[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1074510A - Manufacture of hydrogen absorbing alloy for alkali storage battery - Google Patents

Manufacture of hydrogen absorbing alloy for alkali storage battery

Info

Publication number
JPH1074510A
JPH1074510A JP8304598A JP30459896A JPH1074510A JP H1074510 A JPH1074510 A JP H1074510A JP 8304598 A JP8304598 A JP 8304598A JP 30459896 A JP30459896 A JP 30459896A JP H1074510 A JPH1074510 A JP H1074510A
Authority
JP
Japan
Prior art keywords
solution
alloy
treatment liquid
hydrogen storage
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8304598A
Other languages
Japanese (ja)
Other versions
JP3433031B2 (en
Inventor
Tadashi Ise
忠司 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP30459896A priority Critical patent/JP3433031B2/en
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to EP97927419A priority patent/EP0945907B1/en
Priority to DE69736393T priority patent/DE69736393T2/en
Priority to CNB971972249A priority patent/CN1179434C/en
Priority to PCT/JP1997/002146 priority patent/WO1997050135A1/en
Priority to US09/214,111 priority patent/US6255018B1/en
Priority to EP06076209A priority patent/EP1713139A1/en
Priority to KR1019980710482A priority patent/KR100305176B1/en
Publication of JPH1074510A publication Critical patent/JPH1074510A/en
Application granted granted Critical
Publication of JP3433031B2 publication Critical patent/JP3433031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish the activating condition of a hydrogen absorbing alloy for an alkali storage battery for reducing the initial charge inner pressure of the battery of hydrogen absorbing alloy electrode and providing excellent high-efficiency discharge characteristic, low-temperature discharge characteristic and cycle characteristic. SOLUTION: A hydrogen absorbing alloy is dipped in metal ion containing acidic treatment liquid with an initial pH of 0.5-3.0 for cleaning. At a when the treatment liquid pH is increased to be 4-5, metal ion containing alkali solution is put in the treatment liquid so that the treatment liquid pH can be increased to be at least 7 at a time for alloy activation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
水素吸蔵合金の製造方法に関し、詳しくは水素吸蔵合金
の酸処理方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy for an alkaline storage battery, and more particularly to an improvement in an acid treatment method for a hydrogen storage alloy.

【0002】[0002]

【従来の技術】水素吸蔵合金を負極活物質として使用す
るニッケル・水素蓄電池では、水素吸蔵合金の活性度の
優劣により電池性能が左右される。このため、この種の
蓄電池では、粉砕し微細化した水素吸蔵合金粉末が用い
られる。微細な水素吸蔵合金粉末であると、電気化学反
応に関与する反応面積が大きくなり、また電極基板への
充填密度が高まるので、高エネルギー密度化が図り易
い。
2. Description of the Related Art In a nickel-metal hydride storage battery using a hydrogen storage alloy as a negative electrode active material, the battery performance is affected by the degree of activity of the hydrogen storage alloy. For this reason, in this type of storage battery, hydrogen storage alloy powder that has been pulverized and refined is used. When the hydrogen storage alloy powder is fine, the reaction area involved in the electrochemical reaction increases, and the packing density of the electrode substrate increases, so that high energy density can be easily achieved.

【0003】しかし、水素吸蔵合金は極めて活性な物質
であり、粉砕時や貯蔵時に酸化され表面に酸化皮膜を形
成する。この酸化被膜は、合金の電気導電性を低下させ
るとともに、電気化学的反応性を劣化させる。このた
め、合金の電気化学的活性を回復させるための方法が種
々提案され、実施されている。
However, a hydrogen storage alloy is an extremely active substance, and is oxidized during pulverization or storage to form an oxide film on the surface. This oxide film lowers the electrical conductivity of the alloy and deteriorates the electrochemical reactivity. For this reason, various methods for restoring the electrochemical activity of the alloy have been proposed and implemented.

【0004】その中の一つに水素吸蔵合金の表面を酸性
水溶液で表面処理する酸処理法(特開平4−17905
5号公報、特開平7−73878号公報、特開平7−1
53460号公報等)がある。この酸処理法は、処理操
作が簡単でかつ酸化皮膜等の除去効果に優れるという特
徴を有する。よって、この方法を適用すれば、水素吸蔵
合金の電気化学的活性を簡便に回復させることができ
る。しかしながら、従来の酸処理法は、水素吸蔵合金電
極の低温放電特性やサイクル特性を向上させることがで
きるものの、電池初期充電時における電池内圧を上昇さ
せるという問題がある。
One of the methods is an acid treatment method in which the surface of a hydrogen storage alloy is surface-treated with an acidic aqueous solution (Japanese Patent Laid-Open No. Hei 4-17905).
No. 5, JP-A-7-73878, JP-A 7-1
No. 53460). This acid treatment method is characterized in that the treatment operation is simple and the effect of removing an oxide film or the like is excellent. Therefore, if this method is applied, the electrochemical activity of the hydrogen storage alloy can be easily recovered. However, although the conventional acid treatment method can improve the low-temperature discharge characteristics and cycle characteristics of the hydrogen storage alloy electrode, it has a problem in that the internal pressure of the battery during the initial charge of the battery is increased.

【0005】[0005]

【発明が解決しようとする課題】本発明は、水素吸蔵合
金を酸性溶液で処理する酸処理法において、負極活物質
として水素吸蔵合金を用いたアルカリ蓄電池の電池初期
充電内圧を低減でき、かつ低温放電特性、高率放電特性
およびサイクル特性を向上させることのできる合金処理
条件を確立することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to an acid treatment method for treating a hydrogen storage alloy with an acidic solution, in which the initial charge internal pressure of an alkaline storage battery using a hydrogen storage alloy as a negative electrode active material can be reduced and the temperature can be reduced. An object of the present invention is to establish alloy processing conditions that can improve discharge characteristics, high-rate discharge characteristics, and cycle characteristics.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次の構成を有する。請求項1のアルカリ蓄
電池用水素吸蔵合金の製造方法は、水素吸蔵合金を初期
pHが0.5〜3.0の酸性処理液に浸漬し、当該水素
吸蔵合金の浸漬された処理液のpHが5に上昇する前
に、当該処理液にアルカリ溶液を投入して処理液pHの
上昇を加速することを内容とする合金活性化処理工程を
備えることを特徴とする。
To solve the above-mentioned problems, the present invention has the following arrangement. In the method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 1, the hydrogen storage alloy is immersed in an acidic treatment liquid having an initial pH of 0.5 to 3.0, and the pH of the treatment liquid in which the hydrogen storage alloy is immersed is adjusted. The method is characterized in that an alloy activation treatment step is performed in which an alkaline solution is added to the treatment liquid before the treatment liquid rises to 5, thereby accelerating the rise of the treatment liquid pH.

【0007】請求項2の発明は、請求項1記載のアルカ
リ蓄電池用水素吸蔵合金の製造方法において、水素吸蔵
合金の浸漬された処理液のpHが4以上、5未満で、ア
ルカリ溶液の投入を行うことを特徴とする。
According to a second aspect of the present invention, there is provided the method for producing a hydrogen storage alloy for an alkaline storage battery according to the first aspect, wherein the pH of the treatment liquid in which the hydrogen storage alloy is immersed is 4 or more and less than 5, and the alkali solution is introduced. It is characterized by performing.

【0008】請求項3の発明は、請求項1または2記載
のアルカリ蓄電池用水素吸蔵合金の製造方法において、
前記酸性処理液が金属イオンを含むことを特徴とする。
According to a third aspect of the present invention, there is provided a method for producing a hydrogen storage alloy for an alkaline storage battery according to the first or second aspect,
The acidic treatment liquid contains metal ions.

【0009】請求項4の発明は、請求項1、2または3
記載のアルカリ蓄電池用水素吸蔵合金の製造方法におい
て、前記アルカリ溶液が金属イオンを含むことを特徴と
する。
The invention according to claim 4 is the invention according to claim 1, 2 or 3.
The method for producing a hydrogen storage alloy for an alkaline storage battery according to the above, wherein the alkaline solution contains metal ions.

【0010】請求項5の発明は、請求項3または4記載
のアルカリ蓄電池用水素吸蔵合金の製造方法において、
前記金属イオンが、ニッケル、コバルト、アルミニウム
よりなる群から一種以上選択されたものであることを特
徴とする。
According to a fifth aspect of the present invention, there is provided a method for producing a hydrogen storage alloy for an alkaline storage battery according to the third or fourth aspect,
The metal ions are selected from one or more of the group consisting of nickel, cobalt and aluminum.

【0011】請求項6の発明は、請求項1、2、3、4
または5記載のアルカリ蓄電池用水素吸蔵合金の製造方
法において、前記アルカリ溶液の投入により、水素吸蔵
合金の浸漬された処理液のpHを7〜12とすることを
特徴とする。
The invention according to claim 6 is the invention according to claims 1, 2, 3, 4
Alternatively, in the method for producing a hydrogen storage alloy for an alkaline storage battery according to 5, the pH of the treatment liquid in which the hydrogen storage alloy is immersed is adjusted to 7 to 12 by introducing the alkali solution.

【0012】請求項7の発明は、請求項3または4記載
のアルカリ蓄電池用水素吸蔵合金の製造方法において、
前記酸性処理液および/またはアルカリ溶液が金属イオ
ンを含むときには、前記アルカリ溶液の投入より処理液
pHを12以上とすることを特徴とする。
According to a seventh aspect of the present invention, there is provided a method for producing a hydrogen storage alloy for an alkaline storage battery according to the third or fourth aspect,
When the acidic treatment liquid and / or the alkali solution contains metal ions, the pH of the treatment liquid is set to 12 or more from the introduction of the alkali solution.

【0013】請求項8の発明は、請求項3、4または7
記載のアルカリ蓄電池用水素吸蔵合金の製造方法におい
て、前記酸性処理液および/またはアルカリ溶液とし
て、65℃以上の温度の溶液を用いることを特徴とす
る。
The invention of claim 8 is the invention of claim 3, 4, or 7.
In the method for producing a hydrogen storage alloy for an alkaline storage battery as described above, a solution having a temperature of 65 ° C. or higher is used as the acidic treatment liquid and / or the alkaline solution.

【0014】請求項9の発明は、請求項3、4、7また
は8記載のアルカリ蓄電池用水素吸蔵合金の製造方法に
おいて、前記アルカリ溶液の投入された処理液の温度
を、65℃以上とすることを特徴とする。
According to a ninth aspect of the present invention, in the method for producing a hydrogen storage alloy for an alkaline storage battery according to any one of the third, fourth, seventh, or eighth aspects, the temperature of the processing solution into which the alkaline solution is charged is set to 65 ° C. or higher. It is characterized by the following.

【0015】[0015]

【実施の形態】本発明は、合金表面を酸性溶液で洗浄処
理して水素吸蔵合金の電気化学特性を高める合金処理法
において、酸処理のある段階で処理液にアルカリ溶液を
投入し、処理液pHを急速に上昇させることを特徴と
し、またこの処理液に金属を溶存させることに特徴を有
する。以下では、このような本発明構成の意義を明らか
にし、本発明の実施の形態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to an alloy processing method for cleaning the surface of an alloy with an acidic solution to enhance the electrochemical characteristics of the hydrogen storage alloy. It is characterized by rapidly raising the pH and by dissolving the metal in this treatment solution. Hereinafter, the significance of the configuration of the present invention will be clarified, and embodiments of the present invention will be described.

【0016】水素吸蔵合金を強酸に浸漬し洗浄(表面処
理)すると、合金の電気化学的反応性が高まる。この理
由は次のように考えられる。水素吸蔵合金を強酸性の処
理液に浸漬した場合、処理液pHが0.5〜4域におい
ては、合金成分(希土類元素、ニッケル、コバルト等、
またはこれらの酸化物、水酸化物)が処理液の水素イオ
ンと反応し処理液中に溶出し、これに伴い処理液pHが
徐々に上昇するが、合金成分の溶解度や溶出速度は一様
でないので、この溶出によって合金表面に凹凸が形成さ
れ、合金の比表面積が増加する。また、金属酸化物等の
溶出により合金表面にニッケルやコバルトの単離層が出
現するので、水素吸蔵合金の低温放電特性やサイクル特
性が向上する。
When the hydrogen storage alloy is immersed in a strong acid and washed (surface treatment), the electrochemical reactivity of the alloy increases. The reason is considered as follows. When the hydrogen storage alloy is immersed in a strongly acidic treatment liquid, the alloy components (rare earth elements, nickel, cobalt, etc.,
Or their oxides and hydroxides) react with the hydrogen ions in the processing solution and elute into the processing solution, and the pH of the processing solution gradually increases with the reaction, but the solubility and elution rate of the alloy components are not uniform. Therefore, as a result of this elution, irregularities are formed on the alloy surface, and the specific surface area of the alloy increases. In addition, since an isolated layer of nickel or cobalt appears on the surface of the alloy due to elution of the metal oxide or the like, low-temperature discharge characteristics and cycle characteristics of the hydrogen storage alloy are improved.

【0017】しかし、処理液pHの上昇は4に止まるの
ではなく、4を超えて上昇し、合金成分の溶解度はpH
依存性があるため、処理液pHが5付近にまで上昇する
と、pH0.5〜4域において処理液中に溶けだした希
土類元素等が水酸化物となって再び析出し合金表面に堆
積する。この場合、pH5から中性付近のpH上昇速度
が遅いので、希土類元素等の水酸化物からなる緻密な層
が合金表面に形成される。この緻密な層が水素吸蔵合金
の酸素消費反応を阻害するため、電池内圧特性が低下す
ることになる。
However, the rise in the pH of the processing solution does not stop at 4, but rises above 4, and the solubility of the alloy component becomes pH
Due to the dependence, when the pH of the treatment liquid rises to around 5, the rare earth elements and the like dissolved in the treatment liquid in the pH range of 0.5 to 4 become hydroxides, precipitate again, and deposit on the alloy surface. In this case, since the rate of pH rise from pH 5 to near neutrality is slow, a dense layer made of a hydroxide such as a rare earth element is formed on the alloy surface. Since this dense layer inhibits the oxygen consuming reaction of the hydrogen storage alloy, the internal pressure characteristics of the battery deteriorate.

【0018】ここで、本発明合金活性化処理法では、酸
処理の過程でアルカリを投入する。したがって、酸性処
理液に一旦溶出した希土類元素等の金属イオンは、投入
されたアルカリ(水酸化物イオン)によって強制的かつ
急激に反応せられて水酸化物となり、合金表面に堆積す
る。このような急激な反応による堆積層であると、多孔
質なものとなるので、酸素消費反応を阻害することがな
いばかりか、水酸化物層がむしろ酸素消費反応を触媒す
るように作用する。つまり、本発明合金活性化処理法に
よると、低温放電特性や高率放電特性、サイクル特性に
優れ、かつ電池内圧の上昇を招かない水素吸蔵合金と成
すことができる。
Here, in the alloy activation treatment method of the present invention, an alkali is added during the acid treatment. Therefore, the metal ions such as the rare earth elements once eluted in the acidic treatment liquid are forcibly and rapidly reacted by the added alkali (hydroxide ions) to become hydroxides, and are deposited on the alloy surface. If the deposited layer is formed by such a rapid reaction, the layer becomes porous, so that the oxygen consumption reaction is not hindered, and the hydroxide layer acts rather to catalyze the oxygen consumption reaction. That is, according to the alloy activation treatment method of the present invention, it is possible to form a hydrogen storage alloy that has excellent low-temperature discharge characteristics, high-rate discharge characteristics, and cycle characteristics, and does not cause an increase in battery internal pressure.

【0019】このような作用効果を奏する本発明合金活
性化処理法においては、酸性処理液として初期pH値が
0.5〜3.0の酸溶液を用い、当該酸性処理液のpH
が5に至る前、より好ましくはpH4以上、5未満の段
階でアルカリ溶液を投入する。初期pH値が0.5未満
の酸性処理液を得るのは困難であり、他方、初期pH値
が3.0を超える酸性処理液であると、合金表面の酸化
膜、水酸化膜等を十分に除去できず、十分な酸処理効果
が得られない。また、酸性処理液のpHが5を超えた段
階でアルカリ溶液を投入した場合、緻密な水酸化物層の
形成を十分に阻止できない。一方、pH4未満の段階で
アルカリを投入すると、酸処理効果が減殺されるからで
ある。
In the alloy activation treatment method of the present invention having such an effect, an acid solution having an initial pH value of 0.5 to 3.0 is used as the acid treatment solution, and the pH of the acid treatment solution is adjusted to 0.5 to 3.0.
Before the pH reaches 5, more preferably at a pH of 4 or more and less than 5, an alkali solution is charged. It is difficult to obtain an acidic treatment liquid having an initial pH value of less than 0.5. On the other hand, an acid treatment liquid having an initial pH value of more than 3.0 can sufficiently remove an oxide film, a hydroxide film, and the like on the alloy surface. , And a sufficient acid treatment effect cannot be obtained. In addition, when an alkaline solution is added at a stage when the pH of the acidic treatment liquid exceeds 5, formation of a dense hydroxide layer cannot be sufficiently prevented. On the other hand, when an alkali is added at a stage of less than pH 4, the acid treatment effect is reduced.

【0020】また、本発明酸処理法においては、前記酸
性処理液または/およびアルカリ溶液中に好ましくは金
属イオンを含有させる。これにより、一層電気化学特性
(酸素消費特性、高率放電特性等)に優れた水素吸蔵合
金と成すことができる。この理由は、処理液中に合金由
来の金属以外の金属イオンが存在すると、この金属が処
理液のpHの上昇過程で析出し、合金表面を一層凹凸の
多い金属リッチな形状(性状)にするからである。
In the acid treatment method of the present invention, the acidic treatment solution and / or the alkali solution preferably contains metal ions. Thereby, it is possible to form a hydrogen storage alloy having more excellent electrochemical characteristics (oxygen consumption characteristics, high-rate discharge characteristics, and the like). The reason is that when metal ions other than the metal derived from the alloy are present in the processing liquid, the metal is precipitated in the process of increasing the pH of the processing liquid, and the alloy surface is made into a metal-rich shape (properties) with more irregularities. Because.

【0021】前記金属イオンとしては、ニッケル、コバ
ルト、アルミニウム、銅、ビスマス等のイオンが例示で
き、このうち好ましくはニッケルイオン、コバルトイオ
ン、アルミニウムイオンよりなる群から選択される1種
以上がよい。なお、ニッケル、コバルト、アルミニウム
が特に好ましいのは、これらの金属は導電性に優れ、ま
た合金表面にあって酸素消費反応に触媒作用を及ぼすた
めではないかと考えられる。また、ニッケル、コバル
ト、アルミニウムは通常合金成分の一部となるために、
電池反応への悪影響もほとんど生じないと考えられる。
Examples of the metal ions include ions of nickel, cobalt, aluminum, copper, bismuth and the like, and among them, one or more selected from the group consisting of nickel ions, cobalt ions and aluminum ions are preferable. It is considered that nickel, cobalt, and aluminum are particularly preferable because these metals are excellent in conductivity and have a catalytic action on the oxygen consumption reaction on the surface of the alloy. Also, nickel, cobalt, and aluminum are usually part of the alloy component,
It is considered that there is almost no adverse effect on the battery reaction.

【0022】上記金属イオンは、酸性処理液またはアル
カリ溶液の何れか一方の溶液に含有させるか、或いは酸
性処理液とアルカリ溶液の双方に含有させる。但し、何
れか一方の溶液に含有させる場合には、高率放電特性の
面から、酸性処理液中に溶存させるのが効果的であり、
また一層高率放電特性を高めることができることから、
より好ましくは酸性処理液とアルカリ溶液の双方に含有
させる。
The above-mentioned metal ions are contained in either one of the acidic treatment solution and the alkaline solution, or both the acidic treatment solution and the alkaline solution. However, when it is contained in either one of the solutions, it is effective to dissolve it in the acidic treatment liquid from the viewpoint of high rate discharge characteristics,
In addition, since the high-rate discharge characteristics can be further enhanced,
More preferably, it is contained in both the acidic treatment solution and the alkali solution.

【0023】金属イオンを酸性処理液等に含有させる方
法としては、金属(元素)を直接酸性処理液等に溶解さ
せてもよいが、通常は金属化合物を用いる。具体的に
は、例えば酸性処理液に対しては金属塩を用い、アルカ
リ溶液に対しては金属水酸化物を用いる。酸性処理液等
に溶解させる金属イオンの濃度は、特に限定されるもの
ではなく、通常、酸性処理液等に対し1重量%〜5重量
%(金属塩の重量)濃度とすればよい。1重量%未満で
は十分な効果が得られ難い一方、溶解度との関係から5
重量%以上の溶解は容易でないからである。なお、酸性
処理液等を加温することにより高濃度に溶解させるのも
好ましい。このことについては後記する。
As a method for containing metal ions in an acidic treatment solution or the like, a metal (element) may be directly dissolved in an acidic treatment solution or the like, but usually a metal compound is used. Specifically, for example, a metal salt is used for an acidic treatment solution, and a metal hydroxide is used for an alkali solution. The concentration of metal ions to be dissolved in the acidic treatment liquid or the like is not particularly limited, and may be generally 1% to 5% by weight (weight of the metal salt) with respect to the acidic treatment liquid or the like. If the amount is less than 1% by weight, it is difficult to obtain a sufficient effect.
This is because dissolution of more than weight% is not easy. In addition, it is also preferable that the acidic treatment liquid or the like is dissolved at a high concentration by heating. This will be described later.

【0024】本発明合金活性化処理法は、合金の表面を
強酸で処理して電気化学反応に好適な状態を形成し、こ
の状態を悪化させないで合金処理を終了させること等を
目的としてアルカリ投入を行う。したがって、処理液に
対するアルカリ溶液の投入後のpHは、合金の電気化学
特性に大きく影響する。アルカリ投入により十分な効果
を得るためには、金属イオンを含有しない酸性処理液と
金属イオンを含有しないアルカリ溶液の組み合わせの場
合には、好ましくはアルカリ溶液の投入により処理液p
Hを7〜pH12とする。この範囲であると、初期充電
内圧と高率放電特性の双方を向上させることができる。
In the alloy activation treatment method of the present invention, the surface of the alloy is treated with a strong acid to form a state suitable for an electrochemical reaction, and the alkali treatment is performed for the purpose of terminating the alloy treatment without deteriorating this state. I do. Therefore, the pH of the processing solution after the introduction of the alkaline solution has a great effect on the electrochemical properties of the alloy. In order to obtain a sufficient effect by adding an alkali, in the case of a combination of an acidic treatment solution containing no metal ion and an alkali solution containing no metal ion, preferably, the treatment solution p is introduced by adding an alkali solution.
H is adjusted to 7 to pH12. Within this range, both the initial charging internal pressure and the high rate discharge characteristics can be improved.

【0025】他方、酸性処理液および/またはアルカリ
溶液に金属イオンを含ませた場合においては、より好ま
しくはpH12以上とする。処理液に合金由来の金属以
外の金属を溶存させた条件下では、アルカリ溶液の投入
により処理液pHをpH12以上とすると、初期充電内
圧特性を低下させることなく、一層高率放電特性を向上
させることができる。この詳細は後記実施例で明らかに
する。
On the other hand, when metal ions are contained in the acidic treatment liquid and / or the alkaline solution, the pH is more preferably adjusted to 12 or more. Under conditions in which metals other than alloy-derived metals are dissolved in the treatment liquid, if the pH of the treatment liquid is adjusted to pH 12 or higher by adding an alkaline solution, the high-rate discharge characteristics are further improved without lowering the initial charge internal pressure characteristics. be able to. The details will be clarified in Examples described later.

【0026】更に、本発明合金活性化処理法において
は、アルカリ溶液を投入後の処理液の温度を65℃以上
とするのが好ましい。処理液温度を65℃以上とする
と、処理液に溶出している希土類元素等の金属と、投入
されたアルカリ(水酸化物イオン)との反応速度が大き
くなり、一層好適な多孔質の水酸化物層が合金表面に形
成されるからである。更にまた、本発明合金活性化処理
法においては、65℃以上に加温した金属含有酸性処理
液および/またはアルカリ溶液を使用するのがよい。6
5℃以上に加温した酸性処理液等であると、より多くの
金属イオンを溶解させることができるので、合金表面の
改質効果を増強できる。特に、アルカリ溶液中の金属イ
オンの溶解度は小さいので、加温により溶解を促進する
ことがより効果的である。また、予め加温された溶液を
使用するので、アルカリ溶液投入と同時に速やかに処理
液中の金属(希土類元素等の金属および酸性処理液に溶
存させた金属)とアルカリ(およびアルカリ溶液に溶存
させた金属)との反応を進行させることができるからで
ある。
Further, in the alloy activation treatment method of the present invention, it is preferable that the temperature of the treatment liquid after the introduction of the alkaline solution is set to 65 ° C. or higher. When the temperature of the processing solution is set to 65 ° C. or higher, the reaction rate between a metal such as a rare earth element eluted in the processing solution and the added alkali (hydroxide ion) increases, and more favorable porous hydroxylation is performed. This is because the material layer is formed on the alloy surface. Furthermore, in the alloy activation treatment method of the present invention, it is preferable to use a metal-containing acidic treatment solution and / or an alkali solution heated to 65 ° C. or higher. 6
An acidic treatment liquid or the like heated to 5 ° C. or more can dissolve more metal ions, and thus can enhance the effect of modifying the alloy surface. In particular, since the solubility of metal ions in an alkaline solution is small, it is more effective to promote dissolution by heating. In addition, since a pre-heated solution is used, the metals (metals such as rare earth elements and metals dissolved in an acidic processing solution) and alkalis (and metals dissolved in an acidic processing solution) and alkali (and alkali solution) in the processing solution are immediately mixed with the alkali solution. This is because the reaction with the metal can proceed.

【0027】ところで、水素吸蔵合金を酸性処理液に浸
漬・洗浄した場合、化学反応熱等により処理液の温度は
30〜35℃程度に上昇するが、65℃以上とするため
には通常、外部から熱を加える必要がある。また、通常
の大気圧では処理液温度を100℃以上にすることがで
きないし、またその必要もないので、一般には65℃以
上で100℃未満の温度に加温する。この場合処理液を
沸騰させるのは、液の蒸発等が生じるので好ましくな
い。
When the hydrogen-absorbing alloy is immersed and washed in an acidic treatment liquid, the temperature of the treatment liquid rises to about 30 to 35 ° C. due to heat of chemical reaction or the like. Need to apply heat from Further, at normal atmospheric pressure, the temperature of the processing solution cannot be increased to 100 ° C. or higher, and there is no need for this. Therefore, the temperature is generally increased to 65 ° C. or higher and lower than 100 ° C. In this case, it is not preferable to boil the treatment liquid because evaporation of the liquid occurs.

【0028】本発明にかかる酸性処理液の酸成分として
は、例えば塩酸、硝酸、硫酸、フッ酸、リン酸等が使用
でき、アルカリ溶液のアルカリ成分としては、水酸化カ
リウム、水酸化リチウム、水酸化ナトリウムなどが使用
できる。
As the acid component of the acid treatment solution according to the present invention, for example, hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, etc. can be used. As the alkaline component of the alkaline solution, potassium hydroxide, lithium hydroxide, water Sodium oxide and the like can be used.

【0029】また、本発明合金活性化処理法は各種のア
ルカリ蓄電池用水素吸蔵合金に適用可能であり、例えば
希土類系、チタン系、ジルコニウム系、マグネシウム系
等の水素吸蔵合金に適用可能である。
The alloy activation treatment method of the present invention is applicable to various kinds of hydrogen storage alloys for alkaline storage batteries, and is applicable to, for example, hydrogen storage alloys of rare earth type, titanium type, zirconium type and magnesium type.

【0030】[0030]

【実施例】実施例(実験)に基づいて、本発明の内容を
詳細に説明する。
EXAMPLES The contents of the present invention will be described in detail based on examples (experiments).

【0031】〔第一実施例(金属イオンを含有しない場
合)〕アルカリ投入を行った酸処理法とアルカリ投入を
行わない従来の酸処理法との比較において、本発明製造
方法の内容を明らかにする。 (水素吸蔵合金粉末の作製)市販のミッシュメタル(M
m;La,Ce,Nd,Pr等の希土類元素の混合
物)、ニッケル(Ni)、コバルト(Co)、アルミニ
ウム(Al)、マンガン(Mn)を原材料とし、それぞ
れが元素比で1:3.4 :0.8 :0.2 :0.6 の割合となる
ように混合し、高周波溶解炉を用いて組成式MmNi
3.4 Co0.8 Al0. 2 Mn0.6 の水素吸蔵合金鋳塊を作
製した。この合金鋳塊に対し、1000℃・10時間の
アニール処理を行った。この合金鋳塊1Kgに対し水1
リットルを加えボールミルで粉砕し、平均粒径50μm
の水素吸蔵合金粉末を作製した。
[First Example (When No Metal Ion is Contained)] The content of the production method of the present invention is clarified by comparing an acid treatment method with alkali addition and a conventional acid treatment method without alkali addition. I do. (Preparation of hydrogen storage alloy powder) Commercially available misch metal (M
m; a mixture of rare earth elements such as La, Ce, Nd and Pr), nickel (Ni), cobalt (Co), aluminum (Al) and manganese (Mn) as raw materials, each having an element ratio of 1: 3.4: 0.8. : 0.2: 0.6 and the composition formula MmNi using a high frequency melting furnace.
3.4 to prepare a hydrogen-absorbing alloy ingot of Co 0.8 Al 0. 2 Mn 0.6. This alloy ingot was annealed at 1000 ° C. for 10 hours. 1 kg of this alloy ingot is water 1
Liter and pulverized with a ball mill, average particle size 50 μm
Was prepared.

【0032】(合金活性化処理)酸性処理液(金属イオ
ン無添加)として、初期pHが0.5、1、2、3の4
通りの塩酸水溶液を用意した。また、アルカリ溶液(金
属イオン無添加)として、10規定の水酸化カリウム水
溶液を用意した。次に前記合金粉末と前記塩酸水溶液と
を1:1の重量比で攪拌混合機に入れ、処理液のpHを
モニターしながら攪拌し、処理液pHが所定値に達した
とき、所定量の水酸化カリウム水溶液を加えた。更に攪
拌を続け、処理液のpH値が安定したところで攪拌を止
め、合金を取り出した。この合金を精製水で洗い乾燥し
て処理済合金A1〜A12を得た。なお、これらの操作
は全て室温(約25℃)で行った。
(Alloy activating treatment) The acidic treatment liquid (without addition of metal ions) has an initial pH of 0.5, 1, 2, and 3
The following aqueous hydrochloric acid solutions were prepared. A 10 N aqueous potassium hydroxide solution was prepared as an alkaline solution (without addition of metal ions). Next, the alloy powder and the hydrochloric acid aqueous solution are put into a stirring mixer at a weight ratio of 1: 1 and stirred while monitoring the pH of the processing solution. When the pH of the processing solution reaches a predetermined value, a predetermined amount of water is added. An aqueous solution of potassium oxide was added. Stirring was further continued. When the pH value of the treatment liquid was stabilized, the stirring was stopped and the alloy was taken out. This alloy was washed with purified water and dried to obtain treated alloys A1 to A12. These operations were all performed at room temperature (about 25 ° C.).

【0033】ここで、上記処理液pHの所定値とは、表
1の「アルカリ投入時の処理液pH」に示すpH2、
4、5、7の夫々であり、上記所定量の水酸化カリウム
水溶液とは、アルカリ溶液の投入後に表1の「アルカリ
投入後の処理液pH」に示すpH6、7、10、12、
15にできる量の水酸化カリウム水溶液液量をいう。こ
のような条件で処理した合金A1〜A12を後記表1に
一覧表示する。なお、上記では、10規定の水酸化カリ
ウム水溶液の投入量を変化させることにより投入後の処
理液pHを調製したが、アルカリ強度の異なる溶液によ
り、投入液量を変えることなく投入後の処理液pHを調
製してもよい。要は、アルカリ投入時における処理液の
水素イオン濃度と同等乃至それ以上の水酸化物イオン量
を投入すればよい。
Here, the predetermined value of the pH of the processing solution is pH 2 shown in "Processing pH at the time of adding alkali" in Table 1.
4, 5, and 7, and the predetermined amount of the aqueous solution of potassium hydroxide refers to the pH 6, 7, 10, 12, 12 shown in “Processing pH after alkali addition” in Table 1 after the addition of the alkali solution.
It refers to the amount of aqueous potassium hydroxide solution that can be adjusted to 15. The alloys A1 to A12 treated under such conditions are listed in Table 1 below. In the above description, the pH of the treatment liquid after the addition was adjusted by changing the amount of the 10 N aqueous potassium hydroxide solution. However, the treatment liquid after the introduction without changing the amount of the injection liquid by using a solution having a different alkali strength. The pH may be adjusted. The point is that the amount of hydroxide ions that is equal to or higher than the hydrogen ion concentration of the processing solution when the alkali is charged may be charged.

【0034】他方、アルカリ投入を行わない従来処理法
として、初期pH1の塩酸水溶液を用いて前記水素吸蔵
合金粉末に対し酸処理を行ったもの(表1のX2)、及
び酸処理を行わず、pH15のアルカリ液(水酸化カリ
ウム液)で表面処理したもの(表1のX3)、また対照
品として、酸処理を全く行わない前記水素吸蔵合金粉末
(表1のX1)、をそれぞれ用意した。
On the other hand, as a conventional treatment method in which alkali is not charged, the hydrogen storage alloy powder is subjected to an acid treatment using an aqueous hydrochloric acid solution having an initial pH of 1 (X2 in Table 1). A surface treated with an alkaline solution (potassium hydroxide solution) having a pH of 15 (X3 in Table 1) and a hydrogen absorbing alloy powder without any acid treatment (X1 in Table 1) were prepared as control products.

【0035】(処理合金の電池化学特性試験)上記各処
理済合金の電池初期充電内圧特性と高率放電特性を評価
するために、上記各処理済合金を負極活物質として試験
セル及びニッケル−水素蓄電池を作製し、これらを用い
て下記方法で各処理合金の初期充電内圧特性と高率放電
特性を調べた。
(Battery Chemical Characteristics Test of Treated Alloys) In order to evaluate the initial charge internal pressure characteristics and the high rate discharge characteristics of the treated alloys, a test cell and a nickel-hydrogen battery were prepared using the treated alloys as negative electrode active materials. Storage batteries were prepared, and the initial charging internal pressure characteristics and the high-rate discharge characteristics of each of the treated alloys were examined by the following methods using the storage batteries.

【0036】〈初期充電内圧特性の測定方法〉初期充電
内圧特性は、ニッケル−水素蓄電池を用いて測定した。
ニッケル・水素蓄電池の作製方法は次の通りである。合
金粉末に、結着剤としてポリテトラフルオロエチレン粉
末を、合金重量に対し5wt%加え混練し合金ペースト
を調製する。このペーストをパンチングメタルからなる
集電体の両面に塗着した後、プレスして水素吸蔵合金電
極を作製する。次いで、この電極(負極)と、この電極
より容量の小さい公知の焼結式ニッケル電極(正極)と
を、セパレータを介して巻回し、渦巻型電極体となし、
外装缶に挿入する。この外装缶に30wt%水酸化カリ
ウム水溶液を注液し、外装缶を密閉して、理論容量10
00mAhの円筒形ニッケル・水素蓄電池となす。
<Method of Measuring Initial Charging Internal Pressure Characteristics> Initial charging internal pressure characteristics were measured using a nickel-hydrogen storage battery.
The method for producing the nickel-metal hydride storage battery is as follows. A polytetrafluoroethylene powder as a binder is added to the alloy powder in an amount of 5 wt% based on the weight of the alloy, and the mixture is kneaded to prepare an alloy paste. This paste is applied to both surfaces of a current collector made of punching metal, and then pressed to produce a hydrogen storage alloy electrode. Next, this electrode (negative electrode) and a known sintered nickel electrode (positive electrode) having a smaller capacity than this electrode are wound through a separator to form a spiral electrode body.
Insert into the outer can. A 30 wt% aqueous solution of potassium hydroxide was injected into the outer can, the outer can was sealed, and the theoretical capacity was 10%.
A nickel-metal hydride storage battery of 00 mAh is formed.

【0037】上記ニッケル・水素蓄電池に対し1000
mAで60分の充電を行い、このときの電池内圧を測定
した。
The above nickel-hydrogen storage battery is 1000
The battery was charged for 60 minutes at mA, and the internal pressure of the battery at this time was measured.

【0038】〈高率放電特性の測定方法〉高率放電特性
は試験セルを用いて測定した。試験セルの作製方法は次
の通りである。各種合金粉末1gに、導電剤としてカル
ボニルニッケル1.2g、結着剤としてポリテトラフル
オロエチレン粉末0.2gとを加えて混練し合金ペース
トを調製する。この合金ペーストをニッケルメッシュで
包み、プレス加工して水素吸蔵合金電極(負極)を作製
する。この水素吸蔵合金電極と、この電極より十分に容
量の大きい公知の焼結式ニッケル電極(正極)とを容器
内に配置し、電解液として水酸化カリウムを過剰量入れ
た後、容器を密閉して試験セルと成す。
<Method of Measuring High Rate Discharge Characteristics> The high rate discharge characteristics were measured using a test cell. The method for producing the test cell is as follows. To 1 g of each alloy powder, 1.2 g of carbonyl nickel as a conductive agent and 0.2 g of polytetrafluoroethylene powder as a binder are added and kneaded to prepare an alloy paste. This alloy paste is wrapped in a nickel mesh and pressed to produce a hydrogen storage alloy electrode (negative electrode). This hydrogen storage alloy electrode and a known sintered nickel electrode (positive electrode) having a capacity sufficiently larger than this electrode are arranged in a container, and after excessively adding potassium hydroxide as an electrolyte, the container is sealed. Test cell.

【0039】上記試験セルに対し、水素吸蔵合金1g当
たり50mAの電流値(50mA/g−合金)で8時間
充電し、1時間休止した後、200mA/g−合金の電
流値で放電終止電圧が1.0Vに達するまで放電し、こ
の時の放電容量(CH)を測定する。この後、放電を1
時間休止して試験セルの電圧を回復させたのち、更に5
0mA/g−合金の電流値で放電終止電圧が1.0Vに
達するまで放電し、この時の放電容量(CL)を測定す
る。CH及びCLを用い、数1に従って各処理済合金の
電気化学的活性度(%)を算出し、この値を高率放電特
性値とする。
The test cell was charged at a current value of 50 mA per 1 g of the hydrogen storage alloy (50 mA / g-alloy) for 8 hours, paused for 1 hour, and then discharged at a current value of 200 mA / g-alloy. Discharge until reaching 1.0 V, and measure the discharge capacity (CH) at this time. After this, discharge
After resting for a period of time and restoring the test cell voltage,
Discharge is performed at a current value of 0 mA / g-alloy until the discharge end voltage reaches 1.0 V, and the discharge capacity (CL) at this time is measured. Using CH and CL, the electrochemical activity (%) of each treated alloy is calculated according to Equation 1, and this value is used as a high-rate discharge characteristic value.

【0040】[0040]

【数1】 高率放電特性値(活性度%)=CH/(CH+CL) ×100 … 数1## EQU1 ## High-rate discharge characteristic value (activity%) = CH / (CH + CL) .times.100

【0041】上記試験結果を、各合金の処理条件ととも
に表1に示す。また、酸処理液の初期pHを1(一定)
とし、アルカリ投入時pHを2または4または5に変
え、かつアルカリ投入後の処理液pHを7(一定)とな
るようにアルカリ液を加えるという条件で活性化処理し
たA5、A2、A6における結果を、アルカリ投入時の
処理液pHと電池初期充電特性、高率放電特性との関係
でグラフ化し図1に示し、酸性処理液の初期pHを1
(一定)とし、アルカリ投入時pHを4(一定)とし、
かつアルカリ投入後の処理液pHをそれぞれpH6、p
H7、pH10、pH12、pH15に変化させる条件
で活性化処理したA7、A2、A8、A9、A10にお
ける結果を、アルカリ投入後の処理液pHと電池初期充
電特性、高率放電特性との関係でグラフ化し図2に示
す。
The test results are shown in Table 1 together with the processing conditions for each alloy. Further, the initial pH of the acid treatment solution is set to 1 (constant).
A5, A2, and A6 that were activated under the conditions that the pH at the time of alkali introduction was changed to 2 or 4 or 5, and the pH of the treatment liquid after alkali introduction was added to be 7 (constant) and the alkali solution was added. FIG. 1 is a graph showing the relationship between the pH of the treatment liquid when the alkali is charged and the initial charge characteristics and the high-rate discharge characteristics of the battery.
(Constant), the pH at the time of alkali addition is set to 4 (constant),
And the pH of the processing solution after the addition of the alkali is adjusted to pH 6 and p, respectively.
The results of A7, A2, A8, A9, and A10 activated under the conditions of changing to H7, pH10, pH12, and pH15 are shown in relation to the pH of the treatment liquid after alkali addition and the initial charge characteristics and high-rate discharge characteristics of the battery. A graph is shown in FIG.

【0042】[0042]

【表1】 [Table 1]

【0043】(処理条件の違いと電気化学的特性との関
係-I)表1のX1(酸処理を全く行わなかったもの)
と、X2(アルカリを投入しない従来の酸処理法)との
比較から、水素吸蔵合金に対し酸処理を施すと、高率放
電特性が向上するものの、初期充電内圧特性が悪くなる
ことが判る。また、X2とA1〜A12(アルカリ投入
酸処理法)の結果から、酸処理の途中で処理液にアルカ
リを投入すると、初期充電内圧特性が改善できることが
判る。このことを更に詳細に説明する。
(Relationship between Differences in Processing Conditions and Electrochemical Properties-I) X1 in Table 1 (no acid treatment)
And X2 (conventional acid treatment method without adding alkali), it can be seen that when acid treatment is performed on the hydrogen storage alloy, high-rate discharge characteristics are improved, but initial charge internal pressure characteristics are deteriorated. Also, from the results of X2 and A1 to A12 (alkali charging acid treatment method), it can be seen that initial charging internal pressure characteristics can be improved by adding alkali to the treatment liquid during the acid treatment. This will be described in more detail.

【0044】アルカリ液の投入時pHを4(一定)と
し、かつアルカリ投入後の処理液pHを7とし、かつ酸
性処理液の初期pHが0.5、1、2、3としたA1〜
4において、酸性処理液の初期pHが0.5、1、2、
3に変化しても、それぞれの初期充電内圧は何れも2.
8kg/cm3 であり、全く変化しなかった。他方、高
率放電特性値は、酸性処理液の初期pHが高くなるに従
い低下する傾向が認められた。また、初期pHを1と
し、アルカリ投入時pHを2(A5)、4(A2)、5
(A6)とし、かつアルカリ投入後の処理液pHを7
(一定)としたA5、A2、A6の比較(図1参照)に
おいて、アルカリ投入時pHが2及び4の場合に比べ、
アルカリ投入時pHが5の場合の方が初期充電内圧が高
かった。更に、アルカリ投入時のpHを7としたA1
1、A12では一層初期充電内圧が高かった。これらの
結果から、酸性処理液の初期pH値を0.5〜3とし、
処理液pH値が5に上昇する前にアルカリ投入を行うの
が好ましく、より好ましくはpH4以上、5未満の段階
でアルカリ投入を行うのがよい。
The pH of the alkaline solution was set to 4 (constant), the pH of the treating solution after the alkaline solution was set to 7, and the initial pH of the acidic treating solution was 0.5, 1, 2, and 3.
In 4, the initial pH of the acidic treatment liquid is 0.5, 1, 2,
3, the initial charging internal pressure is 2.
It was 8 kg / cm 3 and did not change at all. On the other hand, it was recognized that the high-rate discharge characteristic value tended to decrease as the initial pH of the acidic treatment liquid increased. In addition, the initial pH was set to 1, and the pH at the time of adding alkali was 2 (A5), 4 (A2), 5 (A2).
(A6), and the pH of the treatment liquid after the introduction of the alkali is 7
In the comparison of A5, A2, and A6 with (constant) (see FIG. 1), compared to the case where the pH at the time of adding alkali was 2 and 4,
The initial charging internal pressure was higher when the pH was 5 when the alkali was charged. Further, A1 was adjusted to pH 7 when the alkali was charged.
1 and A12, the initial charging internal pressure was even higher. From these results, the initial pH value of the acidic treatment solution was set to 0.5 to 3,
It is preferable to carry out alkali addition before the pH value of the treatment liquid rises to 5, and it is more preferable to carry out alkali addition at a stage of pH 4 or more and less than 5.

【0045】他方、酸性処理液の初期pHを1(一
定)、アルカリ投入時pHを4(一定)とし、かつアル
カリ投入後の処理液pHをそれぞれpH6(A7)、p
H7(A2)、pH10(A8)、pH12(A9)、
pH15(A10)としたA2、A7〜10の結果を示
す図2において、アルカリ投入後の処理液pHがpH6
〜12に変化しても高率放電特性は殆ど変化しない一
方、電池充電初期内圧はアルカリ投入後の処理液pHが
6以下または12を超えた場合において高くなった。こ
の結果から、処理液pHが7〜12となるようにアルカ
リ溶液を投入するのがよい。
On the other hand, the initial pH of the acidic treatment liquid was set at 1 (constant), the pH at the time of alkali addition was set at 4 (constant), and the pH of the treatment liquid after alkali addition was set at pH 6 (A7), p
H7 (A2), pH10 (A8), pH12 (A9),
In FIG. 2 showing the results of A2 and A7 to 10 when the pH was 15 (A10), the pH of the treatment liquid after the addition of the alkali was pH6.
Although the high-rate discharge characteristics hardly changed even when it changed to 1212, the initial internal pressure of battery charging increased when the pH of the processing solution after the alkali was charged was 6 or less or exceeded 12. From this result, it is preferable to add an alkaline solution so that the pH of the processing solution is 7 to 12.

【0046】なお、酸処理等を全く行わないX1と、ア
ルカリ液のみで処理したX3との比較から、アルカリ処
理のみを行っても初期充電内圧特性、高率放電特性とも
に全く改善されないことが判る。このことは、酸処理の
過程でアルカリ溶液を投入した場合において、初めて上
記効果が得られることを意味する。
From a comparison between X1 not subjected to any acid treatment or the like and X3 treated only with an alkali solution, it is found that neither the initial charge internal pressure characteristic nor the high-rate discharge characteristic is improved at all by the alkali treatment alone. . This means that the above effects can be obtained for the first time when an alkaline solution is introduced during the acid treatment.

【0047】〔第2実施例(金属イオンを含有する場
合)〕第2実施例では、処理液に金属イオンを含有させ
る場合について説明する。なお、第2実施例の具体的内
容は、処理液に金属イオンを含有させた点を除き、上記
第1実施例と同様である。よって、以下では第1実施例
と異なる事項についてのみ説明する。
[Second embodiment (in the case of containing metal ions)] In the second embodiment, a case where metal ions are contained in the treatment liquid will be described. The specific contents of the second embodiment are the same as those of the first embodiment except that the treatment liquid contains metal ions. Therefore, only the points different from the first embodiment will be described below.

【0048】先ず、初期pHの異なる4通りの塩酸水溶
液と、10規定の水酸化カリウム水溶液とを用意し、こ
れらの溶液を金属イオンを含まない酸性処理液及びアル
カリ溶液とし、またこれらの溶液に所定の金属イオンを
溶解して金属イオン含有酸性処理液、金属イオン含有ア
ルカリ溶液をそれぞれ調製した。具体的には、ニッケ
ル、コバルト、銅、ビスマス、アルミニウムの塩化物を
用い、これらの金属塩化物の一種を上記塩酸水溶液に5
重量%溶解して、5通りの金属イオン含有酸性処理液を
調製した。他方、上記金属の水酸化物を用い、これらの
金属水酸化物の一種を上記水酸化カリウム水溶液に飽和
濃度(室温;約25℃)まで溶解して、5通りの金属イ
オン含有アルカリ溶液を調製した(表2〜表3参照)。
First, four types of hydrochloric acid aqueous solutions having different initial pHs and a 10 N aqueous solution of potassium hydroxide were prepared, and these solutions were used as an acidic treatment solution containing no metal ions and an alkaline solution. A predetermined metal ion was dissolved to prepare a metal ion-containing acidic treatment solution and a metal ion-containing alkali solution, respectively. Specifically, chlorides of nickel, cobalt, copper, bismuth, and aluminum are used, and one of these metal chlorides is added to the aqueous hydrochloric acid solution for 5 hours.
By dissolving the resulting solution in an amount of 5% by weight, five types of acidic treatment solutions containing metal ions were prepared. On the other hand, one of these metal hydroxides is dissolved in the aqueous potassium hydroxide solution to a saturation concentration (room temperature; about 25 ° C.) to prepare five kinds of alkali solutions containing metal ions. (See Tables 2 and 3).

【0049】上記の各酸性処理液と各アルカリ溶液をそ
れぞれ用い、アルカリ投入時の処理液pHを4、アルカ
リ投入後の処理液pHを7(全て共通)とし、かつその
他の処理条件を変えて、B1〜B8(金属イオン含有酸
性処理液を使用)、C1〜C8(金属イオン含有アルカ
リ溶液を使用)、D1〜D12(双方が金属イオンを含
有)を調製した(表2、表3参照)。
Using each of the above acidic treatment solutions and each alkali solution, the pH of the treatment solution when the alkali was introduced was set to 4, the pH of the treatment solution after the introduction of the alkali was set to 7 (all in common), and other treatment conditions were changed. , B1 to B8 (using an acidic treatment solution containing metal ions), C1 to C8 (using an alkali solution containing metal ions), and D1 to D12 (both containing metal ions) were prepared (see Tables 2 and 3). .

【0050】また、アルカリ溶液の投入により処理液p
Hをどの程度まで高めるのが良いかを調べるために、ア
ルカリ投入後のpHを10、12、15に変えて処理済
合金E1〜E3を調製した。
Further, the treatment liquid p
In order to examine the extent to which H should be increased, treated alloys E1 to E3 were prepared by changing the pH after alkali addition to 10, 12, and 15.

【0051】更に、処理液の温度が合金の電気化学特性
に及ぼす影響を調べるために、ニッケル含有酸性処理液
とニッケル含有アルカリ溶液とを組み合わせた処理液の
温度を65℃に加温し、これ以外については、上記D2
(室温操作)と同様の条件でF1を調製した(表3参
照)。
Further, in order to investigate the effect of the temperature of the processing solution on the electrochemical properties of the alloy, the temperature of the processing solution obtained by combining the nickel-containing acidic processing solution and the nickel-containing alkali solution was heated to 65 ° C. Other than the above, D2
F1 was prepared under the same conditions as in (room temperature operation) (see Table 3).

【0052】以上の各処理済合金の電気化学特性を、第
1実施例と同様にして調べた。その結果を処理条件とと
もに表2、表3に一覧表示する。
The electrochemical properties of each of the above treated alloys were examined in the same manner as in the first embodiment. The results are listed in Tables 2 and 3 together with the processing conditions.

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】(処理条件の違いと電気化学的特性との関
係-II )先ず、金属イオンを含有させない前記第1実施
例のA1〜A4(表1)の初期内圧値が2.8Kg/c
2 であるのに対し、酸性処理液のみにNiイオンを含
有させたB1〜B4(表2)、アルカリ溶液のみにNi
イオン含有させたC1〜C4(表2)、双方の液にNi
イオンを含有させたD1〜D4(表3)の初期内圧値が
何れも2.0Kg/cm2 であり、このことから処理液
に合金由来以外の金属を溶存させると、初期充電内圧特
性が向上することが判る。
(Relationship Between Differences in Processing Conditions and Electrochemical Characteristics-II) First, the initial internal pressure value of A1 to A4 (Table 1) of the first embodiment, which does not contain metal ions, is 2.8 kg / c.
to which the m 2, and only the acidic treating solution was contained Ni ions B1 to B4 (Table 2), Ni only in an alkaline solution
C1 to C4 containing ions (Table 2), Ni was added to both liquids.
The initial internal pressure values of D1 to D4 (Table 3) containing ions are all 2.0 Kg / cm 2. Therefore, when metals other than alloys are dissolved in the treatment liquid, the initial charging internal pressure characteristics are improved. You can see.

【0056】他方、高率放電特性も合金由来以外の金属
の存在により顕著に向上したが、A1〜D4の結果に基
づいて作製した図3から明らかな如く、高率放電特性の
向上程度は初期内圧特性のように一様ではなく、処理条
件により異なった。即ち、高率放電特性は改善程度の大
きいものから〔双方の液がNiイオンを含有〕≧〔Ni
イオン含有酸性処理液〕>〔Niイオン含有アルカリ溶
液〕>〔Niイオン無添加〕となった。
On the other hand, the high-rate discharge characteristics were also remarkably improved by the presence of metals other than those derived from alloys. However, as is apparent from FIG. It was not uniform like the internal pressure characteristics and varied depending on the processing conditions. That is, the high-rate discharge characteristics have a large improvement degree, and both liquids contain Ni ions.gtoreq. [Ni
Ion-containing acidic treatment liquid]> [Ni-ion-containing alkaline solution]> [No Ni-ion added].

【0057】以上の結果から、水素吸蔵合金の浸漬され
た処理液に、合金由来の金属以外の金属(外部から添加
したもの)を溶存させると、初期充電内圧特性及び高率
放電特性を一層向上させることができること、及び何れ
の溶液に金属イオンを含有させるかによって高率放電特
性の向上程度が異なることが判る。このことから、いず
れかの溶液のみに金属イオンを含有させる場合には、酸
性処理液に含有させるのがよく、より好ましくは酸性処
理液とアルカリ溶液の双方に含有させるのがよい。
From the above results, when a metal other than the metal derived from the alloy (added from outside) is dissolved in the treatment solution in which the hydrogen storage alloy is immersed, the initial charge internal pressure characteristics and the high rate discharge characteristics are further improved. It can be seen that the degree of improvement in the high-rate discharge characteristics differs depending on which solution can be used and which solution contains metal ions. For this reason, when metal ions are contained in only one of the solutions, the metal ions are preferably contained in the acidic treatment solution, and more preferably in both the acidic treatment solution and the alkali solution.

【0058】次に、金属イオンの種類と電気化学特性の
関係について説明する。図4は、金属イオンの種類を変
化させたB2及びB5〜B8、C2及びC5〜C8(他
の条件は共通)の結果をグラフ化したものである。図4
においても、高率放電特性の改善程度は、〔Niイオン
含有酸性処理液〕>〔Niイオン含有アルカリ溶液〕で
あり上記と同様な傾向で示した。他方、金属の種類との
関係においては、概ねAl≧Ni=Co>Cu=Biで
あった。このことから、金属イオンとして、好ましくは
Al、Ni、Coを用い、より好ましくはAlを用いる
のがよい。
Next, the relationship between the types of metal ions and the electrochemical characteristics will be described. FIG. 4 is a graph showing the results of B2 and B5 to B8, C2 and C5 to C8 (other conditions are common) in which the types of metal ions are changed. FIG.
Also, the degree of improvement of the high-rate discharge characteristics was [Ni-acid-containing acidic treatment liquid]> [Ni-ion-containing alkaline solution], and showed the same tendency as described above. On the other hand, in relation to the type of metal, Al ≧ Ni = Co> Cu = Bi was approximately satisfied. For this reason, Al, Ni, and Co are preferably used as the metal ions, and Al is more preferably used.

【0059】金属イオンとして好ましくはAl、Ni、
Coを用い、より好ましくはAlを用いるのがよいとす
る上記結論は、双方の液に金属イオンを含有させたD2
及びD5〜D12(他の条件は共通)においても裏付け
られる。即ち、Ni−Ni(D2)、Co−Ni(D
5)、Al−Co(D8)、Ni−Co(D9)、Ni
−Al((D12)の組み合わせにおいて一層良好な高
率放電特性が得られた(表3参照)。
As the metal ion, preferably, Al, Ni,
The conclusion that the use of Co, and more preferably the use of Al, is concluded is that both liquids contain D2 containing metal ions.
And D5 to D12 (other conditions are common). That is, Ni-Ni (D2), Co-Ni (D
5), Al-Co (D8), Ni-Co (D9), Ni
In the combination of -Al ((D12)), better high-rate discharge characteristics were obtained (see Table 3).

【0060】図5に、酸性処理液およびアルカリ溶液の
双方に金属イオンを含有させる場合におけるアルカリ投
入後の処理液pHと高率放電特性との関係を示す。な
お、図5は、表3のE1〜E3、及びX4をグラフ化し
たものである。図5から明らかな如く、アルカリ溶液の
投入量により、処理液pHを7以上に上昇させるのがよ
く、より好ましくは12以上とするのがよい。
FIG. 5 shows the relationship between the pH of the processing solution after alkali addition and the high-rate discharge characteristics when metal ions are contained in both the acidic processing solution and the alkaline solution. FIG. 5 is a graph of E1 to E3 and X4 in Table 3. As is apparent from FIG. 5, the pH of the treatment liquid is preferably raised to 7 or more, more preferably to 12 or more, depending on the amount of the alkaline solution charged.

【0061】更に、処理液温度を65℃としたF1と、
室温で処理操作したD2との比較から、F1の方がD2
より高率放電特性が優れることが判る。前記したよう
に、F1とD2とは、処理液温度が異なるのみであるの
で、両者の高率放電特性の差は処理液温度にある。つま
り、処理液温度を65℃以上とすれば、一層高率放電特
性を向上させることができる。
Further, F1 at a processing liquid temperature of 65 ° C .;
From the comparison with D2 treated at room temperature, F1 was better than D2.
It can be seen that the high rate discharge characteristics are more excellent. As described above, F1 and D2 differ only in the processing liquid temperature, and the difference between the high-rate discharge characteristics of the two is the processing liquid temperature. That is, when the temperature of the treatment liquid is set to 65 ° C. or higher, the high-rate discharge characteristics can be further improved.

【0062】[0062]

【発明の効果】本発明にかかる合金活性化処理法は、合
金表面に対し酸が有効に作用するpH0.5〜4におい
ては、そのまま酸処理を続行し、酸処理効果が低減し合
金表面に緻密な水酸化物層が形成され始めるpH4〜5
に至った段階において、当該処理液にアルカリ溶液を投
入し処理液pHを一挙に中性乃至アルカリ側にまで高め
ることを特徴とする。この構成であると、合金表面に希
土類元素等の緻密な水酸化物層が形成されるのを防止で
きるので、電池初期充電内圧特性を低下させることな
く、低温放電特性や高率放電特性に優れたアルカリ蓄電
池用水素吸蔵合金と成すことができる。
According to the alloy activation treatment method of the present invention, the acid treatment is continued as it is at a pH of 0.5 to 4 at which the acid effectively acts on the alloy surface, and the acid treatment effect is reduced and the alloy surface is reduced. PH 4-5 at which a dense hydroxide layer begins to form
In the step, the alkaline solution is added to the treatment liquid to raise the pH of the treatment liquid to a neutral or alkaline side at once. With this configuration, it is possible to prevent a dense hydroxide layer of a rare earth element or the like from being formed on the surface of the alloy. Hydrogen storage alloy for alkaline storage batteries.

【0063】更に、このような合金活性化処理法におい
て、酸性処理液および/またはアルカリ溶液にアルミニ
ウムやコバルト、ニッケル等の金属イオンを含有させた
場合、処理液のpH上昇過程でこれらの金属が合金表面
に析出して、合金表面を一層電気化学反応に好適な形状
(又は性状)に改質する。よって、電池初期充電内圧特
性、低温放電特性、高率放電特性、サイクル特性等の電
気化学特性を一層高めることができる。
Further, in such an alloy activation treatment method, when a metal ion such as aluminum, cobalt, nickel or the like is contained in an acidic treatment solution and / or an alkaline solution, these metals are increased during the process of increasing the pH of the treatment solution. Precipitates on the alloy surface to modify the alloy surface into a shape (or property) more suitable for electrochemical reactions. Therefore, electrochemical characteristics such as initial charge internal pressure characteristics, low-temperature discharge characteristics, high-rate discharge characteristics, and cycle characteristics of the battery can be further improved.

【0064】したがって、本発明水素吸蔵合金の製造方
法を適用した水素吸蔵合金を用いてアルカリ蓄電池を構
成すれば、従来にない高性能な二次電池が得られる。
Therefore, if an alkaline storage battery is formed using a hydrogen storage alloy to which the method for producing a hydrogen storage alloy of the present invention is applied, a high performance secondary battery which has never been obtained before can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アルカリ投入時の処理液pHと電池初期充電内
圧及び高率放電特性値の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the pH of a processing solution when an alkali is charged, the initial charge internal pressure of a battery, and a high-rate discharge characteristic value.

【図2】アルカリ投入後の処理液pHと電池初期充電内
圧及び高率放電特性値の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the pH of a processing solution after alkali addition, the initial charge internal pressure of a battery, and a high-rate discharge characteristic value.

【図3】処理液中に金属イオンを含有させた本発明合金
活性化処理法の有効性(高率放電特性)を示すグラフで
ある。
FIG. 3 is a graph showing the effectiveness (high-rate discharge characteristics) of the alloy activation treatment method of the present invention in which metal ions are contained in the treatment liquid.

【図4】処理液中に含有させる金属イオンの種類と高率
放電特性との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the type of metal ions contained in the treatment liquid and the high-rate discharge characteristics.

【図5】金属イオン含有アルカリ溶液の投入後の処理液
pHと高率放電特性との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the pH of a treatment solution after the introduction of a metal ion-containing alkali solution and high-rate discharge characteristics.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を初期pHが0.5〜3.
0の酸性処理液に浸漬し、当該水素吸蔵合金の浸漬され
た処理液のpHが5に上昇する前に、当該処理液にアル
カリ溶液を投入して処理液pHの上昇を加速することを
内容とする合金活性化処理工程を備えたアルカリ蓄電池
用水素吸蔵合金の製造方法。
1. A hydrogen storage alloy having an initial pH of 0.5 to 3.
0, and before the pH of the treatment solution in which the hydrogen storage alloy is immersed rises to 5, an alkaline solution is added to the treatment solution to accelerate the increase in the pH of the treatment solution. A method for producing a hydrogen storage alloy for an alkaline storage battery, comprising an alloy activation treatment step.
【請求項2】 水素吸蔵合金の浸漬された処理液のpH
が4以上、5未満において、アルカリ溶液の投入を行う
ことを特徴とする、請求項1記載のアルカリ蓄電池用水
素吸蔵合金の製造方法。
2. The pH of a treatment liquid in which a hydrogen storage alloy is immersed.
The method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 1, wherein the alkali solution is charged when the temperature is 4 or more and less than 5.
【請求項3】 前記酸性処理液が金属イオンを含むこと
を特徴とする、請求項1または2記載のアルカリ蓄電池
用水素吸蔵合金の製造方法。
3. The method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 1, wherein the acidic treatment liquid contains metal ions.
【請求項4】 前記アルカリ溶液が金属イオンを含むこ
とを特徴とする、請求項1、2または3記載のアルカリ
蓄電池用水素吸蔵合金の製造方法。
4. The method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 1, wherein the alkaline solution contains metal ions.
【請求項5】 前記金属イオンが、ニッケル、コバル
ト、アルミニウムよりなる群から一種以上選択されたも
のである、請求項3または4記載のアルカリ蓄電池用水
素吸蔵合金の製造方法。
5. The method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 3, wherein the metal ion is at least one selected from the group consisting of nickel, cobalt, and aluminum.
【請求項6】 前記アルカリ溶液の投入により、水素吸
蔵合金の浸漬された処理液のpHを7〜12とすること
を特徴とする、請求項1、2、3、4または5記載のア
ルカリ蓄電池用水素吸蔵合金の製造方法。
6. The alkaline storage battery according to claim 1, wherein the pH of the treatment liquid in which the hydrogen storage alloy is immersed is adjusted to 7 to 12 by introducing the alkaline solution. For manufacturing hydrogen storage alloys for automobiles.
【請求項7】 前記酸性処理液および/またはアルカリ
溶液が金属イオンを含むときには、前記アルカリ溶液の
投入により処理液のpHを12以上とすることを特徴と
する、請求項3または4記載のアルカリ蓄電池用水素吸
蔵合金の製造方法。
7. The alkali according to claim 3, wherein when the acidic treatment liquid and / or the alkali solution contains metal ions, the pH of the treatment liquid is adjusted to 12 or more by adding the alkali solution. A method for producing a hydrogen storage alloy for a storage battery.
【請求項8】 前記酸性処理液および/またはアルカリ
溶液として、65℃以上の温度の溶液を用いることを特
徴とする、請求項3、4または7記載のアルカリ蓄電池
用水素吸蔵合金の製造方法。
8. The method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 3, wherein a solution having a temperature of 65 ° C. or more is used as the acidic treatment liquid and / or the alkaline solution.
【請求項9】 前記アルカリ溶液の投入された処理液の
温度を、65℃以上とすることを特徴とする、請求項
3、4、7または8記載のアルカリ蓄電池用水素吸蔵合
金の製造方法。
9. The method for producing a hydrogen storage alloy for an alkaline storage battery according to claim 3, wherein the temperature of the treatment liquid into which the alkaline solution has been introduced is set to 65 ° C. or higher.
JP30459896A 1996-06-26 1996-11-15 Method for producing hydrogen storage alloy for alkaline storage battery Expired - Fee Related JP3433031B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP30459896A JP3433031B2 (en) 1996-06-26 1996-11-15 Method for producing hydrogen storage alloy for alkaline storage battery
DE69736393T DE69736393T2 (en) 1996-06-26 1997-06-20 Process for producing a hydrogen-absorbing alloy electrode
CNB971972249A CN1179434C (en) 1996-06-26 1997-06-20 Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
PCT/JP1997/002146 WO1997050135A1 (en) 1996-06-26 1997-06-20 Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
EP97927419A EP0945907B1 (en) 1996-06-26 1997-06-20 Process for producing a hydrogen storing alloy electrode
US09/214,111 US6255018B1 (en) 1996-06-26 1997-06-20 Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
EP06076209A EP1713139A1 (en) 1996-06-26 1997-06-20 Hydrogen-absorbing alloy electrode and process for making the same
KR1019980710482A KR100305176B1 (en) 1996-06-26 1997-06-20 Method for manufacturing hydrogen storage alloy electrode and hydrogen storage alloy electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-165754 1996-06-26
JP16575496 1996-06-26
JP30459896A JP3433031B2 (en) 1996-06-26 1996-11-15 Method for producing hydrogen storage alloy for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH1074510A true JPH1074510A (en) 1998-03-17
JP3433031B2 JP3433031B2 (en) 2003-08-04

Family

ID=26490371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30459896A Expired - Fee Related JP3433031B2 (en) 1996-06-26 1996-11-15 Method for producing hydrogen storage alloy for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3433031B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294235A (en) * 1999-04-09 2000-10-20 Santoku Corp Hydrogen storage alloy powder for battery and manufacture of the same
US8911157B2 (en) 2009-06-01 2014-12-16 Tyco Electronics Corporation Optical connector with ferrule interference fit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294235A (en) * 1999-04-09 2000-10-20 Santoku Corp Hydrogen storage alloy powder for battery and manufacture of the same
US8911157B2 (en) 2009-06-01 2014-12-16 Tyco Electronics Corporation Optical connector with ferrule interference fit

Also Published As

Publication number Publication date
JP3433031B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
JPH0773878A (en) Manufacture of metal hydride electrode
JP2000090920A (en) Alkaline storage battery, hydrogen storage alloy electrode and its manufacture
JP3835993B2 (en) Electrode alloy powder and method for producing the same
US6790558B2 (en) Electrode alloy powder and method of producing the same
KR100305176B1 (en) Method for manufacturing hydrogen storage alloy electrode and hydrogen storage alloy electrode
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP3553750B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2982805B1 (en) Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
JP3433031B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3573925B2 (en) Metal-hydride alkaline storage battery and method of manufacturing the same
KR100384760B1 (en) Manufacturing method of hydrogen storage alloy for alkaline storage battery and manufacturing method of hydrogen storage alloy electrode
JP2899849B2 (en) Surface treatment method of hydrogen storage alloy for alkaline secondary battery and alkaline secondary battery equipped with hydrogen storage alloy subjected to the surface treatment as electrode
JP3432870B2 (en) Method for producing metal hydride electrode
JP3561577B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3530309B2 (en) Method for producing hydrogen storage alloy electrode
JP3995383B2 (en) Method for producing hydrogen storage alloy electrode
JP3454600B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3454612B2 (en) Manufacturing method of hydrogen storage alloy electrode
KR100405016B1 (en) Hydrogen Absorbing Alloy Electrode and Method of Producing the Same
JP3573789B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3553752B2 (en) Method for producing hydrogen storage alloy electrode
JP3454614B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees