0.005 〜0.025 %である。
Nb: 0.003 to 0.030%, Ti: 0.005 to 0.03
% Or two kinds of Nb have the effect of lowering the Ar 3 point and accelerating the precipitation of VN in austenite, and have the effect of precipitation of Nb compounds and refinement of crystal grains. , Improve both toughness. To obtain this effect, the addition of 0.003% or more is required, but if it exceeds 0.030%, the toughness and weldability of the HAZ deteriorate. Therefore, Nb is limited to the range of 0.003 to 0.030%. Preferably, the content is 0.005 to 0.025%.

【0023】TiはNと結合しTiN を形成し、加熱時のオ
ーステナイト粒の成長を抑制するとともに、さらにオー
ステナイト中に残留あるいは析出し、VNのオーステナイ
ト中への析出を促進させる作用を有する。この効果を得
るためには、0.005 %以上の添加が必要であるが、0.05
0 %を超えると、鋼の清浄度を低下させるとともに、VN
の析出を抑制し、母材の靱性を劣化させる。このため、
Tiは0.005 〜0.050 %の範囲とした。なお、好ましくは
0.010 〜0.025 %である。
Ti combines with N to form TiN, which suppresses the growth of austenite grains during heating, and has the effect of remaining or precipitating in austenite to promote the precipitation of VN in austenite. To obtain this effect, it is necessary to add 0.005% or more.
If the content exceeds 0%, the cleanliness of the steel is reduced and VN
To suppress precipitation and degrade the toughness of the base material. For this reason,
Ti was set in the range of 0.005 to 0.050%. Preferably,
0.010 to 0.025%.

【0024】Cu:0.05〜0.50%、Ni:0.05〜0.50%、C
r:0.05〜0.50%、Mo:0.02〜0.20%のうちから選ばれ
た1種または2種以上 Cu、Ni、Cr、Moはいずれも焼入性を向上させ、強度を増
加させる作用を有しており、1種または2種以上を添加
できる。このような効果を得るためには、Cu、Ni、Cr、
Moはそれぞれ0.05%、0.05%、0.05%、0.02%以上の添
加が必要である。しかし、Cu、Niは0.50%を超えて添加
しても効果が飽和し、経済的にも高価となる。このた
め、Cu、Niはいずれも0.05〜0.50%の範囲に限定した。
Cr、Moは、それぞれ0.50%、0.20%を超えると溶接性、
母材靱性が劣化する。このため、Crは0.05〜0.50%、Mo
は0.02〜0.20%の範囲に限定した。
Cu: 0.05-0.50%, Ni: 0.05-0.50%, C
r: 0.05 to 0.50%, Mo: 0.02 to 0.20% One or more selected from Cu, Ni, Cr and Mo all have the effect of improving hardenability and increasing strength. And one or more kinds can be added. In order to obtain such effects, Cu, Ni, Cr,
Mo must be added in an amount of 0.05%, 0.05%, 0.05%, 0.02% or more, respectively. However, even if Cu and Ni are added in excess of 0.50%, the effect is saturated and the cost becomes high economically. Therefore, both Cu and Ni are limited to the range of 0.05 to 0.50%.
Cr and Mo exceed 0.50% and 0.20% respectively, weldability,
Base material toughness deteriorates. Therefore, Cr is 0.05-0.50%, Mo
Was limited to the range of 0.02 to 0.20%.

【0025】B:0.0003〜0.0020%、REM :0.0010〜0.
010 %、Ca:0.0010〜0.010 %のうちから選ばれた1種
または2種以上 B、REM 、Caはいずれもフェライト粒の微細化に寄与す
る作用を有しており、必要に応じ1種または2種以上を
添加できる。Bは粒界に偏析し、粗大な粒界フェライト
の析出を抑制し、フェライト粒の微細化に寄与する。こ
のような効果を得るためには、0.0003%以上の添加を必
要とするが、0.0020%を超えて添加すると、靱性を低下
させる。このため、Bは0.0003〜0.0020%の範囲に限定
した。
B: 0.0003-0.0020%, REM: 0.0010-0.
010%, Ca: one or more kinds selected from 0.0010 to 0.010% B, REM, and Ca all have an effect of contributing to the refinement of ferrite grains. Two or more can be added. B segregates at the grain boundaries, suppresses the precipitation of coarse grain boundary ferrite, and contributes to the refinement of ferrite grains. In order to obtain such an effect, 0.0003% or more of addition is required. However, if it exceeds 0.0020%, toughness is reduced. For this reason, B is limited to the range of 0.0003 to 0.0020%.

【0026】REM 、Caは高温においても安定な酸化物を
形成し微細に鋼中に分散して、オーステナイト粒の成長
を抑制し、圧延後のフェライト粒を微細化する。また、
HAZ部の組織を微細化し、HAZ 部靱性を向上させる効果
も有している。0.0010%未満ではその効果が少なく、一
方、0.010 %を超えて添加すると、酸化物量が増加し、
しかも粗大化するため、清浄度が低下し靱性が劣化す
る。このため、REM 、Caは0.0010〜0.010 %の範囲に限
定した。
REM and Ca form stable oxides even at high temperatures and are finely dispersed in the steel to suppress the growth of austenite grains and to refine the ferrite grains after rolling. Also,
It also has the effect of refining the structure of the HAZ portion and improving the toughness of the HAZ portion. Less than 0.0010% has little effect, while adding more than 0.010% increases the amount of oxides,
In addition, because of coarsening, cleanliness is reduced and toughness is deteriorated. For this reason, REM and Ca are limited to the range of 0.0010 to 0.010%.

【0027】その他、残部Feおよび不可避的不純物であ
る。上記に規定した元素以外の元素では、O:0.010 %
以下、Zr:0.02%以下、Mg:0.02%以下の含有が許容で
きる。つぎに、製造方法の限定理由について説明する。
上記した組成の鋼の溶製は、転炉、電気炉等通常公知の
溶製方法がいずれも適用でき、とくに限定する必要はな
い。溶製された溶鋼は、連続鋳造法あるいは造塊法によ
り凝固され加工用素材とされる。
Others are Fe and inevitable impurities. For elements other than the elements specified above, O: 0.010%
Below, Zr: 0.02% or less, Mg: 0.02% or less is acceptable. Next, the reasons for limiting the manufacturing method will be described.
For the smelting of the steel having the above-mentioned composition, any commonly known smelting method such as a converter and an electric furnace can be applied, and there is no particular limitation. The smelted molten steel is solidified by a continuous casting method or an ingot-making method to be a working material.

【0028】本発明の素材は、熱間圧延により、厚鋼
板、熱延鋼板、鋼管、形鋼、棒鋼等に成形することがで
きる。熱間圧延の加熱温度は、1050〜1350℃とする。加
熱温度が1050℃未満では、V、Nb等の析出物が十分に固
溶せず、これら析出強化元素の効果を十分に発揮するこ
とが困難なうえに、変形抵抗の増加により、所定の累積
圧下率の確保が困難となる。一方、1350℃を超えると、
加熱炉原単位を悪化させるとともにスケールロスの増加
や炉補修回数の増加等を招く。このため、素材の加熱温
度は1050〜1350℃の範囲とした。
The material of the present invention can be formed into a thick steel plate, a hot-rolled steel plate, a steel pipe, a shape steel, a steel bar or the like by hot rolling. The heating temperature for hot rolling is 1050 to 1350 ° C. If the heating temperature is lower than 1050 ° C., precipitates such as V and Nb do not sufficiently form a solid solution, making it difficult to sufficiently exert the effects of these precipitation strengthening elements. It is difficult to secure the rolling reduction. On the other hand, if it exceeds 1350 ° C,
In addition to deteriorating the heating furnace basic unit, it causes an increase in scale loss and an increase in the number of times of furnace repair. For this reason, the heating temperature of the material was set in the range of 1050 to 1350 ° C.

【0029】素材を加熱後、ついで、次(2)式 Tps ={V(N−0.292Ti )×105 +397 }/0.480 ………(2) で定義されるTps 温度(℃)以下830 ℃以上の温度範囲
における累積圧下率を30%以上、熱間加工終了温度を次
(3)式 Ar3 =910 −273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu −1620Nb…(3) で定義されるAr3 点(℃)以上900 ℃以下とする熱間加
工を施す。
After the material is heated, the temperature is 830 ° C. below the Tps temperature (° C.) defined by the following equation (2): Tps = {V (N−0.292Ti) × 10 5 +397} /0.480 (2) the cumulative rolling reduction of 30% or more in the temperature range described above, is defined hot working finishing temperature by the following equation (3) Ar 3 = 910 -273 C + 25Si -74Mn-56Ni-16Cr-9Mo -5Cu -1620Nb ... (3) The hot working is performed at a temperature between 3 Ar (° C) and 900 ° C.

【0030】熱間加工で導入される歪によりVNの歪誘起
析出が促進され、このVNを核として粒内フェライトが生
成され組織が微細化される。このVNの歪誘起析出を促進
するためには、熱間加工の累積圧下率は30%以上を必要
とする。しかし、(2)式で定義されるTps 温度を超え
る温度での加工は、導入される歪によるVN歪誘起析出の
促進効果を期待できない。また、830 ℃未満の温度での
加工は、歪誘起析出により析出するVNの大きさが10nm以
下と小さく、粒内フェライトの核とはなりにくい。この
ため、Tps 温度(℃)以下830 ℃以上の温度範囲におけ
る累積圧下量を30%以上と規定した。なお、(2)式で
用いられるV、N、Tiはそれぞれの重量%である。
The strain induced by the hot working promotes the strain-induced precipitation of VN, and the VN serves as a nucleus to generate intragranular ferrite and refine the structure. In order to promote the strain-induced precipitation of VN, the cumulative rolling reduction of hot working needs to be 30% or more. However, processing at a temperature exceeding the Tps temperature defined by the equation (2) cannot expect the effect of promoting VN strain-induced precipitation due to the introduced strain. On the other hand, when processing at a temperature lower than 830 ° C., the size of VN precipitated by strain-induced precipitation is as small as 10 nm or less, and hardly becomes a core of intragranular ferrite. Therefore, the cumulative rolling reduction in the temperature range from Tps temperature (° C) to 830 ° C is specified as 30% or more. Note that V, N, and Ti used in the equation (2) are% by weight.

【0031】熱間加工終了温度が低下するにしたがい、
VNによる細粒化効果に加え、未再結晶温度域加工の効果
によりさらに組織が微細化し、靱性が向上する。この未
再結晶温度域加工の効果を得るために、熱間加工終了温
度は900 ℃以下とするが、VN析出促進のための熱間加工
条件を満足していれば、組織の微細化は十分であり、熱
間加工終了温度を必要以上に低温とする必要はなく、熱
間加工終了温度はAr3点以上とした。熱間加工終了温度
がAr3 点未満と低温になると、集合組織が形成され、ま
た靱性の劣化などの弊害が生じる。
As the hot working end temperature decreases,
In addition to the grain refinement effect by VN, the structure is further refined by the effect of the non-recrystallization temperature range processing, and the toughness is improved. In order to obtain the effect of this non-recrystallization temperature range processing, the hot working end temperature is set to 900 ° C or less, but if the hot working conditions for promoting VN precipitation are satisfied, the microstructure can be sufficiently refined. It is not necessary to set the hot working end temperature to an unnecessarily low temperature, and the hot working end temperature was set to three or more Ar points. When the hot working end temperature is as low as less than the Ar 3 point, a texture is formed and adverse effects such as deterioration of toughness occur.

【0032】また、本発明では、前記熱間加工の途中
で、1回または2回以上、空冷以上の冷却速度で加速冷
却を施してもよい。熱間加工途中で、加工を中断し、空
冷以上好ましくは1℃/sec以上の冷却速度で冷却する。
冷却は1回あたり50〜150 ℃程度冷却し、過冷により、
VNが析出する前にAlN 、NbN 等としてNが固定されるの
を抑制し、VNを有効に析出させ、VN析出粒子数を増加さ
せる。
In the present invention, accelerated cooling may be performed once or twice or more at a cooling rate higher than air cooling during the hot working. During the hot working, the working is interrupted, and cooling is performed at a cooling rate of at least air cooling, preferably at least 1 ° C./sec.
Cooling is performed at about 50-150 ° C each time.
Prevents N from being fixed as AlN, NbN, etc. before VN is deposited, effectively deposits VN, and increases the number of VN deposited particles.

【0033】圧延終了後、室温まで空冷する。空冷のよ
うな緩冷却を施すことにより、強度・靱性のばらつき、
残留応力・残留歪が軽減できる。また、本発明では、前
記室温まで空冷するに代えて、空冷以上30℃/sec以下の
冷却速度で(Ar3 −60℃)以下600 ℃以上の温度まで冷
却してもよい。空冷以上30℃/sec以下の冷却速度で加速
冷却することにより、粒界フェライトの生成が抑えら
れ、オーステナイトが過冷され、VNを核とする粒内フェ
ライトの生成による組織微細化効果が顕著になる。しか
し、冷却速度が30℃/secを超えると板厚方向の温度差が
顕著になり強度・靱性のばらつき、残留応力・残留歪の
発生が顕著となる。
After the completion of the rolling, the air is cooled to room temperature. By applying slow cooling such as air cooling, variation in strength and toughness,
Residual stress and residual strain can be reduced. In the present invention, instead of air cooling to the room temperature, cooling may be performed at a cooling rate of not less than air cooling and not more than 30 ° C./sec to a temperature of not more than (Ar 3 −60 ° C.) and not less than 600 ° C. By accelerated cooling at a cooling rate of air cooling to 30 ° C / sec or less, the generation of grain boundary ferrite is suppressed, austenite is supercooled, and the structure refinement effect due to the generation of intragranular ferrite with VN as a nucleus is remarkable. Become. However, when the cooling rate exceeds 30 ° C./sec, the temperature difference in the thickness direction becomes remarkable, and the strength and toughness vary, and the occurrence of residual stress and residual strain becomes remarkable.

【0034】また、加速冷却を(Ar3−60℃)を超える
温度で停止すると、加速冷却の効果が認められない。一
方、加速冷却を600 ℃未満の温度まで行うと、ベイナイ
ト等の低温変態生成物が多量に生成し、靱性が劣化す
る。なお、本発明で規定する温度、冷却速度は鋼材の板
厚中心部での値である。
When accelerated cooling is stopped at a temperature exceeding (Ar 3 -60 ° C.), the effect of accelerated cooling is not recognized. On the other hand, when accelerated cooling is performed to a temperature lower than 600 ° C., a large amount of low-temperature transformation products such as bainite are generated, and toughness is deteriorated. The temperature and cooling rate specified in the present invention are values at the center of the steel sheet in the thickness.

【0035】[0035]

【実施例】表1に示す組成の鋼を転炉で溶製し、連続鋳
造法で240 〜310mm 厚のスラブとした。ついで、これら
スラブを表2に示す温度に加熱し、表2に示す熱間圧延
条件で厚鋼板とした。圧延終了後、直ちに表2に示す冷
却速度で冷却した。これらの厚鋼板を用いて、母材の引
張特性、靱性、および溶接HAZ 部靱性を調査した。その
結果を表2に示す。
EXAMPLES Steel having the composition shown in Table 1 was melted in a converter and slabs having a thickness of 240 to 310 mm were produced by continuous casting. Next, these slabs were heated to the temperatures shown in Table 2, and were made into thick steel plates under the hot rolling conditions shown in Table 2. Immediately after the completion of the rolling, cooling was performed at a cooling rate shown in Table 2. Using these thick steel plates, the tensile properties, toughness, and weld HAZ toughness of the base metal were investigated. Table 2 shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】なお、母材の引張特性、靱性、溶接熱影響
部の靱性の試験方法は下記に示す通りである。 (1)母材の引張試験 上記製品板の板厚1/2 T部から圧延方向と直角方向にJI
S Z 2201に規定する4号試験片を採取し、JIS Z 2241に
準拠して、降伏点(YP)、引張強さ(TS)を求め
た。 (2)母材の靱性試験 上記製品板の板厚1/2 T部から圧延方向と直角方向にJI
S Z 2202に規定する4号試験片を採取し、JIS Z 2242に
準拠して、試験を実施し、破面遷移温度(vTrs)を求め
た。 (3)溶接熱影響部の靱性試験 上記製品板の板厚1/2 T部から圧延方向と直角方向に試
験片を採取し、高周波加熱装置により、入熱50kJ/cm の
サブマージアーク溶接の粗粒域HAZ 部(最高加熱温度14
00℃)の受ける熱サイクルを付与したのち、JIS Z 2202
に規定する4号試験片を採取し、JIS Z 2242に準拠し
て、−20℃におけるシャルピー吸収エネルギー( V
-20 )を求めた。
The methods for testing the tensile properties, toughness, and toughness of the heat affected zone of the base metal are as follows. (1) Tensile test of base metal JI in the direction perpendicular to the rolling direction from the 1/2 T thickness of the above product sheet
A No. 4 test piece specified in SZ2201 was sampled, and the yield point (YP) and tensile strength (TS) were determined in accordance with JIS Z2241. (2) Toughness test of base metal From the T 1/2 part of the above product sheet, JI was applied in the direction perpendicular to the rolling direction.
A No. 4 test piece specified in SZ2202 was sampled and subjected to a test in accordance with JIS Z 2242 to determine a fracture surface transition temperature (vTrs). (3) Toughness test of heat affected zone Welded specimens were taken from the 1/2 T section of the above product sheet in the direction perpendicular to the rolling direction, and were subjected to submerged arc welding with a heat input of 50 kJ / cm using a high frequency heating device. HAZ part of grain area (maximum heating temperature 14
JIS Z 2202
No. 4 test piece specified taken, in conformity with JIS Z 2242, the Charpy absorbed energy at -20 ° C. (V E
-20 ).

【0039】表2から、本発明例では、TSで500MPa以
上の高強度で、vTrsが−70℃以下の高靱性が得られ、母
材の強度・靱性に優れているとともに、HAZ 部の靱性も
vE-2 0 が87J以上と高靱性が得られ、HAZ 部靱性も優れ
ていることがわかる。化学組成が本発明範囲から外れる
比較例No.17 、No.18 、No.19 、No.20 では強度、母材
靱性、HAZ 部靱性が低下している。
As can be seen from Table 2, in the example of the present invention, a high strength of 500 MPa or more in TS and a high toughness of vTrs of −70 ° C. or less are obtained, and the strength and toughness of the base material are excellent, and the toughness of the HAZ portion is high. Also
vE -2 0 is obtained than with high toughness 87 J, it can be seen that excellent HAZ zone toughness. In Comparative Examples No. 17, No. 18, No. 19 and No. 20 in which the chemical composition is out of the range of the present invention, the strength, base material toughness and HAZ part toughness are reduced.

【0040】また、累積圧下率が本発明範囲から外れる
比較例No.3では、母材の強度、靱性が劣化し、加速冷却
停止温度が低い比較例No.4では、母材の靱性が劣化し、
熱間圧延終了温度が本発明の範囲を外れる比較例No.7、
No.15 では母材の靱性が劣化している。加熱温度が本発
明の範囲を外れる比較例No.10 、No.12 では、母材の靱
性が劣化している。
Further, in Comparative Example No. 3 in which the cumulative draft was out of the range of the present invention, the strength and toughness of the base material were deteriorated, and in Comparative Example No. 4 in which the accelerated cooling stop temperature was low, the toughness of the base material was deteriorated. And
Comparative Example No. 7, in which the hot rolling end temperature is out of the range of the present invention,
In No.15, the toughness of the base metal was deteriorated. In Comparative Examples No. 10 and No. 12 in which the heating temperature was out of the range of the present invention, the toughness of the base material was deteriorated.

【0041】[0041]

【発明の効果】この発明によれば、強度・靱性ともに優
れた引張強さ490MPa以上の高張力鋼材を、高価な元素を
多量添加することもなく、また低温での強圧下を施すこ
ともなく工業的に容易に製造でき、また、板厚方向の強
度靱性のばらつきも少ない鋼材を容易に製造でき、産業
上多大な効果を奏する。
According to the present invention, a high-tensile steel material having excellent tensile strength of 490 MPa or more in both strength and toughness can be produced without adding a large amount of expensive elements and without subjecting it to low-temperature strong pressure reduction. A steel material that can be easily manufactured industrially and has a small variation in strength and toughness in the plate thickness direction can be easily manufactured, and has a great industrial effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大井 健次 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 川端 文丸 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 天野 虔一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kenji Ooi 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (without address) Inside the Mizushima Works, Kawasaki Steel Corporation (72) Inventor Fumimaru Kawabata, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama 1-chome (without address) Inside Mizushima Steel Works, Kawasaki Steel Corp. (72) Inventor Kenichi Amano 1-chome, with Kawasaki-dori Mizushima, Kurashiki City, Okayama Prefecture (without address) Inside Mizushima Works, Kawasaki Steel Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.05〜0.18%、 Si:0.10〜0.60%、 Mn:0.80〜1.80%、 P:0.030 %以下、 S:0.015 %以下、 Al:0.005 〜0.050 %、 V:0.04〜0.15%、 N:0.0050〜0.0150% を含み、かつ、V/N:4.0 〜12.0を満足し、下記
(1)式で定義されるCeq を0.34〜0.48%とした、残部
Feおよび不可避的不純物からなる素材を、1050〜1350℃
に加熱し、下記(2)式で定義されるTps 温度(℃)以
下830 ℃以上の温度範囲における累積圧下率を30%以
上、熱間加工終了温度を下記(3)式で定義されるAr3
点(℃)以上900 ℃以下とする熱間加工を施したのち、
室温まで空冷することを特徴とする靱性に優れた高張力
鋼材の製造方法。 記 Ceq =C+Si/24 +Mn/6+Ni/40 +Cr/5+Mo/4+V/14 ………(1) Tps ={V(N−0.292Ti )×105 +397 }/0.480 ………(2) Ar3 =910 −273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu −1620Nb…(3)
C .: 0.05 to 0.18%, Si: 0.10 to 0.60%, Mn: 0.80 to 1.80%, P: 0.030% or less, S: 0.015% or less, Al: 0.005 to 0.050%, V : 0.04 to 0.15%, N: 0.0050 to 0.0150%, and V / N: 4.0 to 12.0, and Ceq defined by the following formula (1) is 0.34 to 0.48%.
Material consisting of Fe and unavoidable impurities, 1050-1350 ℃
The cumulative reduction ratio in the temperature range of Tps temperature (℃) below 830 ° C and above defined by the following equation (2) is 30% or more, and the hot working end temperature is Ar defined by the following equation (3). Three
After hot working to a temperature between (° C) and 900 ° C,
A method for producing a high-tensile steel material having excellent toughness, characterized by air cooling to room temperature. Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1) Tps = {V (N−0.292Ti) × 10 5 +397} /0.480 (2) Ar 3 = 910 -273 C + 25Si-74Mn-56Ni-16Cr-9Mo -5Cu-1620Nb ... (3)
【請求項2】 前記熱間加工の途中で、1回または2回
以上、空冷以上の冷却速度で加速冷却を施すことを特徴
とする請求項1記載の高張力鋼材の製造方法。
2. The method for producing a high-tensile steel material according to claim 1, wherein accelerated cooling is performed once or twice or more at a cooling rate of air cooling or more during the hot working.
【請求項3】 前記室温まで空冷するに代えて、空冷以
上30℃/sec以下の冷却速度で(Ar3−60℃)以下600 ℃
以上の温度まで冷却することを特徴とする請求項1また
は2記載の高張力鋼材の製造方法。
3. An air-cooling rate of not less than (Ar 3 −60 ° C.) and not more than 600 ° C. at a cooling rate of not less than 30 ° C./sec.
The method for producing a high-tensile steel material according to claim 1 or 2, wherein the method is cooled to the above temperature.
【請求項4】 前記素材が、重量%で、 C:0.05〜0.18%、 Si:0.10〜0.60%、 Mn:0.80〜1.80%、 P:0.030 %以下、 S:0.015 %以下、 Al:0.005 〜0.050 %、 V:0.04〜0.15%、 N:0.0050〜0.0150% を含み、さらに、 Nb:0.003 〜0.030 %、 Ti:0.005 〜0.030 % のうちから選ばれた1種または2種を含有し、かつ、
(V+Ti) /N:4.0 〜12.0を満足し、前記Ceq を0.34
〜0.48%とした、残部Feおよび不可避的不純物からなる
素材であることを特徴とする請求項1、2または3記載
の靱性に優れた高張力鋼材の製造方法。
4. The material is, by weight%, C: 0.05 to 0.18%, Si: 0.10 to 0.60%, Mn: 0.80 to 1.80%, P: 0.030% or less, S: 0.015% or less, Al: 0.005 to 0.005%. 0.050%, V: 0.04 to 0.15%, N: 0.0050 to 0.0150%, Nb: 0.003 to 0.030%, Ti: 0.005 to 0.030%, and one or two selected from the group consisting of: ,
(V + Ti) / N: 4.0 to 12.0 was satisfied, and the Ceq was 0.34.
The method for producing a high-tensile steel material having excellent toughness according to claim 1, 2 or 3, wherein the material is a material containing Fe and unavoidable impurities, the content being set to 0.48%.
【請求項5】 前記素材が、重量%で、 C:0.05〜0.18%、 Si:0.10〜0.60%、 Mn:0.80〜1.80%、 P:0.030 %以下、 S:0.015 %以下、 Al:0.005 〜0.050 %、 V:0.04〜0.15%、 N:0.0050〜0.0150% を含み、 Cu:0.05〜0.50%、 Ni:0.05〜0.50%、 Cr:0.05〜0.50%、 Mo:0.02〜0.20%、 のうちから選ばれた1種または2種以上を含有し、か
つ、V/N:4.0 〜12.0を満足し、前記Ceq を0.34〜0.
48%とした、残部Feおよび不可避的不純物からなる素材
であることを特徴とする請求項1、2または3記載の高
張力鋼材の製造方法。
5. The material is, by weight, C: 0.05 to 0.18%, Si: 0.10 to 0.60%, Mn: 0.80 to 1.80%, P: 0.030% or less, S: 0.015% or less, Al: 0.005 to 0.005%. 0.050%, V: 0.04-0.15%, N: 0.0050-0.0150%, Cu: 0.05-0.50%, Ni: 0.05-0.50%, Cr: 0.05-0.50%, Mo: 0.02-0.20% It contains one or more selected compounds, and satisfies V / N: 4.0 to 12.0, and has a Ceq of 0.34 to 0.
4. The method for producing a high-tensile steel material according to claim 1, wherein the material is 48%, the balance being Fe and a material comprising unavoidable impurities.
【請求項6】 前記素材が、重量%で、 C:0.05〜0.18%、 Si:0.10〜0.60%、 Mn:0.80〜1.80%、 P:0.030 %以下、 S:0.015 %以下、 Al:0.005 〜0.050 %、 V:0.04〜0.15%、 N:0.0050〜0.0150% を含み、 Cu:0.05〜0.50%、 Ni:0.05〜0.50%、 Cr:0.05〜0.50%、 Mo:0.02〜0.20% のうちから選ばれた1種または2種以上、および Nb:0.003 〜0.030 % Ti:0.005 〜0.03% のうちから選ばれた1種または2種を含有し、かつ、
(V+Ti) /N:4.0 〜12.0を満足し、前記Ceq を0.34
〜0.48%とした、残部Feおよび不可避的不純物からなる
素材であることを特徴とする請求項1、2または3記載
の高張力鋼材の製造方法。
6. The material is, by weight, C: 0.05 to 0.18%, Si: 0.10 to 0.60%, Mn: 0.80 to 1.80%, P: 0.030% or less, S: 0.015% or less, Al: 0.005 to 0.005%. 0.050%, V: 0.04-0.15%, N: 0.0050-0.0150%, Cu: 0.05-0.50%, Ni: 0.05-0.50%, Cr: 0.05-0.50%, Mo: 0.02-0.20% One or two or more selected from Nb: 0.003 to 0.030% Ti: 0.005 to 0.03%, and
(V + Ti) / N: 4.0 to 12.0 was satisfied, and the Ceq was 0.34.
The method for producing a high-tensile steel material according to claim 1, wherein the material is a material containing Fe and unavoidable impurities, the content being set to 0.48%.
【請求項7】 前記素材が、さらに、B:0.0003〜0.00
20%、REM :0.0010〜0.010 %、Ca:0.0010〜0.010 %
のうちから選ばれた1種または2種以上を含有すること
を特徴とする請求項1ないし6のいずれかに記載の高張
力鋼材の製造方法。
7. The method according to claim 6, wherein the material further comprises B: 0.0003 to 0.00.
20%, REM: 0.0010-0.010%, Ca: 0.0010-0.010%
The method for producing a high-tensile steel material according to any one of claims 1 to 6, comprising one or more selected from the group consisting of:
JP23887196A 1996-09-10 1996-09-10 Method for producing high-tensile steel with excellent toughness Expired - Fee Related JP3635803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23887196A JP3635803B2 (en) 1996-09-10 1996-09-10 Method for producing high-tensile steel with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23887196A JP3635803B2 (en) 1996-09-10 1996-09-10 Method for producing high-tensile steel with excellent toughness

Publications (2)

Publication Number Publication Date
JPH1088230A true JPH1088230A (en) 1998-04-07
JP3635803B2 JP3635803B2 (en) 2005-04-06

Family

ID=17036506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23887196A Expired - Fee Related JP3635803B2 (en) 1996-09-10 1996-09-10 Method for producing high-tensile steel with excellent toughness

Country Status (1)

Country Link
JP (1) JP3635803B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035222A1 (en) * 1999-03-10 2000-09-13 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
JP2001316767A (en) * 2000-03-29 2001-11-16 Usinor Hot rolled steel having extremely high elastic limit and mechanical strength and particularly useful for production of automotive parts
CN103361573A (en) * 2012-03-30 2013-10-23 鞍钢股份有限公司 420 MPa-grade vanadium-nitrogen-containing steel and production method thereof
CN103757548A (en) * 2014-01-09 2014-04-30 鞍钢股份有限公司 High-strength low-aging sensitivity hot rolled plate and manufacturing method thereof
CN104561792A (en) * 2013-10-10 2015-04-29 鞍钢股份有限公司 V-N alloyed high-strength steel plate and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1035222A1 (en) * 1999-03-10 2000-09-13 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
US6358335B1 (en) 1999-03-10 2002-03-19 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
JP2001316767A (en) * 2000-03-29 2001-11-16 Usinor Hot rolled steel having extremely high elastic limit and mechanical strength and particularly useful for production of automotive parts
CN103361573A (en) * 2012-03-30 2013-10-23 鞍钢股份有限公司 420 MPa-grade vanadium-nitrogen-containing steel and production method thereof
CN104561792A (en) * 2013-10-10 2015-04-29 鞍钢股份有限公司 V-N alloyed high-strength steel plate and manufacturing method thereof
CN103757548A (en) * 2014-01-09 2014-04-30 鞍钢股份有限公司 High-strength low-aging sensitivity hot rolled plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP3635803B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
JP4022958B2 (en) High toughness thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP3344308B2 (en) Ultra-high-strength steel sheet for linepipe and its manufacturing method
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
KR970009087B1 (en) Method for manufacturing strong and touch thick steel plate
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP5256818B2 (en) Method for producing high toughness steel
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JPH0987743A (en) Production of low yield ratio high toughness electric resistance-welded rectangular steel pipe
JPH05295432A (en) Production of steel plate having high strength and high toughness by online thermomechanical treatment
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet
JPH05230529A (en) Production of high strength hot rolled steel plate excellent in workability and weldability
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness
JPH08225883A (en) Production of high tensile strength steel plate excellent in strength and toughness
JPH05345919A (en) Production of high strength hot rolled steel plate
JPH1088232A (en) Production of high tensile strength steel material excellent in toughness and weldability
JPH06145787A (en) Production of high tensile strength steel excellent in weldability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Effective date: 20040810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041012

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees