JPH1083806A - Lithium secondary battery and lithium secondary battery system - Google Patents
Lithium secondary battery and lithium secondary battery systemInfo
- Publication number
- JPH1083806A JPH1083806A JP8236163A JP23616396A JPH1083806A JP H1083806 A JPH1083806 A JP H1083806A JP 8236163 A JP8236163 A JP 8236163A JP 23616396 A JP23616396 A JP 23616396A JP H1083806 A JPH1083806 A JP H1083806A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- lithium secondary
- electrode
- positive
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、小型にして充放電
容量の大きいリチウム二次電池、詳細には正極,セパレ
ータ,負極,電解液とを有し、これらを収納する電池ケ
ースで構成されたリチウム二次電池の安全性に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery having a small size and a large charge / discharge capacity, and more particularly to a battery case having a positive electrode, a separator, a negative electrode, and an electrolytic solution and accommodating them. Regarding the safety of lithium secondary batteries.
【0002】[0002]
【従来の技術】リチウム二次電池は可燃物である非水電
解液を介して正負極活物質中へLiイオンを出し入れす
る充放電機構の電池であるが、過充電状態になると電極
板面上に微小なリチウム金属が析出成長し、先端が対極
に接触することでマイクロショートを起し、急激な電池
温度の上昇を開始し120℃以上になると微小短絡によ
る電流集中や短絡部だけでの回路形成により充電動作の
停止を行っても温度の上昇は止まらず電池温度が一気に
上昇する現象、いわゆる熱暴走を起し電池の爆発発火に
至る。2. Description of the Related Art A lithium secondary battery is a battery having a charge / discharge mechanism in which Li ions are introduced into and taken out of positive and negative electrode active materials through a nonaqueous electrolyte, which is a combustible material. A minute lithium metal precipitates and grows, causing a micro-short due to the tip contacting the counter electrode, causing a rapid rise in battery temperature. Even if the charging operation is stopped by the formation, the temperature rise does not stop and the battery temperature rises at once, that is, a so-called thermal runaway occurs, which leads to the explosion and ignition of the battery.
【0003】このためこれを防止しようとして各所で検
討され、種々の方法が提案されている。For this reason, various methods have been studied to prevent this, and various methods have been proposed.
【0004】例えば電解液の不燃化の提案(特開平6−2
83205号や特開平6−150968号公報)や電池内の温度監視
提案(特開平5−266878号や特開平3−291866号公報)等
が例示されている。これらの提案で電解液の不燃化は抜
本的な方策であり、有効な提案と考えるが現時点では二
次電池としての容量密度とサイクル寿命の点でいまだ問
題を残している。電池の温度監視も熱暴走による爆発発
火事故を防止する手法として有効であるが、外気温度の
変動などから信頼性の点で不十分である。[0004] For example, a proposal for making an electrolyte non-combustible (Japanese Unexamined Patent Publication No.
83205 and JP-A-6-150968) and proposals for monitoring the temperature inside a battery (JP-A-5-266878 and JP-A-3-291866). In these proposals, making the electrolyte non-flammable is a drastic measure, and it is considered to be an effective proposal, but at present, there are still problems in terms of capacity density and cycle life as a secondary battery. Battery temperature monitoring is also effective as a method for preventing explosion and fire accidents due to thermal runaway, but is insufficient in reliability due to fluctuations in outside air temperature.
【0005】更にこれらの従来技術では、熱暴走を開始
し電池の稼動を停止しても電池温度の上昇が継続するこ
とに対して考慮されておらず安全上問題となる。Further, in these prior arts, even if the thermal runaway is started and the operation of the battery is stopped, the fact that the temperature of the battery continues to rise is not considered, which is a safety problem.
【0006】[0006]
【発明が解決しようとする課題】上記の問題を解決する
には、熱暴走現象の原因となっているデンドリテックに
析出成長しているリチウム金属へのリチウムの供給を減
少停止させることが必要となる。In order to solve the above-mentioned problem, it is necessary to reduce and stop the supply of lithium to the lithium metal that is deposited and grown on the dendritec which causes the thermal runaway phenomenon. Become.
【0007】[0007]
【課題を解決するための手段】上記課題はデンドリテッ
クなリチウム金属の成長から生じる微小短絡での局部発
熱開始等の異常発生初期時点で定常的に二次電池として
稼動しているリチウムイオンの一部または全部を定常的
に使用していない別な第3の極に挿入退避させることに
よって解決する。SUMMARY OF THE INVENTION The above-described problem is caused by one of the lithium ions that are constantly operating as a secondary battery at the initial stage of occurrence of an abnormality such as the start of local heat generation due to a minute short circuit caused by the growth of dendritic lithium metal. The problem is solved by inserting or retreating a part or the whole to another third pole which is not regularly used.
【0008】具体的には、電池ケース自身もしくはその
内部にリチウムの挿入可能な第3の電極を用意し、異常
発生で定常的に稼動しているリチウムをこの中に流入さ
せれば解決する。More specifically, the problem can be solved by preparing a third electrode into which lithium can be inserted in the battery case itself or in the battery case, and letting the lithium which is constantly operating due to the occurrence of an abnormality flow into the third electrode.
【0009】ここで問題となるのが異常発生信号入手法
であり、大別すると第3の極以外で異常を検出する方法
と第3の極自身が異常を検出する方法2通りがある。前
者の方法としては電池の温度計測による把握または電池
ケースの歪量を定量的に把握し、しきい値の設定によっ
て判断する方法などが提示される。なお、この場合は定
常時には第3の極と電極端子とは絶縁状態となってお
り、異常発生信号受信で導通状態になることで本発明は
達成される。[0009] Here, the problem arises in the method of obtaining an abnormality occurrence signal, and there are roughly two methods: a method of detecting an abnormality other than the third pole and a method of detecting an abnormality by the third pole itself. As the former method, a method of grasping by measuring the temperature of the battery or quantitatively grasping the distortion amount of the battery case and making a judgment by setting a threshold value is presented. Note that, in this case, the third pole and the electrode terminal are in an insulated state in a steady state, and the present invention is achieved by being brought into a conductive state by receiving an abnormality occurrence signal.
【0010】一方、後者の方法としては第3の極を熱で
破壊される絶縁性の膜を用いて電解液との直接接触を起
こさないように設置し、いずれか一方の電極端子と第3
の極とを電気的に導通させておけば良い。これにより過
充放電時の熱暴走開始後の急激な温度上昇により絶縁性
の膜が破壊し電解液との直接接触を起こすことでリチウ
ムが第3の極に挿入退避し、リチウム金属の析出成長が
抑えられるため、微小短絡による発熱は少ないものにな
る。On the other hand, in the latter method, the third electrode is provided by using an insulating film which is destroyed by heat so as not to come into direct contact with the electrolytic solution, and one of the electrode terminals is connected to the third electrode.
May be electrically connected to the other pole. As a result, the sudden rise in temperature after the start of thermal runaway during overcharging / discharging breaks the insulating film and causes direct contact with the electrolyte, whereby lithium is inserted into and retracted from the third electrode, and lithium metal precipitates and grows. , Heat generation due to a minute short circuit is reduced.
【0011】異常時に第3の極として利用されるリチウ
ムが挿入退避し得る材料として、過充電時の熱暴走対策
には高電位時にLiと合金化するアルミニウムや炭素材
料などが適しており過放電時の熱暴走対策には低電位時
にLiと合金化する銅やニッケル等が良い。As a material into which lithium used as the third pole can be inserted and retracted in the event of an abnormality, aluminum or a carbon material which alloys with Li at a high potential is suitable for measures against thermal runaway during overcharge. As a countermeasure against thermal runaway, copper, nickel, or the like that alloys with Li at a low potential is preferable.
【0012】第3の極としては定常的に二次電池として
使用しているリチウムイオンの動きを妨害することな
く、電池としてのエネルギ密度を低下させないようなも
のが望ましく、このような観点では電池ケースそれ自身
にリチウムを挿入退避させるのがエネルギ密度の低下が
少なく効果的である。一方熱暴走抑止の信頼性という点
ではリチウムの挿入が可能な材料例えばリチウムと合金
化する金属,合金もしくはリチウムを挿入できる材料等
を用いて、リチウムイオンが表裏に通り抜け可能な網目
状もしくは発泡金属板状としこれを電極板間に挟む方式
も効果的である。また、熱暴走前の電極面上の局部発熱
により確実に破壊され、それ以前に電解液と電気的につ
ながることの無い、絶縁性合成樹脂はポリエチレン,ポ
リプロピレンやポリカーボネート等が良い。It is desirable that the third electrode does not hinder the movement of lithium ions that are constantly used as a secondary battery and does not lower the energy density of the battery. Inserting and evacuating lithium into the case itself is effective with less reduction in energy density. On the other hand, in terms of the reliability of suppressing thermal runaway, a mesh-like or foamed metal through which lithium ions can pass through from the front and back using a material into which lithium can be inserted, such as a metal that can be alloyed with lithium, an alloy, or a material into which lithium can be inserted. It is also effective to use a plate-like structure in which the plate is sandwiched between electrode plates. Further, the insulating synthetic resin which is surely destroyed by local heat generation on the electrode surface before the thermal runaway and is not electrically connected to the electrolytic solution before that is preferably polyethylene, polypropylene or polycarbonate.
【0013】一方、本発明を適応しうる電池はリチウム
二次電池であれば、コイン,捲回,角型板状積層タイプ
等、その構造にはとらわれない。On the other hand, if the battery to which the present invention can be applied is a lithium secondary battery, its structure is not limited to a coin, a wound, a square plate-shaped laminated type, and the like.
【0014】本発明は汎用性のある電気機器製品、例え
ば、パーソナルコンピュータ,電気自動車,携帯用情報
端末機器,ビデオカメラ,エアコン,コンピュータゲー
ム,携帯用電話,電気自転車,電動車椅子,充電スタン
ド用電源,家庭用電力平準化用電源に組み込まれるリチ
ウム二次電池およびリチウム二次電池を搭載したシステ
ムとして使用することに適する。The present invention relates to versatile electric equipment products, for example, personal computers, electric vehicles, portable information terminal equipment, video cameras, air conditioners, computer games, portable telephones, electric bicycles, electric wheelchairs, and power supplies for charging stations. It is suitable for use as a lithium secondary battery incorporated in a home power leveling power source and a system equipped with a lithium secondary battery.
【0015】リチウム二次電池の正極はリチウムを挿入
脱離できるLiCoO2,LiNiO2,LiMnO2,L
iMn2O4,LiFeO2リチウム遷移金属複合カルコ
ゲン化合物または遷移金属カルコゲン化合物を用い、負
極はリチウム金属,リチウム合金もしくはリチウムをイ
ンターカレートできる炭素材料もしくは金属坦持炭素材
料,セラミック負極を用いた電池に適用することができ
る。The positive electrode of the lithium secondary battery is made of LiCoO 2 , LiNiO 2 , LiMnO 2 , L capable of inserting and removing lithium.
Using iMn 2 O 4, LiFeO 2 lithium transition metal composite chalcogen compound or a transition metal chalcogen compound, the negative electrode was used lithium metal, lithium alloy or a carbon material or metal carrying carbon material lithium can intercalate, the ceramic anode cell Can be applied to
【0016】電解質はプロピレンカーボネート,2−メ
チルテトラヒドロフラン,ジオキソレン,テトラヒドロ
フラン、1,2−ジメトキシエタン,エチレンカーボネ
ート,γ−ブチロラクトン,ジメチルスルホキシド,ア
セトニトリル,ホルムアミド,ジメチルホルムアミド,
ニトロメタン等の一種以上の非プロトン性有機溶媒とし
LiClO4,LiAlCl4,LiBF4,LiCl,
LiPF6,LiAsF6等のリチウム塩を組み合せて用
いることができる。The electrolyte is propylene carbonate, 2-methyltetrahydrofuran, dioxolen, tetrahydrofuran, 1,2-dimethoxyethane, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, acetonitrile, formamide, dimethylformamide,
One or more aprotic organic solvents such as nitromethane are used as LiClO 4 , LiAlCl 4 , LiBF 4 , LiCl,
A lithium salt such as LiPF 6 or LiAsF 6 can be used in combination.
【0017】[0017]
【発明の実施の形態】以下に本発明を実施例により詳細
に説明するが、本発明は以下の実施例のみに限定される
ものではない。なお、実施例中での電池作製および測定
はすべてアルゴン雰囲気中で行った。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to examples, but the present invention is not limited to the following examples. Note that all of the battery production and measurement in the examples were performed in an argon atmosphere.
【0018】(実施例1)図1に本実施例で作製したリ
チウム二次電池の構成概略を示す。Embodiment 1 FIG. 1 shows a schematic configuration of a lithium secondary battery manufactured in this embodiment.
【0019】図1から電極板は1.0×2.0cmの導電端
部5と、5.0×7.0cmの電極合剤塗布部1,2からな
り、正極板1の合剤塗布部はポリプロピレン製の不織布
で負極板2の合剤塗布部は微多孔性フィルムで作られた
セパレータで包んだ。電池1個あたりの使用電極枚数は
正極板2枚,負極板3枚である。本発明の、異常発生時
にLiイオンが挿入退避する両電極板以外の第3の極は
ポリエチレンを被覆処理したアルミ製の網板3を4枚用
いた。前記第3の極を図1の様に積層し、この積層体を
電池ケース内に挿入、導電線6を用いて充放電試験装置
8に結線し、電解液をケース内の空間7に注入して使用
した。From FIG. 1, the electrode plate comprises a conductive end portion 5 of 1.0 × 2.0 cm and electrode mixture application portions 1 and 2 of 5.0 × 7.0 cm. Is a nonwoven fabric made of polypropylene, and the mixture applied portion of the negative electrode plate 2 was wrapped with a separator made of a microporous film. The number of electrodes used per battery is two positive plates and three negative plates. In the present invention, four aluminum mesh plates 3 coated with polyethylene were used as the third electrodes other than the two electrode plates into which Li ions were inserted and retracted when an abnormality occurred. The third pole is laminated as shown in FIG. 1, this laminate is inserted into a battery case, connected to a charge / discharge test device 8 using a conductive wire 6, and an electrolyte is injected into a space 7 in the case. Used.
【0020】なお、電池のケース4は厚さ0.3mm の鋼
板で作られその寸法は6×10cm,厚さ0.6cmであ
る。The battery case 4 is made of a steel plate having a thickness of 0.3 mm and has dimensions of 6 × 10 cm and a thickness of 0.6 cm.
【0021】次に、正極板は角形網板状のアルミニウム
製エキスパンドメタル上に導電剤としてカーボン粉末
9.0wt%と結着剤としてPVDFを4.0wt%、残
部をLiNiO2 からなる混合粉体をN−メチル−ピロ
リドン(NMP)で混練した電極合剤を塗布し140℃で
真空乾燥したものである。負極板の塗布基体は角形網板
状の銅製エキスパンドメタルを用い、負極活物質は黒鉛
系炭素粉末である。負極の配合比率は活物質であるカー
ボン粉末が90.0wt% で結着剤のPVDFは10.
0wt%である。Next, the positive electrode plate is a mixed metal powder composed of 9.0 wt% of carbon powder as a conductive agent, 4.0 wt% of PVDF as a binder, and LiNiO 2 as a balance on an expanded metal plate made of a rectangular mesh made of aluminum. Is coated with an electrode mixture kneaded with N-methyl-pyrrolidone (NMP), and vacuum-dried at 140 ° C. The coated substrate of the negative electrode plate is made of a copper expanded metal in the form of a square mesh plate, and the negative electrode active material is a graphite-based carbon powder. The compounding ratio of the negative electrode was 90.0% by weight of carbon powder as an active material, and PVDF as a binder was 10.0% by weight.
0 wt%.
【0022】本発明の第3の極3の詳細説明は以下の通
りである。A detailed description of the third pole 3 of the present invention is as follows.
【0023】本実施例では5.0×7.0cm,厚さ0.2m
mで、網目間隔2.0mmのアルミニウム製エキスパンドメ
タルを油圧プレスで加圧し厚さ0.1mm としたものに1
20℃で溶損するポリエチレンを被覆処理した。なお、
ポリエチレンによる被覆性の確認は電解液とポリエチレ
ン被覆アルミニウム網間の抵抗値を測定することで行っ
た。In this embodiment, the size is 5.0 × 7.0 cm and the thickness is 0.2 m.
m, aluminum expanded metal with a mesh spacing of 2.0 mm was pressed with a hydraulic press to a thickness of 0.1 mm.
The polyethylene which melted at 20 ° C. was coated. In addition,
Confirmation of the coatability with polyethylene was performed by measuring the resistance value between the electrolytic solution and the polyethylene net coated with polyethylene.
【0024】電解液は1.0M濃度のLiPF6のプロピ
レンカーボネート(PC)と1,2−ジメトキシエタン
(DME)の混合溶媒溶液である。The electrolyte is a mixed solvent solution of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) of LiPF 6 having a concentration of 1.0 M.
【0025】評価方法として、図1の電池の外ケース外
表面中心点10に素線径67.0μmのCAタイプの熱電
対を配置し温度計測を行うとともに、定電流方式で2.
7Vから4.3V 間での充放電サイクル試験を5回行っ
た後、6サイクル目の充電を2C運転で過充電状態まで
充電したときの電池温度の上昇状況と本発明の第3の極
3を特に設けなかった従来方式での電池温度の上昇状況
とを比較し評価した。図2に評価結果を示す。本図か
ら、過充電試験での電池温度の上昇状況として従来方式
のものでは電池温度は40℃付近から一気に上昇し、熱
暴走を開始する温度120℃近くなっており、二次電池
としての使用停止など何らかの対応が必要である。一
方、本発明の結果では30数分経過後から電池温度の上
昇を開始するものの温度の上昇が抑えられ熱暴走を起こ
し難い温度30℃に保持されるために、熱暴走を開始す
る可能性が低く、本発明は安全性に関しての信頼性向上
に有効であることがわかる。As an evaluation method, a CA-type thermocouple having a wire diameter of 67.0 μm is arranged at the center point 10 of the outer case outer surface of the battery shown in FIG.
After the charge / discharge cycle test between 7 V and 4.3 V was performed five times, the charge in the sixth cycle was charged to the overcharge state by the 2C operation, and the temperature rise of the battery and the third pole 3 of the present invention. Was evaluated by comparing with the temperature rise of the battery in the conventional method in which no battery was provided. FIG. 2 shows the evaluation results. From this figure, it can be seen from the figure that the battery temperature in the conventional method rises rapidly from around 40 ° C. in the overcharge test, and the temperature at which thermal runaway starts is nearly 120 ° C., indicating that the battery is used as a secondary battery. Some action such as suspension is required. On the other hand, according to the results of the present invention, although the battery temperature starts to rise after 30 minutes or more, the rise in temperature is suppressed and the temperature is kept at 30 ° C. where thermal runaway is unlikely to occur. Thus, it can be seen that the present invention is effective for improving reliability with respect to safety.
【0026】(実施例2)図3に本実施例で作製したリ
チウム二次電池の構成を示す。Embodiment 2 FIG. 3 shows the structure of a lithium secondary battery manufactured in this embodiment.
【0027】図3から電池の構成は実施例1とほぼ同じ
であるが異常時にリチウムが挿入される第3の極として
アルミニウム製プレス処理済みエキスパンドメタル板を
ポリエチレンで被覆せずに使用し、また、評価開始時の
リチウム挿入板と負極板端子は、図3に示すように電気
的に絶縁状態としておき、電池ケースの温度が40℃到
達時点でスイッチ9を用いて負極端子と接続させてその
後の電池温度の上昇を比較評価したことの2点が異なる
点である。電池構成部材の作製法等は実施例1と全く同
じであるため、本実施例での説明は省略する。FIG. 3 shows that the structure of the battery is almost the same as that of the first embodiment, but a pressed aluminum expanded metal plate is used as a third electrode into which lithium is inserted in the event of an abnormality without coating with polyethylene. At the start of the evaluation, the lithium insertion plate and the negative electrode terminal are kept electrically insulated as shown in FIG. 3, and when the temperature of the battery case reaches 40 ° C., the switch is connected to the negative terminal using the switch 9 and thereafter. The two points are that the increase in the battery temperature was compared and evaluated. Since the method of manufacturing the battery component is exactly the same as that in Example 1, the description in this example is omitted.
【0028】図4に評価結果を示した。本図から、電池
温度が40℃になってから負極端子と接続させたものは
約50℃と最大値は幾分高くなるもののその後は電池温
度が低下していく傾向が認められることから充電を継続
しても熱暴走を開始する可能性が低く安全性に関しての
信頼性向上に有効であることが判る。FIG. 4 shows the evaluation results. According to this figure, the battery connected to the negative electrode terminal after the battery temperature reached 40 ° C. has a maximum value of about 50 ° C., and although the maximum value is somewhat higher, the battery temperature tends to decrease thereafter. It is clear that the possibility of starting thermal runaway is low even if it is continued, which is effective for improving reliability regarding safety.
【0029】(実施例3)図5に本実施例で作製したリ
チウム二次電池の構成を示す。(Embodiment 3) FIG. 5 shows the structure of a lithium secondary battery manufactured in this embodiment.
【0030】図5から、本実施例での第3の極はケース
内面をポリエチレン膜で被覆した電池ケース自身とし、
マイクロショートによる発熱でこのポリエチレン膜が破
損し電解液がケースと接触し、稼動中のリチウムが電池
ケースに挿入退避させる形とした。そのときの温度上昇
状況を比較評価したものである。From FIG. 5, the third pole in this embodiment is the battery case itself in which the inner surface of the case is covered with a polyethylene film,
The polyethylene film was damaged by the heat generated by the micro-short, the electrolyte came into contact with the case, and the active lithium was inserted into and retracted from the battery case. The temperature rise situation at that time was compared and evaluated.
【0031】それ以外は実施例1と全く同じなので本項
での説明は省略する。Other than that, since it is completely the same as the first embodiment, the description in this section is omitted.
【0032】図6に評価結果を示した。本図から、電池
温度の上昇は45℃付近から抑えられ、温度低下は確認
できなかったものの熱暴走を起すような高い温度にはな
らない事がわかる。FIG. 6 shows the evaluation results. From this figure, it can be seen that the rise in battery temperature is suppressed from around 45 ° C., and no temperature decrease was observed, but the temperature did not reach such a high level as to cause thermal runaway.
【0033】これらのことから、充電を継続しても熱暴
走を開始する可能性が低く安全性に関しての信頼性向上
に有効であることが判る。From these facts, it can be seen that even if the charging is continued, the possibility of starting thermal runaway is low, which is effective for improving the reliability with respect to safety.
