JPH1073330A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH1073330A JPH1073330A JP32531296A JP32531296A JPH1073330A JP H1073330 A JPH1073330 A JP H1073330A JP 32531296 A JP32531296 A JP 32531296A JP 32531296 A JP32531296 A JP 32531296A JP H1073330 A JPH1073330 A JP H1073330A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- parallel
- oil return
- suction
- refrigerant compressors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/075—Details of compressors or related parts with parallel compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/22—Refrigeration systems for supermarkets
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明はスーパーマーケッ
トのショーケース、冷蔵庫、冷凍庫等に用いられる冷凍
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus used for a supermarket showcase, a refrigerator, a freezer, and the like.
【0002】[0002]
【従来の技術】図9は冷媒圧縮機を2台並列搭載した従
来の冷凍装置を示す冷媒配管系統図、図10は従来の冷
凍装置の気液分離器を示す断面図である。各図におい
て、1,2は並列に配備された2台の冷媒圧縮機、3は
凝縮器、4は減圧装置、5は蒸発器、6は気液分離器で
ある。気液分離器6の内部には、入口管36、油戻し孔
31,32を設けたU字状吸入管29,30等が配備さ
れており、吸入配管7,8に連通している。2. Description of the Related Art FIG. 9 is a refrigerant piping system diagram showing a conventional refrigeration system having two refrigerant compressors mounted in parallel, and FIG. 10 is a sectional view showing a gas-liquid separator of the conventional refrigeration system. In each figure, 1 and 2 are two refrigerant compressors arranged in parallel, 3 is a condenser, 4 is a decompression device, 5 is an evaporator, and 6 is a gas-liquid separator. Inside the gas-liquid separator 6, an inlet pipe 36, U-shaped suction pipes 29, 30 provided with oil return holes 31, 32, and the like are provided, and communicate with the suction pipes 7, 8.
【0003】次に動作について説明する。冷媒圧縮機
1,2でそれぞれ圧縮された高温高圧の冷媒は凝縮器8
で凝縮されて液化する。液冷媒は冷媒配管(符号付けせ
ず)を通り、減圧装置4で減圧されて気液二相の状態と
なり、蒸発器5で外気と熱交換し冷蔵庫や冷凍庫、スー
パーマーケット等のショーケース内の負荷を冷却する。
外気と熱交換した例場はガス化し、入口管36を経て気
液分離器6へ流入する。この際、冷媒圧縮機1,2から
吐出された高温高圧ガスに含まれる若干量の油も回路内
を通り、気液分離器6内に溜まる。冷媒は気液分離器6
内のU字状吸入管29,30先端の開口部29a,30
aから吸われて、それぞれ吸入配管7,8を通って冷媒
圧縮機1,2へ戻り、上記のようなサイクルを繰り返
す。一方、気液分離器6内に溜まった油は、下部の油戻
し孔31,32から吸い上げられて、それぞれ吸入配管
7,8を通り各冷媒圧縮機1,2へ戻されて溜まる。気
液分離器6底部の油面は入口管36が下方向に向いてい
ることと、冷媒・油の吹出しとに起因して乱れているこ
とが多い。従って、気液分離器6内の油面の乱れ具合に
よっては、一方が油戻し孔以上で、他方が油戻し孔以下
の油面高さとなる場合があり、油が油戻し孔以上まで浸
った方の冷媒圧縮機内の油量は増加し、油が油戻し孔ま
で達していない方の冷媒圧縮機内の油量は低下する。Next, the operation will be described. The high-temperature and high-pressure refrigerant compressed by the refrigerant compressors 1 and 2 is supplied to the condenser 8
Is condensed and liquefied. The liquid refrigerant passes through a refrigerant pipe (not numbered), is decompressed by the decompression device 4 to be in a gas-liquid two-phase state, exchanges heat with the outside air in the evaporator 5, and loads in a showcase such as a refrigerator, a freezer, and a supermarket. To cool.
The heat exchanged with the outside air is gasified and flows into the gas-liquid separator 6 through the inlet pipe 36. At this time, a small amount of oil contained in the high-temperature and high-pressure gas discharged from the refrigerant compressors 1 and 2 also passes through the circuit and accumulates in the gas-liquid separator 6. The refrigerant is a gas-liquid separator 6
Openings 29a, 30 at the tips of U-shaped suction pipes 29, 30 inside
a, and returns to the refrigerant compressors 1 and 2 through the suction pipes 7 and 8, respectively, and repeats the above cycle. On the other hand, the oil accumulated in the gas-liquid separator 6 is sucked up from the oil return holes 31 and 32 at the lower part, returned to the refrigerant compressors 1 and 2 through the suction pipes 7 and 8, respectively, and accumulated. The oil level at the bottom of the gas-liquid separator 6 is often disturbed due to the inlet pipe 36 facing downward and the blowing of refrigerant / oil. Therefore, depending on the degree of turbulence of the oil level in the gas-liquid separator 6, one of the oil level may be higher than the oil return hole and the other may have an oil level lower than the oil return hole. The amount of oil in the other refrigerant compressor increases, and the amount of oil in the refrigerant compressor in which oil has not reached the oil return hole decreases.
【0004】[0004]
【発明が解決しようとする課題】上記したように、従来
の冷凍装置において、各U字状吸入管の油戻し孔から吸
い上げられる油量は油戻し孔位置と器内の油面の乱れ具
合によってそれぞれ均等でなくなる場合がある。従っ
て、吸い上げられる油量が少ない方の冷媒圧縮機内の油
面は低下し、このような状態が長時間続くと、油枯渇に
より圧縮機故障にいたるおそれがある。As described above, in the conventional refrigeration system, the amount of oil sucked up from the oil return hole of each U-shaped suction pipe depends on the position of the oil return hole and the degree of disturbance of the oil level in the vessel. Each may not be equal. Therefore, the oil level in the refrigerant compressor in which the amount of oil to be sucked is smaller decreases, and if such a state continues for a long time, the compressor may be damaged due to oil depletion.
【0005】この発明は、上記のような問題点を解決す
るためになされたものであり、気液分離器内に溜まった
油が油面の乱れに影響を受けることなくそれぞれの冷媒
圧縮機に均一に戻され、かつ、圧縮機の油面低下による
不具合を生じることのない冷凍装置の提供を目的とす
る。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the oil accumulated in the gas-liquid separator is supplied to each refrigerant compressor without being affected by the turbulence of the oil surface. An object of the present invention is to provide a refrigeration apparatus that is returned to a uniform state and does not cause a problem due to a decrease in oil level of a compressor.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
めに、この発明に係る冷凍装置は、容量が同じで並列に
設けられた複数の冷媒圧縮機、凝縮器、減圧装置、蒸発
器、気液分離器等を順次回路状に配備するとともに、気
液分離器の上部と複数の冷媒圧縮機の吸込側とをそれぞ
れ並列して接続する複数の吸入配管と、気液分離器の下
部と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接
続する複数の油戻し配管とを備えた冷凍装置において、
複数の油戻し配管は、それぞれの管内断面積および配管
長が同一に設定して構成されているものである。In order to achieve the above object, a refrigeration apparatus according to the present invention comprises a plurality of refrigerant compressors, condensers, decompression devices, evaporators having the same capacity and provided in parallel. Along with sequentially disposing the gas-liquid separator and the like in a circuit shape, a plurality of suction pipes connecting the upper part of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, and a lower part of the gas-liquid separator. In a refrigerating apparatus including a plurality of oil return pipes that respectively connect the suction sides of a plurality of refrigerant compressors in parallel,
The plurality of oil return pipes are configured such that the cross-sectional area in the pipe and the pipe length are set to be the same.
【0007】また、容量が同じで並列に設けられた複数
の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器
等を順次回路状に配備するとともに、気液分離器の上部
と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の吸入配管と、気液分離器の下部と複数の冷媒
圧縮機の吸込側とをそれぞれ並列して接続する複数の油
戻し配管とを備えた冷凍装置において、複数の油戻し配
管は、それぞれの油戻し配管内での圧力損失が同じ冷媒
圧縮機に接続される吸入配管内での圧力損失よりも小さ
くなる範囲内で、大きな配管長に設定して構成されたも
のである。In addition, a plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., having the same capacity and provided in parallel, are sequentially arranged in a circuit form. A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of oil return pipes for connecting the lower part of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. In the refrigerating apparatus provided with, the plurality of oil return pipes are large within a range where the pressure loss in each oil return pipe is smaller than the pressure loss in the suction pipe connected to the same refrigerant compressor. It is configured by setting to the pipe length.
【0008】そして、容量が同じで並列に設けられた複
数の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離
器等を順次回路状に配備するとともに、気液分離器の上
部と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接
続する複数の吸入配管と、気液分離器の下部と複数の冷
媒圧縮機の吸込側とをそれぞれ並列して接続する複数の
油戻し配管とを備えた冷凍装置において、複数の油戻し
配管は、それぞれの油戻し配管内での圧力損失が同じ冷
媒圧縮機に接続される吸入配管内での圧力損失よりも小
さくなる条件を満たすキャピラリチューブで構成されて
いるものである。[0008] A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators and the like, which are provided in parallel with the same capacity, are sequentially arranged in a circuit form. A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of oil return pipes for connecting the lower part of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. And a plurality of oil return pipes, the capillary tubes satisfying a condition that a pressure loss in each oil return pipe is smaller than a pressure loss in a suction pipe connected to the same refrigerant compressor. It is composed of
【0009】更に、容量が同じで並列に設けられた複数
の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器
等を順次回路状に配備するとともに、気液分離器の上部
と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の吸入配管と、気液分離器の下部と複数の冷媒
圧縮機の吸込側とをそれぞれ並列して接続する複数の油
戻し配管とを備えた冷凍装置において、複数の油戻し配
管内に、それぞれの油戻し配管内での圧力損失が同じ冷
媒圧縮機に接続される吸入配管内での圧力損失よりも小
さくなる条件を満たすオリフィスが配設されているもの
である。Further, a plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with the same capacity, are sequentially arranged in a circuit form, and the upper part of the gas-liquid separator and A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of oil return pipes for connecting the lower part of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. Orifice in a plurality of oil return pipes, the pressure loss in each oil return pipe being smaller than the pressure loss in the suction pipe connected to the same refrigerant compressor. Is provided.
【0010】また、容量が異なり並列に設けられた複数
の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器
等を順次回路状に配備するとともに、気液分離器の上部
と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の吸入配管と、気液分離器の下部と複数の冷媒
圧縮機の吸込側とをそれぞれ並列して接続する複数の油
戻し配管とを備えた冷凍装置において、複数の油戻し配
管は、同一の配管長にそれぞれ設定されるとともに、そ
れぞれの油戻し配管内での圧力損失が同じ冷媒圧縮機に
接続される吸入配管内での圧力損失よりも小さくなる範
囲内で、かつ、複数の冷媒圧縮機の容量比に応じた管内
断面積にそれぞれ設定して構成されているものである。In addition, a plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with different capacities, are sequentially arranged in a circuit form. A plurality of suction pipes each connecting the suction side of the refrigerant compressor in parallel, and a plurality of oil return pipes each connecting the bottom of the gas-liquid separator and the suction side of the plurality of refrigerant compressors in parallel. In the refrigerating apparatus equipped with the above, the plurality of oil return pipes are each set to the same pipe length, and the pressure loss in each oil return pipe is equal to the pressure in the suction pipe connected to the same refrigerant compressor. The configuration is such that the cross-sectional area in the pipe is set within a range in which the loss is smaller than the loss and according to the capacity ratio of the plurality of refrigerant compressors.
【0011】そして、容量が異なり並列に設けられた複
数の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離
器等を順次回路状に配備するとともに、気液分離器の上
部と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接
続する複数の吸入配管と、気液分離器の下部と複数の冷
媒圧縮機の吸込側とをそれぞれ並列して接続する複数の
油戻し配管とを備えた冷凍装置において、複数の油戻し
配管は、同一の管内断面積にそれぞれ設定されるととも
に、それぞれの油戻し配管内での圧力損失が同じ冷媒圧
縮機に接続される吸入配管内での圧力損失よりも小さく
なる範囲内で、かつ、複数の冷媒圧縮機の容量比に応じ
た配管長にそれぞれ設定して構成されているものであ
る。A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., having different capacities and provided in parallel, are sequentially arranged in a circuit form, and the upper part of the gas-liquid separator and the plural A plurality of suction pipes each connecting the suction side of the refrigerant compressor in parallel, and a plurality of oil return pipes each connecting the bottom of the gas-liquid separator and the suction side of the plurality of refrigerant compressors in parallel. In the refrigerating apparatus provided with, the plurality of oil return pipes are each set to the same pipe cross-sectional area, and the pressure loss in each oil return pipe is within the suction pipe connected to the same refrigerant compressor. The pipe length is set within a range where the pressure loss is smaller than the pressure loss and according to the capacity ratio of the plurality of refrigerant compressors.
