[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1074513A - Nickel hydroxide active material and manufacture thereof - Google Patents

Nickel hydroxide active material and manufacture thereof

Info

Publication number
JPH1074513A
JPH1074513A JP8250964A JP25096496A JPH1074513A JP H1074513 A JPH1074513 A JP H1074513A JP 8250964 A JP8250964 A JP 8250964A JP 25096496 A JP25096496 A JP 25096496A JP H1074513 A JPH1074513 A JP H1074513A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
active material
caf
compound
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8250964A
Other languages
Japanese (ja)
Inventor
Keiji Sato
恵二 佐藤
Kazuo Hosoya
一雄 細谷
Atsushi Mori
敦史 森
Koichi Kanbe
功一 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP8250964A priority Critical patent/JPH1074513A/en
Publication of JPH1074513A publication Critical patent/JPH1074513A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce drop in potential in high rate discharge and enhance charging efficiency at high temperature by containing powdery CaF 2 or calcium compound on the inside of nickel hydroxide particles so as to localize in the central part. SOLUTION: CaF2 or calcium compound particles are used as a nucleus, and a nickel hydroxide is crystallized and grown on the surfaces of the nucleus particles. Particle structure constituted by covering powdery CaF2 or calcium compound with nickel hydroxide is easily obtained without forming the calcium compound forming a resistance layer on the interface between a substrate and the nickel hydroxide. As a result, a nickel hydroxide active material containing the CaF2 or the calcium compound on the inside of nickel hydroxide particles so as to localize in the central part is obtained, the utilization factor is enhanced at the wide temperature range, and drop in potential at high rate discharge is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】本発明は、水酸化ニッケル活
物質およびその製造方法に関し、特に、二次電池用ニッ
ケル正極に用いられる水酸化ニッケル活物質の高温にお
ける充電効率改善、ハイレートでの放電電位改善および
過充電時の電極膨潤抑制のより優れた水酸化ニッケル活
物質とこれを有利に製造するための方法について提案す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel hydroxide active material and a method for producing the same, and more particularly to an improvement in charging efficiency of a nickel hydroxide active material used for a nickel positive electrode for a secondary battery at a high temperature, and a discharge potential at a high rate. A nickel hydroxide active material having improved and improved electrode swelling suppression during overcharge and a method for advantageously producing the same are proposed.

【0002】[0002]

【従来の技術】水酸化ニッケルは、種々の用途に使用さ
れる工業製品であるが、特にアルカリ電池用の非焼結式
ニッケル正極に使用されるものとしては、粒子形状が球
状でかつその粒度分布が狭いものが求められている。こ
れは、かかる水酸化ニッケル粒子を用いることにより、
上記ニッケル正極の活物質として担持体等に充填する場
合は該担持体の微孔から粒子が脱落せずしかも密に充填
することが可能になり、また活物質として導電剤と混合
してペースト状で用いる場合はその流動性等のペースト
性状が安定するので充填性、充填率が良好になる。した
がって、いずれの場合にも活物質の利用率が向上し、性
能の優れた電極とすることができるからである。しか
し、従来の方法で製造される水酸化ニッケルは、高温に
おける充電効率が低下し、利用率の低下を招くという欠
点がある。
2. Description of the Related Art Nickel hydroxide is an industrial product used for various applications. Particularly, for a non-sintered nickel positive electrode for an alkaline battery, the particle shape is spherical and its particle size is large. What has a narrow distribution is required. This is achieved by using such nickel hydroxide particles.
When the nickel positive electrode is filled into a carrier or the like as an active material, the particles do not fall off from the fine pores of the carrier and can be densely packed. In the case of using, the paste property such as fluidity is stabilized, so that the filling property and the filling rate are improved. Therefore, in each case, the utilization rate of the active material is improved, and an electrode having excellent performance can be obtained. However, nickel hydroxide produced by the conventional method has a drawback that the charging efficiency at a high temperature is reduced and the utilization rate is reduced.

【0003】従って、このような従来技術のうち、高温
充電効率をを改善する方法として酸素過電圧の大きいC
a化合物を、ペースト作成時に混合添加する方法(特開
平5−101825号公報)や水酸化ニッケルの粒子表面に被
覆添加する方法(特開平7−272722号公報)が提案され
ている。また、過充電時の電極膨潤を抑制する方法とし
て,ZnとCoを固溶することで、γ−NiOOHの生
成を抑制する方法(特開平7−77129 公報)が提案され
ている。
[0003] Therefore, among such prior arts, as a method of improving the high-temperature charging efficiency, C with a large oxygen overvoltage is used.
There has been proposed a method of mixing and adding the compound a at the time of preparing a paste (Japanese Patent Application Laid-Open No. 5-101825) and a method of coating and adding to the surface of nickel hydroxide particles (Japanese Patent Application Laid-Open No. 7-272722). Further, as a method of suppressing electrode swelling during overcharge, there has been proposed a method of suppressing the generation of γ-NiOOH by forming a solid solution of Zn and Co (Japanese Patent Laid-Open No. 7-77129).

【0004】[0004]

【発明が解決しようとする課題】従来方法で採用されて
いる水酸化ニッケル活物質にカルシウム添加する技術
は、確かに水酸化ニッケル活物質の酸素過電圧を上げ、
高温特性を向上させる効果をもつ。また、Zn,Coを
固溶させることでγ−NiOOHの生成を抑制し、電極
膨潤を防ぐ効果を持つ。
The technique of adding calcium to the nickel hydroxide active material employed in the conventional method certainly increases the oxygen overvoltage of the nickel hydroxide active material,
It has the effect of improving high temperature characteristics. Further, by forming a solid solution of Zn and Co, there is an effect of suppressing generation of γ-NiOOH and preventing electrode swelling.

【0005】しかしながら、特開平5−101825号公報や
特開平7−2727227 号公報にかかる提案では、添加した
Ca化合物が集電体Ni基板と水酸化ニッケルの間に介
在し、抵抗層となることになり,高率放電において放電
電位が低下し、利用率が低下するという問題があった。
However, in the proposals disclosed in JP-A-5-101825 and JP-A-7-2727227, the added Ca compound intervenes between the current collector Ni substrate and the nickel hydroxide to form a resistance layer. , There is a problem that the discharge potential decreases in the high-rate discharge and the utilization rate decreases.

【0006】さらに、上記特開平7−77129 号公報にか
かる提案では、Zn,Coの金属元素を、水酸化ニッケ
ル粒子を析出させると同時にその粒子中に固溶させる方
法、いわゆる共沈添加により、水酸化ニッケル粒子中に
含有させる方法を採用しているが、その効果を発揮する
ためには多量のZn,Coが必要である。このため、Z
n,Coが不純物として作用することになる。このこと
は、充填物単位重量当たりの放電容量を低下させること
になる。
Further, in the proposal of the above-mentioned Japanese Patent Application Laid-Open No. 7-77129, a method in which Zn and Co metal elements are precipitated and formed into a solid solution in nickel hydroxide particles at the same time as the so-called coprecipitation addition is used. Although a method of containing the particles in nickel hydroxide particles is employed, a large amount of Zn and Co is required to exhibit the effect. For this reason, Z
n and Co act as impurities. This reduces the discharge capacity per unit weight of the filling.

【0007】そこで本発明は、ハイレートで電位を低下
させることなく高温での充電効率を向上させることがで
きる水酸化ニッケル活物質の製造方法を開発し、これに
よって従来技術に比べて利用率および電極膨潤抑制をさ
らに一層向上させた水酸化ニッケル活物質を提供するこ
とを目的とする。
Accordingly, the present invention has developed a method for producing a nickel hydroxide active material capable of improving the charging efficiency at a high temperature without lowering the potential at a high rate. It is an object of the present invention to provide a nickel hydroxide active material with further improved swelling suppression.

【0008】[0008]

【課題を解決するための手段】発明者らは、上記目的の
実現に向け鋭意研究した結果、以下に示す内容を要旨構
成とする本発明を完成するに至った。すなわち、本発明
の水酸化ニッケル活物質は、粒状のCaF2 またはCa
化合物が水酸化ニッケル粒子内部の中央部よりに局在化
した状態で含有していることを特徴とする。また別の態
様として、本発明の水酸化ニッケル活物質は、前記水酸
化ニッケルの粒子内部に複数の粒状CaF2 またはCa
化合物を含有し、該CaF2 またはCa化合物が水酸化
ニッケル粒子内部の中央部よりに局在化した状態で含有
していることを特徴とする。ここで、前記CaF2 また
はCa化合物は,その平均粒子径が 0.1〜5μmで、そ
の添加量が水酸化ニッケルに対して 0.5〜3wt%である
ことが好ましい。また、前記水酸化ニッケルにMgおよ
び/またはFeが、好ましくはそれぞれ 0.1〜3.0 wt%
および0.01〜0.5 wt%固溶状態で添加されていることが
好ましい。さらに、前記CaF2 またはCa化合物なら
びにMgおよび/またはFeの水酸化ニッケルに対する
添加量が4wt%以下であることが好ましい。そして、こ
のような水酸化ニッケル活物質を有利に製造する方法と
して、本発明は、粒粒状のCaF2 またはCa化合物を
予め懸濁させた水溶液に、ニッケル塩水溶液、アンモニ
ウムイオン供給体および水酸化アルカリ水溶液を攪拌条
件の下で添加し、CaF2 またはCa化合物の粒子を核
として、その粒子表面に水酸化ニッケルを晶析し成長さ
せることにより、粒状のCaF2 またはCa化合物を、
成長した水酸化ニッケル粒子内部の中央部よりに局在化
した状態で含有させることを特徴とする水酸化ニッケル
活物質の製造方法を提案する。なお、前記ニッケル塩水
溶液には、マグネシウムイオン,鉄イオンのいずれか1
もしくはその両者を含む混合水溶液を添加することが好
ましい。さらに、かかる方法を採用するに当たっては、
前記CaF2 またはCa化合物は、その平均粒子径が
0.1〜5μmで、その添加量が水酸化ニッケルに対して
0.5 wt%であることが好ましい。
Means for Solving the Problems The inventors of the present invention have made intensive studies for realizing the above-mentioned object, and as a result, have completed the present invention having the following constitution as a summary. That is, the nickel hydroxide active material of the present invention contains granular CaF 2 or Ca
It is characterized in that the compound is contained in a state of being localized from the central portion inside the nickel hydroxide particles. In another aspect, the nickel hydroxide active material of the present invention comprises a plurality of particulate CaF 2 or Ca inside the nickel hydroxide particles.
A compound is characterized in that the CaF 2 or Ca compound is contained in a state of being localized from the central portion inside the nickel hydroxide particles. Here, the CaF 2 or Ca compound preferably has an average particle diameter of 0.1 to 5 μm and an addition amount of 0.5 to 3% by weight based on nickel hydroxide. In addition, Mg and / or Fe is preferably contained in the nickel hydroxide in an amount of preferably 0.1 to 3.0 wt%.
It is preferably added in a solid solution state of 0.01 to 0.5 wt%. Further, it is preferable that the amount of the CaF 2 or Ca compound, Mg and / or Fe added to nickel hydroxide is 4 wt% or less. As a method for advantageously producing such a nickel hydroxide active material, the present invention provides a nickel salt aqueous solution, an ammonium ion supplier and a hydroxide solution in an aqueous solution in which granular CaF 2 or a Ca compound is previously suspended. An alkaline aqueous solution is added under stirring conditions, and with the particles of CaF 2 or Ca compound as nuclei, nickel hydroxide is crystallized and grown on the particle surface, whereby granular CaF 2 or Ca compound is obtained.
The present invention proposes a method for producing a nickel hydroxide active material, characterized in that the nickel hydroxide active material is contained in a state localized from the central portion inside the grown nickel hydroxide particles. The nickel salt aqueous solution contains one of magnesium ions and iron ions.
Alternatively, it is preferable to add a mixed aqueous solution containing both of them. Furthermore, in adopting such a method,
The CaF 2 or Ca compound has an average particle size of
0.1-5 μm, the amount of addition is based on nickel hydroxide
It is preferably 0.5 wt%.

【0009】[0009]

【発明の実施の形態】本発明にかかる水酸化ニッケル活
物質の製造方法は、CaF2 またはCa化合物の粒子を
核とし、その核粒子の表面に水酸化ニッケルを晶析し成
長させる点に特徴がある。このような本発明の方法によ
れば、基板と水酸化ニッケルの界面に抵抗層となるCa
化合物を形成させることなく、簡易に、粒状のCaF2
またはCa化合物を水酸化ニッケルで包含してなる粒子
構造とすることができ、その結果、CaF2 またはCa
化合物を水酸化ニッケル粒子内部の中央部よりに局在化
した状態で含有する水酸化ニッケル活物質を得ることが
できる。したがって、本発明によれば、従来技術に比べ
て広い温度範囲において利用率をさらに一層向上させ、
高率放電での電位低下の少ない水酸化ニッケル活物質を
提供することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a nickel hydroxide active material according to the present invention is characterized in that particles of CaF 2 or a Ca compound are used as nuclei, and nickel hydroxide is crystallized and grown on the surfaces of the core particles. There is. According to such a method of the present invention, Ca serving as a resistance layer is provided at the interface between the substrate and nickel hydroxide.
It is easy to form granular CaF 2 without forming a compound.
Alternatively, a particle structure in which a Ca compound is included in nickel hydroxide can be used, so that CaF 2 or Ca
It is possible to obtain a nickel hydroxide active material containing the compound in a state where the compound is localized at a central portion inside the nickel hydroxide particles. Therefore, according to the present invention, the utilization factor is further improved over a wide temperature range as compared with the prior art,
It is possible to provide a nickel hydroxide active material with a small decrease in potential in high-rate discharge.

【0010】このような本発明において、水酸化ニッケ
ルを晶析させる核粒子としてCaF2 またはCa(O
H)2 やCaSO4 などのCa化合物を用いる。この理
由は、CaF2 またはCa化合物は、ニッケル塩水溶液
に溶解析出してNi−Ca化合物を形成させることがないか
らである。従って、本発明においてこのようなCaF2
またはCa化合物のうち、特に、不溶性のCaF2 が最
も好ましい。
In the present invention, as the core particles for crystallizing nickel hydroxide, CaF 2 or Ca (O
H) Ca compounds such as 2 and CaSO 4 are used. The reason for this is that the CaF 2 or Ca compound does not dissolve and precipitate in the nickel salt aqueous solution to form the Ni—Ca compound. Therefore, in the present invention, such CaF 2
Or, among Ca compounds, particularly insoluble CaF 2 is most preferable.

【0011】本発明において、CaF2 またはCa化合
物は、その粒子径を 0.1〜5μmとすることが望まし
い。この理由は、 0.1μm未満では、懸濁液中でCaF
2 またはCa化合物が凝集し、水酸化ニッケル内部に均
一に内蔵することが困難になるからであり、一方、5μ
mを超えると、水酸化ニッケル粒子内部に内蔵するのが
困難になり、水酸化ニッケルが緻密化しにくくなるから
である。
In the present invention, the CaF 2 or Ca compound preferably has a particle size of 0.1 to 5 μm. The reason for this is that below 0.1 μm, CaF
This is because the 2 or Ca compound aggregates and it is difficult to uniformly incorporate the compound in the nickel hydroxide.
When m exceeds m, it is difficult to incorporate the particles in the nickel hydroxide particles, and it is difficult for the nickel hydroxide to be densified.

【0012】また本発明において、核として添加するC
aF2 またはCa化合物の添加量は水酸化ニッケル粉末
重量に対して 0.5wt%〜3wt%であることが望ましい。
この理由は、添加量が少ないと十分な効果が得られず、
添加量が多すぎるとエネルギー密度が低下するからであ
る。
Further, in the present invention, C added as a nucleus
amount of aF 2 or Ca compound is preferably a 0.5 wt% to 3 wt% relative to the nickel hydroxide powder weight.
The reason is that if the added amount is small, sufficient effect cannot be obtained,
This is because if the amount is too large, the energy density is reduced.

【0013】本発明において、水酸化ニッケル活物質
は、その形状を球状とすることが望ましい。その理由
は、球状の水酸化ニッケル活物質を用いると、充填性や
充填率が良好となり、その結果、活物質としての利用率
が向上するからである。
In the present invention, the nickel hydroxide active material preferably has a spherical shape. The reason is that when a spherical nickel hydroxide active material is used, the filling property and the filling rate are improved, and as a result, the utilization rate as the active material is improved.

【0014】本発明の方法において、ニッケル塩水溶液
としては、硝酸ニッケルや硫酸ニッケル、塩化ニッケル
等の各種水溶性ニッケル塩の水溶液を用いることができ
る。このニッケル塩水溶液の濃度としては、通常 0.5〜
3 mol/l程度とするのが適当である。
In the method of the present invention, an aqueous solution of various water-soluble nickel salts such as nickel nitrate, nickel sulfate and nickel chloride can be used as the nickel salt aqueous solution. The concentration of this nickel salt aqueous solution is usually 0.5 to
It is appropriate to use about 3 mol / l.

【0015】水酸化アルカリ水溶液としては、水酸化ナ
トリウムや水酸化カリウム等を用いることができる。こ
の水酸化アルカリ水溶液は、通常4〜8 mol/l程度の
水溶液として使用するのがよい。
As the aqueous alkali hydroxide solution, sodium hydroxide, potassium hydroxide or the like can be used. This aqueous alkali hydroxide solution is usually preferably used as an aqueous solution of about 4 to 8 mol / l.

【0016】アンモニウムイオン供給体としては、アン
モニア水やアンモニアガス、硝酸アンモニウム等のアン
モニウム塩の水溶液等を用いることができる。アンモニ
ア水の場合は、28重量%程度の濃度のものを使用するの
が適当である。また、アンモニウム塩の水溶液の場合
は、通常16 mol/l程度の濃度のものを使用するのが適
当である。
As the ammonium ion supplier, aqueous ammonia, ammonia gas, or an aqueous solution of an ammonium salt such as ammonium nitrate can be used. In the case of aqueous ammonia, it is appropriate to use one having a concentration of about 28% by weight. In the case of an aqueous solution of an ammonium salt, it is usually appropriate to use a solution having a concentration of about 16 mol / l.

【0017】なお、これらの反応系への供給方法は、充
分な攪拌下に行われ、その添加速度は、反応槽の容量、
形状等により変動するが、反応系での滞留時間が通常8
〜30時間となるように適宜調節するのが良い。
The method of supplying the reaction system is carried out with sufficient stirring, and the rate of addition depends on the capacity of the reaction vessel,
The residence time in the reaction system is usually 8
It is good to adjust appropriately so that it may be up to 30 hours.

【0018】また、この際の反応系の温度は、40〜50℃
の範囲の一定値に保持される。通常、所定値±2℃程度
に維持するのが良い。同じく、反応系のpHは、11〜12
の範囲の一定値に保持される。通常、所定値±0.1 程度
に維持するのが良い。
The temperature of the reaction system at this time is 40 to 50 ° C.
Is kept constant. Usually, it is preferable to maintain the temperature at a predetermined value of about ± 2 ° C. Similarly, the pH of the reaction system is 11-12
Is kept constant. Normally, it is preferable to maintain the value at about ± 0.1.

【0019】[0019]

【実施例】【Example】

(実施例1)2lの反応層に、平均粒径 2.2μm のフッ化
カルシウム粉末35gを水に分散させた状態で入れて攪拌
し、次いで、所定濃度に調整した硫酸ニッケル水溶液
と、28重量%のアンモニア水および6mol/lの水酸化ナ
トリウム水溶液を一定速度で供給し、pHを一定にして
反応を行い、フッ化カルシウムを種結晶として水酸化ニ
ッケルを晶析し成長させた。反応開始後10時間後に反応
を停止し、得られた水酸化ニッケル活物質を洗浄し、乾
燥して試料Aを得た。また、硫酸ニッケル水溶液に、硫
酸マグネシウム水溶液、硫酸鉄水溶液の混合溶液を添加
する以外は同様な方法により活物質を製造し、試料Bを
得た。
Example 1 35 g of calcium fluoride powder having an average particle size of 2.2 μm was dispersed in water and stirred in a 2 liter reaction layer, and then a nickel sulfate aqueous solution adjusted to a predetermined concentration was mixed with 28% by weight. Of ammonia water and a 6 mol / l aqueous solution of sodium hydroxide were supplied at a constant rate to carry out a reaction at a constant pH, and nickel hydroxide was crystallized and grown using calcium fluoride as a seed crystal. The reaction was stopped 10 hours after the start of the reaction, and the obtained nickel hydroxide active material was washed and dried to obtain a sample A. An active material was produced in the same manner as described above except that a mixed solution of an aqueous solution of magnesium sulfate and an aqueous solution of iron sulfate was added to the aqueous solution of nickel sulfate to obtain a sample B.

【0020】得られた水酸化ニッケル活物質(試料A)
の平均粒径は7μmであり、タップ密度は 2.0g/mlで
あった。この水酸化ニッケル活物質は、活物質中の水酸
化ニッケルに対して1.6 wt%の割合でフッ化カルシウム
を含有し、その粒子の断面をEDSにより線分析したと
ころ、図1(a) に示すように、NiはCaF2 粒子を包
含する形で存在しており、水酸化ニッケル粒子の内部に
複数個のフッ化カルシウムの粒子が取り込まれている様
子が確認された。また、Bの試料の水酸化ニッケル活物
質は、1wt%のマグネシウムと 0.1wt%の鉄が固溶状態
のものであった。
The obtained nickel hydroxide active material (sample A)
Had an average particle size of 7 μm and a tap density of 2.0 g / ml. The nickel hydroxide active material contained 1.6% by weight of calcium fluoride with respect to the nickel hydroxide in the active material. The cross section of the particles was subjected to line analysis by EDS, and as shown in FIG. As described above, Ni was present in a form including CaF 2 particles, and it was confirmed that a plurality of calcium fluoride particles were incorporated into the nickel hydroxide particles. The nickel hydroxide active material of the sample B had a solid solution state of 1 wt% of magnesium and 0.1 wt% of iron.

【0021】この水酸化ニッケル活物質 (試料A,B)
に水とCoOを5wt%加えてペースト状にし、多孔度95%
の発泡Ni基板に充填し、100 ℃で1時間乾燥したのちに
加圧し、ニッケル正極を得た。得られたニッケル正極を
MH合金の負極を対極として電池を組み立て、この電池
の 0.2C,3C、45℃放電における正極利用率(活物質利
用率)および3C放電における放電位置を測定した。その
結果を表1に示す。
This nickel hydroxide active material (samples A and B)
5% by weight of water and CoO to make paste, porosity 95%
And dried at 100 ° C. for 1 hour and then pressed to obtain a nickel positive electrode. A battery was assembled using the obtained nickel positive electrode as a negative electrode of an MH alloy as a counter electrode, and the positive electrode utilization rate (active material utilization rate) at 0.2 C, 3 C and 45 ° C. discharge and the discharge position at 3 C discharge were measured. Table 1 shows the results.

【0022】(比較例)比較例として、カルシウム等の
添加物のない水酸化ニッケル活物質(試料C)、Ca無
添加で1重量部のMgと 0.1重量部のFeから成る水酸
化ニッケル活物質(試料D),Ca無添加で 1重量部の
Mgと 0.1重量部のFeから成る水酸化ニッケルに 1.6
wt%のCaF2 粉末を混合した水酸化ニッケル活物質
(試料E)および1重量部のMgと0.1 重量部のFeか
ら成る水酸化ニッケルの粒子表面に1.6wt%のCa(O
H)2 を析出させた水酸化ニッケル活物質(試料F)を
作製し、それぞれの水酸化ニッケル活物質にCoOと水
を加えて上記実施例と同様に正極を作成して電池を組み
立て、各電池の 25 ℃・0.2C、25℃・3C、45℃・0.2C充
放電における正極利用率(活物質利用率)および3C放電
における放電位置を測定した。これらの結果を表1に併
せて示す。なお、利用率は以下の式で定義した。
Comparative Example As a comparative example, a nickel hydroxide active material without any additive such as calcium (sample C), a nickel hydroxide active material comprising 1 part by weight of Mg and 0.1 part by weight of Fe without addition of Ca (Sample D) Without adding Ca, 1.6 parts by weight of nickel hydroxide consisting of 1 part by weight of Mg and 0.1 part by weight of Fe
Nickel hydroxide active material (Sample E) mixed with CaF 2 powder of 1 wt% and 1.6 wt% of Ca (O
H) A nickel hydroxide active material (sample F) on which 2 was precipitated was prepared, CoO and water were added to each nickel hydroxide active material, a positive electrode was prepared in the same manner as in the above example, and a battery was assembled. The positive electrode utilization rate (active material utilization rate) of the battery at 25 ° C / 0.2C, 25 ° C / 3C, 45 ° C / 0.2C charge / discharge and the discharge position at 3C discharge were measured. The results are shown in Table 1. The utilization rate was defined by the following equation.

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示す結果から明らかなように、カル
シウム化合物を含まない試料(BおよびC)は高温での
正極利用率が低い。またマグネシウムや鉄を含む試料C
は無添加の試料Bよりも放電電位が30mV以上向上し
た。
As is clear from the results shown in Table 1, the samples (B and C) containing no calcium compound have a low positive electrode utilization at high temperatures. Sample C containing magnesium and iron
The discharge potential was improved by 30 mV or more as compared with the sample B without addition.

【0025】特に、表1に示す結果から明らかなよう
に、水酸化ニッケル粒子内部にフッ化カルシウムを添加
含有させた試料A, Bと、単に水酸化ニッケルにフッ化
カルシウムを添加混合した試料Eや,粒子表面に水酸化
カルシウムを析出させた試料Fと比較すると、本発明に
かかるA,Bの方が高い放電電位とハイレートでの高利
用率が得られた。このことは、水酸化ニッケル粒子表面
にCa化合物が存在することが、ハイレートでの放電電
位が低下する原因になっていることを示しており、水酸
化ニッケル粒子内部にフッ化カルシウムを内蔵させるこ
とで、高温での高利用率を維持したまま、ハイレートで
の放電電位を改善することができる。
In particular, as apparent from the results shown in Table 1, Samples A and B in which calcium fluoride was added and contained in nickel hydroxide particles and Sample E in which calcium fluoride was simply added to nickel hydroxide and mixed. In comparison with Sample F in which calcium hydroxide was precipitated on the particle surface, A and B according to the present invention obtained higher discharge potential and higher utilization at a high rate. This indicates that the presence of the Ca compound on the surface of the nickel hydroxide particles causes a decrease in the discharge potential at a high rate, and that calcium fluoride is incorporated inside the nickel hydroxide particles. Thus, the discharge potential at a high rate can be improved while maintaining a high utilization rate at a high temperature.

【0026】次に、実施例において、水酸化ニッケルの
内部に存在させるフッ化カルシウムおよび固溶させるマ
グネシウム,鉄の最適量を調べるために、各添加物量を
変えた水酸化ニッケル活物質(試料G〜L)を作製し、
それぞれの水酸化ニッケル活物質にCoOと水を加えて
上記実施例と同様に正極を作成して電池を組み立て、各
電池の25℃・0.2C、25℃・3C、45℃・0.2C充放電におけ
る正極利用率(活物質利用率)および3C放電における放
電電位を測定した。その結果を表2に示す。
Next, in the examples, in order to examine the optimum amounts of calcium fluoride and solid solution magnesium and iron present in the nickel hydroxide, a nickel hydroxide active material (sample G ~ L), and
CoO and water were added to each nickel hydroxide active material to form a positive electrode in the same manner as in the above example, and batteries were assembled. Each battery was charged and discharged at 25 ° C / 0.2C, 25 ° C / 3C, 45 ° C / 0.2C. The positive electrode utilization rate (active material utilization rate) and the discharge potential in 3C discharge were measured. Table 2 shows the results.

【0027】[0027]

【表2】 [Table 2]

【0028】この表2に示す結果から明らかなように、
水酸化ニッケル活物質の正極利用率は種晶とするフッ化
カルシウムの含有量が2wt%までは含有量と共に向上
し、2wt%を超えると減少する。また同様に、水酸化ニ
ッケル活物質の正極利用率は水酸化ニッケルに固溶する
マグネシウムの含有量が1wt%までは含有量と共に向上
し、2wt%以上になると減少する。また、水酸化ニッケ
ルに固溶する鉄の含有量が少ないほど正極利用率は向上
する。水酸化ニッケルの種結晶として添加するフッ化カ
ルシウムおよび固溶するマグネシウム、鉄の量が多過ぎ
ると、正極活物質に占める水酸化ニッケルの割合が減少
することになり、正極の容量密度は減少する。
As is clear from the results shown in Table 2,
The utilization rate of the positive electrode of the nickel hydroxide active material increases with the content of calcium fluoride as a seed crystal up to 2% by weight, and decreases when the content exceeds 2% by weight. Similarly, the utilization rate of the positive electrode of the nickel hydroxide active material increases with the content of magnesium dissolved in nickel hydroxide up to 1 wt%, and decreases when the content exceeds 2 wt%. Further, as the content of iron dissolved in nickel hydroxide is smaller, the utilization rate of the positive electrode is improved. If the amount of calcium fluoride and solid solution magnesium and iron added as seed crystals of nickel hydroxide is too large, the proportion of nickel hydroxide in the positive electrode active material will decrease, and the capacity density of the positive electrode will decrease .

【0029】また、表2に示す結果から明らかなよう
に、水酸化ニッケル活物質のハイレートでの放電電位は
含有するマグネシウム、鉄の量に比例し増加する。
As is clear from the results shown in Table 2, the discharge potential of the nickel hydroxide active material at a high rate increases in proportion to the amount of magnesium and iron contained.

【0030】次に,電極膨潤抑制効果を見るため、Zn
4.7wt%,Co 0.7wt%を固溶させた試料Mと試料B
〜Lとを用い,それぞれの水酸化ニッケル活物質に、C
oOと水を加えて上記実施例と同様に正極を作成して電
池を組み立て、試験前の電極の厚みと 400%過充電試験
後の電極の厚みを測定し、各電極の膨張率を以下の式よ
り求めた。その結果を表3に示す。
Next, to see the effect of suppressing electrode swelling, Zn
Sample M and Sample B in which 4.7 wt% and Co 0.7 wt% are dissolved.
~ L, and the nickel hydroxide active material is C
A positive electrode was prepared in the same manner as in the above example by adding oO and water, and a battery was assembled. The thickness of the electrode before the test and the thickness of the electrode after the 400% overcharge test were measured. It was calculated from the formula. Table 3 shows the results.

【0031】[0031]

【表3】 [Table 3]

【0032】表3に示す結果から明らかなように、添加
物のない試料CおよびCa無添加である試料Dの電極膨
張率は,本発明の試料(B,G〜L)に比較して非常に
大きかった。また、マグネシウムおよび鉄添加量の増加
とともに、電極膨潤抑制効果は向上していた。また、本
発明で作成した試料は、Zn、Coを固溶した試料Mと
比較し、少ない添加量で電極の膨潤を抑制することがで
きる。
As is evident from the results shown in Table 3, the electrode expansion coefficients of the sample C without the additive and the sample D without the Ca were significantly higher than those of the samples (B, G to L) of the present invention. It was big. In addition, the electrode swelling suppressing effect was improved with an increase in the amount of added magnesium and iron. In addition, the sample prepared according to the present invention can suppress swelling of the electrode with a small amount of addition as compared with the sample M in which Zn and Co are dissolved.

【0033】[0033]

【発明の効果】以上説明したように本発明の方法によれ
ば、基板と水酸化ニッケルの界面に抵抗層となるCa化
合物を形成させることなく、簡易に粒状のCaF2 また
はCa化合物を水酸化ニッケルで包含してなる粒子構造
とすることができ、その結果、CaF2 またはCa化合
物を水酸化ニッケル粒子内部の中央部よりに局在化した
状態で含有する水酸化ニッケル活物質を得ることがで
き、従来技術に比べて広い温度範囲において利用率をさ
らに一層向上させ、高率放電での電位低下の少ない水酸
化ニッケル活物質を提供することができる。また、上記
水酸化ニッケルにMgおよびFeがそれぞれ 0.1〜3.0
wt%および0.01〜0.5 wt%固溶状態で添加されているこ
とにより、ハイレートでの放電電位を向上し、従来技術
よりも少ない添加物量で電極膨潤を抑制した高エネルギ
ー密度の水酸化ニッケルを提供することができる。
As described above, according to the method of the present invention, a granular CaF 2 or Ca compound can be easily hydroxylated without forming a Ca compound serving as a resistance layer at the interface between the substrate and nickel hydroxide. It is possible to obtain a nickel hydroxide-containing active material containing CaF 2 or a Ca compound in a localized state from the central portion inside the nickel hydroxide particles. As a result, it is possible to provide a nickel hydroxide active material with a further improved utilization factor over a wide temperature range as compared with the prior art, and with a small decrease in potential at high-rate discharge. Further, Mg and Fe are each 0.1 to 3.0 in the nickel hydroxide.
High energy density nickel hydroxide with improved discharge potential at high rates and reduced electrode swelling with less additive than conventional technology by being added in a solid solution state of wt% and 0.01-0.5 wt% can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる水酸化ニッケル活物質の粒子構
造を示す顕微鏡写真であり、(a) はニッケルの線分析結
果、(b) はカルシウムの線分析結果を示す。
FIG. 1 is a micrograph showing the particle structure of a nickel hydroxide active material according to the present invention, wherein (a) shows the results of a line analysis of nickel and (b) shows the results of a line analysis of calcium.

フロントページの続き (72)発明者 神戸 功一 東京都中央区日本橋小網町8番4号 日本 重化学工業株式会社内Continued on the front page (72) Koichi Kobe, Inventor 8-4 Koamicho, Nihonbashi, Chuo-ku, Tokyo Inside Japan Heavy Chemical Industry Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 粒状のCaF2 またはCa化合物が水酸
化ニッケル粒子内部の中央部よりに局在化した状態で含
有していることを特徴とする水酸化ニッケル活物質。
1. A nickel hydroxide active material characterized in that it contains granular CaF 2 or a Ca compound in a localized state from the central portion inside the nickel hydroxide particles.
【請求項2】 前記水酸化ニッケルの粒子内部に複数の
粒状CaF2 またはCa化合物を含有し、該CaF2
たはCa化合物が水酸化ニッケル粒子内部の中央部より
に局在化した状態で含有していることを特徴とする水酸
化ニッケル活物質。
2. A plurality of particulate CaF 2 or Ca compounds are contained inside the nickel hydroxide particles, and the CaF 2 or Ca compounds are contained in a state localized at a central portion inside the nickel hydroxide particles. A nickel hydroxide active material, characterized in that:
【請求項3】 前記CaF2 またはCa化合物は,その
平均粒子径が 0.1〜5μmで、その添加量が水酸化ニッ
ケルに対して 0.5〜3wt%である請求項1または2に記
載の水酸化ニッケル活物質。
3. The nickel hydroxide according to claim 1, wherein the CaF 2 or Ca compound has an average particle size of 0.1 to 5 μm, and an amount of the CaF 2 or Ca compound is 0.5 to 3 wt% based on the nickel hydroxide. Active material.
【請求項4】 前記水酸化ニッケルにMgおよび/また
はFeがそれぞれ0.1〜3.0 wt%および0.01〜0.5 wt%
固溶状態で添加されていることを特徴とする請求項1〜
3のいずれかに記載の水酸化ニッケル活物質。
4. The nickel hydroxide contains 0.1 to 3.0 wt% and 0.01 to 0.5 wt% of Mg and / or Fe, respectively.
The solid solution is added in a state of claim 1.
3. The nickel hydroxide active material according to any one of 3.
【請求項5】 前記CaF2 またはCa化合物ならびに
Mgおよび/またはFeの水酸化ニッケルに対する添加
量が4wt%以下である請求項1〜4のいずれか1に記載
の水酸化ニッケル活物質。
5. The nickel hydroxide active material according to claim 1, wherein the amount of the CaF 2 or Ca compound, Mg and / or Fe added to nickel hydroxide is 4 wt% or less.
【請求項6】 粒状のCaF2 またはCa化合物を予め
懸濁させた水溶液に、ニッケル塩水溶液、アンモニウム
イオン供給体および水酸化アルカリ水溶液を攪拌条件の
下で添加し、CaF2 またはCa化合物の粒子を核とし
て、その粒子表面に水酸化ニッケルを晶析し成長させる
ことにより、粒状のCaF2 またはCa化合物を、成長
した水酸化ニッケル粒子内部の中央部よりに局在化した
状態で含有させることを特徴とする水酸化ニッケル活物
質の製造方法。
6. An aqueous nickel salt solution, an ammonium ion donor and an aqueous alkali hydroxide solution are added to an aqueous solution in which granular CaF 2 or a Ca compound is suspended in advance, and the CaF 2 or Ca compound particles are added. Nuclei are used to crystallize and grow nickel hydroxide on the surface of the particles, so that granular CaF 2 or a Ca compound is contained in a state localized from the central portion inside the grown nickel hydroxide particles. A method for producing a nickel hydroxide active material, comprising:
【請求項7】 前記ニッケル塩水溶液にマグネシウムイ
オン,鉄イオンのいずれか1もしくはその両者を含む混
合水溶液を添加することを特徴とする請求項6に記載の
水酸化ニッケル活物質の製造方法。
7. The method for producing a nickel hydroxide active material according to claim 6, wherein an aqueous solution containing one or both of magnesium ions and iron ions is added to the aqueous nickel salt solution.
【請求項8】 前記CaF2 またはCa化合物は、その
平均粒子径が 0.1〜5μmで、その添加量が水酸化ニッ
ケルに対して 0.5〜3wt%である請求項6に記載の水酸
化ニッケル活物質。
8. The nickel hydroxide active material according to claim 6, wherein the CaF 2 or Ca compound has an average particle size of 0.1 to 5 μm, and an amount of the CaF 2 or Ca compound is 0.5 to 3% by weight based on the nickel hydroxide. .
JP8250964A 1996-09-02 1996-09-02 Nickel hydroxide active material and manufacture thereof Pending JPH1074513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8250964A JPH1074513A (en) 1996-09-02 1996-09-02 Nickel hydroxide active material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8250964A JPH1074513A (en) 1996-09-02 1996-09-02 Nickel hydroxide active material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1074513A true JPH1074513A (en) 1998-03-17

Family

ID=17215647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8250964A Pending JPH1074513A (en) 1996-09-02 1996-09-02 Nickel hydroxide active material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1074513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214210A (en) * 1998-08-17 2004-07-29 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214210A (en) * 1998-08-17 2004-07-29 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4848384B2 (en) High density cobalt manganese coprecipitated nickel hydroxide and process for producing the same
JP2002201028A (en) High density nickel hydroxide coprecipitated with cobalt and manganese, and method for producing the same
US7585435B2 (en) High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
CN102239583A (en) A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
CN113823779B (en) Radial nickel-based precursor and preparation method thereof
JP2001106534A (en) Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material
EP0727834B1 (en) Non-sintered nickel electrode for alkaline storage cell
JPH0230061A (en) Nickel electrode active material, and nickel electrode and alkaline battery using same
US5840269A (en) Method of preparing a double layered nickel hydroxide active material
JP3656353B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JPH1074513A (en) Nickel hydroxide active material and manufacture thereof
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
CN113437260B (en) Single crystal battery anode material and preparation method thereof
CN115504528A (en) Multi-element precursor, synthesis method thereof, positive electrode material and lithium ion battery
JPH1097856A (en) Nickel hydroxide for alkaline storage battery and manufacture thereof
JP3877179B2 (en) Nickel positive electrode for alkaline storage battery
JP3367152B2 (en) Method for producing nickel hydroxide powder coated with cobalt hydroxide
US6015538A (en) Methods for doping and coating nickel hydroxide
JP3415364B2 (en) Nickel hydroxide coated with α-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JP3609231B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JP2010159180A (en) Method for producing agglomerated crystal particle useful as nickel positive electrode active material
JP2835282B2 (en) Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP4212129B2 (en) Nickel electrode for alkaline storage battery and method for producing the same