【0034】[0034]
【発明の効果】本発明の電池によれば異常発生の信号受
信または電池自身の判断で電池に前もって準備してある
第3の極中へ二次電池として稼動しているリチウムイオ
ンを挿入退避させることにより、熱暴走によるリチウム
二次電池の発火爆発を防止し安全で信頼性の高い二次電
池の供給が可能となる。According to the battery of the present invention, a lithium ion operating as a secondary battery is inserted and evacuated into the third electrode prepared in advance in the battery upon reception of a signal indicating occurrence of an abnormality or judgment of the battery itself. This prevents ignition and explosion of the lithium secondary battery due to thermal runaway, and makes it possible to supply a safe and highly reliable secondary battery.
【図1】実施例1で作製したリチウム二次電池の説明
図。正負極板間に合成樹脂で被覆したアルミ網板を挟ん
だ電池の説明図。FIG. 1 is an explanatory diagram of a lithium secondary battery manufactured in Example 1. FIG. 4 is an explanatory view of a battery in which an aluminum mesh plate covered with a synthetic resin is sandwiched between positive and negative electrode plates.
【図2】実施例1で作製したリチウム二次電池の評価結
果の説明図。2Cでの過充電時における、電池の外表面
温度上昇状況の説明図。FIG. 2 is an explanatory diagram of evaluation results of the lithium secondary battery manufactured in Example 1. Explanatory drawing of the external surface temperature rise situation of a battery at the time of overcharge in 2C.
【図3】実施例2で作製したリチウム二次電池の説明
図。FIG. 3 is an explanatory diagram of a lithium secondary battery manufactured in Example 2.
【図4】実施例2で作製したリチウム二次電池の評価結
果の説明図。FIG. 4 is an explanatory diagram of evaluation results of the lithium secondary battery manufactured in Example 2.
【図5】実施例3で作製したリチウム二次電池の説明
図。電池ケースをアルミで作製し、絶縁性の合成樹脂で
内面を被覆した電池の説明図。FIG. 5 is an explanatory diagram of a lithium secondary battery manufactured in Example 3. Explanatory drawing of the battery which produced the battery case from aluminum and covered the inner surface with the insulating synthetic resin.
【図6】実施例3で作製したリチウム二次電池の評価結
果の説明図。FIG. 6 is an explanatory diagram of evaluation results of the lithium secondary battery manufactured in Example 3.
1…正極板、2…負極板、3…稼動リチウムが挿入退避
する箇所、4…電池ケース、5…導電端子、6…導電
線、7…電解液、8…充放電試験装置、9…スイッチ、
10…熱電対。DESCRIPTION OF SYMBOLS 1 ... Positive electrode plate, 2 ... Negative electrode plate, 3 ... Place where working lithium is inserted and retracted, 4 ... Battery case, 5 ... Conductive terminal, 6 ... Conductive wire, 7 ... Electrolyte, 8 ... Charge / discharge test equipment, 9 ... Switch ,
10 thermocouple.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 本棒 英利 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Eritoshi Honbo 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Ren Muranaka Omikamachi, Hitachi City, Ibaraki Prefecture No. 1-1, Hitachi Research Laboratory, Hitachi Ltd.
Claims (13)
し、これらを収納している電池ケースで構成されたリチ
ウム二次電池において、稼動中に異常発生の信号受信ま
たは電池自身の異常発生感知で、定常的に挿入脱離して
いるリチウムの一部または全部が上記正負極板以外に挿
入退避し得る第3の極を設けたことを特徴とするリチウ
ム二次電池およびリチウム二次電池システム。1. A lithium secondary battery having a positive electrode, a separator, a negative electrode, and an electrolytic solution and comprising a battery case accommodating the positive electrode, a separator, a negative electrode, and an electrolyte. A lithium secondary battery and a lithium secondary battery system, wherein a third pole through which part or all of lithium constantly inserted and desorbed upon sensing is inserted and retracted is provided other than the positive and negative electrode plates. .
をリチウムの挿入可能な材料で作製し、定常時には第3
の極は上記電解液と電気的に導通しているが、正負極端
子何れにも導通せず、異常発生の信号受信で正負極いず
れか一方の電極端子と導通する請求項1に記載のリチウ
ム二次電池およびリチウム二次電池システム。2. The battery according to claim 1, wherein a part or all of the battery can is made of a material into which lithium can be inserted.
2. The lithium electrode according to claim 1, wherein the negative electrode is electrically connected to the electrolyte, but is not connected to any of the positive and negative terminals, and is connected to any one of the positive and negative electrode terminals upon reception of an abnormal signal. Secondary battery and lithium secondary battery system.
との間に配置し、定常稼動時には上記電解液とは電気的
に導通しているものの正負極端子何れにも導通せず異常
発生の信号受信で正負極いずれか一方の電極端子と導通
する請求項1に記載のリチウム二次電池およびリチウム
二次電池システム。3. The third electrode is disposed between the battery case and the electrode plate laminate, and is electrically connected to the electrolyte but not to any of the positive and negative terminals during normal operation. 2. The lithium secondary battery and the lithium secondary battery system according to claim 1, wherein the lithium secondary battery is electrically connected to one of the positive and negative electrode terminals upon reception of a signal indicating occurrence of an abnormality.
通しているものの正負極端子何れにも導通せず、異常発
生の信号受信で正負極いずれか一方の電極端子と導通し
得る網板状のものを第3の極として積層電極板間に配置
している請求項1に記載のリチウム二次電池およびリチ
ウム二次電池システム。4. A network which is electrically connected to said electrolyte during normal operation, but does not conduct to any of the positive and negative terminals, but can conduct to either one of the positive and negative electrode terminals upon reception of a signal indicating occurrence of an abnormality. The lithium secondary battery and the lithium secondary battery system according to claim 1, wherein a plate-like member is disposed between the stacked electrode plates as a third pole.
れた第3の極が正負極いずれか一方の端子につながれる
とともに熱にて破壊される電気絶縁性の合成樹脂膜にて
絶縁被覆し、上記電解液とは絶縁状態になっている請求
項1に記載のリチウム二次電池およびリチウム二次電池
システム。5. A third electrode made of a material into which lithium can be inserted at normal time is connected to one of the positive and negative electrodes and is insulated by an electrically insulating synthetic resin film which is destroyed by heat. The lithium secondary battery and the lithium secondary battery system according to claim 1, wherein the lithium secondary battery is covered and insulated from the electrolyte.
れか一方の端子に接続され熱で破壊される電気絶縁性の
合成樹脂膜で缶内面を被覆する請求項1または5に記載
のリチウム二次電池およびリチウム二次電池システム。6. The battery according to claim 1, wherein the third electrode is a battery can and the inner surface of the can is covered with an electrically insulating synthetic resin film which is connected to one of the positive and negative terminals and is destroyed by heat. Lithium secondary battery and lithium secondary battery system.
との間に配置し、正負極いずれか一方の端子に接続され
熱で破壊される電気絶縁性の合成樹脂膜で被覆されてい
る請求項1または5に記載のリチウム二次電池およびリ
チウム二次電池システム。7. The third electrode is disposed between the battery case and the electrode plate laminate, and is connected to either one of the positive and negative electrodes and is covered with an electrically insulating synthetic resin film which is destroyed by heat. The lithium secondary battery and the lithium secondary battery system according to claim 1.
正負極いずれか一方の端子に接続するとともに、これを
熱で破壊される電気絶縁性の合成樹脂膜で被覆し上記電
解液からは絶縁されている請求項1または5に記載のリ
チウム二次電池およびリチウム二次電池システム。8. A third pole in the form of a mesh plate is disposed between electrode plates and connected to one of the positive and negative terminals, and this is covered with an electrically insulating synthetic resin film which is destroyed by heat. The lithium secondary battery and the lithium secondary battery system according to claim 1, wherein the lithium secondary battery is insulated from the electrolyte.
ムで作られている請求項1から8のいずれかに記載のリ
チウム二次電池およびリチウム二次電池システム。9. The lithium secondary battery and the lithium secondary battery system according to claim 1, wherein the third electrode is made of a carbon material or aluminum.
作られている請求項1から8のいずれかに記載のリチウ
ム二次電池およびリチウム二次電池システム。10. The lithium secondary battery and the lithium secondary battery system according to claim 1, wherein the third electrode is made of a nickel material or copper.
アルミニウムの場合は負極端子間と、ニッケルや銅の場
合には正極端子と導通する請求項1から10のいずれか
に記載のリチウム二次電池およびリチウム二次電池シス
テム。11. The method according to claim 1, wherein when an abnormality occurs, the third electrode conducts between the negative electrode terminals when the third electrode is made of carbon material or aluminum, and conducts with the positive electrode terminal when the third electrode is made of nickel or copper. Lithium secondary battery and lithium secondary battery system.
ポリエチレンやポリプロピレン又はポリカーボネートで
作られている請求項1から11のいずれかに記載のリチ
ウム二次電池およびリチウム二次電池システム。12. The lithium secondary battery and the lithium secondary battery system according to claim 1, wherein the electrically insulating synthetic resin film which is broken by heat is made of polyethylene, polypropylene or polycarbonate.
チウム二次電池を搭載したシステムがパーソナルコンピ
ュータ,電気自動車,携帯用情報端末機器,ビデオカメ
ラ,エアコン,コンピュータゲーム,携帯用電話,電気
自転車,電動車椅子,充電スタンド用電源,家庭用電力
平準化用電源であるリチウム二次電池を搭載したシステ
ム。13. A system equipped with the lithium secondary battery according to claim 1 is a personal computer, an electric vehicle, a portable information terminal, a video camera, an air conditioner, a computer game, a portable telephone, an electric A system equipped with a lithium-ion battery, which is a bicycle, electric wheelchair, charging stand power supply, and home power leveling power supply.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8236163A JPH1083806A (en) | 1996-09-06 | 1996-09-06 | Lithium secondary battery and lithium secondary battery system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8236163A JPH1083806A (en) | 1996-09-06 | 1996-09-06 | Lithium secondary battery and lithium secondary battery system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1083806A true JPH1083806A (en) | 1998-03-31 |
Family
ID=16996711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8236163A Pending JPH1083806A (en) | 1996-09-06 | 1996-09-06 | Lithium secondary battery and lithium secondary battery system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1083806A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010140762A (en) * | 2008-12-11 | 2010-06-24 | Toyota Motor Corp | Determination device for determining lithium ion battery state |
US20150004468A1 (en) * | 2013-06-28 | 2015-01-01 | Hon Hai Precision Industry Co., Ltd. | Three terminal battery |
JP2016520974A (en) * | 2013-07-29 | 2016-07-14 | エルジー・ケム・リミテッド | Negative electrode for preventing manganese precipitation and battery cell including the same |
CN110112479A (en) * | 2019-04-25 | 2019-08-09 | 浙江锋锂新能源科技有限公司 | A kind of charge and discharge system of high capacity conservation rate lithium ion battery |
-
1996
- 1996-09-06 JP JP8236163A patent/JPH1083806A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010140762A (en) * | 2008-12-11 | 2010-06-24 | Toyota Motor Corp | Determination device for determining lithium ion battery state |
US20150004468A1 (en) * | 2013-06-28 | 2015-01-01 | Hon Hai Precision Industry Co., Ltd. | Three terminal battery |
US9502707B2 (en) * | 2013-06-28 | 2016-11-22 | Fu Tai Hua Industry (Shenzhen) Co., Ltd. | Three terminal battery |
JP2016520974A (en) * | 2013-07-29 | 2016-07-14 | エルジー・ケム・リミテッド | Negative electrode for preventing manganese precipitation and battery cell including the same |
CN110112479A (en) * | 2019-04-25 | 2019-08-09 | 浙江锋锂新能源科技有限公司 | A kind of charge and discharge system of high capacity conservation rate lithium ion battery |
CN110112479B (en) * | 2019-04-25 | 2021-11-19 | 浙江锋锂新能源科技有限公司 | Charge-discharge mode of high-capacity retention rate lithium ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8530072B2 (en) | Lithium secondary battery having porous heat resistant layer between electrodes | |
KR101273100B1 (en) | Lithium secondary cell with high charge and discharge rate capability | |
US7695854B2 (en) | Lithium secondary battery | |
JP5093997B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
US20090181305A1 (en) | Non-Aqueous Electrolyte Secondary Battery | |
US20040096733A1 (en) | Battery | |
US20100119940A1 (en) | Secondary battery | |
KR20070100957A (en) | Lithium-ion secondary battery | |
JP2016181487A (en) | Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery, and battery pack | |
CN101276895A (en) | Lithium ion secondary battery as well as composition for porus diaphragm layer of the same | |
KR101964068B1 (en) | Method for preparing conductive material, conductive material prepared thereby and lithium secondary battery comprising the same | |
US20040191611A1 (en) | Non-aqueous electrolyte battery | |
US10090510B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2014209455A (en) | Electrode for non-aqueous electrolyte battery, non-aqueous electrolyte secondary battery and battery pack | |
JP5636623B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP3988901B2 (en) | Organic electrolyte secondary battery | |
JP2000315504A (en) | Non-aqueous electrolyte secondary battery | |
JPH1083806A (en) | Lithium secondary battery and lithium secondary battery system | |
JP2003168427A (en) | Nonaqueous electrolyte battery | |
JP4834284B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2002015720A (en) | Nonaqueous electrolyte secondary battery | |
US10333175B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH11224670A (en) | Lithium secondary battery | |
JP2001297763A (en) | Nonaqueous electrolyte secondary cell | |
JP3448544B2 (en) | Non-aqueous electrolyte battery |