【0012】更に、容量が異なり並列に設けられた複数
の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器
等を順次回路状に配備するとともに、気液分離器の上部
と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の吸入配管と、気液分離器の下部と複数の冷媒
圧縮機の吸込側とをそれぞれ並列して接続する複数の油
戻し配管とを備えた冷凍装置において、複数の油戻し配
管は、それぞれの油戻し配管内での圧力損失が同じ冷媒
圧縮機に接続される吸入配管内での圧力損失よりも小さ
くなる範囲内で、かつ、複数の冷媒圧縮機の容量比に応
じた管内断面積および配管長にそれぞれ設定して構成さ
れているものである。Further, a plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with different capacities, are sequentially arranged in a circuit form. A plurality of suction pipes each connecting the suction side of the refrigerant compressor in parallel, and a plurality of oil return pipes each connecting the bottom of the gas-liquid separator and the suction side of the plurality of refrigerant compressors in parallel. In the refrigeration apparatus provided with, the plurality of oil return pipes, within a range in which the pressure loss in each oil return pipe is smaller than the pressure loss in the suction pipe connected to the same refrigerant compressor, and The cross-sectional area in the pipe and the pipe length are set according to the capacity ratio of the plurality of refrigerant compressors.
【0013】また、容量が同じで並列に設けられた複数
の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器
等を順次回路状に配備するとともに、気液分離器の上部
と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の吸入配管と、気液分離器の下部と複数の冷媒
圧縮機の吸込側とをそれぞれ並列して接続する複数の油
戻し配管とを備えた冷凍装置において、複数の油戻し配
管毎に設けられた複数の電磁弁と、各電磁弁の開放時間
をそれぞれ等しくするように各電磁弁を周期的に開閉す
る第一制御部とを具備して構成されているものである。A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., having the same capacity and provided in parallel, are sequentially arranged in a circuit form. A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of oil return pipes for connecting the lower part of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. In a refrigeration system comprising: a plurality of solenoid valves provided for each of a plurality of oil return pipes, and a first control unit that periodically opens and closes each solenoid valve so that the opening time of each solenoid valve is equal. Is provided.
【0014】そして、容量が同じで並列に設けられた複
数の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離
器等を順次回路状に配備するとともに、気液分離器の上
部と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接
続する複数の吸入配管と、気液分離器の下部と複数の冷
媒圧縮機の吸込側とをそれぞれ並列して接続する複数の
油戻し配管とを備えた冷凍装置において、気液分離器の
下部から複数の油戻し配管への分岐位置に設けられ気液
分離器からの油流路を各油戻し配管に対し連通可能に切
換える三方弁と、各油戻し配管への連通時間をそれぞれ
等しくするように三方弁の油流路を周期的に各油戻し配
管に向けて切換える第二制御部とを具備して構成されて
いるものである。A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., having the same capacity and provided in parallel, are sequentially arranged in a circuit form. A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of oil return pipes for connecting the lower part of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. And a three-way valve that is provided at a branch position from the lower part of the gas-liquid separator to a plurality of oil return pipes and switches an oil flow path from the gas-liquid separator to be able to communicate with each oil return pipe. And a second control unit that periodically switches the oil flow path of the three-way valve toward each oil return pipe so that the communication time to each oil return pipe is equalized.
【0015】更に、容量が異なり並列に設けられた複数
の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器
等を順次回路状に配備するとともに、気液分離器の上部
と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の吸入配管と、気液分離器の下部と複数の冷媒
圧縮機の吸込側とをそれぞれ並列して接続する複数の油
戻し配管とを備えた冷凍装置において、複数の油戻し配
管毎に設けられた複数の電磁弁と、各冷媒圧縮機の容量
比に応じた開放時間となるように各電磁弁を開閉する第
三制御部とを具備して構成されているものである。Further, a plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with different capacities, are sequentially arranged in a circuit form. A plurality of suction pipes each connecting the suction side of the refrigerant compressor in parallel, and a plurality of oil return pipes each connecting the bottom of the gas-liquid separator and the suction side of the plurality of refrigerant compressors in parallel. In the refrigeration apparatus, a plurality of solenoid valves provided for each of a plurality of oil return pipes, and a third control unit that opens and closes each solenoid valve so that the opening time according to the capacity ratio of each refrigerant compressor, and Is provided.
【0016】また、容量が異なり並列に設けられた複数
の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器
等を順次回路状に配備するとともに、気液分離器の上部
と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の吸入配管と、気液分離器の下部と複数の冷媒
圧縮機の吸込側とをそれぞれ並列して接続する複数の油
戻し配管とを備えた冷凍装置において、気液分離器の下
部から複数の油戻し配管への分岐位置に設けられ気液分
離器からの油流路を各油戻し配管に対し連通可能に切換
える三方弁と、各冷媒圧縮機の容量比に応じた連通時間
となるように三方弁の油流路を各油戻し配管に向けて切
換える第四制御部とを具備して構成されているものであ
る。In addition, a plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with different capacities, are sequentially arranged in a circuit form, and the upper part of the gas-liquid separator and A plurality of suction pipes each connecting the suction side of the refrigerant compressor in parallel, and a plurality of oil return pipes each connecting the bottom of the gas-liquid separator and the suction side of the plurality of refrigerant compressors in parallel. A three-way valve provided at a branch position from the lower part of the gas-liquid separator to a plurality of oil return pipes and switching an oil flow path from the gas-liquid separator to be able to communicate with each oil return pipe, And a fourth control unit that switches the oil flow path of the three-way valve toward each oil return pipe so that the communication time is in accordance with the capacity ratio of each refrigerant compressor.
【0017】そして、容量が異なり並列に設けられた複
数の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離
器等を順次回路状に配備するとともに、気液分離器の上
部と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接
続する複数の吸入配管と、気液分離器の下部と複数の冷
媒圧縮機の吸込側とをそれぞれ並列して接続する複数の
油戻し配管とを備えた冷凍装置において、複数の油戻し
配管毎に設けられた複数の電磁弁と、複数の冷媒圧縮機
にそれぞれ設けられ圧縮機内油面が所定レベルを下回っ
たときに作動する複数の油面検知器と、油面検知器が作
動したとき当該油面検知器に関連する電磁弁を開放する
第五制御部とを具備して構成されているものである。A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., having different capacities and arranged in parallel, are sequentially arranged in a circuit form, and the upper part of the gas-liquid separator and the plural A plurality of suction pipes each connecting the suction side of the refrigerant compressor in parallel, and a plurality of oil return pipes each connecting the bottom of the gas-liquid separator and the suction side of the plurality of refrigerant compressors in parallel. A plurality of solenoid valves provided for each of a plurality of oil return pipes, and a plurality of oil levels provided respectively for a plurality of refrigerant compressors and operating when an oil level in the compressor falls below a predetermined level. It comprises a detector and a fifth control unit that opens an electromagnetic valve associated with the oil level detector when the oil level detector operates.
【0018】更に、容量が異なり並列に設けられた複数
の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器
等を順次回路状に配備するとともに、気液分離器の上部
と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の吸入配管と、気液分離器の下部と複数の冷媒
圧縮機の吸込側とをそれぞれ並列して接続する複数の油
戻し配管とを備えた冷凍装置において、気液分離器の下
部から複数の油戻し配管への分岐位置に設けられ気液分
離器からの油流路を各油戻し配管に対し連通可能に切換
える三方弁と、複数の冷媒圧縮機にそれぞれ設けられ圧
縮機内油面が所定レベルを下回ったときに作動する複数
の油面検知器と、油面検知器が作動したとき当該油面検
知器に関連する油戻し配管に向けて三方弁の油流路を切
換える第六制御部とを具備して構成されているものであ
る。Further, a plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with different capacities, are sequentially arranged in a circuit form. A plurality of suction pipes each connecting the suction side of the refrigerant compressor in parallel, and a plurality of oil return pipes each connecting the bottom of the gas-liquid separator and the suction side of the plurality of refrigerant compressors in parallel. A three-way valve provided at a branch position from the lower part of the gas-liquid separator to a plurality of oil return pipes and switching an oil flow path from the gas-liquid separator to be able to communicate with each oil return pipe, A plurality of oil level detectors respectively provided in the plurality of refrigerant compressors and operating when an oil level in the compressor falls below a predetermined level, and an oil return pipe associated with the oil level detector when the oil level detector operates Control section that switches the oil flow path of the three-way valve toward Are those configured by including the.
【0019】また、容量が異なり並列に設けられた複数
の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器
等を順次回路状に配備するとともに、気液分離器の上部
と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の吸入配管と、気液分離器の下部と複数の冷媒
圧縮機の吸込側とをそれぞれ並列して接続する複数の油
戻し配管とを備えた冷凍装置において、複数の油戻し配
管毎に設けられた複数の電磁弁と、複数の冷媒圧縮機に
それぞれ設けられ圧縮機内油面が所定レベルを下回った
ときに作動する複数の油面検知器と、各電磁弁を周期的
に開閉させるとともに、各電磁弁が開放される周期的な
時期と各電磁弁に関連する油面検知器が作動する時期の
うち、早い時期に従って各電磁弁を開放する第七制御部
とを具備して構成されているものである。A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with different capacities, are sequentially arranged in a circuit form, and the upper part of the gas-liquid separator and A plurality of suction pipes each connecting the suction side of the refrigerant compressor in parallel, and a plurality of oil return pipes each connecting the bottom of the gas-liquid separator and the suction side of the plurality of refrigerant compressors in parallel. A plurality of solenoid valves provided for each of a plurality of oil return pipes, and a plurality of oil levels provided respectively for a plurality of refrigerant compressors and operating when an oil level in the compressor falls below a predetermined level. Detector and each solenoid valve are opened and closed periodically, and each solenoid valve is set according to the earlier of the periodic timing when each solenoid valve is opened and when the oil level detector associated with each solenoid valve operates. And a seventh control unit for releasing It is what is.
【0020】[0020]
【発明の実施の形態】引続き、この発明の実施の形態を
図面に基づいて説明する。 発明の実施の形態1.図1はこの発明の実施の形態1に
よる冷凍装置を示すもので、同じ容量の冷媒圧縮機を2
台並列搭載した場合を示す。図において、1は第一冷媒
圧縮機、2は第一冷媒圧縮機1と容量が同じで並列に設
けられた第二冷媒圧縮機、3は凝縮器、4は減圧装置、
5は蒸発器、6は気液分離器、7は気液分離器6上部の
出口部6cと第一冷媒圧縮機1の吸込側を接続する第一
吸入配管、8は気液分離器6上部の出口部6bと第二冷
媒圧縮機2の吸込側を接続する第二吸入配管、9は気液
分離器6下部の油取り出し部6dから出て第一吸入配管
7の接続部7aに接続する第一油戻し配管、10は気液
分離器6下部の油取り出し部6dから出て第二吸入配管
8の接続部8aに接続する第二油戻し配管である。この
場合、第一油戻し配管9と第二油戻し配管10は、それ
ぞれの管内断面積および配管長が同一に設定されてい
る。Embodiments of the present invention will be described with reference to the drawings. Embodiment 1 of the Invention FIG. 1 shows a refrigeration apparatus according to Embodiment 1 of the present invention.
This shows a case where the units are mounted in parallel. In the drawing, 1 is a first refrigerant compressor, 2 is a second refrigerant compressor having the same capacity as the first refrigerant compressor 1 and provided in parallel, 3 is a condenser, 4 is a decompression device,
Reference numeral 5 denotes an evaporator, reference numeral 6 denotes a gas-liquid separator, reference numeral 7 denotes a first suction pipe connecting an outlet 6c at an upper portion of the gas-liquid separator 6 and a suction side of the first refrigerant compressor 1, and reference numeral 8 denotes an upper portion of the gas-liquid separator 6. A second suction pipe 9 connecting an outlet 6b of the second refrigerant compressor 2 to the suction side of the second refrigerant compressor 2 exits from an oil outlet 6d below the gas-liquid separator 6 and is connected to a connection 7a of the first suction pipe 7. The first oil return pipe 10 is a second oil return pipe that exits from the oil take-out part 6 d below the gas-liquid separator 6 and is connected to the connection part 8 a of the second suction pipe 8. In this case, the first oil return pipe 9 and the second oil return pipe 10 are set to have the same cross-sectional area and the same pipe length.
【0021】この実施の形態1による冷凍装置は上記の
ように構成されている。引続き、この冷凍装置の動作を
説明する。まず、第一冷媒圧縮機1、第二冷媒圧縮機2
で圧縮された高温高圧の冷媒は凝縮器3で凝縮されて液
化し、減圧装置4で減圧されて気液二相の状態となり、
蒸発器5で外気と熱交換して冷蔵庫や冷凍庫、スーパー
マーケット等のショーケース内の負荷を冷却する。ここ
でガス化した冷媒は入口部6aから気液分離器6に流入
し、更に第一吸入配管7、第二吸入配管8を通って再び
各冷媒圧縮機1,2へ戻り、上記のようなサイクルを繰
り返す。この際、第一冷媒圧縮機1、第二冷媒圧縮機2
から吐出された高温高圧ガスに含まれる若干量の油は凝
縮器3、減圧装置4、蒸発器5を通り、気液分離器6内
に溜まる(図中の斜線部)。油は気液分離器6の油取り
出し部6dより流出し、第一油戻し配管9、第二油戻し
配管10を通って各冷媒圧縮機1,2に戻る。ここで、
各冷媒圧縮機1,2は容量が同一であり、また第一油戻
し配管9と第二油戻し配管10の配管長を同一にするこ
とにより、各油戻し配管9,10の圧力損失は同一とな
る。従って、気液分離器6から各冷媒圧縮機1,2に戻
る油は均等に分配される。以上のように、気液分離器6
と各吸入配管7,8とを接続する各油戻し配管9,10
を上記の構造にしたので、気液分離器6内部の油面の乱
れ具合にかかわらず、油を確実かつ均等に各冷媒圧縮機
1,2に戻すことができ、どちらかの冷媒圧縮機内の油
面が低下して、油枯渇を生じるような不具合に至ること
はない。尚、第一油戻し配管9と第二油戻し配管10
は、気液分離器6の下部と各冷媒圧縮機1,2の吸込側
とをそれぞれ並列して直に接続する構成であっても構わ
ない。The refrigeration apparatus according to Embodiment 1 is configured as described above. Subsequently, the operation of the refrigeration apparatus will be described. First, the first refrigerant compressor 1 and the second refrigerant compressor 2
The high-temperature and high-pressure refrigerant compressed in is condensed and liquefied in the condenser 3 and decompressed by the decompression device 4 to be in a gas-liquid two-phase state.
The load in the showcase such as a refrigerator, a freezer, and a supermarket is cooled by exchanging heat with the outside air in the evaporator 5. The gasified refrigerant flows into the gas-liquid separator 6 from the inlet 6a, and returns to the refrigerant compressors 1 and 2 again through the first suction pipe 7 and the second suction pipe 8, as described above. Repeat cycle. At this time, the first refrigerant compressor 1 and the second refrigerant compressor 2
A small amount of oil contained in the high-temperature and high-pressure gas discharged from the gas passes through the condenser 3, the decompression device 4, and the evaporator 5, and accumulates in the gas-liquid separator 6 (hatched portion in the figure). The oil flows out from the oil outlet 6d of the gas-liquid separator 6, and returns to the refrigerant compressors 1 and 2 through the first oil return pipe 9 and the second oil return pipe 10. here,
The refrigerant compressors 1 and 2 have the same capacity, and the first oil return pipe 9 and the second oil return pipe 10 have the same pipe length so that the oil loss pipes 9 and 10 have the same pressure loss. Becomes Therefore, the oil returning from the gas-liquid separator 6 to each of the refrigerant compressors 1 and 2 is evenly distributed. As described above, the gas-liquid separator 6
Oil return pipes 9 and 10 for connecting oil suction pipes 7 and 8
, The oil can be reliably and evenly returned to each of the refrigerant compressors 1 and 2 regardless of the degree of disturbance of the oil level inside the gas-liquid separator 6. The oil level does not drop and does not lead to a problem that causes oil depletion. The first oil return pipe 9 and the second oil return pipe 10
May be configured such that the lower part of the gas-liquid separator 6 and the suction side of each of the refrigerant compressors 1 and 2 are directly connected in parallel.
【0022】発明の実施の形態2.この実施の形態2で
は実施の形態1の構成に加え、油をより確実に各冷媒圧
縮機に戻す場合に示す。ここで、気液分離器6の油取り
出し部6dから第一油戻し配管9と第一吸入配管7の接
続部7aまでの配管内の圧力損失をΔP1 とする。ま
た、気液分離器6の油取り出し部6dと第一冷媒圧縮機
1までの圧力損失、すなわち第一吸入配管7内の圧力損
失をΔP2 とする。第二油戻し配管10、第二吸入配管
8内の圧力損失を同様にΔP3 ,ΔP4 とする。そこ
で、ΔP1 <ΔP2 、かつ、ΔP3 <ΔP4 となる範囲
内において、各油戻し配管9,10内の圧力損失をでき
るだけ大きくして油戻りを良くするため、それぞれの配
管長をできるだけ大きく設定する。流体力学の一般式よ
り、圧力損失と配管長の関係は次式で表される。 ΔP=(1/2)・λ・(L/d)・v2 単位は、ΔP:Pa、λ:無名数、L:m、d:m、
V:m/sであり、以下同様となる。ここで、ΔPは圧
力損失、λは管摩擦係数、Lは配管長、dは管内径、v
は流速である。上式からも明らかなように、圧力損失Δ
Pと配管長Lは比例する。従って、配管長Lが長くなれ
ばなるほど、油戻し配管内の圧力損失ΔPが大きくな
り、油戻り量を増加させることができる。Embodiment 2 of the Invention In the second embodiment, in addition to the configuration of the first embodiment, a case will be described in which oil is more reliably returned to each refrigerant compressor. Here, the [Delta] P 1 the pressure loss in the piping from the oil extraction portion 6d of the gas-liquid separator 6 to the first oil return pipe 9 and the connecting portion 7a of the first suction pipe 7. Moreover, pressure loss to an oil extraction unit 6d and the first refrigerant compressor 1 of the gas-liquid separator 6, i.e., the pressure loss in the first suction pipe 7 and [Delta] P 2. The pressure losses in the second oil return pipe 10 and the second suction pipe 8 are similarly set to ΔP 3 and ΔP 4 . Therefore, in the range of ΔP 1 <ΔP 2 and ΔP 3 <ΔP 4 , in order to maximize the pressure loss in each of the oil return pipes 9 and 10 and improve the oil return, the length of each pipe is set as small as possible. Set larger. From the general formula of hydrodynamics, the relationship between pressure loss and pipe length is expressed by the following formula. ΔP = (1 /) · λ · (L / d) · v 2 Units are ΔP: Pa, λ: anonymous number, L: m, d: m,
V: m / s, and so on. Here, ΔP is a pressure loss, λ is a pipe friction coefficient, L is a pipe length, d is a pipe inner diameter, v
Is the flow velocity. As is clear from the above equation, the pressure loss Δ
P and the pipe length L are proportional. Therefore, the longer the pipe length L, the greater the pressure loss ΔP in the oil return pipe, and the greater the amount of oil return.
【0023】発明の実施の形態3.この実施の形態3
は、油戻し配管内の圧力損失をできるだけ大きくするよ
うに、各油戻し配管9,10をキャピラリチューブで構
成した例である。ΔP1 <ΔP2 、かつ、ΔP3 <ΔP
4 となる条件を満たすためには、管内径dが0.8mm
〜2mmとなるキャピラリチューブが好適である。上式
にあてはめると、同一運転条件であれば、管内径dが小
さくなればなるほど圧力損失ΔPは大きくなる。従っ
て、このキャピラリチューブを用いた場合も油戻りが良
くなる。Embodiment 3 of the Invention Embodiment 3
Is an example in which each of the oil return pipes 9 and 10 is formed of a capillary tube so as to maximize the pressure loss in the oil return pipe. ΔP 1 <ΔP 2 and ΔP 3 <ΔP
In order to satisfy the condition of 4 , the inner diameter d of the pipe must be 0.8 mm
Capillary tubes measuring up to 2 mm are preferred. By applying the above equation, under the same operating conditions, the pressure loss ΔP increases as the pipe inner diameter d decreases. Therefore, even when this capillary tube is used, the oil return is improved.
【0024】発明の実施の形態4.この実施の形態4
は、油戻し配管での圧力損失を大きくするように、油戻
し配管内にオリフィスを配設した例である。図2に示す
ように、オリフィス11は円盤状の金属板にいくつかの
丸穴をあけたものである。丸穴の開口径および開口数
は、ΔP1 <ΔP2 、かつ、ΔP3 <ΔP4 となる条件
を満たすように予め設定されている。そこで、図3に示
すように、各油戻し配管9,10内にオリフィス11を
装着すると、流れに対して大きな抵抗となる。従って、
オリフィス11前後における圧力損失ΔPが、オリフィ
ス11が無い場合と比べて大きくなり、油戻りが良くな
る。Embodiment 4 of the Invention Embodiment 4
Is an example in which an orifice is provided in the oil return pipe so as to increase the pressure loss in the oil return pipe. As shown in FIG. 2, the orifice 11 is a disk-shaped metal plate having several round holes. The opening diameter and the numerical aperture of the round hole are set in advance so as to satisfy the conditions of ΔP 1 <ΔP 2 and ΔP 3 <ΔP 4 . Therefore, as shown in FIG. 3, when the orifice 11 is installed in each of the oil return pipes 9 and 10, a large flow resistance is caused. Therefore,
The pressure loss ΔP before and after the orifice 11 is larger than when there is no orifice 11, and the oil return is improved.
【0025】発明の実施の形態5.この実施の形態5は
容量の異なる2台の冷媒圧縮機を並列に搭載した例であ
る。図4に示すように、第三冷媒圧縮機12と第四冷媒
圧縮機13のそれぞれの容量は、第三冷媒圧縮機12が
X(kW)、第四冷媒圧縮機13がY(kW)とする。
先述したように、圧力損失は一般的に次式で表される。 ΔP=(1/2)・λ・(L/d)・v2 ・・・・ (1) (1)式中、ΔPは圧力損失、λは管摩擦係数、Lは配
管長、dは管内径、vは流速である。また、管摩擦係数
λは一般的に次の実験式で表される。 λ=0.3164・(v・d/ν)-0.25 ・・・・ (2) 単位は、ν:Pa・sであり、以下同様とする。ここ
で、νは管内を流れる油の動粘度である。式(2)を式
(1)に代入して変形すると、 ΔP=(1/2)・0.3164・ (v・d/ν)-0.25 ・(L/d)・v2 =(1/2)・0.3164・ (L/ν-0.25 )・(1/d1.25)・ν1.75 ・・(3) になる。また、管内を流れる油の流量をGとすれば、 G=(πd2 /4)・ν ・・・・(4) となる。単位は、G:Kg/sであり、以下同様とす
る。Embodiment 5 of the Invention The fifth embodiment is an example in which two refrigerant compressors having different capacities are mounted in parallel. As shown in FIG. 4, the respective capacities of the third refrigerant compressor 12 and the fourth refrigerant compressor 13 are such that the third refrigerant compressor 12 is X (kW), and the fourth refrigerant compressor 13 is Y (kW). I do.
As described above, the pressure loss is generally expressed by the following equation. ΔP = (1/2) · λ · (L / d) · v 2 (1) In the equation (1), ΔP is a pressure loss, λ is a pipe friction coefficient, L is a pipe length, and d is a pipe. The inside diameter, v, is the flow rate. The pipe friction coefficient λ is generally expressed by the following empirical formula. λ = 0.3164 · (v · d / ν) -0.25 (2) The unit is ν: Pa · s, and the same applies hereinafter. Here, ν is the kinematic viscosity of the oil flowing in the pipe. By substituting equation (2) into equation (1) and transforming, ΔP = (1 /) · 0.3164 · (v · d / ν) −0.25 · (L / d) · v 2 = (1 / 2) · 0.3164 · (L / ν− 0.25 ) · (1 / d 1.25 ) · ν 1.75 · (3) Further, if the flow rate of the oil flowing through the pipe and G, G = a (πd 2/4) · ν ···· (4). The unit is G: Kg / s, and the same applies hereinafter.
【0026】式(4)を式(3)に代入し、さらに変形
すると、 ΔP=(1/2)・0.3164・(L/ν-0.25 )・ (1/d1.25)・v1.75 =(1/2)・0.3164・(L/ν-0.25 )・ (1/d1.25)・(G/(πd2 /4))1.75 =(1/2)・0.3164・(L/ν-0.25・d1.25) ・(1/(π/4))1.75・(G1.75/d3.5 ) ・・・(5) となる。式(5)より、油の流量Gは配管長Lや管内径
dに対し、以下のような関係にあることがわかる。
(注)∝は比例をあらわす。 G ∝ d4.75/1.75 ・(1/L)1/1.75 ・・・(6)Substituting equation (4) into equation (3) and transforming further, ΔP = (1 /) · 0.3164 · (L / ν −0.25 ) · (1 / d 1.25 ) · v 1.75 = (1/2) · 0.3164 · (L / ν -0.25) · (1 / d 1.25) · (G / (πd 2/4)) 1.75 = (1/2) · 0.3164 · (L / ν− 0.25 · d 1.25 ) · (1 / (π / 4)) 1.75 · (G 1.75 / d 3.5 ) (5) From equation (5), it can be seen that the oil flow rate G has the following relationship with the pipe length L and the pipe inner diameter d.
(Note) ∝ indicates proportionality. G d d 4.75 / 1.75・ (1 / L) 1 / 1.75・ ・ ・ (6)
【0027】以下のことより、各油戻し配管9,10の
配管長Lはそれぞれ同一とし、ΔP1 <ΔP2 、かつ、
ΔP3 <ΔP4 となる範囲内において、第三冷媒圧縮機
12と第四冷媒圧縮機13の容量比、すなわちX:Yに
応じて各油戻し配置9,10の管内径dをそれぞれ決定
するものである。つまり、第三冷媒圧縮機12への第一
油戻し配管9の管内径をd1 、第四冷媒圧縮機13への
第二油戻し配管10の管内径をd2 とすれば、 X : Y = d1 4.75/1.75 : d2 4.75/1.75 となるように、それぞれの油戻し配管9,10の管内径
d1 ,d2 が決定される。ここで単位は、d1 :m,d
2 :mであり、以下同様とする。このような構造にする
ことによって、複数の冷媒圧縮機12,13の容量が異
なっていたとしても、気液分離器6から各冷媒圧縮機1
2,13へ均等に油を戻すことができる。From the following, the pipe lengths L of the oil return pipes 9 and 10 are assumed to be the same, ΔP 1 <ΔP 2 , and
Within the range where ΔP 3 <ΔP 4 , the inner diameter d of each oil return arrangement 9, 10 is determined according to the capacity ratio of the third refrigerant compressor 12 and the fourth refrigerant compressor 13, that is, X: Y. Things. That is, if the inner diameter of the first oil return pipe 9 to the third refrigerant compressor 12 is d 1 and the inner diameter of the second oil return pipe 10 to the fourth refrigerant compressor 13 is d 2 , X: Y = D 1 4.75 / 1.75 : d 2 The pipe inner diameters d 1 and d 2 of the oil return pipes 9 and 10 are determined so that 4.75 / 1.75 . Here, the unit is d 1 : m, d
2 : m, and so on. With such a structure, even if the capacity of the plurality of refrigerant compressors 12 and 13 is different, the refrigerant compressor 1
The oil can be returned evenly to 2,13.
【0028】発明の実施の形態6.この実施の形態6
は、容量の異なる2台の冷媒圧縮機を並列搭載する場合
に、各油戻し配管の管内径を同一とし、それぞれの配管
長を決定した例である。つまり、各油戻し配管9,10
の管内径dはそれぞれ同一とし、ΔP1 <ΔP2 、か
つ、ΔP3 <ΔP4 となる範囲内において、第三冷媒圧
縮機12と第四冷媒圧縮機13の容量比、すなわちX:
Yに応じて各油戻し配管9,10の配管長Lをそれぞれ
決定するものである。第三冷媒圧縮機12への第一油戻
り管9の配管長をL1 、第四冷媒圧縮機13への第二油
戻り管10の配管長をL2 とすれば、式(6)の関係よ
り、 X : Y = (1/L1 )1/1.75 : (1/L2 )1/1.75 となるように、それぞれの油戻し配管9,10の配管長
L1 ,L2 が決定される。ここで単位は、L1 :m,L
2 :mであり、以下同様とする。このような構造にする
ことによって、複数の冷媒圧縮機12,13の容量が異
なっている場合でも、気液分離器6から各冷媒圧縮機1
2,13へ均等に油を戻すことができる。Embodiment 6 of the Invention Embodiment 6
Is an example in which, when two refrigerant compressors having different capacities are mounted in parallel, the pipe inner diameters of the oil return pipes are the same, and the respective pipe lengths are determined. That is, each oil return pipe 9, 10
Are the same, and within the range of ΔP 1 <ΔP 2 and ΔP 3 <ΔP 4 , the capacity ratio between the third refrigerant compressor 12 and the fourth refrigerant compressor 13, that is, X:
The pipe length L of each of the oil return pipes 9 and 10 is determined according to Y. If the pipe length of the first oil return pipe 9 to the third refrigerant compressor 12 is L 1 and the pipe length of the second oil return pipe 10 to the fourth refrigerant compressor 13 is L 2 , the equation (6) is obtained. From the relation, the pipe lengths L 1 and L 2 of the oil return pipes 9 and 10 are determined so that X: Y = (1 / L 1 ) 1 / 1.75 : (1 / L 2 ) 1 / 1.75. You. Here, the unit is L 1 : m, L
2 : m, and so on. With such a structure, even when the capacity of the plurality of refrigerant compressors 12 and 13 is different, each refrigerant compressor 1
The oil can be returned evenly to 2,13.
【0029】発明の実施の形態7.この実施の形態7
は、容量の異なる2台の冷媒圧縮機を並列搭載する場合
に、各油戻し配管の管内径と配管長をそれぞれ決定した
例である。つまり、ΔP1 <ΔP2 、かつ、ΔP3 <Δ
P4 となる範囲内において、第三冷媒圧縮機12と第四
冷媒圧縮機13の容量比、すなわちX:Yに応じて各油
戻し配管9,10の配管長Lと管内径dを決定するもの
である。式(6)の関係より、 X : Y = d1 4.75/1.75・(1/L1 )1/1.75 : d2 4.75/1.75 ・(1/L2 )1/1.75 となるように、それぞれの油戻し配管9,10の配管長
Lと管内径dが決定される。このような構造にすること
によって、複数の冷媒圧縮機12,13の容量が異なっ
ている場合でも、気液分離器6から各冷媒圧縮機12,
13へ均等に油を戻すことができる。Embodiment 7 of the Invention Embodiment 7
Is an example in which, when two refrigerant compressors having different capacities are mounted in parallel, the pipe inner diameter and the pipe length of each oil return pipe are determined. That is, ΔP 1 <ΔP 2 and ΔP 3 <Δ
Within range of a P 4, volume ratio of the third refrigerant compressor 12 and the fourth refrigerant compressor 13, i.e. X: determining a pipe length L and the tube inner diameter d of the oil return pipe 9, 10 according to Y Things. From the relationship of Equation (6), X: Y = d 1 4.75 / 1.75 · (1 / L 1) 1 / 1.75: d 2 4.75 / 1.75 · (1 / L 2) to be 1 / 1.75, respectively The length L and the inner diameter d of the oil return pipes 9 and 10 are determined. With such a structure, even when the capacity of the plurality of refrigerant compressors 12 and 13 is different, the refrigerant compressors 12 and 13 are separated from the gas-liquid separator 6.
13 can be evenly returned to the oil.
【0030】発明の実施の形態8.図5はこの発明の実
施の形態8による冷凍装置を示すもので、同じ容量の冷
媒圧縮機を2台並列搭載した場合を示す。図において、
第一冷媒圧縮機1と第二冷媒圧縮機2は容量が同じで並
列に設けられている。また、第一油戻し配管9、第二油
戻し配管10の途中には、それぞれ第一電磁弁41、第
二電磁弁42が設けられている。また、各電磁弁41,
42を開閉制御する第一制御部43aが各電磁弁41,
42に配線接続されている。第一制御部43aは例えば
汎用の演算処理装置(MPU)、ならびに演算プログラ
ムおよび制御データを記憶したメモリ(いずれも図示省
略)などから構成されている。後述の実施の形態で例示
する各制御部43b,43c,43d,43e,43
f,43gも同様の構成である。ここで、各冷媒圧縮機
1,2は容量が同一であり、また第一制御部43aは、
各電磁弁41,42の開放時間をそれぞれ等しくするよ
うに、各電磁弁41,42を周期的に開閉するようにな
っている。従って、各電磁弁41,42が周期的に開放
され、各電磁弁41,42の開放時間もそれぞれ同一に
されるので、気液分離器6内部の油面の乱れ具合にかか
わらず、油を確実かつ均等に各冷媒圧縮機1,2に戻す
ことができ、どちらかの冷媒圧縮機1または2内の油面
が低下して、油枯渇を生じるような不具合に至ることは
ない。尚、第一油戻し配管9と第二油戻し配管10は、
気液分離器6の下部と各冷媒圧縮機1,2の吸込側とを
それぞれ並列して直に接続する構成であっても構わな
い。Embodiment 8 of the Invention FIG. 5 shows a refrigeration apparatus according to Embodiment 8 of the present invention, in which two refrigerant compressors having the same capacity are mounted in parallel. In the figure,
The first refrigerant compressor 1 and the second refrigerant compressor 2 have the same capacity and are provided in parallel. In the middle of the first oil return pipe 9 and the second oil return pipe 10, a first solenoid valve 41 and a second solenoid valve 42 are provided, respectively. In addition, each solenoid valve 41,
The first control unit 43a that controls the opening and closing of the solenoid valves 41, 42
42 is connected by wiring. The first control unit 43a includes, for example, a general-purpose arithmetic processing unit (MPU), a memory storing an arithmetic program and control data (both are not shown), and the like. Each of the control units 43b, 43c, 43d, 43e, 43 exemplified in the embodiments described later.
f and 43g have the same configuration. Here, the refrigerant compressors 1 and 2 have the same capacity, and the first control unit 43a
The solenoid valves 41 and 42 are periodically opened and closed so that the opening times of the solenoid valves 41 and 42 are equal. Accordingly, the solenoid valves 41 and 42 are periodically opened, and the opening times of the solenoid valves 41 and 42 are also set to be the same. Therefore, regardless of the degree of oil level disturbance inside the gas-liquid separator 6, oil is removed. The refrigerant can be reliably and evenly returned to each of the refrigerant compressors 1 and 2, and the oil level in one of the refrigerant compressors 1 and 2 does not drop, and a problem such as oil depletion does not occur. The first oil return pipe 9 and the second oil return pipe 10 are
A configuration in which the lower portion of the gas-liquid separator 6 and the suction sides of the refrigerant compressors 1 and 2 are directly connected in parallel, respectively, may be used.
【0031】発明の実施の形態9.図6はこの発明の実
施の形態9による冷凍装置を示すもので、同じ容量の冷
媒圧縮機を2台並列搭載した場合を示す。図において、
発明の実施の形態8と構成が異なる点は、各電磁弁4
1,42の代わりに三方弁44を用いたことと、三方弁
44の流路を切換制御する第二制御部43bを用いたこ
とである。すなわち、気液分離器6の下部から各油戻し
配管9,10への分岐位置に、気液分離器6からの油流
路を各油戻し配管9,10に対し連通可能に切換える三
方弁44が設けられる。ここで、各冷媒圧縮機1,2は
容量が同一であり、また第二制御部43bは、各油戻し
配管9,10への連通時間をそれぞれ等しくするよう
に、三方弁44の油流路を周期的に各油戻し配管9,1
0に向けて切換えるようになっている。従って、三方弁
44の油流路が各油戻し配管9,10に向けて周期的に
切換えられるとともに、各油戻し配管9,10への連通
時間もそれぞれ等しくされるので、気液分離器6内部の
油面の乱れ具合にかかわらず、油を確実かつ均等に各冷
媒圧縮機1,2に戻すことができ、どちらかの冷媒圧縮
機1または2内の油面が低下して、油枯渇を生じるよう
な不具合に至ることはない。そのうえ、2台の電磁弁4
1,42を用いた場合(実施の形態8)と比べて装置を
簡略化できる。Embodiment 9 of the Invention FIG. 6 shows a refrigeration apparatus according to Embodiment 9 of the present invention, in which two refrigerant compressors having the same capacity are mounted in parallel. In the figure,
The difference between Embodiment 8 and Embodiment 8 is that each solenoid valve 4
That is, a three-way valve 44 is used instead of the first and second valves 42, and a second control unit 43b that controls switching of the flow path of the three-way valve 44 is used. That is, the three-way valve 44 that switches the oil flow path from the gas-liquid separator 6 to the oil return pipes 9 and 10 at a branch position from the lower part of the gas-liquid separator 6 to the oil return pipes 9 and 10. Is provided. Here, the refrigerant compressors 1 and 2 have the same capacity, and the second control unit 43b controls the oil flow path of the three-way valve 44 so that the communication time to the oil return pipes 9 and 10 is equal. To each oil return pipe 9,1
It is designed to switch to zero. Therefore, the oil flow path of the three-way valve 44 is periodically switched toward the oil return pipes 9 and 10, and the communication time to the oil return pipes 9 and 10 is also equalized. Irrespective of the degree of disturbance of the oil level inside, the oil can be reliably and evenly returned to each of the refrigerant compressors 1 and 2, and the oil level in one of the refrigerant compressors 1 or 2 is reduced, and the oil is depleted. Does not occur. In addition, two solenoid valves 4
The apparatus can be simplified as compared with the case where the first and second elements are used (Embodiment 8).
【0032】発明の実施の形態10.図5はこの発明の
実施の形態10による冷凍装置を示すもので、異なる容
量の冷媒圧縮機(括弧内符号)を2台並列搭載した場合
を示す。図において、発明の実施の形態10は発明の実
施の形態8と比べて、第三冷媒圧縮機12と第四冷媒圧
縮機13の容量が異なっている。また、各電磁弁41,
42を開閉制御する第三制御部43c(括弧内符号)が
各電磁弁41,42に配線接続されている。この第三制
御部43cは各冷媒圧縮機の容量比に応じた開放時間と
なるように各電磁弁41,42を開閉するようになって
いる。従って、各油戻し配管9,10の電磁弁41,4
2は各冷媒圧縮機12,13の容量比に応じた開放時間
で開閉されるので、圧縮機容量が異なる場合であって
も、気液分離器6内部の油面の乱れ具合にかかわらず、
油を確実かつ均等に各冷媒圧縮機12,13に戻すこと
ができ、どちらかの冷媒圧縮機12または13内の油面
が低下して、油枯渇を生じるような不具合に至ることは
ない。Embodiment 10 of the Invention FIG. 5 shows a refrigerating apparatus according to Embodiment 10 of the present invention, in which two refrigerant compressors (references in parentheses) having different capacities are mounted in parallel. In the figure, Embodiment 10 of the present invention is different from Embodiment 8 of the present invention in the capacity of the third refrigerant compressor 12 and the fourth refrigerant compressor 13. In addition, each solenoid valve 41,
A third control unit 43 c (symbol in parentheses) that controls opening and closing of 42 is connected to the respective solenoid valves 41 and 42 by wiring. The third control unit 43c opens and closes each of the solenoid valves 41 and 42 so as to have an opening time corresponding to the capacity ratio of each refrigerant compressor. Therefore, the solenoid valves 41, 4 of each oil return pipe 9, 10
2 is opened and closed for an opening time according to the capacity ratio of each of the refrigerant compressors 12 and 13, so that even if the compressor capacities are different, regardless of the degree of disturbance of the oil level inside the gas-liquid separator 6,
The oil can be reliably and evenly returned to each of the refrigerant compressors 12 and 13, and the oil level in one of the refrigerant compressors 12 or 13 does not decrease, and a problem such as oil depletion does not occur.
【0033】発明の実施の形態11.図6はこの発明の
実施の形態11による冷凍装置を示すもので、異なる容
量の冷媒圧縮機(括弧内符号)を2台並列搭載した場合
を示す。図において、発明の実施の形態11は発明の実
施の形態9と比べて、第三冷媒圧縮機12と第四冷媒圧
縮機13の容量が異なっている。また、三方弁44の流
路を切換制御する第四制御部43d(括弧内符号)が三
方弁44に配線接続されている。この第四制御部43d
は各冷媒圧縮機12,13の容量比に応じた連通時間と
なるように、三方弁44の油流路を各油戻し配管9,1
0に向けて切換えるようになっている。従って、三方弁
44の油流路は各冷媒圧縮機12,13の容量比に応じ
た連通時間となるように各油戻し配管9,10に向けて
切換えられるので、圧縮機容量が異なる場合であって
も、気液分離器6内部の油面の乱れ具合にかかわらず、
圧縮機容量比に応じた量の油を確実に各冷媒圧縮機1
2,13に戻すことができ、どちらかの冷媒圧縮機12
または13内の油面が低下して、油枯渇を生じるような
不具合に至ることはない。そのうえ、2台の電磁弁4
1,42を用いた場合(実施の形態10)と比べて装置
を簡略化できる。Embodiment 11 of the Invention FIG. 6 shows a refrigeration apparatus according to Embodiment 11 of the present invention, in which two refrigerant compressors (references in parentheses) having different capacities are mounted in parallel. In the figure, Embodiment 11 of the present invention is different from Embodiment 9 of the present invention in the capacity of the third refrigerant compressor 12 and the fourth refrigerant compressor 13. Further, a fourth control unit 43 d (reference in parentheses) for switching control of the flow path of the three-way valve 44 is connected to the three-way valve 44 by wiring. This fourth control unit 43d
The oil passages of the three-way valve 44 are connected to the respective oil return pipes 9 and 1 such that the communication time is in accordance with the capacity ratio of the refrigerant compressors 12 and 13.
It is designed to switch to zero. Therefore, the oil flow path of the three-way valve 44 is switched toward the oil return pipes 9 and 10 so as to have a communication time corresponding to the capacity ratio of the refrigerant compressors 12 and 13, so that the compressor capacity is different. Even if there is, regardless of how the oil level inside the gas-liquid separator 6 is disordered,
Make sure that each refrigerant compressor 1
2, 13 can be returned to either refrigerant compressor 12
Alternatively, the oil level in the tank 13 does not drop, so that a problem such as oil depletion does not occur. In addition, two solenoid valves 4
The apparatus can be simplified as compared with the case where the first and second elements are used (Embodiment 10).
【0034】発明の実施の形態12.図7はこの発明の
実施の形態12による冷凍装置を示すもので、異なる容
量の冷媒圧縮機を2台並列搭載した場合を示す。図にお
いて、この発明の実施の形態12が発明の実施の形態1
0と異なるのは、第三冷媒圧縮機12、第四冷媒圧縮機
13に圧縮機内油面が所定レベル(例えば、油枯渇直前
のレベル)を下回ったときに作動する第一油面検知器4
5、第二油面検知器46がそれぞれ設けられていること
である。また、各電磁弁41,42を開閉制御する第五
制御部43eは、各電磁弁41,42および各油面検知
器45,46に配線接続されている。この第五制御部4
3eは、各油面検知器45,46が作動したとき当該油
面検知器45または46に関連する第一電磁弁41また
は第二電磁弁42を開放して油を流通させるようになっ
ている。すなわち、第一油面検知器45が作動すると、
第一電磁弁41を通電してON(開)し、逆に第二油面
検知器46が作動すると、第一電磁弁41をOFF
(閉)し、第二電磁弁42を通電してON(開)するよ
うになっている。従って、冷媒圧縮機12または13内
の油面が所定レベルを下回ったときには冷媒圧縮機12
または13に関連する電磁弁41または42が開放され
て油を流通させるので、気液分離器6内部の油面の乱れ
具合にかかわらず、油を確実に各冷媒圧縮機12,13
に戻すことができ、どちらかの冷媒圧縮機12または1
3内の油面が低下して、油枯渇を生じるような不具合に
至ることはない。Embodiment 12 of the Invention FIG. 7 shows a refrigeration apparatus according to Embodiment 12 of the present invention, in which two refrigerant compressors having different capacities are mounted in parallel. In the figure, Embodiment 12 of the present invention is Embodiment 1 of the present invention.
What is different from 0 is that the first oil level detector 4 that is activated when the oil level in the compressor falls below a predetermined level (for example, the level immediately before oil depletion) in the third refrigerant compressor 12 and the fourth refrigerant compressor 13.
Fifth, the second oil level detector 46 is provided. A fifth control unit 43e that controls the opening and closing of the solenoid valves 41 and 42 is connected to the solenoid valves 41 and 42 and the oil level detectors 45 and 46 by wiring. This fifth control unit 4
3e, when each of the oil level detectors 45 and 46 is operated, the first electromagnetic valve 41 or the second electromagnetic valve 42 related to the oil level detector 45 or 46 is opened to allow oil to flow. . That is, when the first oil level detector 45 operates,
When the first solenoid valve 41 is energized to be turned on (open) and the second oil level detector 46 is activated, the first solenoid valve 41 is turned off.
(Closed), the second solenoid valve 42 is energized and turned on (open). Therefore, when the oil level in the refrigerant compressor 12 or 13 falls below a predetermined level, the refrigerant compressor 12
Or 13 is opened to allow the oil to flow by opening the solenoid valve 41 or 42, so that the oil can be reliably transferred to each of the refrigerant compressors 12, 13, regardless of the degree of disturbance of the oil level inside the gas-liquid separator 6.
Can be returned to either refrigerant compressor 12 or 1
There is no possibility that the oil level in 3 will be lowered to cause a problem that oil depletion occurs.
【0035】発明の実施の形態13.図8はこの発明の
実施の形態13による冷凍装置を示すもので、異なる容
量の冷媒圧縮機を2台並列搭載した場合を示す。図にお
いて、発明の実施の形態13が発明の実施の形態12と
比べて、各電磁弁41,42の代わりに、前出の三方弁
44を用いたことである。また、三方弁44の流路を切
換制御する第六制御部43fは、三方弁44および各油
面検知器45,46に配線接続されている。この第六制
御部43fは、油面検知器45または46が作動したと
きその油面検知器45または46に関連する油戻し配管
9または10に向けて三方弁44の油流路を切換えて油
を流通させるようになっている。すなわち、第一油面検
知器45が作動すると、三方弁44に通電して油流路を
第一油戻し配管9側に切り換え、逆に第二油面検知器4
6が作動すると、油流路を第二油戻し配管10側に切換
えるようになっている。従って、冷媒圧縮機12または
13内の油面が所定レベルを下回ったときには、その冷
媒圧縮機12または13に関連する油戻し配管9または
10に向けて三方弁44の油流路が切換えられて油を流
通させるので、気液分離器6内部の油面の乱れ具合にか
かわらず、油を確実に各冷媒圧縮機12,13に戻すこ
とができ、どちらかの冷媒圧縮機12または13内の油
面が低下して、油枯渇を生じるような不具合に至ること
はない。そのうえ、2台の電磁弁41,42を用いた場
合(実施の形態12)と比べて装置を簡略化できる。Embodiment 13 of the Invention FIG. 8 shows a refrigeration apparatus according to Embodiment 13 of the present invention, in which two refrigerant compressors having different capacities are mounted in parallel. In the figure, the thirteenth embodiment of the invention is different from the twelfth embodiment in that the three-way valve 44 is used instead of the solenoid valves 41 and 42. Further, a sixth control unit 43f for switching and controlling the flow path of the three-way valve 44 is connected to the three-way valve 44 and the oil level detectors 45 and 46 by wiring. The sixth control unit 43f switches the oil flow path of the three-way valve 44 toward the oil return pipe 9 or 10 associated with the oil level detector 45 or 46 when the oil level detector 45 or 46 is activated. Is to be distributed. That is, when the first oil level detector 45 operates, the three-way valve 44 is energized to switch the oil flow path to the first oil return pipe 9 side, and conversely, the second oil level detector 4
When the valve 6 operates, the oil flow path is switched to the second oil return pipe 10 side. Therefore, when the oil level in the refrigerant compressor 12 or 13 falls below a predetermined level, the oil flow path of the three-way valve 44 is switched toward the oil return pipe 9 or 10 related to the refrigerant compressor 12 or 13. Since the oil is circulated, the oil can be reliably returned to each of the refrigerant compressors 12 and 13 irrespective of the degree of disturbance of the oil level inside the gas-liquid separator 6. The oil level does not drop and does not lead to a problem that causes oil depletion. In addition, the device can be simplified as compared with the case where two electromagnetic valves 41 and 42 are used (Embodiment 12).
【0036】発明の実施の形態14.図7はこの発明の
実施の形態14による冷凍装置を示すもので、異なる容
量の冷媒圧縮機を2台並列搭載した場合を示す。図にお
いて、この発明の実施の形態14が発明の実施の形態1
2と異なるのは、第五制御部43eに代えて、機能の異
なる第七制御部43g(括弧内符号)を用いたことであ
る。この第七制御部43gは、各電磁弁41,42を周
期的に開閉させて各冷媒圧縮機12,13に油を流入さ
せるようになっており、各油面検知器45,46の作動
によっても各電磁弁41,42を開くようになってい
る。すなわち、第七制御部43gは、各電磁弁41,4
2が開放される周期的な時期と、各電磁弁41,42に
関連する各油面検知器45,46が作動した時期のう
ち、早い時期に従って各電磁弁41,42を開放させる
機能を有している。例えば、いずれかの電磁弁41また
は42が周期的に開放される次回の時期以前であって
も、いずれかの油面検知器45または46が作動すれ
ば、関連する冷媒圧縮機12または13の油枯渇を回避
するために、第七制御部43gは対応する電磁弁41ま
たは42を強制的に開放する。これにより、気液分離器
6内部の油面の乱れ具合にかかわらず、より一層確実に
油を各冷媒圧縮機12,13に戻すことができ、どちら
かの冷媒圧縮機1または2内の油面が低下して、油枯渇
を生じるような不具合を回避できる。Embodiment 14 of the Invention FIG. 7 shows a refrigeration apparatus according to Embodiment 14 of the present invention, in which two refrigerant compressors having different capacities are mounted in parallel. In the figure, Embodiment 14 of the present invention is Embodiment 1 of the present invention.
The difference from the second example is that a seventh control unit 43g (reference in parentheses) having a different function is used instead of the fifth control unit 43e. The seventh control unit 43g is configured to periodically open and close each of the solenoid valves 41 and 42 to cause oil to flow into each of the refrigerant compressors 12 and 13, and to operate the respective oil level detectors 45 and 46 to operate the oil level detectors 45 and 46. Also, the solenoid valves 41 and 42 are opened. That is, the seventh control unit 43g controls each of the solenoid valves 41, 4
2 has a function of opening each of the solenoid valves 41 and 42 in accordance with the earlier one of the periodic timing of opening and the timing of operating the oil level detectors 45 and 46 related to the solenoid valves 41 and 42. doing. For example, even before the next time when any one of the solenoid valves 41 or 42 is periodically opened, if any of the oil level detectors 45 or 46 is activated, the associated refrigerant compressor 12 or 13 will not operate. In order to avoid oil depletion, the seventh control unit 43g forcibly opens the corresponding solenoid valve 41 or 42. Thus, regardless of the degree of disturbance of the oil level inside the gas-liquid separator 6, the oil can be returned to the refrigerant compressors 12, 13 more reliably, and the oil in either the refrigerant compressor 1 or 2 can be returned. A problem that the surface is lowered and oil depletion occurs can be avoided.
【0037】尚、上記した各実施の形態では、冷媒圧縮
機、油戻し配管、吸入配管などを2系統設けた例を示し
たが、それに限定されるものではなく、例えば3系統以
上設けた場合にも適用できるのはいうまでもない。In each of the above-described embodiments, an example in which the refrigerant compressor, the oil return pipe, the suction pipe, and the like are provided in two systems has been described. However, the present invention is not limited to this. Needless to say, it can also be applied to.
【0038】[0038]
【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。すなわ
ち、容量が同じ複数台の冷媒圧縮機を並列に備えた構成
において、複数の冷媒圧縮機の吸込側に接続されたそれ
ぞれの油戻し配管を、同一の管内断面積および配管長の
ものにしたので、ある冷媒圧縮機では油が多く戻り、別
の冷媒圧縮機には油が戻らないといった問題を解消する
ことができ、気液分離器内の油をそれぞれの冷媒圧縮機
に均等に戻すことができる。Since the present invention is configured as described above, it has the following effects. That is, in a configuration in which a plurality of refrigerant compressors having the same capacity are provided in parallel, each oil return pipe connected to the suction side of the plurality of refrigerant compressors has the same pipe cross-sectional area and pipe length. Therefore, it is possible to solve the problem that a large amount of oil returns to one refrigerant compressor and no oil returns to another refrigerant compressor, and the oil in the gas-liquid separator is returned equally to each refrigerant compressor. Can be.
【0039】また、容量が同じ複数台の冷媒圧縮機を並
列に備えた構成であり、油戻し配管内での圧力損失が吸
入配管内での圧力損失よりも小さくなる範囲内であるこ
とを前提として、油戻し配管の配管長を極力大きく設定
したので、油戻し配管内での圧力損失を大きくでき、油
戻りがさらに良くなるという効果を奏する。Further, the configuration is such that a plurality of refrigerant compressors having the same capacity are provided in parallel, and it is assumed that the pressure loss in the oil return pipe is smaller than the pressure loss in the suction pipe. Since the length of the oil return pipe is set as large as possible, the pressure loss in the oil return pipe can be increased, and the oil return can be further improved.
【0040】そして、容量が同じ複数台の冷媒圧縮機を
並列に備えた構成であり、油戻し配管内での圧力損失が
吸入配管内での圧力損失よりも小さくなる範囲内である
ことを前提として、油戻し配管をキャピラリチューブで
構成したので、油戻し配管内での圧力損失を大きくで
き、油戻りがさらに良くなるという効果を奏する。A plurality of refrigerant compressors having the same capacity are provided in parallel, and it is assumed that the pressure loss in the oil return pipe is within a range in which the pressure loss is smaller than the pressure loss in the suction pipe. Since the oil return pipe is formed of a capillary tube, the pressure loss in the oil return pipe can be increased, and the oil return can be further improved.
【0041】更に、容量が同じ複数台の冷媒圧縮機を並
列に備えた構成であり、油戻し配管内での圧力損失が吸
入配管内での圧力損失よりも小さくなる範囲内であるこ
とを前提として、油戻し配管内にオリフィスを配設した
ので、油戻し配管内での圧力損失を大きくでき、油戻り
がさらに良くなるという効果を奏する。Further, a plurality of refrigerant compressors having the same capacity are provided in parallel, and it is assumed that the pressure loss in the oil return pipe is within a range in which the pressure loss is smaller than the pressure loss in the suction pipe. Since the orifice is arranged in the oil return pipe, the pressure loss in the oil return pipe can be increased, and the oil return can be further improved.
【0042】また、容量が異なる複数台の冷媒圧縮機を
並列に備えた構成であり、油戻し配管内での圧力損失が
吸入配管内での圧力損失よりも小さくなる範囲内である
ことを前提として、油戻し配管の配管長を同一にすると
ともに、管内断面積はそれぞれの冷媒圧縮機の容量比に
応じて設定したので、ある冷媒圧縮機に油が多く戻り、
別の冷媒圧縮機には油が戻らないといった問題を解消す
ることができ、気液分離器内の油をそれぞれの冷媒圧縮
機に均等に戻すことができる。Further, the configuration is such that a plurality of refrigerant compressors having different capacities are provided in parallel, and it is assumed that the pressure loss in the oil return pipe is within a range that is smaller than the pressure loss in the suction pipe. As the oil return pipe length is the same and the cross-sectional area in the pipe is set according to the capacity ratio of each refrigerant compressor, so a large amount of oil returns to a certain refrigerant compressor,
The problem that oil does not return to another refrigerant compressor can be solved, and the oil in the gas-liquid separator can be returned equally to each refrigerant compressor.
【0043】そして、容量が異なる複数台の冷媒圧縮機
を並列に備えた構成であり、油戻し配管内での圧力損失
が吸入配管内での圧力損失よりも小さくなる範囲内であ
ることを前提として、油戻し配管の管内断面積は同一に
するとともに、配管長はそれぞれの冷媒圧縮機の容量比
に応じて設定したので、ある冷媒圧縮機に油が多く戻
り、別の冷媒圧縮機には油が戻らないといった問題を解
消することができ、気液分離器内の油をそれぞれの冷媒
圧縮機に均等に戻すことができる。A plurality of refrigerant compressors having different capacities are provided in parallel, and it is assumed that the pressure loss in the oil return pipe is smaller than the pressure loss in the suction pipe. As the cross-sectional area inside the oil return pipe is the same, and the pipe length is set according to the capacity ratio of each refrigerant compressor, so a large amount of oil returns to one refrigerant compressor, and to another refrigerant compressor The problem that oil does not return can be solved, and the oil in the gas-liquid separator can be returned equally to each refrigerant compressor.
【0044】更に、容量が異なる複数台の冷媒圧縮機を
並列に備えた構成であり、油戻し配管内での圧力損失が
吸入配管内での圧力損失よりも小さくなる範囲内である
ことを前提として、油戻し配管の配管長および管内断面
積をそれぞれの冷媒圧縮機の容量比に応じて設定したの
で、ある冷媒圧縮機に油が多く戻り、別の冷媒圧縮機に
は油が戻らないといった問題を解消することができ、気
液分離器内の油をそれぞれの冷媒圧縮機に均等に戻すこ
とができる。Further, the configuration is such that a plurality of refrigerant compressors having different capacities are provided in parallel, and it is assumed that the pressure loss in the oil return pipe is within a range that is smaller than the pressure loss in the suction pipe. As the length of the oil return pipe and the cross-sectional area inside the pipe are set according to the capacity ratio of each refrigerant compressor, a large amount of oil returns to one refrigerant compressor and no oil returns to another refrigerant compressor. The problem can be solved, and the oil in the gas-liquid separator can be returned to the respective refrigerant compressors evenly.
【0045】また、容量が同じ複数台の冷媒圧縮機を並
列に備えた構成において、第一制御部によって、複数の
電磁弁を周期的に開放するとともに、各電磁弁の開放時
間をそれぞれ同一とするようにしたので、ある冷媒圧縮
機に油が多く戻り、別の冷媒圧縮機には油が戻らないと
いった問題を解消することができ、気液分離器内の油を
それぞれの冷媒圧縮機に均等に戻すことができる。In a configuration in which a plurality of refrigerant compressors having the same capacity are provided in parallel, the plurality of solenoid valves are periodically opened by the first control unit, and the opening time of each solenoid valve is set to be the same. So that a large amount of oil returns to one refrigerant compressor and does not return to another refrigerant compressor, and the oil in the gas-liquid separator is transferred to each refrigerant compressor. Can be returned evenly.
【0046】そして、容量が同じ複数台の冷媒圧縮機を
並列に備えた構成において、第二制御部によって、三方
弁の油流路を各油戻し配管に向けて周期的に切換えて、
各油戻し配管への連通時間をそれぞれ等しくするように
したので、ある冷媒圧縮機に油が多く戻り、別の冷媒圧
縮機には油が戻らないといった問題を解消することがで
き、気液分離器内の油をそれぞれの冷媒圧縮機に均等に
戻すことができるうえ、電磁弁を用いる場合と比べて装
置を簡略化できる。In a configuration in which a plurality of refrigerant compressors having the same capacity are provided in parallel, the oil flow path of the three-way valve is periodically switched by the second control section toward each oil return pipe.
Since the communication time to each oil return pipe is made equal, it is possible to eliminate the problem that a large amount of oil returns to one refrigerant compressor and no oil returns to another refrigerant compressor. The oil in the vessel can be evenly returned to each refrigerant compressor, and the apparatus can be simplified as compared with the case where an electromagnetic valve is used.
【0047】更に、容量が異なる複数台の冷媒圧縮機を
並列に備えた構成において、第三制御部によって、各冷
媒圧縮機の容量比に応じた開放時間となるように、油戻
し配管に設けられた各電磁弁を開閉するようにしたの
で、気液分離器内部の油面の乱れ具合にかかわらず、圧
縮機容量比に応じた量の油を確実に各冷媒圧縮機に戻す
ことができる。Further, in a configuration in which a plurality of refrigerant compressors having different capacities are provided in parallel, the third control unit is provided in the oil return pipe so as to have an opening time corresponding to the capacity ratio of each refrigerant compressor. Each solenoid valve is opened and closed, so that an amount of oil corresponding to the compressor capacity ratio can be reliably returned to each refrigerant compressor regardless of the degree of oil level disturbance inside the gas-liquid separator. .
【0048】また、容量が異なる複数台の冷媒圧縮機を
並列に備えた構成において、第四制御部によって、各冷
媒圧縮機の容量比に応じた連通時間となるように、三方
弁の油流路を各油戻し配管に向けて切換えるようにした
ので、気液分離器内部の油面の乱れ具合にかかわらず、
圧縮機容量比に応じた量の油を確実に各冷媒圧縮機に戻
すことができるうえ、電磁弁を用いる場合と比べて装置
を簡略化できる。Further, in a configuration in which a plurality of refrigerant compressors having different capacities are provided in parallel, the oil flow of the three-way valve is controlled by the fourth control unit so that the communication time becomes in accordance with the capacity ratio of each refrigerant compressor. Because the path is switched to each oil return pipe, regardless of the level of oil level inside the gas-liquid separator,
The amount of oil corresponding to the compressor capacity ratio can be reliably returned to each refrigerant compressor, and the device can be simplified as compared with the case where an electromagnetic valve is used.
【0049】そして、容量が異なる複数台の冷媒圧縮機
を並列に備えた構成において、第五制御部によって、冷
媒圧縮機内の油面が所定レベルを下回ったときその冷媒
圧縮機に関連する電磁弁を開放して油を流通させるよう
にしたので、気液分離器内部の油面の乱れ具合にかかわ
らず、油を確実に各冷媒圧縮機に戻すことができ、油枯
渇を防止できる。In a configuration in which a plurality of refrigerant compressors having different capacities are provided in parallel, when the oil level in the refrigerant compressor falls below a predetermined level, the electromagnetic valve associated with the refrigerant compressor is controlled by the fifth control unit. Is opened to allow the oil to flow, so that the oil can be reliably returned to each of the refrigerant compressors regardless of the level of the oil level inside the gas-liquid separator, and oil depletion can be prevented.
【0050】更に、容量が異なる複数台の冷媒圧縮機を
並列に備えた構成において、第六制御部によって、冷媒
圧縮機内の油面が所定レベルを下回ったときその冷媒圧
縮機に関連する油戻し配管に向け三方弁の油流路を切換
えて油を流通させるようにしたので、気液分離器内部の
油面の乱れ具合にかかわらず、油を確実に各冷媒圧縮機
に戻すことができ、油枯渇を防止できる。Further, in a configuration in which a plurality of refrigerant compressors having different capacities are provided in parallel, when the oil level in the refrigerant compressor falls below a predetermined level, an oil return associated with the refrigerant compressor is controlled by the sixth control unit. Since the oil flow is switched by switching the oil flow path of the three-way valve toward the pipe, the oil can be reliably returned to each refrigerant compressor regardless of the degree of disturbance of the oil level inside the gas-liquid separator, Oil depletion can be prevented.
【0051】また、容量が異なる複数台の冷媒圧縮機を
並列に備えた構成において、第七制御部によって、各電
磁弁を周期的に開閉させる構成を前提とし、各電磁弁が
開放される周期的な時期と各電磁弁に関連する油面検知
器が作動する時期のうち、早い時期に従って各電磁弁を
開放するようにしたので、気液分離器内部の油面の乱れ
具合にかかわらず、より一層確実に油を各冷媒圧縮機に
戻すことができる。Further, in a configuration in which a plurality of refrigerant compressors having different capacities are provided in parallel, it is assumed that each solenoid valve is periodically opened and closed by a seventh control unit. Of the oil level detector associated with each solenoid valve, the solenoid valve is opened according to the earlier timing, so regardless of the degree of oil level disturbance inside the gas-liquid separator, Oil can be more reliably returned to each refrigerant compressor.
【図1】 この発明の実施の形態1〜3に係る冷凍装置
を示す冷媒配管系統図である。FIG. 1 is a refrigerant piping diagram showing a refrigeration apparatus according to Embodiments 1 to 3 of the present invention.
【図2】 この発明の実施の形態4に係るオリフィスの
平面図である。FIG. 2 is a plan view of an orifice according to Embodiment 4 of the present invention.
【図3】 この発明の実施の形態4に係る油戻し配管内
にオリフィスを装着した状態を示す構成図である。FIG. 3 is a configuration diagram showing a state in which an orifice is mounted in an oil return pipe according to Embodiment 4 of the present invention.
【図4】 この発明の実施の形態5〜7に係る冷凍装置
を示す冷媒配管系統図である。FIG. 4 is a refrigerant piping diagram showing a refrigeration apparatus according to Embodiments 5 to 7 of the present invention.
【図5】 この発明の実施の形態8または実施の形態1
0に係る冷凍装置を示す冷媒配管系統図である。FIG. 5 is a diagram showing an embodiment 8 or 1 of the present invention;
It is a refrigerant | coolant piping system diagram which shows the refrigerating apparatus concerning No. 0.
【図6】 この発明の実施の形態9または実施の形態1
1に係る冷凍装置を示す冷媒配管系統図である。FIG. 6 is a view illustrating a ninth embodiment or a first embodiment of the present invention;
It is a refrigerant | coolant piping system diagram which shows the refrigerating apparatus concerning No. 1.
【図7】 この発明の実施の形態12または実施の形態
14に係る冷凍装置を示す冷媒配管系統図である。FIG. 7 is a refrigerant piping diagram showing a refrigeration apparatus according to Embodiment 12 or 14 of the present invention.
【図8】 この発明の実施の形態13に係る冷凍装置を
示す冷媒配管系統図である。FIG. 8 is a refrigerant piping system diagram showing a refrigeration apparatus according to Embodiment 13 of the present invention.
【図9】 従来の冷凍装置を示す冷媒配管系統図であ
る。FIG. 9 is a refrigerant piping system diagram showing a conventional refrigeration apparatus.
【図10】 従来の冷凍装置の気液分離器を示す断面図
である。FIG. 10 is a sectional view showing a gas-liquid separator of a conventional refrigeration apparatus.
1 第一冷媒圧縮機、2 第二冷媒圧縮機、3 凝縮
器、4 減圧装置、5蒸発器、6 気液分離器、6b
出口部、6c 出口部、6d 油取り出し部、7 第一
吸入配管、7a 接続部、8 第二吸入配管、8a 接
続部、9 第一油戻し配管、10 第二油戻し配管、1
1 オリフィス、12 第三冷媒圧縮機、13 第四冷
媒圧縮機、41 第一電磁弁、42 第二電磁弁、43
a 第一制御部、43b 第二制御部、43c 第三制
御部、43d 第四制御部、43e 第五制御部、43
f 第六制御部、43g 第七制御部、44 三方弁、
45 第一油面検知器、46 第二油面検知器。Reference Signs List 1 first refrigerant compressor, 2 second refrigerant compressor, 3 condenser, 4 decompression device, 5 evaporator, 6 gas-liquid separator, 6b
Outlet part, 6c outlet part, 6d oil take-out part, 7 first suction pipe, 7a connection section, 8 second suction pipe, 8a connection section, 9 first oil return pipe, 10 second oil return pipe, 1
REFERENCE SIGNS LIST 1 orifice, 12 third refrigerant compressor, 13 fourth refrigerant compressor, 41 first solenoid valve, 42 second solenoid valve, 43
a first control unit, 43b second control unit, 43c third control unit, 43d fourth control unit, 43e fifth control unit, 43
f Sixth control unit, 43g Seventh control unit, 44 Three-way valve,
45 First oil level detector, 46 Second oil level detector.
Claims (14)
媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を
順次回路状に配備するとともに、上記気液分離器の上部
と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して
接続する複数の吸入配管と、上記気液分離器の下部と上
記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の油戻し配管とを備えた冷凍装置において、上
記複数の油戻し配管は、それぞれの管内断面積および配
管長が同一に設定して構成されていることを特徴とする
冷凍装置。1. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with the same capacity and are sequentially arranged in a circuit form, and an upper part of the gas-liquid separator. And a plurality of suction pipes connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. Wherein the plurality of oil return pipes have the same cross-sectional area and the same pipe length set for each of the plurality of oil return pipes.
媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を
順次回路状に配備するとともに、上記気液分離器の上部
と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して
接続する複数の吸入配管と、上記気液分離器の下部と上
記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の油戻し配管とを備えた冷凍装置において、上
記複数の油戻し配管は、上記それぞれの油戻し配管内で
の圧力損失が同じ冷媒圧縮機に接続される上記吸入配管
内での圧力損失よりも小さくなる範囲内で、大きな配管
長に設定して構成されていることを特徴とする冷凍装
置。2. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators and the like, which are provided in parallel with the same capacity, are sequentially arranged in a circuit form, and the upper part of the gas-liquid separator is provided. And a plurality of suction pipes connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. In the refrigerating apparatus including the oil return pipe, the plurality of oil return pipes have a pressure loss in each of the oil return pipes higher than a pressure loss in the suction pipe connected to the same refrigerant compressor. A refrigeration apparatus characterized in that it is configured to have a large pipe length set within a range where the length is reduced.
媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を
順次回路状に配備するとともに、上記気液分離器の上部
と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して
接続する複数の吸入配管と、上記気液分離器の下部と上
記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の油戻し配管とを備えた冷凍装置において、上
記複数の油戻し配管は、上記それぞれの油戻し配管内で
の圧力損失が同じ冷媒圧縮機に接続される上記吸入配管
内での圧力損失よりも小さくなる条件を満たすキャピラ
リチューブで構成されていることを特徴とする冷凍装
置。3. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators and the like, which are provided in parallel with the same capacity, are sequentially arranged in a circuit shape, and an upper part of the gas-liquid separator is provided. And a plurality of suction pipes connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. In the refrigerating apparatus including the oil return pipe, the plurality of oil return pipes have a pressure loss in each of the oil return pipes higher than a pressure loss in the suction pipe connected to the same refrigerant compressor. A refrigeration apparatus comprising a capillary tube that satisfies a condition for reduction in size.
媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を
順次回路状に配備するとともに、上記気液分離器の上部
と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して
接続する複数の吸入配管と、上記気液分離器の下部と上
記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の油戻し配管とを備えた冷凍装置において、上
記複数の油戻し配管内に、上記それぞれの油戻し配管内
での圧力損失が同じ冷媒圧縮機に接続される上記吸入配
管内での圧力損失よりも小さくなる条件を満たすオリフ
ィスが配設されていることを特徴とする冷凍装置。4. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with the same capacity, are sequentially arranged in a circuit form, and the upper part of the gas-liquid separator is provided. And a plurality of suction pipes connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. In the refrigerating apparatus including the oil return pipe, in the plurality of oil return pipes, the pressure loss in each of the oil return pipes is smaller than the pressure loss in the suction pipe connected to the same refrigerant compressor. A refrigerating apparatus, wherein an orifice that satisfies the condition of reducing the size is also provided.
媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を
順次回路状に配備するとともに、上記気液分離器の上部
と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して
接続する複数の吸入配管と、上記気液分離器の下部と上
記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の油戻し配管とを備えた冷凍装置において、上
記複数の油戻し配管は、同一の配管長にそれぞれ設定さ
れるとともに、上記それぞれの油戻し配管内での圧力損
失が同じ冷媒圧縮機に接続される上記吸入配管内での圧
力損失よりも小さくなる範囲内で、かつ、上記複数の冷
媒圧縮機の容量比に応じた管内断面積にそれぞれ設定し
て構成されていることを特徴とする冷凍装置。5. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators and the like, which are provided in parallel with different capacities, are sequentially arranged in a circuit form, and the upper part of the gas-liquid separator and A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes for connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel. In the refrigerating apparatus including the oil return pipe, the plurality of oil return pipes are respectively set to the same pipe length, and the pressure losses in the respective oil return pipes are connected to the same refrigerant compressor. A refrigeration apparatus characterized in that the refrigeration apparatus is set within a range where the pressure loss is smaller than the pressure loss in the suction pipe, and is set to a cross-sectional area in the pipe corresponding to a capacity ratio of the plurality of refrigerant compressors.
媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を
順次回路状に配備するとともに、上記気液分離器の上部
と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して
接続する複数の吸入配管と、上記気液分離器の下部と上
記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の油戻し配管とを備えた冷凍装置において、上
記複数の油戻し配管は、同一の管内断面積にそれぞれ設
定されるとともに、上記それぞれの油戻し配管内での圧
力損失が同じ冷媒圧縮機に接続される上記吸入配管内で
の圧力損失よりも小さくなる範囲内で、かつ、上記複数
の冷媒圧縮機の容量比に応じた配管長にそれぞれ設定し
て構成されていることを特徴とする冷凍装置。6. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators and the like, which are provided in parallel with different capacities, are sequentially arranged in a circuit form. A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes for connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel. In the refrigerating apparatus including the oil return pipe, the plurality of oil return pipes are each set to have the same cross-sectional area in the pipe, and the pressure loss in each of the oil return pipes is connected to the same refrigerant compressor. A refrigerating apparatus characterized by being set within a range where the pressure loss is smaller than the pressure loss in the suction pipe and a pipe length corresponding to a capacity ratio of the plurality of refrigerant compressors.
媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を
順次回路状に配備するとともに、上記気液分離器の上部
と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して
接続する複数の吸入配管と、上記気液分離器の下部と上
記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の油戻し配管とを備えた冷凍装置において、上
記複数の油戻し配管は、上記それぞれの油戻し配管内で
の圧力損失が同じ冷媒圧縮機に接続される上記吸入配管
内での圧力損失よりも小さくなる範囲内で、かつ、上記
複数の冷媒圧縮機の容量比に応じた管内断面積および配
管長にそれぞれ設定して構成されていることを特徴とす
る冷凍装置。7. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with different capacities, are sequentially arranged in a circuit form. A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes for connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel. In the refrigerating apparatus including the oil return pipe, the plurality of oil return pipes have a pressure loss in the respective oil return pipes smaller than a pressure loss in the suction pipe connected to the same refrigerant compressor. A refrigeration apparatus characterized in that the refrigeration apparatus is configured to be set within a certain range and to have a cross-sectional area in a pipe and a pipe length corresponding to a capacity ratio of the plurality of refrigerant compressors.
媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を
順次回路状に配備するとともに、上記気液分離器の上部
と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して
接続する複数の吸入配管と、上記気液分離器の下部と上
記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の油戻し配管とを備えた冷凍装置において、上
記複数の油戻し配管毎に設けられた複数の電磁弁と、各
電磁弁の開放時間をそれぞれ等しくするように上記各電
磁弁を周期的に開閉する第一制御部とを具備してなるこ
とを特徴とする冷凍装置。8. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with the same capacity, are sequentially arranged in a circuit form, and the upper part of the gas-liquid separator is provided. And a plurality of suction pipes connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. In the refrigerating apparatus provided with the oil return pipe, the plurality of solenoid valves provided for each of the plurality of oil return pipes, and the respective solenoid valves are periodically opened and closed so that the opening times of the respective solenoid valves are equal. A refrigeration apparatus comprising:
媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を
順次回路状に配備するとともに、上記気液分離器の上部
と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して
接続する複数の吸入配管と、上記気液分離器の下部と上
記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続
する複数の油戻し配管とを備えた冷凍装置において、上
記気液分離器の下部から上記複数の油戻し配管への分岐
位置に設けられ上記気液分離器からの油流路を各油戻し
配管に対し連通可能に切換える三方弁と、上記各油戻し
配管への連通時間をそれぞれ等しくするように上記三方
弁の油流路を周期的に上記各油戻し配管に向けて切換え
る第二制御部とを具備してなることを特徴とする冷凍装
置。9. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators and the like, which are provided in parallel with the same capacity, are sequentially arranged in a circuit form, and the upper part of the gas-liquid separator is provided. And a plurality of suction pipes connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. In the refrigerating apparatus provided with an oil return pipe, an oil flow path from the gas-liquid separator is provided at a branch position from a lower portion of the gas-liquid separator to the plurality of oil return pipes with respect to each oil return pipe. A three-way valve that switches to be communicable, and a second control unit that periodically switches the oil flow path of the three-way valve toward each of the oil return pipes so as to equalize the communication time to each of the oil return pipes. A refrigeration device characterized by comprising:
冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等
を順次回路状に配備するとともに、上記気液分離器の上
部と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列し
て接続する複数の吸入配管と、上記気液分離器の下部と
上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接
続する複数の油戻し配管とを備えた冷凍装置において、
上記複数の油戻し配管毎に設けられた複数の電磁弁と、
各冷媒圧縮機の容量比に応じた開放時間となるように各
電磁弁を開閉する第三制御部とを具備してなることを特
徴とする冷凍装置。10. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators and the like, which are provided in parallel with different capacities, are sequentially arranged in a circuit shape, and the upper part of the gas-liquid separator and A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes for connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel. In a refrigerating apparatus having an oil return pipe,
A plurality of solenoid valves provided for each of the plurality of oil return pipes,
A refrigeration apparatus comprising: a third control unit that opens and closes each solenoid valve so that the opening time is in accordance with the capacity ratio of each refrigerant compressor.
冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等
を順次回路状に配備するとともに、上記気液分離器の上
部と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列し
て接続する複数の吸入配管と、上記気液分離器の下部と
上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接
続する複数の油戻し配管とを備えた冷凍装置において、
上記気液分離器の下部から上記複数の油戻し配管への分
岐位置に設けられ上記気液分離器からの油流路を各油戻
し配管に対し連通可能に切換える三方弁と、各冷媒圧縮
機の容量比に応じた連通時間となるように上記三方弁の
油流路を上記各油戻し配管に向けて切換える第四制御部
とを具備してなることを特徴とする冷凍装置。11. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, and the like, which are provided in parallel with different capacities, are sequentially arranged in a circuit shape, and the upper part of the gas-liquid separator and A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes for connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel. In a refrigerating apparatus having an oil return pipe,
A three-way valve that is provided at a branch position from the lower part of the gas-liquid separator to the plurality of oil return pipes and that switches an oil flow path from the gas-liquid separator to be communicable with each oil return pipe; A refrigerating apparatus comprising: a fourth control unit that switches an oil flow path of the three-way valve toward each of the oil return pipes so that a communication time according to a capacity ratio of the three-way valve is established.
冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等
を順次回路状に配備するとともに、上記気液分離器の上
部と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列し
て接続する複数の吸入配管と、上記気液分離器の下部と
上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接
続する複数の油戻し配管とを備えた冷凍装置において、
上記複数の油戻し配管毎に設けられた複数の電磁弁と、
上記複数の冷媒圧縮機にそれぞれ設けられ圧縮機内油面
が所定レベルを下回ったときに作動する複数の油面検知
器と、上記油面検知器が作動したとき当該油面検知器に
関連する電磁弁を開放する第五制御部とを具備してなる
ことを特徴とする冷凍装置。12. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators and the like, which are provided in parallel with different capacities, are sequentially arranged in a circuit form. A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes for connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel. In a refrigerating apparatus having an oil return pipe,
A plurality of solenoid valves provided for each of the plurality of oil return pipes,
A plurality of oil level detectors provided in each of the plurality of refrigerant compressors and operating when an oil level in the compressor falls below a predetermined level; and an electromagnetic wave associated with the oil level detector when the oil level detector operates. A refrigeration apparatus comprising: a fifth control unit that opens a valve.
冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等
を順次回路状に配備するとともに、上記気液分離器の上
部と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列し
て接続する複数の吸入配管と、上記気液分離器の下部と
上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接
続する複数の油戻し配管とを備えた冷凍装置において、
上記気液分離器の下部から上記複数の油戻し配管への分
岐位置に設けられ上記気液分離器からの油流路を各油戻
し配管に対し連通可能に切換える三方弁と、上記複数の
冷媒圧縮機にそれぞれ設けられ圧縮機内油面が所定レベ
ルを下回ったときに作動する複数の油面検知器と、上記
油面検知器が作動したとき当該油面検知器に関連する油
戻し配管に向けて上記三方弁の油流路を切換える第六制
御部とを具備してなることを特徴とする冷凍装置。13. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators, etc., which are provided in parallel with different capacities, are sequentially arranged in a circuit shape, and the upper part of said gas-liquid separator is provided. A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes for connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel. In a refrigerating apparatus having an oil return pipe,
A three-way valve provided at a branch position from a lower portion of the gas-liquid separator to the plurality of oil return pipes to switch an oil flow path from the gas-liquid separator to be communicable with each oil return pipe, and the plurality of refrigerants; A plurality of oil level detectors provided in the compressor and operating when the oil level in the compressor falls below a predetermined level, and directed to an oil return pipe associated with the oil level detector when the oil level detector operates. A refrigeration apparatus comprising: a sixth control unit that switches an oil flow path of the three-way valve.
冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等
を順次回路状に配備するとともに、上記気液分離器の上
部と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列し
て接続する複数の吸入配管と、上記気液分離器の下部と
上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接
続する複数の油戻し配管とを備えた冷凍装置において、
上記複数の油戻し配管毎に設けられた複数の電磁弁と、
上記複数の冷媒圧縮機にそれぞれ設けられ圧縮機内油面
が所定レベルを下回ったときに作動する複数の油面検知
器と、各電磁弁を周期的に開閉させるとともに、上記各
電磁弁が開放される周期的な時期と上記各電磁弁に関連
する油面検知器が作動する時期のうち、早い時期に従っ
て上記各電磁弁を開放する第七制御部とを具備してなる
ことを特徴とする冷凍装置。14. A plurality of refrigerant compressors, condensers, decompression devices, evaporators, gas-liquid separators and the like, which are provided in parallel with different capacities, are sequentially arranged in a circuit shape, and the upper part of the gas-liquid separator and A plurality of suction pipes for connecting the suction sides of the plurality of refrigerant compressors in parallel, and a plurality of suction pipes for connecting the lower side of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel. In a refrigerating apparatus having an oil return pipe,
A plurality of solenoid valves provided for each of the plurality of oil return pipes,
Each of the plurality of refrigerant compressors is provided with a plurality of oil level detectors that operate when the oil level in the compressor falls below a predetermined level, and each solenoid valve is periodically opened and closed, and each of the solenoid valves is opened. Refrigeration characterized by comprising a seventh control unit that opens each of the solenoid valves in accordance with an earlier one of a periodic timing and a timing at which an oil level detector associated with each of the solenoid valves operates. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32531296A JP4033248B2 (en) | 1996-06-24 | 1996-12-05 | Refrigeration equipment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-163001 | 1996-06-24 | ||
JP16300196 | 1996-06-24 | ||
JP32531296A JP4033248B2 (en) | 1996-06-24 | 1996-12-05 | Refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1073330A true JPH1073330A (en) | 1998-03-17 |
JP4033248B2 JP4033248B2 (en) | 2008-01-16 |
Family
ID=26488598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32531296A Expired - Lifetime JP4033248B2 (en) | 1996-06-24 | 1996-12-05 | Refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4033248B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1154655A2 (en) | 2000-05-12 | 2001-11-14 | Lg Electronics Inc. | Apparatus and method for displaying three-dimensional image |
JP2009300041A (en) * | 2008-06-16 | 2009-12-24 | Mitsubishi Electric Corp | Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device |
JP2010236829A (en) * | 2009-03-31 | 2010-10-21 | Mitsubishi Heavy Ind Ltd | Refrigerating device |
JP2017116219A (en) * | 2015-12-25 | 2017-06-29 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Air conditioner |
CN109654636A (en) * | 2018-12-29 | 2019-04-19 | 广东志高暖通设备股份有限公司 | A kind of air-conditioning system and control method improving Smaller load operation refrigerating capacity |
CN114893932A (en) * | 2022-05-24 | 2022-08-12 | 珠海格力电器股份有限公司 | Compressor oil return system, control method and device thereof, storage medium and air conditioner |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017111239A1 (en) | 2015-12-25 | 2017-06-29 | Samsung Electronics Co., Ltd. | Oil separator |
-
1996
- 1996-12-05 JP JP32531296A patent/JP4033248B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1154655A2 (en) | 2000-05-12 | 2001-11-14 | Lg Electronics Inc. | Apparatus and method for displaying three-dimensional image |
JP2009300041A (en) * | 2008-06-16 | 2009-12-24 | Mitsubishi Electric Corp | Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device |
JP2010236829A (en) * | 2009-03-31 | 2010-10-21 | Mitsubishi Heavy Ind Ltd | Refrigerating device |
JP2017116219A (en) * | 2015-12-25 | 2017-06-29 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Air conditioner |
CN109654636A (en) * | 2018-12-29 | 2019-04-19 | 广东志高暖通设备股份有限公司 | A kind of air-conditioning system and control method improving Smaller load operation refrigerating capacity |
CN109654636B (en) * | 2018-12-29 | 2020-09-01 | 广东志高暖通设备股份有限公司 | Air conditioning system for improving small-load operation refrigerating capacity and control method |
CN114893932A (en) * | 2022-05-24 | 2022-08-12 | 珠海格力电器股份有限公司 | Compressor oil return system, control method and device thereof, storage medium and air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP4033248B2 (en) | 2008-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9163864B2 (en) | Air-conditioning apparatus with oil return in a transcritical cycle | |
AU749518B2 (en) | Refrigerating device | |
WO2013099047A1 (en) | Air conditioner | |
EP1992887A1 (en) | Refrigeration device | |
EP1788325B1 (en) | Freezing apparatus | |
US5685168A (en) | Refrigerating apparatus | |
US10845106B2 (en) | Accumulator and oil separator | |
EP2515055B1 (en) | Air conditioner | |
JPH1073330A (en) | Refrigerator | |
WO2021095134A1 (en) | Outdoor unit and air conditioner device | |
KR102201746B1 (en) | Economizer comprising condenser and turbo chiller comprising the same | |
EP1643196B1 (en) | Air conditioner | |
JPH07332810A (en) | Oil mist separator for refrigerator | |
JP2001324236A (en) | Air conditioner | |
TW201827769A (en) | Flow path switching device, refrigeration cycle circuit, and refrigerator | |
KR100592955B1 (en) | Refrigerating system and control method for the same | |
JPH10311615A (en) | Refrigerant switching type refrigerating machine and environment testing device employing the same | |
JPH10267435A (en) | Freezing cycle | |
JP2002147876A (en) | Air conditioner | |
JP4116030B2 (en) | Compressor oil leveling device and refrigerator | |
JP2002340424A (en) | Freezing apparatus | |
JPH0480555A (en) | Refrigerating plant | |
JP2004061056A (en) | Oil level detecting method and device for compressor | |
JP7175247B2 (en) | Throttle device and refrigeration cycle system | |
JPWO2019225005A1 (en) | Heat exchanger and refrigeration cycle equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040715 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060117 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071009 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071016 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |