JPH1038521A - Three-dimensional measuring instrument - Google Patents
Three-dimensional measuring instrumentInfo
- Publication number
- JPH1038521A JPH1038521A JP19247596A JP19247596A JPH1038521A JP H1038521 A JPH1038521 A JP H1038521A JP 19247596 A JP19247596 A JP 19247596A JP 19247596 A JP19247596 A JP 19247596A JP H1038521 A JPH1038521 A JP H1038521A
- Authority
- JP
- Japan
- Prior art keywords
- ccd
- dimensional measuring
- time
- shutter
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】3次元計測装置に関するもの
である。The present invention relates to a three-dimensional measuring device.
【0002】[0002]
【従来の技術】従来の3次元計測技術としては、光切断
法が信学会論文誌1985年5月「光切断法を用いた実
時間距離検出装置」に詳しく記述されている。また受光
部としては、CCDやPSD素子を用いたものが知られ
ており、このうちPSDについては、ITEJ TEC
HNICAL REPORT Vol.14No.49
「光切断法による高速3次元計測とその応用」、信学会
論文誌Vol.J72−D「高速レンジファインダの提
案」に詳細な記述がある。2. Description of the Related Art As a conventional three-dimensional measurement technique, a light-section method is described in detail in the IEICE Transactions May, 1985, "Real-Time Distance Detector Using Light-section Method". As the light receiving unit, those using a CCD or a PSD element are known. Among them, the PSD is ITEJ TEC.
HNICAL REPORT Vol. 14 No. 49
"High-speed three-dimensional measurement by light-section method and its application", IEICE Transactions, Vol. J72-D "Proposal of high-speed range finder" has a detailed description.
【0003】またCCDに関しては、最も多く使用され
ている。文献としては、特開昭63ー26523「複眼
レンジファインダ装置の信号処理方法」では、背光景に
影響されずに複数のカメラとスリット光を利用すること
で正確な空間座標が求めることが記載されている。他
に、特開平3ー269205「非接触3次元形状計測装
置」では、受光部に独立したフォトセンサPDを置き、
各々のPDに処理回路を具備させて高速化を図ってい
る。[0003] CCDs are most often used. As a document, JP-A-63-26523 "Signal processing method of compound eye range finder device" describes that accurate spatial coordinates can be obtained by using a plurality of cameras and slit light without being influenced by a background scene. ing. In addition, in Japanese Unexamined Patent Application Publication No. 3-269205 “Non-contact three-dimensional shape measuring device”, an independent photo sensor PD is placed on a light receiving unit,
Each PD is provided with a processing circuit to increase the speed.
【0004】[0004]
【発明が解決しようとする課題】このように、従来の3
次元計測装置の多くは、受光部にCCDやPSDを使用
していた。As described above, the conventional 3
Many of the dimension measuring devices use a CCD or a PSD as a light receiving unit.
【0005】しかしながら、受光部にCCDやPSDを
使う場合、どちらも次の様な欠点があった。(1)受光
部にCCDデバイスを使う場合は、CCDデバイスの応
答時間が遅く、情報の取込に時間がかかり画像処理を行
うまでにかなりの時間を必要としていた。分解能を上げ
ると更に速度が遅くなるという欠点がある。However, when a CCD or PSD is used for the light receiving section, both have the following disadvantages. (1) When a CCD device is used as the light receiving unit, the response time of the CCD device is slow, and it takes a long time to take in information, and a considerable time is required until image processing is performed. There is a drawback that increasing the resolution further reduces the speed.
【0006】(2)受光部にPSDデバイスを使う場合
は、PSDデバイスはCCDに比べ応答速度は格段に高
くなり、情報の取込には、時間がかからないが、分解能
が低くなる。分解能を上げるとすると、素子の配置が高
密度化してしまうので技術的に難しくなるという欠点が
ある。(2) When a PSD device is used for the light receiving section, the response speed of the PSD device is much higher than that of the CCD, and it takes less time to capture information, but the resolution is lower. When the resolution is increased, there is a disadvantage that the arrangement of the elements is increased in density, which is technically difficult.
【0007】(3)また受光部にいくつものシグナルプ
ロセッサをつけると、撮像素子のIC化が必要となり高
度な技術が必要となる。(3) Further, if a number of signal processors are provided in the light receiving section, it is necessary to integrate the image pickup device into an IC, which requires advanced technology.
【0008】本発明の目的は、これらの問題点を解決
し、画像処理速度を向上させた3次元計測装置を提供す
ることにある。An object of the present invention is to provide a three-dimensional measuring device which solves these problems and improves the image processing speed.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、ミラーの回動、光スイッチ又は液晶など
で光路をスイッチングすることで取込時間を利用し、時
間差を使って2個の受光素子で情報処理を行うものであ
る。In order to solve the above-mentioned problems, the present invention utilizes a capture time by rotating a mirror, switching an optical path by an optical switch or a liquid crystal, and using a time difference. The information processing is performed by the light receiving elements.
【0010】一つは、ミラーを回動させて光路を偏向さ
せるものであり、一つは光スイッチング素子を利用した
ものである。One is to rotate a mirror to deflect an optical path, and the other is to use an optical switching element.
【0011】レンズを介して画像を受光手段により受光
して画像処理を行う3次元計測装置において、受光用の
CCDを2個用い、レンズと各CCD間に設けられたミ
ラーを回動させて光を偏向させ、一方のCCDの処理時
間中に他方のCCDで画像の取込を行わせるように構成
した。In a three-dimensional measuring apparatus for receiving an image through a lens by a light receiving means and performing image processing, two CCDs for light reception are used, and a mirror provided between the lens and each CCD is rotated to emit light. And the other CCD captures an image during the processing time of one CCD.
【0012】受光部に2個の画像取込デバイスを備え、
これらデバイスを光スイッチング素子によってそれぞれ
のデバイスの画像取込時間中に交互に画像を取込むよう
に構成した。ホログラム素子を前記光スイッチング素子
として使用するときは、レーザの波長を変調するように
構成した。[0012] The light receiving unit is provided with two image capturing devices,
These devices were configured so that images were alternately captured by the optical switching elements during the image capture time of each device. When the hologram element is used as the optical switching element, it is configured to modulate the wavelength of the laser.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態を説明
する。Embodiments of the present invention will be described below.
【0014】本発明は、受光部に2個の受光素子を持っ
た画像処理系を要部とするものである。全体の概略図を
図1に示す。受光部を図2に示す。According to the present invention, an image processing system having two light receiving elements in a light receiving section is a main part. FIG. 1 shows an overall schematic diagram. FIG. 2 shows the light receiving section.
【0015】図1は、3次元計測装置の概略構成図であ
る。計測対象の物体を光源により照射し受光部により画
像データを取込む。受光部により取込まれた画像データ
は、A/Dコンバータ、インターフェースを介して画像
プロセッサにより処理され、フレームバッファを介して
ディスプレイにて表示される。FIG. 1 is a schematic configuration diagram of a three-dimensional measuring device. An object to be measured is illuminated by a light source, and image data is captured by a light receiving unit. Image data captured by the light receiving unit is processed by an image processor via an A / D converter and an interface, and displayed on a display via a frame buffer.
【0016】本発明の要部である受光部について、図2
に従って説明する。まず、受光部は、受光素子であるC
CDデバイス1、2を2つ持つ。レンズ系3へと入射し
た画像は、シャッター4を下ろさない状態では、CCD
デバイス1に像を作る。ここでCCDデバイス1が光情
報を処理する時間にCCDデバイス2にミラー機能をも
ったシャッター4を閉じることでシャッター4とミラー
5で光路を変換する。このときCCDデバイス2で画像
取込を行うようにする。CCDデバイス2の画像取込が
終了した時点でシャッター4を開き、CCDデバイス1
に画像を写すようにする。FIG. 2 shows a light receiving section which is a main part of the present invention.
It will be described according to. First, the light receiving section is a light receiving element C
It has two CD devices 1 and 2. The image that has entered the lens system 3 is a CCD image when the shutter 4 is not lowered.
Create an image on device 1. Here, the optical path is changed by the shutter 4 and the mirror 5 by closing the shutter 4 having the mirror function in the CCD device 2 during the time when the CCD device 1 processes the optical information. At this time, the CCD device 2 captures an image. When the image capture of the CCD device 2 is completed, the shutter 4 is opened and the CCD device 1 is opened.
Make sure that the image is displayed on the screen.
【0017】以上の様に、CCDデバイスの応答時間を
利用することで情報処理時間を短縮する。もちろん2個
のCCDデバイスの変換時間は、CPUによって同期さ
せるものとする。As described above, the information processing time is reduced by utilizing the response time of the CCD device. Of course, the conversion times of the two CCD devices are synchronized by the CPU.
【0018】[0018]
【実施例】前述の場合は、CCDデバイスを2個使用す
ることで情報処理時間の短縮を図っているが、本実施例
は、同様な手段で受光部でシャッターを使わずに、回折
格子の性質を利用するものである。In the above-mentioned case, the information processing time is shortened by using two CCD devices. However, in the present embodiment, the light receiving section does not use a shutter but uses a diffraction grating. It utilizes properties.
【0019】回折格子としては、光空間変調素子として
知られている強誘電性液晶、あるいはニオブ酸リチウム
などのデバイスを用いるか、ホログラム素子を用い光路
を変換する方法が考えられる。前述したようにシャッタ
ーを用いた場合には、どうしても耐久時間が短くなる。
またメカ的な可動部をつくることで光軸に対して傾きを
持つために精度が低下することが考えられる。そこで可
動部を用いずに電気的に光路を変換する手法が必要であ
る。それが、本実施例である。その内容を図3に示す。
図3の光軸中に挿入している光スイッチ素子6に上記デ
バイスを利用することで構成した。As the diffraction grating, a method of using a device such as ferroelectric liquid crystal or lithium niobate known as a spatial light modulating element, or a method of converting an optical path using a hologram element can be considered. When the shutter is used as described above, the durability time is inevitably shortened.
In addition, it is conceivable that the accuracy is reduced because the mechanically movable portion is inclined with respect to the optical axis. Therefore, a method of electrically changing the optical path without using a movable part is required. That is the present embodiment. The contents are shown in FIG.
The optical switching device 6 inserted in the optical axis of FIG. 3 is configured by using the above device.
【0020】光スイッチデバイスに関しては、電場をか
けるとファラデー効果によって偏向面が回転する。光変
調素子に光を通し、次にS波とP波で屈折率の違うプリ
ズムに光を通し出てきた光に偏向子を使用すれば電場を
かけた場合だけ角度がついて光が出てくる。このように
して2個のCCDデバイス7、8に光を振り分ける。ま
た、ホログラム素子を利用する場合は、レーザ光の波長
を変えることで全く同じ光のスイッチングが可能とな
る。ただし、ホログラム素子を使用する場合は、スリッ
ト光出射部の構成を工夫する必要がある。波長可変型レ
ーザは、開発されつつあるのでこの工夫さえできればホ
ログラム素子も十分に利用することができる。Regarding the optical switch device, when an electric field is applied, the deflection surface rotates due to the Faraday effect. By using a deflector for the light that passes through the light modulation element and then passes through the prisms with different refractive indices for S and P waves, the light comes out at an angle only when an electric field is applied. . In this way, the light is distributed to the two CCD devices 7 and 8. When a hologram element is used, the same light switching can be performed by changing the wavelength of the laser light. However, when a hologram element is used, it is necessary to devise a configuration of the slit light emitting section. Since tunable lasers are being developed, hologram elements can be used sufficiently if this device is devised.
【0021】CCDデバイスは、応答する際の同期が5
0Hz程度なので、その2倍の100Hz程度のものが
期待できる。これは同時に画像処理速度の向上を意味す
ることとなるので、これにより本発明の目的が達成され
る。The CCD device has a synchronization of 5 when responding.
Since it is about 0 Hz, a frequency of about 100 Hz, which is twice as high, can be expected. This means that the image processing speed is improved at the same time, so that the object of the present invention is achieved.
【0022】[0022]
【発明の効果】以上説明したように、本発明は画像処理
速度の高速化を行う事が出来る。また、PSD素子等と
組合せることで、高速かつ高分解能な計測を行うことが
出来る。As described above, according to the present invention, the image processing speed can be increased. Also, by combining with a PSD element or the like, high-speed and high-resolution measurement can be performed.
【図1】本発明の3次元計測装置の全体概略図。FIG. 1 is an overall schematic diagram of a three-dimensional measuring apparatus according to the present invention.
【図2】受光部の説明図。FIG. 2 is an explanatory diagram of a light receiving unit.
【図3】ホログラム素子の波長依存性を利用した実施例
の説明図。FIG. 3 is an explanatory diagram of an embodiment utilizing the wavelength dependence of a hologram element.
1 CCDデバイス 2 CCDデバイス 3 レンズ 4 シャッター 5 ミラー 6 光スイッチ素子 7 CCDデバイス 8 CCDデバイス DESCRIPTION OF SYMBOLS 1 CCD device 2 CCD device 3 Lens 4 Shutter 5 Mirror 6 Optical switch element 7 CCD device 8 CCD device
Claims (3)
して画像処理を行う3次元計測装置において、受光用の
CCDを2個用い、レンズと各CCD間に設けられたミ
ラーを回動させて光を偏向させ、一方のCCDの処理時
間中に他方のCCDで画像の取込を行わせるように構成
したことを特徴とする3次元計測装置。In a three-dimensional measuring apparatus for receiving an image by a light receiving means via a lens and performing image processing, two CCDs for receiving light are used, and a mirror provided between the lens and each CCD is rotated. A three-dimensional measuring device configured to deflect the light so that the other CCD captures an image during the processing time of the other CCD.
これらデバイスを光スイッチング素子によってそれぞれ
のデバイスの画像取込時間中に交互に画像を取込むよう
に構成したことを特徴とする3次元計測装置。2. A light receiving section comprising two image capturing devices,
A three-dimensional measuring apparatus characterized in that these devices are configured so that images are alternately captured by an optical switching element during the image capturing time of each device.
として使用し、レーザの波長を変調するように構成した
ことを特徴とする請求項2記載の3次元計測装置。3. The three-dimensional measuring apparatus according to claim 2, wherein a hologram element is used as said optical switching element, and is configured to modulate a wavelength of a laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19247596A JPH1038521A (en) | 1996-07-22 | 1996-07-22 | Three-dimensional measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19247596A JPH1038521A (en) | 1996-07-22 | 1996-07-22 | Three-dimensional measuring instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1038521A true JPH1038521A (en) | 1998-02-13 |
Family
ID=16291917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19247596A Pending JPH1038521A (en) | 1996-07-22 | 1996-07-22 | Three-dimensional measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1038521A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7884949B2 (en) | 2003-02-06 | 2011-02-08 | Koh Young Technology Inc. | Three-dimensional image measuring apparatus |
JP2014035266A (en) * | 2012-08-09 | 2014-02-24 | Mitsutoyo Corp | Confocal microscope |
-
1996
- 1996-07-22 JP JP19247596A patent/JPH1038521A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7884949B2 (en) | 2003-02-06 | 2011-02-08 | Koh Young Technology Inc. | Three-dimensional image measuring apparatus |
JP2014035266A (en) * | 2012-08-09 | 2014-02-24 | Mitsutoyo Corp | Confocal microscope |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW512286B (en) | Real-time opto-electronic image processor | |
US9025067B2 (en) | Apparatus and method for image super-resolution using integral shifting optics | |
KR960016426A (en) | Video camera device | |
JP3695188B2 (en) | Shape measuring apparatus and shape measuring method | |
JPH03289293A (en) | Image pickup device | |
JPWO2003074967A1 (en) | Polarization direction detection type two-dimensional light reception timing detection device and surface shape measurement device using the same | |
WO2013171840A1 (en) | Imaging apparatus, and imaging apparatus control method | |
JP2023535916A (en) | Depth data measurement equipment and structured light projection unit | |
JPH1038521A (en) | Three-dimensional measuring instrument | |
JPH0996512A (en) | Three-dimensional-shape measuring apparatus | |
CN216246133U (en) | Structured light projection device, depth data measuring head and computing equipment | |
JP2002152584A (en) | Device and method for arranging color scannerless range image pickup system | |
CN109698897B (en) | All-in-one optical system of dynamic zoom lens | |
CN115218820A (en) | Structured light projection device, depth data measuring head, computing device and measuring method | |
JPH0575921A (en) | Exposure control device | |
WO2020017002A1 (en) | Electronic device and photography method | |
WO2022222497A1 (en) | Depth data measurement head, depth data computing device, and corresponding method | |
CN216283296U (en) | Depth data measuring head and depth data calculating apparatus | |
JP2002148732A (en) | Three-dimensional moving picture input device | |
JPH10300442A (en) | Shape measuring device | |
RU2024212C1 (en) | Method of infra-red imaging identification of shape of objects | |
JP2001215405A (en) | Image pickup unit and method for displaying picked image, and recording medium therefor | |
TWI588465B (en) | Optical measurement system and method of liquid crystal panel | |
JP2001074555A (en) | Acousto-optical filter type spectroscopic camera using non-spectroscopic light in finder system | |
JPH0876672A (en) | Method for automatically recognizing three-dimensional object and device therefor |