[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1065200A - Infrared radiation detecting element - Google Patents

Infrared radiation detecting element

Info

Publication number
JPH1065200A
JPH1065200A JP8215601A JP21560196A JPH1065200A JP H1065200 A JPH1065200 A JP H1065200A JP 8215601 A JP8215601 A JP 8215601A JP 21560196 A JP21560196 A JP 21560196A JP H1065200 A JPH1065200 A JP H1065200A
Authority
JP
Japan
Prior art keywords
quantum well
layer
infrared light
receiving element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8215601A
Other languages
Japanese (ja)
Inventor
Morio Wada
守夫 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP8215601A priority Critical patent/JPH1065200A/en
Publication of JPH1065200A publication Critical patent/JPH1065200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable increasing the photodetection sensitivity wavelength band, in an infrared radiation detecting element using transition in the band of multiple quantum well structure by forming a multiple quantum well light-absorbing layer, wherein quantum well layers of a plurality of kinds of quantum well layer, widths are formed on a substrate. SOLUTION: On a GaAs substrate 8, an n<+> contact layer 7 is formed, on which an electrode 4b and a multiple quantum well light absorbing layer 6 are formed. In the layer 6, quantum well layers of a plurality of kinds of quantum well layer widths are formed. On the layer 6, an n<+> contact layer 5 is formed, on which an electrode 4a is formed. A bias voltage is applied across the electrodes 4a and 4b. In the layer 6, quantum well layers of two kinds of quantum well layer widths are formed, and two kinds of normal energy levels of electrons in the quantum well layer are constituted. Thereby the photodetection sensitivity wavelength band can be widened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多重量子井戸構造
のバンド内遷移を用いる赤外受光素子に関し、特に受光
感度波長帯域を広げることが可能な赤外受光素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared light receiving device using an in-band transition of a multiple quantum well structure, and more particularly to an infrared light receiving device capable of broadening a light receiving sensitivity wavelength band.

【0002】[0002]

【従来の技術】従来の赤外受光素子に用いられる光吸収
層としては「HgCdTe層」があり、この「HgCd
Te層」は3μm以上の赤外波長領域の赤外光を検出す
ることができる。
2. Description of the Related Art As a light absorbing layer used in a conventional infrared light receiving element, there is an "HgCdTe layer".
The “Te layer” can detect infrared light in an infrared wavelength region of 3 μm or more.

【0003】但し、「HgCdTe層」の結晶成長にお
いては液相成長法以外の気相成長法等はその技術が未熟
であり、液相成長法であっても「Hg」組成が小さい場
合には「HgCdTe」組成制御が困難であると言った
問題があった。
[0003] However, in the crystal growth of the "HgCdTe layer", techniques such as the vapor phase growth method other than the liquid phase growth method are immature, and even if the "Hg" composition is small even in the liquid phase growth method, There was a problem that it was difficult to control the composition of "HgCdTe".

【0004】また、「HgCdTe」バルク結晶成長法
としてブリッジマン法等を用いることも可能であるが
「Hg」と「Cd」の偏析係数の違いにより組成制御が
難しいと言った問題があった。
It is also possible to use the Bridgman method or the like as the "HgCdTe" bulk crystal growth method, but there is a problem that the composition control is difficult due to the difference in the segregation coefficient between "Hg" and "Cd".

【0005】このため、上記製造方法の困難性を改善す
るために、赤外光により生じる量子井戸層からの光励起
電子を検出することにより前記赤外光を検出する赤外受
光素子がある。
[0005] Therefore, in order to improve the difficulty of the above manufacturing method, there is an infrared light receiving element that detects the infrared light by detecting photoexcited electrons generated from the quantum well layer by the infrared light.

【0006】図6はこのような従来の赤外受光素子の一
例を示す断面図である。図6において1は窓層、2は多
重量子井戸光吸収層、3は基板、100は入射光、10
1はバイアス電圧である。
FIG. 6 is a sectional view showing an example of such a conventional infrared light receiving element. In FIG. 6, 1 is a window layer, 2 is a multiple quantum well light absorbing layer, 3 is a substrate, 100 is incident light,
1 is a bias voltage.

【0007】基板3上には多重量子井戸光吸収層2が形
成され、多重量子井戸光吸収層2上には窓層1が形成さ
れる。入射光100は窓層1を介して多重量子井戸吸収
層2に入射され、バイアス電圧101は窓層1に印加さ
れ、基板3は接地される。
A multiple quantum well light absorption layer 2 is formed on a substrate 3, and a window layer 1 is formed on the multiple quantum well light absorption layer 2. The incident light 100 enters the multiple quantum well absorption layer 2 via the window layer 1, a bias voltage 101 is applied to the window layer 1, and the substrate 3 is grounded.

【0008】ここで、図6に示す従来例の動作を図7を
用いて説明する。図7はバイアス電圧101印加時の状
態を示すバンド構造図であり、図7中”イ”は量子井戸
層、”ロ”は伝導帯である。
Now, the operation of the conventional example shown in FIG. 6 will be described with reference to FIG. FIG. 7 is a band structure diagram showing a state when the bias voltage 101 is applied. In FIG. 7, “A” indicates a quantum well layer, and “B” indicates a conduction band.

【0009】量子井戸層”イ”の基底準位にある電子は
入射光100を吸収して”ハ”に示すようにヘテロ接合
界面に存在する不連続バンドを越えて伝導帯”ロ”に励
起される。
Electrons at the ground level of the quantum well layer "a" absorb the incident light 100 and excite the conduction band "b" beyond the discontinuous band existing at the heterojunction interface as shown at "c". Is done.

【0010】また、赤外受光素子にはバイアス電圧10
1が印加され電界が生じているので伝導帯”ロ”に励起
された電子は”ニ”に示すようにドリフトして電流信号
として取り出すことができる。
A bias voltage of 10 is applied to the infrared light receiving element.
Since 1 is applied and an electric field is generated, the electrons excited in the conduction band "b" drift and can be taken out as a current signal as shown in "d".

【0011】さらに、図6に示す赤外受光素子の形成は
容易であるので、「HgCdTe層」を用いる場合の問
題が解決できる。(←この表現で良いですか?)この結
果、形成が容易で赤外光の検出が可能な赤外受光素子が
実現できる。
Further, since the infrared light receiving element shown in FIG. 6 is easy to form, the problem in the case of using the "HgCdTe layer" can be solved. As a result, an infrared light receiving element that can be easily formed and that can detect infrared light can be realized.

【0012】[0012]

【発明が解決しようとする課題】しかし、図6に示す従
来例では量子井戸層内の電子の量子状態は離散的な量子
準位となるので、従来例の受光感度波長特性は前記量子
準位から伝導帯への遷移エネルギーの近くに幅の狭いピ
ークを有する特性となってしまう。言い換えれば受光感
度波長帯域が狭くなってしまうと言った問題点があっ
た。従って本発明が解決しようとする課題は、多重量子
井戸構造のバンド内遷移を用いる赤外受光素子において
受光感度波長帯域を広げることが可能な赤外受光素子を
実現することにある。
However, in the conventional example shown in FIG. 6, the quantum state of the electrons in the quantum well layer is a discrete quantum level. The characteristic has a narrow peak near the transition energy from the to the conduction band. In other words, there is a problem in that the light receiving sensitivity wavelength band is narrowed. Accordingly, an object of the present invention is to realize an infrared light receiving element that can broaden a light receiving sensitivity wavelength band in an infrared light receiving element using an in-band transition of a multiple quantum well structure.

【0013】[0013]

【課題を解決するための手段】このような課題を達成す
るために、赤外光により生じる量子井戸層からの光励起
電子を検出することにより前記赤外光を検出する赤外受
光素子において、基板と、この基板上に形成され複数種
類の量子井戸層幅の前記量子井戸層を設けた多重量子井
戸光吸収層と、この多重量子井戸光吸収層にバイアス電
圧を印加する電極とを備えたことを特徴とするものであ
る。
In order to achieve the above object, an infrared light receiving element for detecting infrared light by detecting photoexcited electrons generated by infrared light from a quantum well layer, the substrate comprising: A multiple quantum well light absorbing layer provided on the substrate and provided with the quantum well layers having a plurality of types of quantum well layer widths; and an electrode for applying a bias voltage to the multiple quantum well light absorbing layer. It is characterized by the following.

【0014】また、本発明の第2では、赤外光により生
じる量子井戸層からの光励起電子を検出することにより
前記赤外光を検出する赤外受光素子において、基板と、
この基板上に形成され複数種類の組成の前記量子井戸層
を設けた多重量子井戸光吸収層と、この多重量子井戸光
吸収層にバイアス電圧を印加する電極とを備えたことを
特徴とするものである。
According to a second aspect of the present invention, there is provided an infrared light receiving element for detecting the infrared light by detecting photoexcited electrons generated from the quantum well layer by the infrared light.
A multi-quantum well light-absorbing layer formed on the substrate and provided with the quantum well layers of a plurality of compositions; and an electrode for applying a bias voltage to the multi-quantum well light-absorbing layer. It is.

【0015】また、本発明の第3では、赤外光により生
じる量子井戸層からの光励起電子を検出することにより
前記赤外光を検出する赤外受光素子において、基板と、
この基板上に形成され前記量子井戸層を互いに隔てる複
数種類の組成の障壁層を設けた多重量子井戸光吸収層
と、この多重量子井戸光吸収層にバイアス電圧を印加す
る電極とを備えたことを特徴とするものである。
According to a third aspect of the present invention, in the infrared light receiving element for detecting the infrared light by detecting photoexcited electrons generated from the quantum well layer by the infrared light, the substrate comprises:
A multiple quantum well light absorbing layer provided on the substrate and provided with barrier layers of a plurality of compositions separating the quantum well layers from each other; and an electrode for applying a bias voltage to the multiple quantum well light absorbing layer. It is characterized by the following.

【0016】[0016]

【発明の実施の形態】以下本発明を図面を用いて詳細に
説明する。図1は本発明に係る赤外受光素子の一実施例
を示す構成断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing the configuration of an embodiment of the infrared light receiving element according to the present invention.

【0017】図1において4a及び4bは電極、5及び
7はn+ コンタクト層、6は多重量子井戸光吸収層、8
はGaAs基板、100aは入射光である。
In FIG. 1, 4a and 4b are electrodes, 5 and 7 are n + contact layers, 6 is a multiple quantum well light absorbing layer, 8
Is a GaAs substrate, and 100a is incident light.

【0018】GaAs基板8上にはn+ コンタクト層7
が形成され、 n+ コンタクト層7上には電極4b及び
多重量子井戸光吸収層6がそれぞれ形成される。
An n + contact layer 7 is formed on a GaAs substrate 8.
Is formed, and the electrode 4b and the multiple quantum well light absorption layer 6 are formed on the n + contact layer 7, respectively.

【0019】多重量子井戸光吸収層6上にはn+ コンタ
クト層5が形成され、さらにn+ コンタクト層5の上に
は電極4aが形成される。また、電極4a及び4b間に
は図示しない手段によりバイアス電圧が印加される。
An n + contact layer 5 is formed on the multiple quantum well light absorbing layer 6, and an electrode 4a is formed on the n + contact layer 5. A bias voltage is applied between the electrodes 4a and 4b by means not shown.

【0020】また、電界ベクトル”イ”は多重量子井戸
光吸収層6の積層方向と垂直になるように偏光された入
射光100aが入射される構成になっている。例えば、
電界ベクトル”イ”が多重量子井戸光吸収層6の積層方
向と垂直になるようにGaAs基板8側から斜めに入射
光100aが入射されている。
Further, the incident light 100a polarized so that the electric field vector "A" is perpendicular to the stacking direction of the multiple quantum well light absorption layer 6 is incident. For example,
Incident light 100a is obliquely incident from the GaAs substrate 8 side so that the electric field vector "a" is perpendicular to the stacking direction of the multiple quantum well light absorption layer 6.

【0021】ここで、図1に示す実施例を図2,図3及
び図4を用いて説明する。図2は無バイアス時の状態を
示すバンド構造図、図3はバイアス電圧印加時の状態を
示すバンド構造図、図4は受光感度波長特性の一例を示
す特性曲線図である。
Here, the embodiment shown in FIG. 1 will be described with reference to FIGS. 2, 3 and 4. FIG. 2 is a band structure diagram showing a state when no bias is applied, FIG. 3 is a band structure diagram showing a state when a bias voltage is applied, and FIG. 4 is a characteristic curve diagram showing an example of a photosensitivity wavelength characteristic.

【0022】図2において5及び7は図1と同一符号を
付してあり図2中”イ”は障壁層、”ロ”及び”ハ”は
量子井戸層を示している。
In FIG. 2, reference numerals 5 and 7 denote the same reference numerals as in FIG. 1. In FIG. 2, "A" indicates a barrier layer, and "B" and "C" indicate quantum well layers.

【0023】また、図2中”ロ”及び”ハ”に示すよう
に量子井戸層の幅は2種類存在し、このため、図2中”
ロ”と”ハ”に示す量子井戸層内の電子の基底準位が異
なる状態になっている。言い換えれば、吸収される赤外
光の波長が異なることを示している。
Further, as shown by "b" and "c" in FIG. 2, there are two types of widths of the quantum well layer.
The ground levels of the electrons in the quantum well layers shown in "b" and "c" are in different states, in other words, the wavelengths of the absorbed infrared light are different.

【0024】この状態で、赤外受光素子にバイアス電圧
が印加されると図3に示すようなバンド構造になる。図
3において5及び7は図1と同一符号を付してある。
In this state, when a bias voltage is applied to the infrared light receiving element, a band structure as shown in FIG. 3 is obtained. In FIG. 3, 5 and 7 are denoted by the same reference numerals as in FIG.

【0025】図3中”イ”に示すような波長”λ1”の
赤外光が入射光100aとして入射されると図3中”
ロ”及び”ハ”等に示す量子井戸層内の電子はこの赤外
光を吸収して伝導帯に励起される。
When an infrared light having a wavelength "λ1" as shown by "a" in FIG. 3 is incident as the incident light 100a, "in FIG.
Electrons in the quantum well layer indicated by "b" and "c" absorb this infrared light and are excited to the conduction band.

【0026】同様に、図3中”ニ”に示すような波長”
λ2”の赤外光が入射光100aとして入射されると図
3中”ホ”及び”ヘ”等に示す量子井戸層内の電子はこ
の赤外光を吸収して伝導帯に励起される。
Similarly, the wavelength "d" shown in "d" in FIG.
When the infrared light of λ2 ”is incident as the incident light 100a, the electrons in the quantum well layer indicated by“ e ”and“ f ”in FIG. 3 absorb this infrared light and are excited to the conduction band.

【0027】このように伝導帯に励起された電子は印加
されたバイアス電圧により生じる電界によりドリフトし
て電極4a及び4bから電流信号として取り出され、こ
の電流信号と波長との関係は図4に示すようになる。
The electrons thus excited in the conduction band drift by an electric field generated by the applied bias voltage and are extracted as current signals from the electrodes 4a and 4b. The relationship between the current signal and the wavelength is shown in FIG. Become like

【0028】図4から分かるように赤外光の吸収による
電流信号特性”イ”は図4中”ロ”に示す波長”λ1”
に起因する電流信号特性”ハ”と、図4中”ニ”に示す
波長”λ2”に起因する電流信号特性”ホ”とが重畳さ
れた特性であることが分かる。
As can be seen from FIG. 4, the current signal characteristic "A" due to the absorption of infrared light has the wavelength "λ1" shown in "B" in FIG.
It can be seen that the current signal characteristic “c” caused by the above and the current signal characteristic “e” caused by the wavelength “λ2” indicated by “d” in FIG. 4 are superposed.

【0029】このため、赤外光の吸収による電流信号特
性”イ”は波長”λ2”から”λ1”の間で広い受光感
度波長帯域を有することになる。
For this reason, the current signal characteristic "A" due to the absorption of infrared light has a wide light receiving sensitivity wavelength band between the wavelengths "λ2" and "λ1".

【0030】この結果、量子井戸光吸収層6内に2種類
の量子井戸層幅の量子井戸層を設けて量子井戸層内電子
の基底準位を2種類にすることにより、受光感度波長帯
域を広げることが可能になる。
As a result, by providing a quantum well layer having two kinds of quantum well layer widths in the quantum well light absorbing layer 6 and using two kinds of ground levels of electrons in the quantum well layer, the light receiving sensitivity wavelength band can be increased. It becomes possible to spread.

【0031】なお、図2及び図3では同一量子井戸層幅
の量子井戸層を適宜形成した後に量子井戸層幅の異なる
量子井戸層を順次形成しているが、図5に示すように量
子井戸層幅の異なる量子井戸層を交互に形成しても良
い。
In FIGS. 2 and 3, quantum well layers having different quantum well layer widths are sequentially formed after appropriately forming quantum well layers having the same quantum well layer width. However, as shown in FIG. Quantum well layers having different layer widths may be alternately formed.

【0032】また、図1に示した実施例では2種類の量
子井戸層幅としているが量子井戸層幅の種類をそれ以上
にすることにより、受光感度波長帯域をさらに広げるこ
とが可能になる。
Further, in the embodiment shown in FIG. 1, two types of quantum well layer widths are used. However, if the type of the quantum well layer width is made larger, it is possible to further widen the light receiving sensitivity wavelength band.

【0033】例えば、波長”λ1”,”λ2”〜”λ
n”に対応するように量子井戸層幅を形成することによ
り受光感度波長帯域を広げることができる。
For example, the wavelengths “λ1”, “λ2” to “λ”
By forming the quantum well layer width so as to correspond to n ″, the light receiving sensitivity wavelength band can be broadened.

【0034】また、図1に示す実施例では量子井戸光吸
収層6の量子井戸層幅を変化させることにより、量子井
戸層内電子の基底準位を変化させているが、量子井戸層
の組成若しくは障壁層の組成を変化させることにより、
量子井戸層内電子の基底準位を変化させても良い。
In the embodiment shown in FIG. 1, the ground level of electrons in the quantum well layer is changed by changing the width of the quantum well layer of the quantum well light absorbing layer 6, but the composition of the quantum well layer is changed. Alternatively, by changing the composition of the barrier layer,
The ground level of the electrons in the quantum well layer may be changed.

【0035】また、多重量子井戸構造は「AlGaAs
/GaAs」、「AlGaAs/InGaAs」及び
「InGaAsP/InP」等の組み合わせにより容易
に形成することができる。
The multiple quantum well structure is described as “AlGaAs
/ GaAs "," AlGaAs / InGaAs ", and" InGaAsP / InP "can be easily formed.

【0036】また、図1に示す実施例ではGaAs基板
8を用いているがInP基板を用いて「InGaAsP
/InP」多重量子井戸構造等を形成して赤外受光素子
を制作することも可能である。
In the embodiment shown in FIG. 1, the GaAs substrate 8 is used.
It is also possible to manufacture an infrared light receiving element by forming a multi quantum well structure or the like.

【0037】[0037]

【発明の効果】以上説明したことから明らかなように、
本発明によれば次のような効果がある。量子井戸光吸収
層内に2種類の量子井戸層幅の量子井戸層を設けて量子
井戸層内電子の基底準位を2種類にすることにより、受
光感度波長帯域を広げることが可能な赤外受光素子が実
現できる。
As is apparent from the above description,
According to the present invention, the following effects can be obtained. By providing a quantum well layer having two types of quantum well layer widths in the quantum well light absorption layer and using two types of ground levels of electrons in the quantum well layer, infrared light can broaden the wavelength band of light sensitivity. A light receiving element can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る赤外受光素子の一実施例を示す構
成断面図である。
FIG. 1 is a sectional view showing the configuration of an embodiment of an infrared light receiving element according to the present invention.

【図2】無バイアス時の状態を示すバンド構造図であ
る。
FIG. 2 is a band structure diagram showing a state without bias.

【図3】バイアス電圧印加時の状態を示すバンド構造図
である。
FIG. 3 is a band structure diagram showing a state when a bias voltage is applied.

【図4】受光感度波長特性の一例を示す特性曲線図であ
る。
FIG. 4 is a characteristic curve diagram showing an example of a photosensitivity wavelength characteristic.

【図5】無バイアス時の状態を示すバンド構造図であ
る。
FIG. 5 is a band structure diagram showing a state without bias.

【図6】このような従来の赤外受光素子の一例を示す断
面図である。
FIG. 6 is a sectional view showing an example of such a conventional infrared light receiving element.

【図7】バイアス電圧印加時の状態を示すバンド構造図
である。
FIG. 7 is a band structure diagram showing a state when a bias voltage is applied.

【符号の説明】[Explanation of symbols]

1 窓層 2,6 多重量子井戸光吸収層 3 基板 4a,4b 電極 5,7 n+ コンタクト層 8 GaAs基板 100,100a 入射光 101 バイアス電圧DESCRIPTION OF SYMBOLS 1 Window layer 2, 6 Multiple quantum well light absorption layer 3 Substrate 4a, 4b Electrode 5, 7n + contact layer 8 GaAs substrate 100, 100a Incident light 101 Bias voltage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】赤外光により生じる量子井戸層からの光励
起電子を検出することにより前記赤外光を検出する赤外
受光素子において、 基板と、 この基板上に形成され複数種類の量子井戸層幅の前記量
子井戸層を設けた多重量子井戸光吸収層と、 この多重量子井戸光吸収層にバイアス電圧を印加する電
極とを備えたことを特徴とする赤外受光素子。
1. An infrared light receiving element for detecting infrared light by detecting photoexcited electrons from a quantum well layer generated by infrared light, comprising: a substrate; and a plurality of types of quantum well layers formed on the substrate. An infrared light receiving element comprising: a multiple quantum well light absorption layer provided with the quantum well layer having a width; and an electrode for applying a bias voltage to the multiple quantum well light absorption layer.
【請求項2】赤外光により生じる量子井戸層からの光励
起電子を検出することにより前記赤外光を検出する赤外
受光素子において、 基板と、 この基板上に形成され複数種類の組成の前記量子井戸層
を設けた多重量子井戸光吸収層と、 この多重量子井戸光吸収層にバイアス電圧を印加する電
極とを備えたことを特徴とする赤外受光素子。
2. An infrared light-receiving element for detecting infrared light by detecting photoexcited electrons from a quantum well layer generated by infrared light, comprising: a substrate; and a plurality of types of compositions formed on the substrate. An infrared light receiving element comprising: a multiple quantum well light absorbing layer provided with a quantum well layer; and an electrode for applying a bias voltage to the multiple quantum well light absorbing layer.
【請求項3】赤外光により生じる量子井戸層からの光励
起電子を検出することにより前記赤外光を検出する赤外
受光素子において、 基板と、 この基板上に形成され前記量子井戸層を互いに隔てる複
数種類の組成の障壁層を設けた多重量子井戸光吸収層
と、 この多重量子井戸光吸収層にバイアス電圧を印加する電
極とを備えたことを特徴とする赤外受光素子。
3. An infrared light receiving element for detecting infrared light by detecting photoexcited electrons from a quantum well layer generated by infrared light, comprising: a substrate; and a quantum well layer formed on the substrate. An infrared light receiving element comprising: a multiple quantum well light absorption layer provided with barrier layers of a plurality of types of compositions separating the electrodes; and an electrode for applying a bias voltage to the multiple quantum well light absorption layer.
JP8215601A 1996-08-15 1996-08-15 Infrared radiation detecting element Pending JPH1065200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8215601A JPH1065200A (en) 1996-08-15 1996-08-15 Infrared radiation detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8215601A JPH1065200A (en) 1996-08-15 1996-08-15 Infrared radiation detecting element

Publications (1)

Publication Number Publication Date
JPH1065200A true JPH1065200A (en) 1998-03-06

Family

ID=16675139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8215601A Pending JPH1065200A (en) 1996-08-15 1996-08-15 Infrared radiation detecting element

Country Status (1)

Country Link
JP (1) JPH1065200A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149960A3 (en) * 2010-05-24 2012-04-05 University Of Florida Research Foundation Inc. Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
US10134815B2 (en) 2011-06-30 2018-11-20 Nanoholdings, Llc Method and apparatus for detecting infrared radiation with gain
US10700141B2 (en) 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700141B2 (en) 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
WO2011149960A3 (en) * 2010-05-24 2012-04-05 University Of Florida Research Foundation Inc. Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
US8716701B2 (en) 2010-05-24 2014-05-06 Nanoholdings, Llc Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
US9997571B2 (en) 2010-05-24 2018-06-12 University Of Florida Research Foundation, Inc. Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
US10134815B2 (en) 2011-06-30 2018-11-20 Nanoholdings, Llc Method and apparatus for detecting infrared radiation with gain
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices

Similar Documents

Publication Publication Date Title
JP2716364B2 (en) Adjustable voltage photodetector
US4903101A (en) Tunable quantum well infrared detector
JP2003520438A (en) Photodetector using vertical metal semiconductor microresonator and manufacturing method thereof
JPS6193681A (en) semiconductor device
US5121181A (en) Resonant tunneling photodetector for long wavelength applications
US6885039B2 (en) Semiconductor photodetector and avalanche photodiode
US7659536B2 (en) High performance hyperspectral detectors using photon controlling cavities
EP0477729B1 (en) Avalanche photodiode
JPH1065200A (en) Infrared radiation detecting element
FR2701574A1 (en) Semiconductor modulator of light intensity.
JP2000188407A (en) Infrared detector
JP4331428B2 (en) Intersubband Transition Quantum Well Photodetector
JPH08204226A (en) Light receiving element
JP3032209B2 (en) Photo detector
JPH10144950A (en) Semiconductor light-receiving device
JPH06204549A (en) Waveguide type photodetector, manufacture thereof and driving method thereof
JP2706279B2 (en) Photodiode
JPH06237006A (en) Semiconductor optical integrated element
JPH02246381A (en) Superlattice avalanche photodiode
JP2988153B2 (en) Wavelength-selective semiconductor photo detector
JPH0148663B2 (en)
JPH0353565A (en) Multi-quantum well structure photodetector
JP2685703B2 (en) Semiconductor photodetector and method of manufacturing the same
JPH02238677A (en) Photodetector,long wave light detector,and electron filter
Duboz et al. Monolithic spectrometer based on intersubband transitions in quantum wells