JPH1081520A - Manganese-cobalt-based double hydroxide, its production and raw material for anode active material for lithium secondary cell - Google Patents
Manganese-cobalt-based double hydroxide, its production and raw material for anode active material for lithium secondary cellInfo
- Publication number
- JPH1081520A JPH1081520A JP8251023A JP25102396A JPH1081520A JP H1081520 A JPH1081520 A JP H1081520A JP 8251023 A JP8251023 A JP 8251023A JP 25102396 A JP25102396 A JP 25102396A JP H1081520 A JPH1081520 A JP H1081520A
- Authority
- JP
- Japan
- Prior art keywords
- composite hydroxide
- based composite
- manganese
- cobalt
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、Mn−Co系複合
水酸化物、その製造方法及びリチウム二次電池用正極活
物質原料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Mn-Co composite hydroxide, a method for producing the same, and a raw material for a positive electrode active material for a lithium secondary battery.
【0002】[0002]
【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進むに従い、小型電子機器の電源
としてリチウム二次電池が実用化されている。このリチ
ウム二次電池については、1980年に水島等によりコ
バルト酸リチウム二次電池の正極活性物質として有用で
あるとの報告〔“マテリアル リサーチブレイン”vol1
15,P783-789(1980) 〕がなされて以来、リチウム系複合
酸化物に関する研究開発が活発に進められており、これ
までに多くの提案がなされている。2. Description of the Related Art In recent years, portable electronic devices have become more portable.
With the rapid progress of cordless technology, lithium secondary batteries have been put to practical use as power supplies for small electronic devices. Mizushima et al. Reported in 1980 that this lithium secondary battery was useful as a positive electrode active material for lithium cobaltate secondary batteries [“Material Research Brain” vol.
15, P783-789 (1980)], research and development on lithium-based composite oxides have been actively promoted, and many proposals have been made so far.
【0003】それらは、例えばLi1-a NiO2(但し、0≦
a≦1)(米国特許番号第4302518号明細書)、Lib Ni
2-b O2及びLiNi1-d Cod O2(但し、0.84≦b≦1.22、0.
09≦d≦0.5)(特開平2-40861 号公報)、LinNimCo1-m
O2(特開昭63-299056 号公報、特開平1-120765号公報、
特開平1-294364号公報、特開平5-290890号公報、特開平
6-275274号公報、特開平7-142056号公報)などのリチウ
ムと遷移金属を主体とする複合酸化物である。上記の化
合物において、コバルト酸リチウムは合成が比較的容易
なため、最も早くから検討されてきたが、原料のコバル
ト(Co)が高価で資源的に希産という問題があった。こ
の問題を解決するためにCoの代わりにニッケル(Ni)
やMnを用いたリチウム酸化物が研究されているが未だ
実用化されていない。[0003] These are, for example, Li 1-a NiO 2 (where 0 ≦
a ≦ 1) (US Pat. No. 4,302,518), Li b Ni
2-b O 2 and LiNi 1-d Co d O 2 (provided that 0.84 ≦ b ≦ 1.22, 0.
09 ≦ d ≦ 0.5) (JP-A-2-40861), LinNimCo 1-m
O 2 (JP-A-63-299056, JP-A-1-120765,
JP-A-1-94364, JP-A-5-290890, JP-A-Hei.
No. 6-275274, JP-A-7-142056) and the like, which are composite oxides mainly composed of lithium and a transition metal. Among the above compounds, lithium cobalt oxide has been studied from the earliest because it is relatively easy to synthesize. However, there is a problem that cobalt (Co) as a raw material is expensive and is rarely produced as a resource. Nickel (Ni) instead of Co to solve this problem
And lithium oxides using Mn have been studied, but have not been put to practical use yet.
【0004】[0004]
【発明が解決しようとする課題】ニッケル酸リチウムの
合成は非常に難しく工業レベルでの製造はされていな
い。この問題を解決するためにニッケル酸リチウムNi
の一部をMnで置換した酸化物が提案されている。しか
しながら、これらの酸化物は低温で合成するためにMn
とCoの固溶反応がうまくすすまないという問題があっ
た。The synthesis of lithium nickelate is very difficult and has not been manufactured on an industrial level. To solve this problem, lithium nickelate Ni
Have been proposed in which a part of is replaced by Mn. However, since these oxides are synthesized at low temperatures, Mn
The problem is that the solution reaction between Co and Co is not so good.
【0005】従って、本発明の目的は、リチウム二次電
池などの正極に用いられるLi−Mn−Co系複合酸化
物の原料として有用なMn−Co系複合水酸化物及びそ
の製造方法を提供することにある。Accordingly, an object of the present invention is to provide a Mn-Co-based composite hydroxide useful as a raw material of a Li-Mn-Co-based composite oxide used for a positive electrode of a lithium secondary battery or the like, and a method for producing the same. It is in.
【0006】[0006]
【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、本発明を完成するに
至った。Under such circumstances, the present inventors have conducted intensive studies, and as a result, completed the present invention.
【0007】すなわち、本発明は、MnとCoとの固溶
状態及び/又は共沈状態で生成したMn−Co系複合水
酸化物の結晶粒子であって、且つ該結晶粒子がレーザー
法による測定法で求めた粒度分布 (V95−V5)/V50値
が3以下であることを特徴とするMn−Co系複合水酸
化物及びこれを有効成分とするリチウム二次電池用正極
活物質用原料を提供するものである。That is, the present invention relates to a crystal particle of a Mn—Co-based composite hydroxide formed in a solid solution state and / or a coprecipitation state of Mn and Co, and the crystal particle is measured by a laser method. cathode active material for a lithium secondary battery according to the particle size distribution (V 95 -V 5) / Mn -Co -based V 50 value is equal to or more than 3 composite hydroxide and active ingredient which was determined by the law This is to provide raw materials.
【0008】また、本発明は、Mn塩及びCo塩の混合
塩水溶液中のMnやCoの金属イオンに対して錯化力を
有するキレート剤の存在下、アルカリ加水分解による沈
殿生成反応を連続的に行わせ、次いで沈殿物を熟成させ
てなることを特徴とするMn−Co系複合水酸化物の製
造方法を提供するものである。Further, the present invention provides a method for continuously performing a precipitation-forming reaction by alkali hydrolysis in the presence of a chelating agent having a complexing power for Mn and Co metal ions in an aqueous solution of a mixed salt of Mn and Co salts. And then ripening the precipitate to provide a method for producing a Mn—Co-based composite hydroxide.
【0009】[0009]
【発明の実施の形態】本発明のMn−Co系複合水酸化
物は、MnとCoとの固溶及び/又は共沈状態で生成し
たMn−Co系複合水酸化物である。MnとCoとが固
溶及び/又は共沈状態で生成したものとは、例えばMn
とCoが単に混合しているものではなく、MnとCoが
均一に共沈混在しているものである。固溶または共沈し
ていないMn又はCoが単独で存在している場合は、X
線回折により、これらのMn又はCoの存在に起因し
て、生成した不純物として、Mn又はCoの水酸化物の
ピークが確認される。しかし、本発明のMn−Co系複
合水酸化物は、かかる不純物が極めて少なく、実質上粉
末X線回折において、それらのピークは殆ど存在しない
ものである。BEST MODE FOR CARRYING OUT THE INVENTION The Mn-Co composite hydroxide of the present invention is a Mn-Co composite hydroxide formed in a solid solution and / or coprecipitation state of Mn and Co. Mn and Co formed in a solid solution and / or coprecipitation state include, for example, Mn and Co.
And Co are not simply mixed but Mn and Co are uniformly co-precipitated and mixed. When Mn or Co that does not form a solid solution or coprecipitate exists alone, X
Line diffraction confirms the peak of Mn or Co hydroxide as an impurity generated due to the presence of Mn or Co. However, the Mn—Co-based composite hydroxide of the present invention has very few such impurities, and substantially has no such peaks in powder X-ray diffraction.
