[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1076163A - Catalyst for purification of exhaust gas and method for purifying exhaust gas - Google Patents

Catalyst for purification of exhaust gas and method for purifying exhaust gas

Info

Publication number
JPH1076163A
JPH1076163A JP8250822A JP25082296A JPH1076163A JP H1076163 A JPH1076163 A JP H1076163A JP 8250822 A JP8250822 A JP 8250822A JP 25082296 A JP25082296 A JP 25082296A JP H1076163 A JPH1076163 A JP H1076163A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
component
alumina
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8250822A
Other languages
Japanese (ja)
Inventor
Sumiaki Hiramoto
純章 平本
Shinji Yamamoto
伸司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8250822A priority Critical patent/JPH1076163A/en
Publication of JPH1076163A publication Critical patent/JPH1076163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst for purification of exhaust gas having a improved durability as compared with a conventional zeolite catalyst and having a superior NOx removing performance in a lean atmosphere even in an early stage and after use at a high temp. over a long period of time and to provide a method for purifying exhaust gas. SOLUTION: This catalyst for purification of exhaust gas contains platinum and silicon carbide and/or silicon nitride ceramics as catalytic components. The silicon carbide and/or silicon nitride contains Y, La, Nd, Sm, etc. Exhaust gas contg. NOx and a larger amt. of oxygen than the stoichiometric amt. required to perfectly oxidize reducible components including hydrocarbons is brought into contact with this catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化用触
媒及び排気ガス浄化方法に係り、更に詳細には、ディー
ゼルエンジンやリーンバーンエンジン等の内燃機関から
排出される酸素過剰な排気ガス雰囲気(リーン雰囲気)
の中の窒素酸化物(NOx)を効率良く浄化することが
でき、しかも、高温耐久後もNOx浄化性能に優れる排
気ガス浄化用触媒及び排気ガス浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying method, and more particularly, to an atmosphere of an excess oxygen exhaust gas discharged from an internal combustion engine such as a diesel engine or a lean burn engine. Lean atmosphere)
TECHNICAL FIELD The present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying method which can efficiently purify nitrogen oxides (NOx) in the exhaust gas and have excellent NOx purifying performance even after high-temperature durability.

【0002】[0002]

【従来の技術】従来、自動車等の内燃機関から排出され
る排気ガス浄化用触媒としては、活性アルミナや酸化セ
リウム等に白金(Pt)、パラジウム(Pd)及びロジ
ウム(Rh)等の貴金属を担持させ、これをモノリス担
体にコーティングした構造のものが広く使用されてい
る。この触媒は、主としてストイキ近傍における排気ガ
ス浄化能を向上させることを重点とするため、リーン雰
囲気におけるNOx浄化作用が不十分となるという問題
があった。
2. Description of the Related Art Conventionally, as a catalyst for purifying exhaust gas discharged from an internal combustion engine of an automobile or the like, noble metals such as platinum (Pt), palladium (Pd) and rhodium (Rh) are supported on activated alumina or cerium oxide. A monolithic carrier coated with a monolithic carrier is widely used. Since this catalyst mainly focuses on improving the exhaust gas purification performance near the stoichiometric air, there is a problem that the NOx purification action in a lean atmosphere becomes insufficient.

【0003】これに対し、リーン雰囲気におけるNOx
浄化性能を向上させる触媒や、NOx浄化方法が種々提
案されており、例えば、銅−ゼオライトを用いる触媒
が、特開平1−131345号公報や特開平4−404
5号公報等で開示されている。これらの銅−ゼオライト
を主成分とした排気ガス浄化用触媒は、リーン雰囲気下
でのNOxを還元除去できるのみならず、NOx、一酸
化炭素(CO)及び炭化水素(HC)を効率よく浄化す
ることができる。
On the other hand, NOx in a lean atmosphere
Various catalysts for improving the purification performance and various NOx purification methods have been proposed. For example, catalysts using copper-zeolite are disclosed in JP-A-1-131345 and JP-A-4-404.
No. 5, gazette. These exhaust gas purifying catalysts mainly composed of copper-zeolite can not only reduce and remove NOx under a lean atmosphere, but also efficiently purify NOx, carbon monoxide (CO) and hydrocarbons (HC). be able to.

【0004】一方、特開平2−233146号公報に
は、バインダーとして、窒化珪素(Si34)又は炭化
珪素(SiC)を珪素の有機金属化合物とともに使用す
ることで、ゼオライト粒子の再配列及び緻密化を抑制す
る、高温下でも高活性な排気ガス浄化用触媒が開示され
ている。
On the other hand, Japanese Patent Application Laid-Open No. Hei 2-233146 discloses that by using silicon nitride (Si 3 N 4 ) or silicon carbide (SiC) as a binder together with an organometallic compound of silicon, rearrangement of zeolite particles and A catalyst for purifying exhaust gas, which suppresses densification and is highly active even at high temperatures, is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た銅−ゼオライトを主成分とした触媒にあっては、排気
ガス中の有害成分(HC,CO,NOx)のうち、特に
NOxの触媒浄化能は、排気ガス組成(HC種やHC濃
度)や温度への依存性が高いため、HC濃度(HC/N
Ox比)が高く、しかも350℃以上の温度域でなけれ
ば、NOxの浄化が不十分となるという課題がある。ま
た、かかる銅−ゼオライト触媒は、水(水蒸気)を含有
する600℃以上の高温下において、酸素過剰雰囲気
(リーン雰囲気)から酸素不足雰囲気(リッチ雰囲気)
まで変動する排気ガスに長時間曝されると、ゼオライト
中にイオン状態で担持された活性成分である銅が、ゼオ
ライト中の担持サイトから抜けて移動しシンタリングす
るため、浄化性能が経時的に低下し、長期使用に耐えら
れないという課題があった。従って、300℃以下の低
温域からの触媒活性(NOx転換活性)、低HC濃度で
のNOx浄化効率及び高温耐久性の向上が大きな課題と
なっていた。
However, in the above-mentioned catalyst containing copper-zeolite as a main component, of the harmful components (HC, CO, NOx) in the exhaust gas, the catalytic purification ability of NOx, in particular, is low. , Because of high dependence on exhaust gas composition (HC species and HC concentration) and temperature, the HC concentration (HC / N
Unless the temperature is higher than 350 ° C., the purification of NOx is insufficient. Further, such a copper-zeolite catalyst can be used at a high temperature of 600 ° C. or more containing water (steam) to change from an oxygen-excess atmosphere (lean atmosphere) to an oxygen-deficient atmosphere (rich atmosphere)
When exposed to exhaust gas that fluctuates for a long time, copper, which is an active component supported in the zeolite in an ionic state, escapes from the support site in the zeolite and moves and sinters, so that the purification performance increases over time. There has been a problem that the temperature has deteriorated and cannot withstand long-term use. Therefore, improvement of catalytic activity (NOx conversion activity) from a low temperature range of 300 ° C. or lower, NOx purification efficiency at low HC concentration, and high-temperature durability have been major issues.

【0006】また、上記特開平2−233146号に開
示された触媒は、Si34又はSiC等のセラミックス
を触媒中に添加することで、クラックの発生及びゼオラ
イト粒子の緻密化抑制を図っているが、触媒活性種であ
る貴金属自体の安定化や耐久性の向上が図られていない
ため、リーン雰囲気下でのNOx浄化性能が十分でない
という課題があった。本発明は、このような従来技術の
有する課題に鑑みてなされたものであり、その目的とす
るところは、従来のゼオライト系触媒よりも耐久性が向
上し、初期及び高温耐久後においても、リーン雰囲気下
での優れたNOx浄化性能を有する排気ガス浄化用触媒
及び排気ガス浄化方法を提供することにある。
The catalyst disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2-233146 is intended to suppress generation of cracks and densification of zeolite particles by adding ceramics such as Si 3 N 4 or SiC to the catalyst. However, no stabilization and improvement of durability of the noble metal itself, which is a catalytically active species, have not been achieved, and there has been a problem that the NOx purification performance under a lean atmosphere is not sufficient. The present invention has been made in view of such problems of the prior art, and an object thereof is to improve the durability over the conventional zeolite-based catalyst, and to provide a lean catalyst even at the initial stage and after high-temperature durability. An object of the present invention is to provide an exhaust gas purifying catalyst and an exhaust gas purifying method having excellent NOx purifying performance under an atmosphere.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、特定の希土類元素を含
有するセラミックス成分を用いることにより、上記課題
が解決されることを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above problems can be solved by using a ceramic component containing a specific rare earth element. The present invention has been completed.

【0008】即ち、本発明の請求項1記載の排気ガス浄
化用触媒は、触媒成分担持層を有し、リーン雰囲気中で
窒素酸化物を有効に浄化できる一体構造型触媒におい
て、触媒成分として、白金と、炭化珪素及び/又は窒化
珪素から成るセラミックス成分とを含有し、上記セラミ
ックス成分が、イットリウム、ランタン、ネオジウム、
及びサマリウムから成る群より選ばれた少なくとも1種
の希土類元素を含有することを特徴とする。また、請求
項2記載の排気ガス浄化用触媒は、請求項1記載の触媒
の耐久後の貴金属粒子の安定性を向上させ、触媒性能を
十分に発現させたもので、上記セラミックス成分に対す
る上記希土類元素の含有量が、金属換算で1〜10モル
%であることを特徴とする。更に、請求項3記載の排気
ガス浄化用触媒は、請求項1又は2記載の排気ガス浄化
用触媒の初期及び耐久後性能を有効に発現させ、触媒コ
ート層の剥離を防止したもので、更に、活性アルミナ、
ベーマイトアルミナ及びアルミナゾルから成る群より選
ばれた少なくとも1種のものを、上記触媒成分担持層の
総重量当たりアルミナ換算で0.1〜20重量%含有す
ることを特徴とする。
That is, the exhaust gas purifying catalyst according to the first aspect of the present invention is a monolithic catalyst having a catalyst component-supporting layer and capable of effectively purifying nitrogen oxides in a lean atmosphere. It contains platinum and a ceramic component composed of silicon carbide and / or silicon nitride, wherein the ceramic component is yttrium, lanthanum, neodymium,
And at least one rare earth element selected from the group consisting of samarium and samarium. Further, the exhaust gas purifying catalyst according to claim 2 improves the stability of the noble metal particles after the durability of the catalyst according to claim 1 and sufficiently expresses the catalytic performance, and the rare earth element with respect to the ceramic component is improved. The content of the element is 1 to 10 mol% in terms of metal. Furthermore, the exhaust gas purifying catalyst according to claim 3 is a catalyst in which the initial and post-durability performance of the exhaust gas purifying catalyst according to claim 1 or 2 is effectively developed, and peeling of the catalyst coat layer is prevented. , Activated alumina,
At least one member selected from the group consisting of boehmite alumina and alumina sol is contained in an amount of 0.1 to 20% by weight in terms of alumina based on the total weight of the catalyst component supporting layer.

【0009】更にまた、本発明の排気ガス浄化方法は、
炭化水素を含む還元性成分と、この還元性成分を完全酸
化するに必要十分な化学量論量よりも過剰な酸素と、窒
素酸化物とを含有する排気ガスを浄化するに当たり、請
求項1〜3のいずれか1つの項に記載の排気ガス浄化用
触媒を、上記排気ガスと接触させることを特徴とする。
Further, the exhaust gas purifying method of the present invention comprises:
In purifying an exhaust gas containing a hydrocarbon-containing reducing component, oxygen in excess of a stoichiometric amount necessary and sufficient to completely oxidize the reducing component, and nitrogen oxides, claim 1. 3. The exhaust gas purifying catalyst according to any one of the items 3) is brought into contact with the exhaust gas.

【0010】[0010]

【作用】本発明の排気ガス浄化用触媒においては、耐熱
性の良好な炭化珪素及び/又は窒化珪素から成るセラミ
ックス成分を含有させた。従って、高温耐久後において
も、担持した貴金属粒子の粒成長を抑制できるため、耐
久後の性能劣化を低減でき、この結果、安定した浄化性
能を長期に亘って維持できる。
The exhaust gas purifying catalyst of the present invention contains a ceramic component composed of silicon carbide and / or silicon nitride having good heat resistance. Therefore, even after high-temperature durability, it is possible to suppress grain growth of the supported noble metal particles, so that performance degradation after durability can be reduced, and as a result, stable purification performance can be maintained for a long period of time.

【0011】また、上記セラミックス成分に含有させた
イットリウム等の希土類元素により、本触媒の耐酸化性
を向上でき、高温下においても、担持した貴金属粒子の
安定性を維持できる。更に、貴金属と塩基性元素が近傍
に存在することになるので、還元性成分であるHCやC
O等とNOxとの反応選択性を向上させることも可能に
なる。なお、この作用は、上記セラミックス成分中の希
土類元素の含有量を1〜10モル%とすることにより、
顕著なものとなる。
The oxidation resistance of the catalyst can be improved by the rare earth element such as yttrium contained in the ceramic component, and the stability of the supported noble metal particles can be maintained even at a high temperature. Further, since the noble metal and the basic element are present in the vicinity, the reducing components HC and C
It is also possible to improve the reaction selectivity between O and the like and NOx. This effect is achieved by setting the content of the rare earth element in the ceramic component to 1 to 10 mol%.
It will be noticeable.

【0012】また、本発明の触媒においては、活性アル
ミナやベーマイトアルミナ等を含有させることが可能で
あり、これらの含有量を触媒成分担持層(コート層)の
総重量当たりアルミナ換算で0.1〜20重量%に制御
することにより、特に担体へのコーティング性及び密着
性を向上でき、長期に亘り安定した浄化性能を実現でき
ることになる。
The catalyst of the present invention can contain activated alumina, boehmite alumina, etc., and the content thereof is 0.1% in terms of alumina per total weight of the catalyst component supporting layer (coat layer). By controlling the content to 重量 20% by weight, in particular, coating properties and adhesion to the carrier can be improved, and stable purification performance can be realized over a long period of time.

【0013】[0013]

【発明の実施の形態】以下、本発明の排気ガス浄化用触
媒について詳細に説明する。上述の如く、本発明の触媒
は、触媒成分として、白金と、希土類元素を含有するセ
ラミックス成分とを含有する。ここで、本触媒に含有さ
れる貴金属成分である白金の含有量は、触媒1リットル
容量中0.1〜15gとするのが好ましい。0.1g未
満では、低温活性や浄化性能が十分に発現せず、15g
を超えて添加しても、触媒活性が飽和し、経済的に有効
でないので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the exhaust gas purifying catalyst of the present invention will be described in detail. As described above, the catalyst of the present invention contains platinum and a ceramic component containing a rare earth element as catalyst components. Here, the content of platinum, which is a noble metal component contained in the present catalyst, is preferably 0.1 to 15 g per liter of the catalyst. If the amount is less than 0.1 g, the low-temperature activity and purification performance are not sufficiently exhibited, and 15 g
The addition of more than this is not preferable because the catalytic activity is saturated and is not economically effective.

【0014】また、上記セラミックス成分としては、活
性種である貴金属の触媒活性を十分に発揮させ、しか
も、高温耐久後の基材及び貴金属の粒成長を抑制し、分
散性を維持させるような耐熱性に優れるものがよく、本
触媒では、炭化珪素又は窒化珪素及びこれらの混合物を
使用する。更に、上記希土類元素は、上記セラミックス
成分の耐酸化性を向上させ、高温耐久後の貴金属粒子安
定性を維持させる機能を果たすもので、本触媒では、イ
ットリウム、ランタン、ネオジウム又はサマリウム及び
これらの任意の混合物を使用する。上記セラミックス成
分中の上記希土類元素の含有量は、金属換算で1〜10
モル%とするのが好ましく、1モル%未満では、耐久後
の低温活性や浄化性能が十分に発現せず、10モル%を
超えると、逆に浄化性能が飽和し又は低下することがあ
り好ましくない。
In addition, the ceramic component is a heat-resistant material that sufficiently exerts the catalytic activity of the noble metal, which is an active species, suppresses the growth of the substrate and the noble metal after high-temperature durability, and maintains the dispersibility. The catalyst preferably has excellent properties. In the present catalyst, silicon carbide or silicon nitride and a mixture thereof are used. Further, the rare earth element serves to improve the oxidation resistance of the ceramic component and maintain the stability of the noble metal particles after high-temperature durability. Use a mixture of The content of the rare earth element in the ceramic component is 1 to 10 in terms of metal.
If it is less than 1 mol%, the low-temperature activity and purification performance after durability are not sufficiently exhibited, and if it exceeds 10 mol%, the purification performance may be saturated or deteriorated. Absent.

【0015】また、本触媒においては、上述の触媒成分
以外にも、活性アルミナ、ベーマイトアルミナ又はアル
ミナゾル及びこれらの任意の混合物を含有させることが
でき、これら各種アルミナを含有させることにより、担
体へのコーティング性及び密着性を向上できる。なお、
これらアルミナの含有量は、アルミナ換算でコート層の
総重量当たり0.1〜20重量%とするのがよい。0.
1重量%未満では、コーティング性が悪化することがあ
り、20重量%を超えると、コーティング性及び担体と
の密着性向上効果が飽和するので好ましくない。
In addition, the present catalyst may contain activated alumina, boehmite alumina or alumina sol and any mixture thereof in addition to the above-mentioned catalyst components. Coating properties and adhesion can be improved. In addition,
The content of these aluminas is preferably 0.1 to 20% by weight based on the total weight of the coat layer in terms of alumina. 0.
If the amount is less than 1% by weight, the coating property may be deteriorated. If the amount is more than 20% by weight, the effect of improving the coating property and the adhesion to the carrier is not preferable.

【0016】以下、本触媒の製造方法について説明す
る。まず、白金をSi34等の上記セラミックス成分に
担持する方法としては、例えば、含浸法や混練法等の公
知の方法の中から適宜選択して行うことができる。ここ
で、白金の原料化合物としては、ジニトロジアミン酸
塩、塩化物及び硝酸塩等の水溶性のものであれば任意の
ものが使用できる。
Hereinafter, a method for producing the present catalyst will be described. First, as a method of supporting platinum on the above-mentioned ceramic component such as Si 3 N 4 , for example, an appropriate method can be selected from known methods such as an impregnation method and a kneading method. Here, as a raw material compound of platinum, any compound can be used as long as it is water-soluble, such as dinitrodiamine salt, chloride and nitrate.

【0017】水の除去は、例えば濾過法や蒸発乾固法等
の公知の方法の中から適宜選択して行うことができる。
また、本発明に使用される白金担持Si34等を得るた
めの最初の熱処理は、特に制限されないが、添加した白
金を分散性良く担持するためには、例えば、空気中及び
/又は空気流通下400〜800℃の比較的低温で焼成
を行うことが好ましい。
The removal of water can be appropriately selected from known methods such as a filtration method and an evaporation to dryness method.
The first heat treatment for obtaining the platinum-supported Si 3 N 4 or the like used in the present invention is not particularly limited. In order to support the added platinum with good dispersibility, for example, in air and / or air It is preferable to perform calcination at a relatively low temperature of 400 to 800 ° C. under circulation.

【0018】次に、イットリウム等の希土類元素を、S
34等に担持する方法としては、例えば含浸法や混練
法等の公知の方法の中から適宜選択して行うことができ
る。上記希土類元素の原料化合物としては、炭酸塩、硝
酸塩及び酢酸塩等の水溶性のものであれば、任意のもの
が使用できる。
Next, a rare earth element such as yttrium is
The method of supporting on i 3 N 4 or the like can be appropriately selected from known methods such as an impregnation method and a kneading method. As the raw material compound of the rare earth element, any compound can be used as long as it is water-soluble such as carbonate, nitrate and acetate.

【0019】水の除去は、例えば濾過法や蒸発乾固法等
の公知の方法の中から適宜選択して行うことができる。
また、本発明に使用されるイットリウム担持Si34
の希土類元素担持セラミックスを得るための最初の熱処
理は、特に制限されないが、添加した元素を分散性良く
担持し、表面を安定化するためには、例えば、空気中及
び/又は空気流通下600〜1300℃の温度で焼成を
行うことが好ましい。
The removal of water can be appropriately selected from known methods such as a filtration method and an evaporation to dryness method.
Further, the first heat treatment for obtaining a rare earth element-supported ceramic such as yttrium-supported Si 3 N 4 used in the present invention is not particularly limited, but in order to support the added element with good dispersibility and stabilize the surface. For example, it is preferable to perform calcination at a temperature of 600 to 1300 ° C. in air and / or in the flow of air.

【0020】なお、Si34のセラミックス成分は、
貴金属を担持することなく単味で加えることもできる。
また、これらセラミックス成分に白金と希土類元素とを
担持する順序は、特に限定されない。例えば、白金と、
上記希土類元素の原料塩とを同時に含浸する共含浸法
や、まず白金を上記希土類元素に担持した後、上記希土
類元素原料塩を含浸し、又は上記希土類元素原料塩を先
に含浸担持した後、白金を担持するといった逐次含浸法
が用いられる。
Note that ceramic components such as Si 3 N 4
It can be added simply without carrying the noble metal.
The order in which platinum and a rare earth element are supported on these ceramic components is not particularly limited. For example, with platinum
The co-impregnation method of simultaneously impregnating the raw material salt of the rare earth element, or after first supporting platinum on the rare earth element, impregnating the rare earth element raw salt, or impregnating and supporting the rare earth element raw salt first, A sequential impregnation method such as supporting platinum is used.

【0021】なお、本発明の排気ガス浄化用触媒は、無
担体でも有効に使用することができるが、上述した各種
成分を粉砕してスラリー状にしたものを、触媒担体にコ
ートして、400〜900℃で焼成して用いることが好
ましい。触媒担体としては、例えば、耐火性材料から成
るモノリス担体やメタル担体等の公知の触媒担体の中か
ら適宜選択して使用することができる。
The exhaust gas purifying catalyst of the present invention can be effectively used without a carrier. However, the above-mentioned various components obtained by pulverizing the above-mentioned components into a slurry are coated on a catalyst carrier to obtain a catalyst. It is preferable to use by firing at ~ 900 ° C. As the catalyst carrier, for example, a known catalyst carrier such as a monolith carrier or a metal carrier made of a refractory material can be appropriately selected and used.

【0022】上記触媒担体の形状は、特に制限されない
が、通常はハニカム形状で使用することが好ましく、こ
のハニカム材料としては、一般にセラミック等のコージ
ェライト質のものが多く用いられるが、フェライト系ス
テンレス等の金属材料から成るハニカム材料を用いるこ
とも可能である。更には、触媒成分粉末そのものをハニ
カム状に成形してもよい。触媒の形状をハニカム状とす
ることにより、触媒と排気ガスとの接触面積が大きくな
り、圧力損失も抑制できるため自動車用排気ガス浄化用
触媒として用いる場合に極めて有効である。
The shape of the catalyst support is not particularly limited, but it is usually preferable to use a honeycomb shape. As the honeycomb material, cordierite-based materials such as ceramics are generally used in many cases. It is also possible to use a honeycomb material made of a metal material such as. Further, the catalyst component powder itself may be formed into a honeycomb shape. By making the shape of the catalyst into a honeycomb shape, the contact area between the catalyst and the exhaust gas is increased and the pressure loss can be suppressed, so that it is extremely effective when used as an exhaust gas purifying catalyst for automobiles.

【0023】従って、本発明の触媒は、代表的に、上記
希土類元素を担持したSi34及び/又はSiCと、白
金と、所要に応じてアルミナ粉末又はアルミナゾルとを
混合して、湿式にて粉砕してスラリーとし、このスラリ
ーを上記触媒担体に付着させ、空気中及び/又は空気流
通下400〜650℃の温度で焼成を行うことにより製
造することができる。
Accordingly, the catalyst of the present invention is typically prepared by mixing the rare earth element-supported Si 3 N 4 and / or SiC, platinum, and, if necessary, alumina powder or alumina sol, and wet-mixing the mixture. Then, the slurry is attached to the catalyst carrier and calcined at a temperature of 400 to 650 ° C. in the air and / or in the flow of air.

【0024】この際、触媒担体に付着させる触媒成分コ
ート層の量は、触媒成分全体の合計で、触媒1リットル
当たり、50〜400gとするのが好ましい。触媒成分
コート層が多い程、触媒活性や触媒寿命の面からは好ま
しいが、コート層が厚くなりすぎると、コート層内部で
反応ガスが拡散不良となり触媒と十分に接触できなくな
るため、活性に対する増量効果が飽和し、更にはガスの
通過抵抗も大きくなってしまうことがある。このため、
コート層量は、上記触媒1リットル当り50〜400g
が好ましい。
In this case, the amount of the catalyst component coat layer to be attached to the catalyst carrier is preferably 50 to 400 g per liter of the catalyst in total of the entire catalyst components. The larger the number of catalyst component coat layers, the better in terms of catalytic activity and catalyst life.However, if the coat layer is too thick, the reaction gas will be poorly diffused inside the coat layer and will not be able to come into sufficient contact with the catalyst. The effect may be saturated, and the gas passage resistance may increase. For this reason,
The amount of the coating layer is 50 to 400 g per liter of the catalyst.
Is preferred.

【0025】[0025]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明する。 (実施例1)SiC粉末に、硝酸イットリウム水溶液を
含浸又は高速攪拌中で噴霧し、150℃で24時間乾燥
した後、400℃で1時間、次いで600℃で1時間焼
成し、イットリウム添加SiC粉末(粉末A)を得た。
この粉末AのY含有量は6.9重量%(3モル%)であ
った。得られたイットリウム添加SiC粉末Aに、ジニ
トロジアミン白金水溶液を含浸又は高速攪拌中で噴霧
し、150℃で24時間乾燥した後、400℃で1時間
焼成し、Pt担持Y−SiC粉末(粉末B)を得た。こ
の粉末BのPt濃度は0.78重量%であった。
The present invention will be described below in more detail with reference to examples and comparative examples. (Example 1) An SiC powder was impregnated with an yttrium nitrate aqueous solution or sprayed while stirring at a high speed, dried at 150 ° C for 24 hours, calcined at 400 ° C for 1 hour, and then at 600 ° C for 1 hour to obtain a yttrium-added SiC powder. (Powder A) was obtained.
The Y content of this powder A was 6.9% by weight (3% by mole). The obtained yttrium-added SiC powder A is impregnated with an aqueous solution of dinitrodiamineplatinum or sprayed with high-speed stirring, dried at 150 ° C. for 24 hours, baked at 400 ° C. for 1 hour, and subjected to Pt-supported Y-SiC powder (powder B). ) Got. The Pt concentration of this powder B was 0.78% by weight.

【0026】上記粉末B203g、ベーマイトアルミナ
32g(アルミナとして22.4g含有)と、硝酸水溶
液265gを磁性ボールミルに投入し、混合・粉砕して
スラリーを得た。このスラリーをコージェライト質モノ
リス担体(120cc、400セル/平方インチ)に付
着させ、空気流にてセル内の余剰のスラリーを除去した
後、担体に付着したスラリーを乾燥し、400℃で1時
間焼成した。この作業を2度行い、コート量重量200
g/L−担体の触媒を得た。Ptの担持量は40g/c
f(1.41g/L)であった。
203 g of the powder B, 32 g of boehmite alumina (containing 22.4 g as alumina), and 265 g of an aqueous nitric acid solution were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry was attached to a cordierite-based monolithic carrier (120 cc, 400 cells / square inch), and excess slurry in the cells was removed with an air stream. The slurry attached to the carrier was dried, and then dried at 400 ° C. for 1 hour. Fired. This operation is performed twice, and the coat weight 200
g / L-supported catalyst was obtained. Pt loading is 40 g / c
f (1.41 g / L).

【0027】(実施例2)SiC粉末に代えてSi34
を用いた以外は、実施例1と同様の操作を繰り返し、本
例の排気ガス浄化用触媒を得た。
Example 2 Instead of SiC powder, Si 3 N 4
The same operation as in Example 1 was repeated, except that was used, to obtain an exhaust gas purifying catalyst of this example.

【0028】(実施例3)Yに代えてLaを添加した以
外は、実施例1と同様の操作を繰り返し、本例の排気ガ
ス浄化用触媒を得た。
Example 3 The same operation as in Example 1 was repeated, except that La was added instead of Y, to obtain an exhaust gas purifying catalyst of this example.

【0029】(実施例4)Yに代えてNdを添加した以
外は、実施例1と同様の操作を繰り返し、本例の排気ガ
ス浄化用触媒を得た。
Example 4 The same operation as in Example 1 was repeated, except that Nd was added instead of Y, to obtain an exhaust gas purifying catalyst of this example.

【0030】(実施例5)Yに代えてSmを添加した以
外は、実施例1と同様の操作を繰り返し、本例の排気ガ
ス浄化用触媒を得た。
Example 5 The same operation as in Example 1 was repeated, except that Sm was added instead of Y, to obtain an exhaust gas purifying catalyst of this example.

【0031】(実施例6)SiC粉末へのY添加量を5
モル%とした以外は、実施例1と同様の操作を繰り返
し、本例の排気ガス浄化用触媒を得た。
Example 6 The amount of Y added to SiC powder was 5
The same operation as in Example 1 was repeated, except that the mol% was set, to obtain an exhaust gas purifying catalyst of this example.

【0032】(実施例7)SiC粉末へのNd添加量を
10モル%とした以外は、実施例4と同様の操作を繰り
返し、本例の排気ガス浄化用触媒を得た。
Example 7 The same operation as in Example 4 was repeated, except that the amount of Nd added to the SiC powder was 10 mol%, to obtain an exhaust gas purifying catalyst of this example.

【0033】(実施例8)ベーマイトアルミナの代わり
に活性アルミナを総コート層量の10重量%となるよう
に用いた以外は、実施例1と同様の操作を繰り返し、本
例の排気ガス浄化用触媒を得た。
Example 8 The same operation as in Example 1 was repeated except that activated alumina was used in place of boehmite alumina so as to be 10% by weight of the total coat layer amount, and the exhaust gas purifying method of this example was repeated. A catalyst was obtained.

【0034】(実施例9)ベーマイトアルミナの代わり
にアルミナゾル用いて、アルミナ量が総コート層量の1
0重量%となるようにした以外は、実施例1と同様の操
作を繰り返し、本例の排気ガス浄化用触媒を得た。
Example 9 Alumina sol was used instead of boehmite alumina, and the amount of alumina was 1% of the total coat layer amount.
The same operation as in Example 1 was repeated except that the amount was 0% by weight, to obtain an exhaust gas purifying catalyst of this example.

【0035】(比較例1)Pt担持Y−SiC粉末Bを
使用せず、Pt担持アルミナ粉末(Pt濃度0.78重
量%)を203g用いて、触媒スラリー中にSiCを用
いない以外は、実施例1と同様の操作を繰り返し、本例
の排気ガス浄化用触媒を得た。
(Comparative Example 1) A Pt-supported Y-SiC powder B was not used, but 203 g of a Pt-supported alumina powder (Pt concentration 0.78% by weight) was used, and no SiC was used in the catalyst slurry. The same operation as in Example 1 was repeated to obtain an exhaust gas purifying catalyst of this example.

【0036】(比較例2)SiC粉末にYを添加しない
以外は、実施例1と同様の操作を繰り返し、本例の排気
ガス浄化用触媒を得た。
Comparative Example 2 The same operation as in Example 1 was repeated except that Y was not added to the SiC powder to obtain an exhaust gas purifying catalyst of this example.

【0037】(比較例3)Si34粉末にYを添加しな
い以外は、実施例2と同様の操作を繰り返し、本例の排
気ガス浄化用触媒を得た。
Comparative Example 3 The same operation as in Example 2 was repeated except that Y was not added to the Si 3 N 4 powder to obtain an exhaust gas purifying catalyst of this example.

【0038】(比較例4)SiCに対するYの添加量を
15モル%とした以外は、実施例1と同様の操作を繰り
返し、本例の排気ガス浄化用触媒を得た。
Comparative Example 4 The same operation as in Example 1 was repeated, except that the amount of Y added to SiC was 15 mol%, to obtain an exhaust gas purifying catalyst of this example.

【0039】上記実施例1〜9及び比較例1〜4で得ら
れた排気ガス浄化用触媒中における、貴金属量、基材及
びアルミナの含有量を表1に示す。
Table 1 shows the amounts of noble metals, base materials and alumina in the exhaust gas purifying catalysts obtained in Examples 1 to 9 and Comparative Examples 1 to 4.

【0040】[0040]

【表1】 [Table 1]

【0041】上記実施例1〜9及び比較例1〜4の排気
ガス浄化用触媒について、以下の条件で触媒活性評価を
行った。活性評価には、自動車の排気ガスを模したモデ
ルガスによる自動評価装置を使用した。 (耐久条件) エンジン排気量 4400cc 燃料 無鉛ガソリン 触媒入口ガス温度 750℃ 耐久時間 30時間 入口ガス組成 CO 0.5±0.1% O2 0.5±0.1% HC 約1100ppm NO 1300ppm CO2 15%
With respect to the exhaust gas purifying catalysts of Examples 1 to 9 and Comparative Examples 1 to 4, the catalytic activity was evaluated under the following conditions. For the activity evaluation, an automatic evaluation device using a model gas simulating the exhaust gas of an automobile was used. (Durability conditions) Engine displacement 4400cc Fuel unleaded gasoline Catalyst inlet gas temperature 750 ° C Durability time 30 hours Inlet gas composition CO 0.5 ± 0.1% O 2 0.5 ± 0.1% HC About 1100ppm NO 1300ppm CO 2 15%

【0042】 (評価条件:浄化性能) 総ガス流量 40 L/分 触媒入口温度 350℃ 保持時間 30分 空間速度 約20,000 /時間(触媒容量 120cc ) 入口ガス組成 平均空燃比18.0相当のモデルガス組成 CO 0.2% C36 5000ppmC NO 500ppm O2 6.0% CO2 10.0% H2O 10.0% N2 バランス A/F振幅 なし(Evaluation conditions: Purification performance) Total gas flow rate 40 L / min Catalyst inlet temperature 350 ° C. Holding time 30 minutes Space velocity About 20,000 / hour (catalyst capacity 120 cc) Inlet gas composition Average air-fuel ratio equivalent to 18.0 Model gas composition CO 0.2% C 3 H 6 5000 ppm C NO 500 ppm O 2 6.0% CO 2 10.0% H 2 O 10.0% N 2 balance A / F amplitude None

【0043】初期および耐久後の各排気ガス浄化用触媒
の浄化性能は、以下の数1により決定される。上記評価
条件にて活性評価を行い、NOxの平均転化率(%)で
表わし、その結果を表2に示す。
The purification performance of each exhaust gas purification catalyst at the initial stage and after the endurance is determined by the following equation (1). The activity was evaluated under the above-mentioned evaluation conditions, and expressed as an average conversion (%) of NOx. The results are shown in Table 2.

【0044】[0044]

【数1】 (Equation 1)

【0045】[0045]

【表2】 [Table 2]

【0046】表2より、比較例に比べて、実施例は触媒
活性が高いことが明かであり、本発明の効果を確認する
ことができた。
From Table 2, it is clear that the example has a higher catalytic activity than the comparative example, and the effect of the present invention could be confirmed.

【0047】[0047]

【発明の効果】以上説明してきたように、本発明によれ
ば、特定の希土類元素を含有するセラミックス成分を用
いることとしたため、従来のゼオライト系触媒よりも耐
久性が向上し、初期及び高温耐久後においても、リーン
雰囲気下での優れたNOx浄化性能を有する排気ガス浄
化用触媒及び排気ガス浄化方法を提供することができ
る。
As described above, according to the present invention, since the ceramic component containing a specific rare earth element is used, the durability is improved as compared with the conventional zeolite-based catalyst, and the initial and high-temperature durability are improved. Even later, it is possible to provide an exhaust gas purifying catalyst and an exhaust gas purifying method having excellent NOx purifying performance under a lean atmosphere.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 触媒成分担持層を有し、リーン雰囲気中
で窒素酸化物を有効に浄化できる一体構造型触媒におい
て、 触媒成分として、白金と、炭化珪素及び/又は窒化珪素
から成るセラミックス成分とを含有し、 上記セラミックス成分が、イットリウム、ランタン、ネ
オジウム及びサマリウムから成る群より選ばれた少なく
とも1種の希土類元素を含有することを特徴とする排気
ガス浄化用触媒。
An integrated catalyst having a catalyst component-supporting layer and capable of effectively purifying nitrogen oxides in a lean atmosphere, wherein platinum and a ceramic component comprising silicon carbide and / or silicon nitride are used as catalyst components. Wherein the ceramic component contains at least one rare earth element selected from the group consisting of yttrium, lanthanum, neodymium, and samarium.
【請求項2】 上記セラミックス成分に対する上記希土
類元素の含有量が、金属換算で1〜10モル%であるこ
とを特徴とする請求項1記載の排気ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the content of the rare earth element relative to the ceramic component is 1 to 10 mol% in terms of metal.
【請求項3】 更に、活性アルミナ、ベーマイトアルミ
ナ及びアルミナゾルから成る群より選ばれた少なくとも
1種のものを、上記触媒成分担持層の総重量当たりアル
ミナ換算で0.1〜20重量%含有することを特徴とす
る請求項1又は2記載の排気ガス浄化用触媒。
3. The catalyst component-containing layer further contains at least one member selected from the group consisting of activated alumina, boehmite alumina and alumina sol in an amount of 0.1 to 20% by weight in terms of alumina based on the total weight of the catalyst component-supporting layer. The exhaust gas purifying catalyst according to claim 1 or 2, wherein:
【請求項4】 炭化水素を含む還元性成分と、この還元
性成分を完全酸化するに必要十分な化学量論量よりも過
剰な酸素と、窒素酸化物とを含有する排気ガスを浄化す
るに当たり、 請求項1〜3のいずれか1つの項に記載の排気ガス浄化
用触媒を、上記排気ガスと接触させることを特徴とする
排気ガス浄化方法。
4. A method for purifying an exhaust gas containing a reducing component containing hydrocarbons, oxygen in excess of a stoichiometric amount necessary and sufficient to completely oxidize the reducing component, and nitrogen oxides. An exhaust gas purification method comprising: contacting the exhaust gas purification catalyst according to any one of claims 1 to 3 with the exhaust gas.
JP8250822A 1996-09-03 1996-09-03 Catalyst for purification of exhaust gas and method for purifying exhaust gas Pending JPH1076163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8250822A JPH1076163A (en) 1996-09-03 1996-09-03 Catalyst for purification of exhaust gas and method for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8250822A JPH1076163A (en) 1996-09-03 1996-09-03 Catalyst for purification of exhaust gas and method for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH1076163A true JPH1076163A (en) 1998-03-24

Family

ID=17213556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8250822A Pending JPH1076163A (en) 1996-09-03 1996-09-03 Catalyst for purification of exhaust gas and method for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH1076163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300312A (en) * 2000-04-25 2001-10-30 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300312A (en) * 2000-04-25 2001-10-30 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
JP4707672B2 (en) Exhaust gas purification catalyst
JP2002177781A (en) Exhaust gas cleaning catalyst
JPS63162043A (en) Catalyst for cleaning exhaust gas
KR19990022366A (en) Catalyst for exhaust gas purification and exhaust gas purification method
JPH10286462A (en) Catalyst of purifying exhaust gas
JP3297825B2 (en) Exhaust gas purification catalyst
JP4831753B2 (en) Exhaust gas purification catalyst
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH0547263B2 (en)
JP2578219B2 (en) Method for producing exhaust gas purifying catalyst
JPH09313938A (en) Catalyst for cleaning exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP4852595B2 (en) Exhaust gas purification catalyst
JPH06378A (en) Catalyst for purification of exhaust gas
JP2005087963A (en) Exhaust gas cleaning apparatus
JPH0578378B2 (en)
JP4382180B2 (en) Exhaust gas purification catalyst
JPH11123331A (en) Catalyst for cleaning exhaust gas
JPH0554381B2 (en)
JPH0523599A (en) Catalyst for decontaminating exhaust gas
JP2837864B2 (en) Exhaust gas purifying catalyst for purifying exhaust gas from internal combustion engines using alcohol as fuel
JPH1076163A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas