JPH1046252A - Production of superlow core loss grain oriented magnetic steel sheet - Google Patents
Production of superlow core loss grain oriented magnetic steel sheetInfo
- Publication number
- JPH1046252A JPH1046252A JP8206135A JP20613596A JPH1046252A JP H1046252 A JPH1046252 A JP H1046252A JP 8206135 A JP8206135 A JP 8206135A JP 20613596 A JP20613596 A JP 20613596A JP H1046252 A JPH1046252 A JP H1046252A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- rolling
- iron loss
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は鋼板表面の平滑度の
極めて高い高磁束密度一方向性電磁鋼板に磁区制御を施
して得られる鏡面を有する超低鉄損一方向性電磁鋼板の
製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an ultra-low iron loss unidirectional electrical steel sheet having a mirror surface obtained by performing magnetic domain control on a high magnetic flux density unidirectional electrical steel sheet having extremely high smoothness on the surface of the steel sheet. Things.
【0002】[0002]
【従来の技術】近年エネルギー節約の観点から鉄損を低
減することが強く要望されている。これに応えるように
最近アモルファスメタルが出現し、一部トランスメーカ
ーで採用され非常に優れた鉄損特性が得られている。こ
れに対抗すべく方向性電磁鋼板においても鋭意研究が進
められ、幾つかの提案がなされている。鉄損を低減する
方法としては従来から行われてきた高磁束密度化、二次
再結晶粒の小粒化、薄手化、表面皮膜の高張力化等の冶
金的方法の他に、物理的方法としてレーザー照射やプラ
ズマ照射等による磁区制御技術が提案されている。(特
開昭57−2252号公報、特開昭59−25928号
公報)しかし、この方法は歪取り焼鈍を必要とする巻き
鉄心トランス用としては使用出来ないため、積み、巻き
両トランスに使用できる磁区制御法として、製品の表面
に歯形ロールで溝を形成する方法、例えば特開昭61−
117218号公報、冷延板にエッチングにより溝を形
成する方法、例えば特公平3−69968号公報或いは
冷延板にレーザーにより溝を形成する方法、例えば特開
昭61−75506号公報等の技術が開示された。2. Description of the Related Art In recent years, there has been a strong demand for reducing iron loss from the viewpoint of energy saving. In response to this, amorphous metal has recently appeared, and has been adopted by some transformer manufacturers, and has obtained excellent iron loss characteristics. To counter this, intensive studies have been made on grain-oriented electrical steel sheets, and some proposals have been made. In addition to metallurgical methods such as increasing the magnetic flux density, reducing the size of secondary recrystallized grains, reducing the thickness, and increasing the surface tension of the surface coating, the methods used to reduce iron loss are physical methods. A magnetic domain control technique by laser irradiation, plasma irradiation, or the like has been proposed. However, since this method cannot be used for a wound iron core transformer requiring strain relief annealing, it can be used for both stacked and wound transformers. As a magnetic domain control method, a method of forming a groove with a toothed roll on the surface of a product, for example, as disclosed in
No. 117218, a method of forming a groove in a cold rolled sheet by etching, for example, Japanese Patent Publication No. 3-69968 or a method of forming a groove in a cold rolled sheet by a laser, for example, Japanese Patent Application Laid-Open No. 61-75506. Disclosed.
【0003】また、この他の鉄損低減方法として、鋼板
の表面を電解研磨又は化学研磨により平滑(鏡面)にす
る方法がある(特公昭52−24499号公報、特公昭
56−4150号公報)。この方法では平滑度が高い程
鉄損低減に効果があり、これと磁区制御技術を組み合わ
せると格段に優れた超低鉄損材が得られることが知られ
ている(特開昭54−43115号公報)。しかし、こ
の方法は工業性に欠けるため、最近ではこの鏡面を得る
方法として、焼鈍分離剤にAl2 O3 を用いる方法或い
はMgOの中に塩素化合物等を添加する方法等が提案さ
れている。例えば、特開平7−118750号公報には
脱炭焼鈍時の雰囲気露点をできるだけ低くして酸化層の
生成を抑制することで焼鈍分離剤Al2 O3 との反応生
成物をなくし鏡面を得る方法を提案している。As another iron loss reducing method, there is a method of making the surface of a steel sheet smooth (mirror surface) by electrolytic polishing or chemical polishing (Japanese Patent Publication Nos. 52-24499 and 56-4150). . In this method, it is known that the higher the degree of smoothness, the more effective the iron loss reduction, and if this method is combined with the magnetic domain control technique, a very excellent ultra-low iron loss material can be obtained (Japanese Patent Application Laid-Open No. 54-43115). Gazette). However, since this method lacks industriality, a method of using Al 2 O 3 as an annealing separator or a method of adding a chlorine compound or the like in MgO has recently been proposed as a method for obtaining this mirror surface. For example, Japanese Patent Application Laid-Open No. Hei 7-118750 discloses a method for obtaining a mirror surface by eliminating the reaction product with an annealing separator Al 2 O 3 by lowering the atmosphere dew point during decarburizing annealing as much as possible to suppress the formation of an oxide layer. Has been proposed.
【0004】同じく特開平8−3648号公報には焼鈍
分離剤Al2 O3 の組成について述べている。また、特
開平4−21451号及び特開平4−21452号公報
にはこの鏡面を有する鋼板に歪取り焼鈍に耐える磁区制
御をし、かつ張力コーティングを施して、超低鉄損材を
得る方法を提案している。Japanese Patent Application Laid-Open No. 8-3648 describes the composition of an annealing separator Al 2 O 3 . Also, JP-A-4-21451 and JP-A-4-21452 disclose a method of obtaining an ultra-low iron loss material by controlling the magnetic domain of a steel sheet having a mirror surface to withstand strain relief annealing and applying a tension coating. is suggesting.
【0005】特願平08−017371号公報には冷延
の途中板厚段階で溝を形成してから製品板厚に仕上げ、
上記方法で処理する製造法を提案している。[0005] Japanese Patent Application No. 08-017371 discloses that a groove is formed at a thickness stage during cold rolling and then finished to a product thickness.
A manufacturing method for processing by the above method is proposed.
【0006】[0006]
【発明が解決しようとする課題】本発明は仕上げ焼鈍後
の表面粗度を極めて低くすることにより安定した超低鉄
損一方向性電磁鋼板の製造方法を提案するものである。SUMMARY OF THE INVENTION The present invention proposes a method for producing an ultra-low iron loss unidirectional electrical steel sheet which is stabilized by making the surface roughness after finish annealing extremely low.
【0007】[0007]
【課題を解決するための手段】本発明は冷延機のロール
粗度を通常より低く管理して、冷延後の鋼板表面粗度を
小さくし、仕上げ焼鈍後に極めて優れた鏡面を得ること
を特徴とするものである。即ち重量比で、Si:2.5
〜4.5%、C:0.025〜0.085%、Mn:
0.050〜0.45%、S≦0.015%、酸可溶性
Al:0.01〜0.040%、N:≦0.010%、
Sn:0.02〜0.15%、残部Fe及び不可避的不
純物からなる電磁鋼スラブを1280℃以下の温度で加
熱した後、熱延し熱延板焼鈍をし、一回または中間焼鈍
を介挿する二回以上の圧延でその最終圧延率を80%以
上とし冷延板の圧延方向と直角方向の表面粗度を平均粗
さ0.20μm以下にする冷間圧延を施し、次いで脱炭
焼鈍、窒化処理、焼鈍分離剤としてAl2 O3 塗布し、
仕上げ焼鈍した後磁区制御し、張力コーティングを施す
ことを特徴とする鏡面を有する超低鉄損一方向性電磁鋼
板の製造方法である。SUMMARY OF THE INVENTION According to the present invention, the roll roughness of a cold rolling mill is controlled to be lower than usual so as to reduce the surface roughness of a steel sheet after cold rolling and to obtain an extremely excellent mirror surface after finish annealing. It is a feature. That is, by weight ratio, Si: 2.5
-4.5%, C: 0.025-0.085%, Mn:
0.050 to 0.45%, S ≦ 0.015%, acid-soluble Al: 0.01 to 0.040%, N: ≦ 0.010%,
After heating the electromagnetic steel slab consisting of 0.02 to 0.15% of Sn and the balance Fe and unavoidable impurities at a temperature of 1280 ° C. or lower, hot-rolled and hot-rolled sheet annealing is performed, and once or intermediate annealing is performed. Cold rolling is performed to reduce the final rolling ratio to 80% or more and the surface roughness in the direction perpendicular to the rolling direction of the cold-rolled sheet to an average roughness of 0.20 μm or less by two or more rollings, and then decarburizing annealing , Nitriding treatment, applying Al 2 O 3 as an annealing separator,
This is a method for producing an ultra-low iron loss unidirectional magnetic steel sheet having a mirror surface, wherein a magnetic domain is controlled after finish annealing and a tension coating is applied.
【0008】また、前記方法において、脱炭焼鈍の雰囲
気ガスの水蒸気/水素分圧比PH2O/PH2 を0.0
58〜0.150の範囲とする方法、或いは、仕上げ焼
鈍昇温過程の雰囲気ガスにH2 とN2 の混合ガスを用
い、N2 の比率を50%以上とし1100℃以上の温度
で均熱しこの均熱温度域でH2 雰囲気で焼鈍する方法で
ある。Further, in the above method, the steam / hydrogen partial pressure ratio PH 2 O / PH 2 of the degassing annealing atmosphere gas is set to 0.0
How the range of from 58 to 0.150, or a mixed gas of H 2 and N 2 in the atmospheric gas finish annealing Atsushi Nobori process, the ratio of N 2 soaked at 1100 ° C. or more temperature of at least 50% This is a method of annealing in an H 2 atmosphere in this soaking temperature range.
【0009】更に、前記方法において、磁区制御方法と
して最終冷延の途中板厚段階で鋼板表面に圧延方向に対
して、90°〜45°の範囲で巾が10〜500μm、
深さが板厚t×1/8〜1/30、間隔が圧延方向に1
〜20mmの溝を点状或いは線状に形成することで歪取り
焼鈍に耐える方法である。なお、磁区制御の方法として
は例えばレーザー照射等の公知の方法を採用してもよ
い。Further, in the above method, the magnetic domain control method is such that the width is 10 to 500 μm in a range of 90 ° to 45 ° with respect to the rolling direction on the surface of the steel sheet in the thickness step during the final cold rolling.
Depth is plate thickness t × 1/8 to 1/30, interval is 1 in the rolling direction
This is a method in which a groove of about 20 mm is formed in a dot shape or a line shape to withstand strain relief annealing. In addition, as a method of controlling the magnetic domain, a known method such as laser irradiation may be employed.
【0010】[0010]
【発明の実施の形態】以下、本発明を実験に基づいて説
明する。 実験1.重量比でC:0.055%、Si:3.25
%、Mn:0.10%、P:0.025%、S:0.0
07%、酸可溶性Al:0.028%、Sn:0.05
%、Cr:0.12%、N:0.0080%を含む板厚
2.3mmの熱延板を1120℃+900℃で焼鈍した後
急冷し、酸洗し、冷延して板厚0.23mmに仕上げた。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on experiments. Experiment 1. C: 0.055%, Si: 3.25 by weight ratio
%, Mn: 0.10%, P: 0.025%, S: 0.0
07%, acid-soluble Al: 0.028%, Sn: 0.05
%, Cr: 0.12%, and N: 0.0080%, a 2.3 mm thick hot rolled sheet was annealed at 1120 ° C. + 900 ° C., quenched, pickled, and cold rolled to obtain a sheet thickness of 0.1 mm. Finished to 23mm.
【0011】この冷延に際し、冷延ロールの粗度を変え
て圧延し冷延板表面の平均粗さ(圧延方向と直角方向)
0.30μm 0.25μm 0.20μm
≦0.15μmの4水準のものを造った。この冷延板を
油洗し、脱炭焼鈍を830℃x90秒、H2 :75%+
N2 25%、露点40℃(PH2 O/PH2 =0.1
0)の雰囲気中で行った。In this cold rolling, rolling is performed while changing the roughness of the cold rolling roll, and the average roughness of the surface of the cold rolled sheet (in the direction perpendicular to the rolling direction).
0.30 μm 0.25 μm 0.20 μm
Four levels of ≦ 0.15 μm were produced. The cold rolled sheet was washed with oil, and decarburized annealing was performed at 830 ° C. for 90 seconds, H 2 : 75% +
N 2 25%, dew point 40 ° C. (PH 2 O / PH 2 = 0.1
The test was performed in the atmosphere of 0).
【0012】次いで窒化処理を750℃x30秒、
N2 、H2 、アンモニアの混合ガス中で行い、鋼板の窒
素量を200ppm に調整し、焼鈍分離剤にAl2 O3 を
使用し、仕上げ焼鈍昇温過程の雰囲気ガスN2 :90
%、H2 :10%の混合ガスでおこない1200℃x2
0時間の純化焼鈍をH2 雰囲気ガス中で行った。この後
水洗し、無水クロム酸、燐酸アルミニウムを主成分とす
る張力コーティングを施した。Next, nitriding treatment is performed at 750 ° C. for 30 seconds.
The test was performed in a mixed gas of N 2 , H 2 and ammonia, the nitrogen content of the steel sheet was adjusted to 200 ppm, Al 2 O 3 was used as an annealing separator, and the atmosphere gas N 2 : 90 in the final annealing temperature raising process was used.
%, H 2: done with 10% mixed gas 1200 ° C. x2
The 0-hour purification annealing was performed in a H 2 atmosphere gas. Thereafter, the film was washed with water and subjected to a tension coating mainly composed of chromic anhydride and aluminum phosphate.
【0013】この後磁区制御をレーザー光で圧延方向と
直角方向に5mm間隔に照射して行った。このようにして
得られた磁気特性を図1に示す。この図から冷延板の粗
度が小さいものほど低鉄損が得られることが判る。な
お、この製品は歪取り焼鈍を必要としない積みトランス
用鉄心材料として使用される。 実験2.実験1で使用した冷延板の表面平均粗さ≦
0.15μmを用いて脱炭焼鈍雰囲気露点と鉄損の関係
を調べた。Thereafter, the magnetic domain was controlled by irradiating the laser beam with a laser beam at an interval of 5 mm in a direction perpendicular to the rolling direction. FIG. 1 shows the magnetic characteristics thus obtained. From this figure, it can be seen that the lower the roughness of the cold rolled sheet, the lower the iron loss. This product is used as a core material for a stacking transformer that does not require strain relief annealing. Experiment 2. Surface average roughness of cold rolled sheet used in experiment 1 ≤
The relationship between the decarburizing annealing atmosphere dew point and iron loss was examined using 0.15 μm.
【0014】脱炭焼鈍条件を830℃x30秒、雰囲気
ガスH2 :75%+N2 :25%、雰囲気ガスの露点を
1)25℃、2)30℃、3)35℃、4)40℃、
5)45℃、6)50℃と変化させた。以下の工程は実
験1と同様に行った。結果を図2に示す。これからPH
2 O/PH2 :0.058〜0.150の範囲で超低鉄
損が得られている。PH2 O/PH2 が0.150を超
えると脱炭焼鈍板の酸化層が増え、この酸化層と焼鈍分
離剤Al2 O3 との反応が起こり、仕上げ焼鈍後の鋼板
の鏡面度が劣ってくる。この脱炭焼鈍板の酸化層の量は
同一露点で比較すると冷延板の粗度が小さい程少ない。Decarburizing annealing conditions are 830 ° C. for 30 seconds, atmosphere gas H 2 : 75% + N 2 : 25%, dew point of the atmosphere gas is 1) 25 ° C., 2) 30 ° C., 3) 35 ° C., 4) 40 ° C. ,
5) 45 ° C and 6) 50 ° C. The following steps were performed in the same manner as in Experiment 1. The results are shown in FIG. From now on PH
Ultra low iron loss is obtained in the range of 2 O / PH 2 : 0.058 to 0.150. When PH 2 O / PH 2 exceeds 0.150, the number of oxidized layers of the decarburized annealed sheet increases, and this oxide layer reacts with the annealing separator Al 2 O 3 , resulting in inferior mirror finish of the steel sheet after finish annealing. Come. The amount of the oxide layer of the decarburized annealed sheet is smaller as the roughness of the cold-rolled sheet is smaller when compared at the same dew point.
【0015】又、露点は低い程酸化量は少なく鏡面が得
られ易いが、0.058より低くなると脱炭が悪くな
り、二次再結晶粒の発達を阻害してくる。 実験3.実験1で用いた熱延板を1120℃+900℃
で焼鈍した後急冷し、酸洗し冷延を行った。この冷延に
おいては実験1と同じくロール粗度を変えて圧延した。The lower the dew point, the smaller the amount of oxidation and the easier it is to obtain a mirror surface. However, if the dew point is lower than 0.058, decarburization becomes worse and the development of secondary recrystallized grains is hindered. Experiment 3. The hot rolled sheet used in Experiment 1 was 1120 ° C + 900 ° C
After quenching, rapid cooling, pickling and cold rolling were performed. In this cold rolling, rolling was performed with the roll roughness changed as in Experiment 1.
【0016】この冷延の途中板厚段階0.32mmにおい
てレーザー光により15μmの穿孔を行った。この穿孔
はほぼ100μmφ、間隔100μmの点列とし、点列
の方向は圧延方向に対して85°とし、点列のピッチは
5mmとした。穿孔後、製品板厚0.27mmまで圧延し
た。この後、油洗し脱炭焼鈍を830℃x120秒、H
2 :75%+N2 :25%、露点40℃の雰囲気ガス中
で行った。続いて窒化処理、Al2 O3 塗布、仕上げ焼
鈍、コーティング処理を実験1と同じ方法で行った。こ
のようにして得られた製品の磁気特性を図3に示す。During the cold rolling, a hole of 15 μm was formed by a laser beam at a thickness step of 0.32 mm. The perforations were formed as a series of points having a diameter of about 100 μmφ and an interval of 100 μm. After perforation, the product was rolled to a product thickness of 0.27 mm. After that, oil washing and decarburization annealing were performed at 830 ° C. for 120 seconds,
2: 75% + N 2: 25%, was conducted in an atmospheric gas having a dew point of 40 ° C.. Subsequently, nitriding treatment, Al 2 O 3 application, finish annealing, and coating treatment were performed in the same manner as in Experiment 1. FIG. 3 shows the magnetic properties of the product thus obtained.
【0017】この結果においても冷延板の粗度の小さい
ものほど低鉄損が得られることが判る。なお、この製品
は歪取り焼鈍を行っても効果が消失しないため積み、巻
き両トランス用鉄心材料として使用できる。次に、本発
明における出発材料の成分組成の限定理由を述べる。S
iは、低鉄損を得る上で多い方が好ましいが、Siの含
有量が4.5%を超えて多くなりすぎると材料の冷間圧
延時に、割れ、破断が多発し、安定した冷延作業を不可
能にする。This result also indicates that the lower the roughness of the cold rolled sheet, the lower the iron loss. In addition, since this product does not lose its effect even when subjected to strain relief annealing, it can be stacked and used as a core material for a double-sided transformer. Next, the reasons for limiting the component composition of the starting material in the present invention will be described. S
i is preferably large in order to obtain a low iron loss, but if the Si content exceeds 4.5% and becomes too large, cracks and breaks frequently occur during cold rolling of the material, and stable cold rolling is performed. Make work impossible.
【0018】Cは、0.085%を超えて多くなりすぎ
ると、脱炭焼鈍時間が長大なものとなり、生産性を損な
う。Mnは、その含有量が少なすぎると二次再結晶が不
安定となり、一方、多すぎると高い磁束密度をもつ製品
を得難くなる。適正な含有量は、0.050〜0.45
%である。Sは、周知の如くMnSを形成し、一次再結
晶粒の成長を抑制する。本発明においては二次再結晶粒
を発現させるに必要なインヒビターは脱炭焼鈍以降で造
り込むことを特徴としており、冷延以前で微細な析出物
が分散することは一次再結晶粒径を調整して高磁束密度
鋼板を得る本発明においては好ましくない。従って、S
は0.015%以下としている。Sの好ましい範囲は
0.003〜0.010%が良い。Sが、0.003%
より少ないと粒成長が焼鈍温度により敏感になり粒径調
整が困難になるためである。If the content of C exceeds 0.085% and becomes too large, the decarburization annealing time becomes long and the productivity is impaired. If the content of Mn is too small, secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The appropriate content is 0.050 to 0.45
%. S forms MnS as is well known, and suppresses the growth of primary recrystallized grains. In the present invention, the inhibitor required to develop secondary recrystallized grains is characterized in that it is built after decarburization annealing, and that fine precipitates are dispersed before cold rolling adjusts the primary recrystallized grain size. It is not preferable in the present invention to obtain a high magnetic flux density steel sheet. Therefore, S
Is set to 0.015% or less. The preferable range of S is 0.003 to 0.010%. S is 0.003%
If the amount is smaller, the grain growth becomes more sensitive to the annealing temperature, and it becomes difficult to adjust the grain size.
【0019】Alは窒素と結合してAlNを形成する
が、本発明においては、後工程、即ち一次再結晶完了に
鋼を窒化することにより、(Al,Si)Nを形成せし
めることを必須としているから、フリーのAlが一定量
以上必要である。そのため、酸可溶性Alとして、0.
010〜0.040%とする。Nは0.010%以下に
する必要がある。0.010%を超えるとブリスターと
呼ばれる鋼板表面の膨れが発生し、また一次再結晶組織
の調整が困難になる。下限に特に限定しないが0.00
2%程度が良い。Although Al combines with nitrogen to form AlN, in the present invention, it is essential to form (Al, Si) N by nitriding the steel in a later step, ie, completion of the primary recrystallization. Therefore, a certain amount of free Al is required. Therefore, as acid-soluble Al, 0.1.
010 to 0.040%. N needs to be 0.010% or less. If it exceeds 0.010%, blistering of the steel sheet surface called blister occurs, and it is difficult to adjust the primary recrystallization structure. Although not particularly limited to the lower limit, 0.00
About 2% is good.
【0020】Snは脱炭焼鈍後の集合組織を改善し、二
次再結晶粒の粗大化を防ぐ。Snの適量は0.02〜
0.15%であるが、これより少ないと効果が弱く、一
方、多いと窒化が困難になり二次再結晶粒が発達しにく
くなる。好ましくは0.03〜0.10%が良い。な
お、微量のCu,P,Tiを鋼中に含有せしめること
は、本発明の主旨を損なうものではない。Sn improves the texture after decarburizing annealing and prevents coarsening of secondary recrystallized grains. The appropriate amount of Sn is 0.02-
The content is 0.15%. If the content is less than 0.15%, the effect is weak. On the other hand, if the content is more than 0.15%, nitriding becomes difficult and secondary recrystallized grains hardly develop. Preferably, 0.03 to 0.10% is good. The inclusion of trace amounts of Cu, P, and Ti in steel does not impair the gist of the present invention.
【0021】次に、本発明の製造プロセスについて説明
する。電磁鋼スラブは、転炉或いは電気炉等の溶解炉で
鋼を溶製し、必要に応じて真空脱ガスし、次いで連続鋳
造によって、或いは造塊後分塊圧延することによって得
られ、しかる後、熱間圧延に先立つスラブ加熱がなされ
る。スラブ加熱温度は1280℃以下の低い温度で行う
ことにより加熱エネルギーの消費量を少なくするととも
に、鋼中のAlNを完全には固溶させず不完全固溶状態
とする。Next, the manufacturing process of the present invention will be described. The electromagnetic steel slab is obtained by smelting steel in a melting furnace such as a converter or an electric furnace, vacuum degassing as necessary, and then by continuous casting or by ingot-casting and slab rolling. Slab heating is performed prior to hot rolling. By performing the slab heating at a low temperature of 1280 ° C. or less, the consumption of the heating energy is reduced, and the AlN in the steel is not completely dissolved to form an incomplete solid solution state.
【0022】このスラブを熱延して所定の厚みの熱延板
を造る。次いで、900℃〜1150℃で短時間の熱延
板焼鈍をし、酸洗し冷間圧延を行う。冷間圧延率は、高
磁束密度を得る上から80%以上必要である。この冷間
圧延において、ロール粗度を低くし冷延板の圧延方向と
直角方向の平均粗さを0.20μm以下にする必要があ
る。この場合、粗度の異なったロールを組み合わせて圧
延することにはこだわらない。圧延方向と直角方向の平
均粗さを規定したのは通常の圧延においては圧延方向よ
り、直角方向の粗度が大きくなる理由による。The slab is hot-rolled to produce a hot-rolled sheet having a predetermined thickness. Next, the hot-rolled sheet is annealed at 900 ° C. to 1150 ° C. for a short time, pickled, and cold-rolled. The cold rolling reduction is required to be 80% or more in order to obtain a high magnetic flux density. In this cold rolling, it is necessary to lower the roll roughness so that the average roughness of the cold rolled sheet in the direction perpendicular to the rolling direction is 0.20 μm or less. In this case, it is not particular about rolling by combining rolls having different roughnesses. The reason why the average roughness in the direction perpendicular to the rolling direction is specified is that in normal rolling, the roughness in the direction perpendicular to the rolling direction is larger than that in the rolling direction.
【0023】この処理に引き続き、脱炭焼鈍と窒化処理
を行う。脱炭焼鈍は公知の方法で行うが、雰囲気露点は
通常より低くして、鋼板表面の酸化層(ファヤライト
(Fe 2 SiO4 )及びSiO2 の量)の生成をできる
だけ少なくすることが望ましい。本発明に規定するPH
2 O/PH2 の値は0.058〜0.150である。Following this treatment, decarburizing annealing and nitriding treatment
I do. The decarburization annealing is performed by a known method.
Oxide layer (Fayalite)
(Fe TwoSiOFour) And SiOTwoAmount) can be generated
It is desirable to reduce as much as possible. PH defined in the present invention
TwoO / PHTwoIs 0.058 to 0.150.
【0024】0.058より小さいと脱炭不良となり、
二次再結晶粒の発達を阻害する。一方、0.150を超
えると酸化層の生成量が急激に増え、仕上げ焼鈍後の鏡
面度が低下し、超低鉄損が得られなくなる。窒化処理は
例えば特開平2−77525号公報に示されるような、
水素、窒素、アンモニアの混合ガス中でストリップを走
行して行う。If it is smaller than 0.058, the decarburization becomes poor,
Inhibits the development of secondary recrystallized grains. On the other hand, if it exceeds 0.150, the generation amount of the oxide layer sharply increases, the mirror finish after finish annealing decreases, and an ultra-low iron loss cannot be obtained. The nitriding treatment is performed, for example, as disclosed in JP-A-2-77525.
It is performed by running the strip in a mixed gas of hydrogen, nitrogen and ammonia.
【0025】焼鈍分離剤には仕上げ焼鈍後にフオルステ
ライト皮膜を形成させない焼鈍分離剤を使用する必要が
ある。このためAl2 O3 或いはAl2 O3 を主成分と
したものを用いる。仕上げ焼鈍は昇温過程の雰囲気ガス
をN2 とH2 の混合ガスとし、N2 の比率を50%以上
好ましくは75%以上とする。N2 の比率がこれより低
いと二次再結晶粒の発達が不安定になる。It is necessary to use an annealing separator which does not form a forsterite film after the finish annealing. Therefore, Al 2 O 3 or a material containing Al 2 O 3 as a main component is used. In the finish annealing, the atmosphere gas during the temperature raising process is a mixed gas of N 2 and H 2 , and the ratio of N 2 is 50% or more, preferably 75% or more. If the ratio of N 2 is lower than this, the development of secondary recrystallized grains becomes unstable.
【0026】この後、張力皮膜を形成させる。張力皮膜
としては、例えば特開昭48−39338号公報による
コロイド状シリカと燐酸アルミニウムを主体とするコー
ティング液、特開昭50−79442号公報によるコロ
イド状シリカと燐酸マグネシュウムを主体とするコーテ
ィング液、または特願平4−222879号公報による
アルミナ・ゾルとほう酸を主成分とするコーティング液
を焼き付ける方法を採用すればよい。Thereafter, a tension film is formed. As the tension film, for example, a coating liquid mainly comprising colloidal silica and aluminum phosphate according to JP-A-48-39338, a coating liquid mainly comprising colloidal silica and magnesium phosphate according to JP-A-50-79442, Alternatively, a method of baking an alumina sol and a coating solution containing boric acid as main components according to Japanese Patent Application No. 4-222879 may be employed.
【0027】この他密着性が良く鋼板に張力を付与する
ことが可能な皮膜ならば採用できる。次に磁区制御を行
うが、磁区制御法としては公知のレーザー照射、歯形ロ
ールによる溝形成法、或いはエッチング法等を採用して
も良い。この他、本発明の特徴である歪取り焼鈍に耐え
る磁区制御法である冷延途中板厚段階で穿孔する処理条
件について述べる。In addition, any other film having good adhesion and capable of applying tension to a steel sheet can be used. Next, magnetic domain control is performed. As a magnetic domain control method, a known laser irradiation, a groove forming method using a toothed roll, an etching method, or the like may be employed. In addition, a description will be given of processing conditions for perforating at the thickness stage during cold rolling, which is a magnetic domain control method that resists strain relief annealing, which is a feature of the present invention.
【0028】穿孔(溝)の幅は10〜500μmとす
る。500μmを超すと磁束密度の劣化が大きくなり、
鉄損低減効果が認められない。一方、10μmより狭く
することは非常に難しい。溝の方向は圧延方向に対して
90°〜45°とする。45°より小さくなると、磁区
細分化効果が弱くなり鉄損低減が小さい。溝の間隔は1
〜20mmとする。1mm未満は工業的に難しく、一方、2
0mmを超えると鉄損低減が小さくなる。点状の穿孔の場
合、穿孔の間隔は特に拘らないが、磁区は幅の最も広い
もので2mm程度であることから、これを超すことは好ま
しくない。溝深さは溝形成時の板厚の1/30〜1/8
の範囲が良い。1/30より浅いと鉄損低減が弱く、1
/8より深いと磁束密度の劣化を招き鉄損特性も悪くな
る。The width of the perforations (grooves) is 10 to 500 μm. If it exceeds 500 μm, the magnetic flux density deteriorates greatly,
No iron loss reduction effect is observed. On the other hand, it is very difficult to make it smaller than 10 μm. The direction of the grooves is 90 ° to 45 ° with respect to the rolling direction. When the angle is smaller than 45 °, the effect of subdividing the magnetic domain is weakened, and the iron loss reduction is small. Groove spacing is 1
2020 mm. Less than 1 mm is industrially difficult, while 2
If it exceeds 0 mm, the reduction in iron loss becomes small. In the case of point-shaped perforations, the interval between perforations is not particularly limited, but since the magnetic domain has the widest width of about 2 mm, it is not preferable to exceed this. Groove depth is 1/30 to 1/8 of plate thickness at the time of groove formation
Good range. If it is shallower than 1/30, iron loss reduction is weak and 1
If it is deeper than / 8, the magnetic flux density is degraded, and the iron loss characteristics are also deteriorated.
【0029】この溝形成にはレーザー光或いはプラズマ
炎を用いると効果的であるが、この他高圧水を用いても
良い。この後製品板厚まで圧延する。この圧延は溝形成
時に生じた形成不良やバリを除去すると同時に、熱影響
部の組織を改善し、磁区制御効果に加えてGoss組織
の発達を製品板厚で照射した場合に比較して更に促進す
る効果がある。この理由は定かでないが、熱影響部の組
織に圧延により歪が導入され、その歪量がGoss組織
の発達に適したものとなっていると推定される。以下実
施例について述べる。Although it is effective to use a laser beam or a plasma flame for forming the grooves, high-pressure water may be used. After that, it is rolled to the product thickness. This rolling eliminates formation defects and burrs generated during groove formation, improves the structure of the heat affected zone, and further promotes the development of the Goss structure in addition to the magnetic domain control effect as compared to the case where irradiation is performed at the product thickness. Has the effect of doing Although the reason for this is not clear, it is presumed that strain is introduced into the structure of the heat-affected zone by rolling, and the amount of strain is suitable for the development of the Goss structure. Examples will be described below.
【0030】[0030]
【実施例】重量比でC:0.057%、Si:3.5
%、Mn:0.10%、P:0.025%、S:0.0
10%、酸可溶性Al:0.027%、Sn:0.05
%、N:0.0078%を含む板厚2.3mmの熱延板を
1120℃+900℃で焼鈍した後急冷し、酸洗し、冷
延して板厚0.23mmに仕上げた。EXAMPLE C: 0.057% by weight, Si: 3.5
%, Mn: 0.10%, P: 0.025%, S: 0.0
10%, acid-soluble Al: 0.027%, Sn: 0.05
%, N: 0.0078%, a hot-rolled sheet having a thickness of 2.3 mm was annealed at 1120 ° C. + 900 ° C., quenched, pickled, cold rolled, and finished to a thickness of 0.23 mm.
【0031】この冷延に際し、冷延ロールの粗度を変え
て圧延し冷延板の圧延方向と直角方向の表面粗度を
0.25μm ≦0.10μmとした。この冷延板を
油洗し、脱炭焼鈍を840℃x90秒、H2 :75%+
N2 :25%、露点45℃の雰囲気中で行った。次いで
窒化処理を750℃x30、N2、H2 、アンモニアの
混合ガス中で行い、鋼板の窒素量を220ppm に調整し
た。At the time of this cold rolling, rolling is performed while changing the roughness of the cold rolling roll, and the surface roughness in the direction perpendicular to the rolling direction of the cold rolled sheet is adjusted.
0.25 μm ≦ 0.10 μm. The cold rolled sheet was washed with oil, and decarburized annealing was performed at 840 ° C. for 90 seconds, H 2 : 75% +
The test was performed in an atmosphere of N 2 : 25% and a dew point of 45 ° C. Next, nitriding was performed at 750 ° C. × 30 in a mixed gas of N 2 , H 2 and ammonia to adjust the nitrogen content of the steel sheet to 220 ppm.
【0032】この後、焼鈍分離剤にAl2 O3 を使用
し、仕上げ焼鈍昇温過程の雰囲気ガスをN2 ガスとし、
1200℃x20時間の純化焼鈍をH2 雰囲気ガス中で
行った。この後水洗した後、歯形ロールで圧延方向と7
5°方向に巾50μm、ピッチ5mm深さ12μmの溝を
形成した。Thereafter, Al 2 O 3 was used as an annealing separator, and the atmosphere gas in the final annealing temperature raising process was changed to N 2 gas.
Purification annealing at 1200 ° C. for 20 hours was performed in an H 2 atmosphere gas. Then, after washing with water, the rolling direction and 7
A groove having a width of 50 μm and a pitch of 5 mm and a depth of 12 μm was formed in the direction of 5 °.
【0033】この後850℃x2時間の焼鈍をした後更
に、無水クロム酸、燐酸アルミニウムを主成分とするコ
ーティング液を塗布し850℃x30秒の短時間焼鈍を
行った。得られた磁気特性を次に示す。 冷延板の表面粗度 鉄損(W17/50)(W/kg) 0.25μm 0.074 ≦0.10μm 0.069 After annealing at 850 ° C. for 2 hours, a coating solution containing chromic anhydride and aluminum phosphate as main components was applied, and annealing was performed at 850 ° C. for 30 seconds. The magnetic properties obtained are shown below. Surface roughness of cold rolled sheet Iron loss (W17 / 50) (W / kg) 0.25 μm 0.074 ≦ 0.10 μm 0.069
【0034】[0034]
【発明の効果】以上述べたように、本発明は冷間圧延に
おいて冷延板圧延方向と直角方向の表面粗度を制御し、
かつ、脱炭焼鈍条件、仕上げ焼鈍条件を適切に制御する
ことにより鏡面を有する超低鉄損一方向性電磁鋼板を容
易に製造することができる。また、前述の鋼板に磁区制
御処理を施すことにより更に鉄損の向上が図られる。As described above, the present invention controls the surface roughness in the direction perpendicular to the cold-rolled sheet rolling direction in cold rolling,
In addition, by appropriately controlling the decarburizing annealing conditions and the finish annealing conditions, it is possible to easily manufacture an ultra-low iron loss unidirectional electrical steel sheet having a mirror surface. Further, by performing the magnetic domain control processing on the steel sheet, the iron loss can be further improved.
【図1】実験1における冷延板の平均粗さと鉄損との関
係を示す図。FIG. 1 is a diagram showing the relationship between the average roughness of a cold rolled sheet and iron loss in Experiment 1.
【図2】実験2における脱炭焼鈍雰囲気ガス露点と鉄損
との関係を示す図。FIG. 2 is a diagram showing a relationship between decarburization annealing atmosphere gas dew point and iron loss in Experiment 2.
【図3】実験3における冷延板の平均粗さと鉄損との関
係を示す図。FIG. 3 is a diagram showing the relationship between the average roughness of a cold rolled sheet and iron loss in Experiment 3.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 浩康 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 山崎 修一 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyasu Fujii 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation Yawata Works (72) Inventor Shuichi Yamazaki 20-Shintomi, Futtsu-shi, Chiba 1 Nippon Steel Corporation Technology Development Division (72) Inventor Katsuro Kuroki 59 Nippon Steel Plant Design Co., Ltd.
Claims (4)
C:0.025〜0.085%、Mn:0.050〜
0.45%、S≦0.015%、酸可溶性Al:0.0
1〜0.040%、N:≦0.010%、Sn:0.0
2〜0.15%、残部Fe及び不可避的不純物からなる
電磁鋼スラブを1280℃以下の温度で加熱した後、熱
延し、熱延板焼鈍をし、一回または中間焼鈍を介挿する
二回以上の圧延でその最終圧延率を80%以上とし、か
つ冷延板圧延方向と直角方向の表面粗度を平均粗さで
0.20μm以下にする冷間圧延を施し次いで脱炭焼
鈍、窒化処理、焼鈍分離剤としてAl2 O3 塗布し、仕
上げ焼鈍した後磁区制御し、絶縁コーティングを施すこ
とを特徴とする鏡面を有する超低鉄損一方向性電磁鋼板
の製造方法。Claims: 1. A weight ratio of Si: 2.5 to 4.5%,
C: 0.025-0.085%, Mn: 0.050-
0.45%, S ≦ 0.015%, acid-soluble Al: 0.0
1 to 0.040%, N: ≦ 0.010%, Sn: 0.0
An electromagnetic steel slab consisting of 2 to 0.15%, the balance being Fe and unavoidable impurities, is heated at a temperature of 1280 ° C. or lower, then hot-rolled, hot-rolled and annealed, and inserted once or by intermediate annealing. Cold rolling is performed so that the final rolling reduction is 80% or more and the surface roughness in the direction perpendicular to the cold rolling direction is 0.20 μm or less in average, and then decarburizing annealing and nitriding. A method for producing an ultra-low iron loss unidirectional magnetic steel sheet having a mirror surface, comprising applying a treatment, annealing Al 2 O 3 as a separating agent, performing final annealing, controlling magnetic domains, and applying an insulating coating.
素分圧比PH2 O/PH2 を0.058〜0.150の
範囲とする請求項1記載の鏡面を有する超低鉄損一方向
性電磁鋼板の製造方法。2. The ultra-low iron loss unidirectional with a mirror surface according to claim 1, wherein the steam / hydrogen partial pressure ratio PH 2 O / PH 2 of the atmosphere gas of the decarburizing annealing is in the range of 0.058 to 0.150. Manufacturing method of conductive electrical steel sheet.
H2 とN2 の混合ガスを用い、N2 の比率を50%以上
とし1100℃以上の温度で均熱し、この均熱温度域で
H2 雰囲気で焼鈍することを特徴とする請求項1または
2記載の鏡面を有する超低鉄損一方向性電磁鋼板の製造
方法。Wherein using the finish annealing Atsushi Nobori process gas mixture atmosphere gas of H 2 and N 2, and the ratio of N 2 to soak at a temperature above 1100 ° C. to 50% or more, at the soaking temperature range method for producing a ultra-low core loss grain-oriented electrical steel sheet having a mirror surface according to claim 1 or 2, wherein the annealing in an H 2 atmosphere.
に圧延方向に対して、90°〜45°の範囲で巾が10
〜500μm、深さが板厚t×1/8〜1/30、間隔
が圧延方向に1〜20mmで点状或いは線状に穿孔を形成
することを特徴とする請求項1記載の鏡面を有する超低
鉄損一方向性電磁鋼板の製造方法。4. The steel sheet surface has a width of 90 ° to 45 ° with respect to a rolling direction at a thickness of 90 ° to 45 ° in a thickness step during the final cold rolling.
2. The mirror surface according to claim 1, wherein the perforations are formed in a dotted or linear manner with a thickness of t.times.1 / 8 to 1/30 and a spacing of 1 to 20 mm in the rolling direction. Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8206135A JPH1046252A (en) | 1996-08-05 | 1996-08-05 | Production of superlow core loss grain oriented magnetic steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8206135A JPH1046252A (en) | 1996-08-05 | 1996-08-05 | Production of superlow core loss grain oriented magnetic steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1046252A true JPH1046252A (en) | 1998-02-17 |
Family
ID=16518368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8206135A Withdrawn JPH1046252A (en) | 1996-08-05 | 1996-08-05 | Production of superlow core loss grain oriented magnetic steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1046252A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100435456B1 (en) * | 1999-11-30 | 2004-06-10 | 주식회사 포스코 | A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film |
KR100479996B1 (en) * | 1999-12-09 | 2005-03-30 | 주식회사 포스코 | The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same |
JP2012199506A (en) * | 2011-03-04 | 2012-10-18 | Hitachi Metals Ltd | Tape-wound core |
WO2020012666A1 (en) | 2018-07-13 | 2020-01-16 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet and manufacturing method for same |
WO2020149324A1 (en) * | 2019-01-16 | 2020-07-23 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet, and steel sheet which can be used as raw material sheet for grain-oriented electromagnetic steel |
-
1996
- 1996-08-05 JP JP8206135A patent/JPH1046252A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100435456B1 (en) * | 1999-11-30 | 2004-06-10 | 주식회사 포스코 | A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film |
KR100479996B1 (en) * | 1999-12-09 | 2005-03-30 | 주식회사 포스코 | The high permeability grain-oriented electrical steel sheet with low core loss and method for manufacturing the same |
JP2012199506A (en) * | 2011-03-04 | 2012-10-18 | Hitachi Metals Ltd | Tape-wound core |
WO2020012666A1 (en) | 2018-07-13 | 2020-01-16 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet and manufacturing method for same |
KR20210018433A (en) | 2018-07-13 | 2021-02-17 | 닛폰세이테츠 가부시키가이샤 | Grain-oriented electrical steel sheet and its manufacturing method |
US12123068B2 (en) | 2018-07-13 | 2024-10-22 | Nippon Steel Corporation | Grain oriented electrical steel sheet and producing method thereof |
WO2020149324A1 (en) * | 2019-01-16 | 2020-07-23 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet, and steel sheet which can be used as raw material sheet for grain-oriented electromagnetic steel |
CN113286906A (en) * | 2019-01-16 | 2021-08-20 | 日本制铁株式会社 | Grain-oriented electrical steel sheet and steel sheet serving as raw sheet of grain-oriented electrical steel sheet |
KR20210111286A (en) * | 2019-01-16 | 2021-09-10 | 닛폰세이테츠 가부시키가이샤 | A grain-oriented electrical steel sheet, and a steel sheet serving as the original plate of the grain-oriented electrical steel sheet |
JPWO2020149324A1 (en) * | 2019-01-16 | 2021-12-02 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet and steel sheet that is the original plate of grain-oriented electrical steel sheet |
EP3913074A4 (en) * | 2019-01-16 | 2022-10-26 | Nippon Steel Corporation | Grain-oriented electromagnetic steel sheet, and steel sheet which can be used as raw material sheet for grain-oriented electromagnetic steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3386751B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties | |
JP3240035B2 (en) | Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties over the entire coil length | |
JPH10152724A (en) | Manufacture of grain oriented silicon steel sheet with extremely low iron loss | |
JPH10130727A (en) | Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density | |
JPH1046252A (en) | Production of superlow core loss grain oriented magnetic steel sheet | |
JP3008003B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2011111645A (en) | Method for producing grain-oriented magnetic steel sheet | |
JP3329641B2 (en) | Method for producing Al-containing grain-oriented electrical steel sheet with excellent magnetic properties and steel sheet edge shape | |
JP3393218B2 (en) | Manufacturing method of low iron loss unidirectional electrical steel sheet | |
JP3061491B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JPH09268322A (en) | Production of grain oriented silicon steel sheet with ultralow iron loss | |
JP3368310B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH11335736A (en) | Production of high magnetic flux density grain oriented silicon steel sheet extremaly low in core loss | |
JP2003342642A (en) | Process for manufacturing grain-oriented electrical steel sheet showing excellent magnetic properties and coating film properties | |
JP3011609B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating | |
JP2001303131A (en) | Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property | |
JPH10183251A (en) | Production of low core loss grain oriented silicon steel sheet | |
JP2001049351A (en) | Production of grain-oriented silicon steel sheet high in magnetic flux density | |
JPH11199939A (en) | Production of grin oriented magnetic steel sheet having high magnetic flux density and excellent film characteristic | |
JP5138888B2 (en) | Manufacturing method of grain-oriented electrical steel sheet coil | |
JPH09104923A (en) | Production of grain-oriented silicon steel sheet | |
JPH10280040A (en) | Production of grain-oriented electrical steel sheet excellent in iron loss characteristic | |
JP3357615B2 (en) | Method for manufacturing oriented silicon steel sheet with extremely low iron loss | |
JPH07305116A (en) | Production of high magnetic flux density grain-oriented silicon steel sheet | |
JP3456869B2 (en) | Manufacturing method of unidirectional electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20031007 |