【0010】また、本発明のMn−Co系複合水酸化物
の結晶粒子は、レーザー法による測定法で求めた粒度分
布 (V95−V5)/V50値が3以下の範囲のものであり、
特に0.5〜2の範囲であることが好ましい。また、上記
結晶粒子の平均粒子径としては、1〜50μmが好まし
く、特に5〜20μmの範囲であることが好ましい。該
範囲を外れたものは粒径の範囲が広くなり、リチウム二
次電池用の原料としては、あまり好ましくない。また、
V95、V50及びV5 は、それぞれ95体積%、50体積
%及び5体積%を示す。上記結晶粒子は、このように実
質的に球状粒子であり、例えば真球状又は楕円状粒子及
び球状粒子が幾つか結合した繭状や団子状の粒子であ
る。Further, crystal grains of Mn-Co-based composite hydroxide of the present invention, the particle size distribution (V 95 -V 5) / V 50 values obtained in the measurement method by laser method is in the range of 3 or less Yes,
In particular, it is preferably in the range of 0.5 to 2. The average particle diameter of the crystal particles is preferably 1 to 50 μm, and more preferably 5 to 20 μm. Those outside the above range have a wide range of particle diameters, and are not very preferable as raw materials for lithium secondary batteries. Also,
V 95 , V 50 and V 5 represent 95% by volume, 50% by volume and 5% by volume, respectively. The crystal particles are substantially spherical particles as described above, and are, for example, cocoon-shaped or dumpling-shaped particles in which some spherical or elliptical particles and some spherical particles are combined.
【0011】本発明のMn−Co系複合水酸化物の原子
比Mn:Coは、0.01:0.99〜0.99:0.
01であり、好ましくは、 0.1:0.9 〜 0.9:0.1 であ
る。The atomic ratio Mn: Co of the Mn—Co-based composite hydroxide of the present invention is 0.01: 0.99 to 0.99: 0.
01, preferably 0.1: 0.9 to 0.9: 0.1.
【0012】本発明のMn−Co系複合水酸化物の製造
方法は、Mn塩及びCo塩の混合塩水溶液中のMn及び
Coの金属イオンに対して錯化力を有するキレート剤を
用いてアルカリ加水分解による沈殿生成反応を連続的に
行わせ、かつ沈殿生成物を必要かつ十分に熟成、例えば
少なくとも3時間以上滞留させ熟成反応を進行させるも
のである。The method for producing a Mn—Co-based composite hydroxide according to the present invention is directed to a method for producing an Mn—Co complex hydroxide using a chelating agent having a complexing power for Mn and Co metal ions in a mixed salt aqueous solution of a Mn salt and a Co salt. The precipitation-forming reaction by hydrolysis is continuously performed, and the precipitation product is ripened as necessary and sufficiently ripened, for example, retained for at least 3 hours to progress the ripening reaction.
【0013】本発明の製造方法で使用されるMn塩は、
水に溶解するものであれば特に制限されないが、例え
ば、硫酸ニッケル、硝酸ニッケル、塩化ニッケル等の水
易溶性の鉱酸塩類が挙げられる。また、Co塩もMn塩
と同様に水に溶解するものであれば特に制限されない
が、例えば、硫酸マンガン、硝酸マンガン、塩化マンガ
ン等の水易溶性の鉱酸塩類が挙げられる。Mn塩及びC
o塩は、 0.5〜3.5 モル/L程度の水溶液濃度が実用的
範囲で反応に好ましく使用される。The Mn salt used in the production method of the present invention is
There is no particular limitation as long as it is soluble in water, but examples thereof include easily water-soluble mineral salts such as nickel sulfate, nickel nitrate, and nickel chloride. The Co salt is not particularly limited as long as it dissolves in water similarly to the Mn salt, and examples thereof include water-soluble mineral salts such as manganese sulfate, manganese nitrate, and manganese chloride. Mn salt and C
The o salt is preferably used in the reaction in an aqueous solution concentration of about 0.5 to 3.5 mol / L in a practical range.
【0014】また、これらの金属イオンに対して錯化力
を有するキレート剤としては、例えばヒドラジン、トリ
エタノールアミン、グリシン、アラニン、アスパラギ
ン、イミノジ酢酸、グルタミン酸、エチレンジアミン、
エチレンジアミン四酢酸等のアミノカルボン酸及びそれ
らの塩;酢酸、乳酸、シュウ酸、マロン酸、リンゴ酸、
酒石酸、クエン酸、サリチル酸、チオグリコール酸等の
オキシカルボン酸及びそれらの塩又はアンモニアが挙げ
られる。また、アンモニアは、アンモニウムイオンを供
給できるものであれば、特に制限されないが、例えば硝
酸アンモニウム、硫酸アンモニウム、塩化アンモニウム
などのアンモニウム塩の水溶液、アンモニア水、アンモ
ニアガス等が挙げられるが、好ましくはアンモニア水で
ある。Examples of chelating agents having a complexing power for these metal ions include hydrazine, triethanolamine, glycine, alanine, asparagine, iminodiacetic acid, glutamic acid, ethylenediamine, and the like.
Aminocarboxylic acids such as ethylenediaminetetraacetic acid and salts thereof; acetic acid, lactic acid, oxalic acid, malonic acid, malic acid,
Oxycarboxylic acids such as tartaric acid, citric acid, salicylic acid and thioglycolic acid and salts thereof or ammonia. Ammonia is not particularly limited as long as it can supply ammonium ions.Examples thereof include aqueous solutions of ammonium salts such as ammonium nitrate, ammonium sulfate, and ammonium chloride, aqueous ammonia, and ammonia gas. is there.
【0015】上記のキレート剤のアミノカルボン酸、オ
キシカルボン酸及びアンモニアは1種又は2種以上を組
み合わせて用いてもよく、その配合量としては、Mn塩
及びCo塩1モルに対して 0.2〜4.0 モルの範囲が好ま
しい。なお、キレート剤の配合方法としては、特に制限
されず、単独で使用しても、また、Mn塩水溶液及びC
o塩水溶液の何れか所定割合を予め混合して添加しても
よい。 0.2モル未満では粒子成長が十分でなく、また
0.4モル以上では経済的な面から好ましくない。The above-mentioned chelating agents such as aminocarboxylic acid, oxycarboxylic acid and ammonia may be used alone or in combination of two or more. The compounding amount is 0.2 to 1 mol of Mn salt and Co salt. A range of 4.0 moles is preferred. The method of blending the chelating agent is not particularly limited, and may be used alone,
Any predetermined ratio of the o salt aqueous solution may be mixed in advance and added. If it is less than 0.2 mol, particle growth is not sufficient, and
If it is 0.4 mol or more, it is not preferable in terms of economy.
【0016】また、アルカリ加水分解に使用するアルカ
リとしては、水酸化ナトリウム、水酸化カリウム等の苛
性アルカリ水溶液が挙げられ、このうち、水酸化ナトリ
ウムが好ましい。アルカリの添加量は、Mn塩及びCo
塩1モルに対して 1.1〜3.0 モルである。 1.1モル未満
の場合、未反応のMn塩及びCo塩が生成してしまい好
ましくなく、 3.0を超えると粒子成長が十分でない未成
長粒子が多く生成してしまい好ましくない。Examples of the alkali used for the alkali hydrolysis include aqueous solutions of caustic alkali such as sodium hydroxide and potassium hydroxide. Of these, sodium hydroxide is preferred. The amount of the alkali added was Mn salt and Co.
It is 1.1 to 3.0 mol per mol of the salt. If the amount is less than 1.1 mol, unreacted Mn salt and Co salt are generated, which is not preferable.
【0017】かかる反応操作としては、特に制限されな
いが、例えば連続的に添加される反応液のpHを9〜1
2の範囲の一定値に保持させつつ、少なくとも3時間滞
留させ反応させる方法が挙げられる。この時、反応液は
一度オーバーフローさせた次の容器で熟成反応させても
よい。The reaction operation is not particularly limited. For example, the pH of the continuously added reaction solution is adjusted to 9-1.
A method in which the reaction is carried out by keeping the solution at a constant value in the range of 2 for at least 3 hours. At this time, the reaction solution may be subjected to an aging reaction in the next container once overflowed.
【0018】また他の方法としては、反応液を連続的に
添加して反応生成物を含む反応系の液をオーバーフロー
させることなく、反応媒体液のみを除いて反応液の容量
を一定量に制御しながら反応させる方法である。この方
法によると、反応容器内に形成されるMn−Co複合水
酸化物の粒子は、連続的に成長し増加するので反応系の
攪拌が次第に困難になるため、このような状態になる前
に反応を終了させることが好ましい。As another method, the volume of the reaction solution is controlled to a constant amount except for the reaction medium solution without overflowing the reaction system solution containing the reaction product by continuously adding the reaction solution. This is a method of reacting while reacting. According to this method, the particles of the Mn-Co composite hydroxide formed in the reaction vessel continuously grow and increase, so that the stirring of the reaction system becomes gradually difficult. It is preferable to terminate the reaction.
【0019】この反応系のスラリー濃度は、少なくとも
70g/L以上になるように反応条件を設定することが
好ましい。これよりも濃度が薄いと粒子成長が極端に遅
くなるため好ましくない。The reaction conditions are preferably set so that the slurry concentration of the reaction system is at least 70 g / L or more. If the concentration is lower than this, particle growth becomes extremely slow, which is not preferable.
【0020】添加する各反応液は、一度に連続的に添加
しても良いが、何度かに分けて多段で滴下する多段方式
でもよい。Each reaction solution to be added may be continuously added at once, or may be a multistage system in which the reaction solution is divided into several portions and dropped in multiple stages.
【0021】反応温度は、通常10〜100℃、好まし
くは20〜80℃であり、反応時間は1〜72時間程度
である。The reaction temperature is usually 10 to 100 ° C., preferably 20 to 80 ° C., and the reaction time is about 1 to 72 hours.
【0022】[0022]
【発明の効果】本発明のMn−Co系複合水酸化物は、
実質的に球状な粒子形態を有しており、リチウム二次電
池用正極活物質用原料として有用であり、また、当該M
n−Co系複合酸化物を有効成分として正極活物質を使
用したリチウム二次電池は初期放電容量および放電保持
率など従来に無い優れた特性を有するものである。The Mn-Co-based composite hydroxide of the present invention comprises:
It has a substantially spherical particle form and is useful as a raw material for a positive electrode active material for a lithium secondary battery.
A lithium secondary battery using a positive electrode active material with an n-Co-based composite oxide as an active ingredient has excellent characteristics such as an initial discharge capacity and a discharge retention rate, which have not been seen before.
【0023】[0023]
【実施例】次に実施例を挙げて本発明を具体的に説明す
るが、これは単に例示であって、本発明を制限するもの
ではない。Next, the present invention will be described in detail with reference to examples, but this is merely an example and does not limit the present invention.
【0024】実施例1 1Lビーカーに予め200mlの水を張り、これに 1.6mo
l/LのMnSO4 ・6H2 Oと 0.4mol/LのCoSO4
・5H2 Oの混合液1200ml、6mol/LのNaOH溶
液800ml及び錯化剤として14.8mol/Lのアンモニア溶
液400mlを滴下方式で加え、pHを11に調整しなが
ら50℃に保温し、9時間攪拌熟成した。この間オーバ
ーフロー方式で系内の液量を制御し、一定量の反応液を
排出した。次に濾過後の結晶をリパルプ洗浄し、電導度
計によって洗浄効果を確認した。この結晶はMnとCo
の固溶及び/又は共沈状態で生成した共晶体で、組成は
Mn:Coのモル比が 0.8:0.2 であった。この結晶の
粒度分布をレーザー法により測定したところ、 (V95−
V5)/V50値は1.6 で平均粒子径は16μmであった。Example 1 A 1 L beaker was previously filled with 200 ml of water, and 1.6 ml of water was added thereto.
l / L MnSO 4 · 6H 2 O and 0.4 mol / L CoSO 4 of
· 5H 2 O of the mixture 1200 ml, added dropwise to ammonia solution 400ml of 14.8mol / L as NaOH solution 800ml and complexing agents of 6 mol / L, was kept at 50 ° C. while adjusting the pH to 11, 9 hours The mixture was aged with stirring. During this time, the amount of liquid in the system was controlled by the overflow method, and a certain amount of the reaction liquid was discharged. Next, the crystals after the filtration were subjected to repulping washing, and the washing effect was confirmed by a conductivity meter. This crystal is composed of Mn and Co
Was formed in a solid solution and / or coprecipitation state, and had a composition of Mn: Co at a molar ratio of 0.8: 0.2. When the particle size distribution of the crystals was measured by a laser method, (V 95 −
The V 5 ) / V 50 value was 1.6 and the average particle size was 16 μm.
【0025】実施例2 1Lビーカーに予め200mlの水を張り、これに1.8mol
/ LのMnSO4 ・H2 Oと0.2 mol/LのCoSO4 ・
5H2 Oの混合液1200ml、6mol/LのNaOH溶液
800ml及び錯化剤として1mol/Lのグリシン溶液40
0mlを滴下方式で加え、pHを10に調整しながら70
℃に保温し、9時間攪拌熟成した。この間オーバーフロ
ー方式で系内の液量を制御し、一定量の反応液を排出し
た。次に濾過後の結晶をリパルプ洗浄し、電導度計によ
って洗浄効果を確認した。この結晶はMnとCoの固溶
及び/又は共沈状態で生成した共晶体で、組成はMn:
Coのモル比が0.9 :0.1 であった。この結晶の粒度分
布をレーザー法により測定したところ、 (V95−V5)/
V50値は 2.2で平均粒子径は12μmであった。Example 2 A 1 L beaker was previously filled with 200 ml of water, and 1.8 mol of water was added thereto.
/ L MnSO 4 .H 2 O and 0.2 mol / L CoSO 4.
1200 ml of a mixture of 5H 2 O, 800 ml of a 6 mol / L NaOH solution, and 40 mol of a 1 mol / L glycine solution as a complexing agent
0 ml was added dropwise, and the pH was adjusted to 10 to 70
The solution was kept at ℃ and stirred and aged for 9 hours. During this time, the amount of the liquid in the system was controlled by the overflow method, and a certain amount of the reaction liquid was discharged. Next, the crystals after the filtration were subjected to repulping washing, and the washing effect was confirmed by a conductivity meter. This crystal is a eutectic formed in a solid solution and / or coprecipitation state of Mn and Co, and has a composition of Mn:
The molar ratio of Co was 0.9: 0.1. When the particle size distribution of the crystals was measured by a laser method, (V 95 -V 5) /
The V 50 value was 2.2 and the average particle size was 12 μm.
【0026】実施例3 500mlビーカーに予め250mlの水を張り、これに
0.4mol/LのMnSO4・6H2 Oと 1.8mol/LのCoS
O4 ・5H2 Oの混合液2L、6mol/LのNaOH溶液
1300ml及び錯化剤として1mol/Lのリンゴ酸溶液6
70mlを滴下方式で加え、pHを10に調整しながら7
0℃に保温し、15時間攪拌熟成した。この間系内の液
量を制御するために、反応液のみを減圧濾去方式で除き
ながらスラリー濃度を上げていった。次に濾過後の結晶
をリパルプ洗浄し、電導度計によって洗浄効果を確認し
た。乾燥後の結晶は固溶及び/又は共沈状態で生成した
MnとCoの共晶体で、組成はMn:Coのモル比で
0.2:0.8 であった。この結晶の粒度分布をレーザー法
により測定したところ、 (V95−V5)/V50値は 1.5で
平均粒子径は9μmであった。Example 3 A 500 ml beaker was previously filled with 250 ml of water.
0.4mol / L CoS of MnSO 4 · 6H 2 O and 1.8mol / L of
O 4 · 5H 2 O mixture 2L, 1 mol / L of malic acid solution 6 as NaOH solution 1300ml and complexing agents of 6 mol / L of
Add 70 ml dropwise and adjust the pH to 10 to 7
The mixture was kept at 0 ° C. and aged for 15 hours with stirring. During this time, in order to control the amount of liquid in the system, the slurry concentration was increased while only the reaction liquid was removed by filtration under reduced pressure. Next, the crystals after the filtration were subjected to repulping washing, and the washing effect was confirmed by a conductivity meter. The crystal after drying is a eutectic of Mn and Co formed in a solid solution and / or coprecipitation state, and the composition is in a molar ratio of Mn: Co.
0.2: 0.8. Measurement of the particle size distribution of the crystal by laser method, the average particle diameter (V 95 -V 5) / V 50 value 1.5 was 9 .mu.m.
Claims (6)
状態で生成したMn−Co系複合水酸化物の結晶粒子で
あって、且つ該結晶粒子がレーザー法による測定法で求
めた粒度分布 (V95−V5)/V50が3以下であることを
特徴とするMn−Co系複合水酸化物。1. A crystal particle of a Mn—Co-based composite hydroxide formed in a solid solution state and / or a coprecipitation state of Mn and Co, and the crystal particle is obtained by a measuring method by a laser method. Mn-Co-based composite hydroxide wherein the particle size distribution (V 95 -V 5) / V 50 is 3 or less.
0.01:0.99〜0.99:0.01の範囲にある
請求項1記載のMn−Co系複合水酸化物。2. The atomic ratio of Mn to Co, Mn: Co,
The Mn-Co-based composite hydroxide according to claim 1, wherein the ratio is in the range of 0.01: 0.99 to 0.99: 0.01.
n及びCoの金属イオンに対して錯化力を有するキレー
ト剤の存在下、アルカリ加水分解による沈殿生成反応を
連続的に行わせ、次いで該沈殿物を熟成させてなること
を特徴とするMn−Co系複合水酸化物の製造方法。3. M in a mixed salt aqueous solution of a Mn salt and a Co salt.
Mn- characterized by continuously performing a precipitation-forming reaction by alkaline hydrolysis in the presence of a chelating agent having a complexing power for metal ions of n and Co, and then aging the precipitate. A method for producing a Co-based composite hydroxide.
Mn−Co系複合水酸化物の製造方法。4. The method for producing a Mn—Co-based composite hydroxide according to claim 3, wherein the continuous reaction is performed in a multistage manner.
シカルボン酸又はアンモニアから選ばれた少なくとも1
種又は2種以上である請求項3又は4記載のMn−Co
系複合水酸化物の製造方法。5. The method according to claim 1, wherein the chelating agent is at least one selected from aminocarboxylic acids, oxycarboxylic acids and ammonia.
Mn-Co according to claim 3 or 4, which is a species or two or more species.
For producing a composite hydroxide.
水酸化物を有効成分とするリチウム二次電池用正極活物
質用原料。6. A raw material for a positive electrode active material for a lithium secondary battery, comprising the Mn—Co-based composite hydroxide according to claim 1 or 2 as an active ingredient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8251023A JPH1081520A (en) | 1996-09-02 | 1996-09-02 | Manganese-cobalt-based double hydroxide, its production and raw material for anode active material for lithium secondary cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8251023A JPH1081520A (en) | 1996-09-02 | 1996-09-02 | Manganese-cobalt-based double hydroxide, its production and raw material for anode active material for lithium secondary cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1081520A true JPH1081520A (en) | 1998-03-31 |
Family
ID=17216482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8251023A Pending JPH1081520A (en) | 1996-09-02 | 1996-09-02 | Manganese-cobalt-based double hydroxide, its production and raw material for anode active material for lithium secondary cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1081520A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002203549A (en) * | 2000-12-28 | 2002-07-19 | Shin Kobe Electric Mach Co Ltd | Lithium secondary battery and treatment method of the positive electrode active substance |
WO2009014158A1 (en) | 2007-07-25 | 2009-01-29 | Nippon Chemical Industrial Co., Ltd | Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery |
JP2009187694A (en) * | 2008-02-04 | 2009-08-20 | Sumitomo Chemical Co Ltd | Powder for positive electrode active material, positive electrode active material, and sodium secondary battery |
US8003256B2 (en) | 2007-07-20 | 2011-08-23 | Nippon Chemical Industrial Co., Ltd | Positive electrode active material having magnesium atoms and sulfate groups, method for manufacturing the same, and lithium secondary battery having the same |
JP2011219354A (en) * | 2010-04-02 | 2011-11-04 | E & D Co Ltd | Crystalline manganese complex oxide, lithium manganese complex oxide for lithium secondary battery and method for producing the same |
US8137844B2 (en) | 2006-11-17 | 2012-03-20 | Nippon Chemical Industrial Co., Ltd. | Cathode active material for lithium rechargeable battery, manufacturing method thereof and lithium rechargeable battery |
US9142860B2 (en) | 2008-02-04 | 2015-09-22 | Sumitomo Chemical Company, Limited | Mixed metal oxide and sodium secondary battery |
US10122014B2 (en) | 2008-02-04 | 2018-11-06 | Sumitomo Chemical Company, Limited | Mixed metal oxide and sodium secondary battery |
-
1996
- 1996-09-02 JP JP8251023A patent/JPH1081520A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002203549A (en) * | 2000-12-28 | 2002-07-19 | Shin Kobe Electric Mach Co Ltd | Lithium secondary battery and treatment method of the positive electrode active substance |
US8137844B2 (en) | 2006-11-17 | 2012-03-20 | Nippon Chemical Industrial Co., Ltd. | Cathode active material for lithium rechargeable battery, manufacturing method thereof and lithium rechargeable battery |
US8003256B2 (en) | 2007-07-20 | 2011-08-23 | Nippon Chemical Industrial Co., Ltd | Positive electrode active material having magnesium atoms and sulfate groups, method for manufacturing the same, and lithium secondary battery having the same |
WO2009014158A1 (en) | 2007-07-25 | 2009-01-29 | Nippon Chemical Industrial Co., Ltd | Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery |
JP2009187694A (en) * | 2008-02-04 | 2009-08-20 | Sumitomo Chemical Co Ltd | Powder for positive electrode active material, positive electrode active material, and sodium secondary battery |
KR20100114511A (en) * | 2008-02-04 | 2010-10-25 | 스미또모 가가꾸 가부시키가이샤 | Powder for positive electrode active material, positive electrode active material, and sodium rechargeable battery |
US8790831B2 (en) | 2008-02-04 | 2014-07-29 | Sumitomo Chemical Company, Limited | Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery |
US9142860B2 (en) | 2008-02-04 | 2015-09-22 | Sumitomo Chemical Company, Limited | Mixed metal oxide and sodium secondary battery |
US10122014B2 (en) | 2008-02-04 | 2018-11-06 | Sumitomo Chemical Company, Limited | Mixed metal oxide and sodium secondary battery |
JP2011219354A (en) * | 2010-04-02 | 2011-11-04 | E & D Co Ltd | Crystalline manganese complex oxide, lithium manganese complex oxide for lithium secondary battery and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1081521A (en) | Nickel-manganese-based double hydroxide, its production and raw material for anode active material for lithium secondary cell | |
CN108878818B (en) | Core-shell structure nickel-cobalt-manganternary ternary anode material presoma and preparation method thereof | |
CN112750999B (en) | Cathode material, preparation method thereof and lithium ion battery | |
JP4848384B2 (en) | High density cobalt manganese coprecipitated nickel hydroxide and process for producing the same | |
CN110571427B (en) | Ternary cathode material, preparation method thereof and lithium battery | |
JP3830586B2 (en) | Composite metal hydroxide, production method thereof, and raw material for positive electrode active material for lithium secondary battery | |
EP3297072B1 (en) | Methods for preparing nickel-cobalt-aluminum precursor material and cathode material with gradient distribution of aluminum element | |
US10326133B2 (en) | Methods of making inorganic compounds | |
JP3884796B2 (en) | Method for producing Ni-Co composite hydroxide | |
CN111129463B (en) | Preparation method of MOF-coated single crystal ternary cathode material and precursor thereof | |
JP3130813B2 (en) | Lithium nickel composite oxide, method for producing the same, and positive electrode active material for secondary battery | |
KR20220104785A (en) | Cobalt-free cathode material for lithium ion battery and manufacturing method thereof and lithium ion battery | |
JP2002201028A (en) | High density nickel hydroxide coprecipitated with cobalt and manganese, and method for producing the same | |
CN108502937A (en) | A kind of polynary persursor material of ball-shaped lithium-ion battery anode and its preparation method and application | |
EP1871713B1 (en) | Process of precipitation for spheric manganese carbonate and the products produced thereby | |
JPH10316431A (en) | Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery | |
CN108878860B (en) | Nickel-based positive electrode material, precursor thereof, and preparation methods of nickel-based positive electrode material and precursor | |
CN109962234A (en) | Monocrystalline positive electrode of concentration gradient and preparation method thereof | |
JPH1081520A (en) | Manganese-cobalt-based double hydroxide, its production and raw material for anode active material for lithium secondary cell | |
JP3425006B2 (en) | Ni-Mn composite hydroxide powder for positive electrode active material of lithium secondary battery and method for producing the same | |
JP7255386B2 (en) | Method for producing transition metal composite hydroxide | |
KR100424635B1 (en) | Positive active material for lithium secondary battery and method of preparing same | |
WO2006126854A1 (en) | Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same | |
KR100668050B1 (en) | Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same | |
CN115432743A (en) | High-nickel ternary precursor material, preparation method thereof, positive electrode material and lithium ion battery |