[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10331608A - Closed steam cooling gas turbine combined plant - Google Patents

Closed steam cooling gas turbine combined plant

Info

Publication number
JPH10331608A
JPH10331608A JP13963697A JP13963697A JPH10331608A JP H10331608 A JPH10331608 A JP H10331608A JP 13963697 A JP13963697 A JP 13963697A JP 13963697 A JP13963697 A JP 13963697A JP H10331608 A JPH10331608 A JP H10331608A
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
gas turbine
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13963697A
Other languages
Japanese (ja)
Other versions
JP3518252B2 (en
Inventor
Shinya Marushima
信也 圓島
Takashi Ikeguchi
隆 池口
Kazuhiko Kawaike
和彦 川池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13963697A priority Critical patent/JP3518252B2/en
Publication of JPH10331608A publication Critical patent/JPH10331608A/en
Application granted granted Critical
Publication of JP3518252B2 publication Critical patent/JP3518252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To make cooling steam serve as superheated steam and prevent generation of rotor vibration resulting from water being mixed in rotor blade cooling steam by supplying a part of steam from a high-pressure turbine to a cooling flow passage formed at turbine, and combining the steam passing through the cooling flow passage with the steam from a reheater. SOLUTION: This turbine combined plant supplies exhaust gas from a turbine 3 which forms a gas turbine device together with a compressor 1 and a combustor 2 to a exhaust heat recovery boiler 9 through a route 8, whereas a branch point 43 is formed on the way of the piping for steam from a high-pressure steam turbine 4, the steam branched at this point is guided to a combined point 49 through piping 48, and the outlet steam of a medium pressure superheater 18 in the exhaust heat recovery boiler 9 is made to join. The combined steam is supplied to the stationary blade 51 and the moving blade 52 of the turbine 3 from a branching point 50 as cooling steam. The steam after cooling is recovered at a combined point 53, combined with the steam from a secondary reheater 23 at a combined point 54, passes through a stop valve 33, and supplied to a medium pressure steam turbine 5 for intended work.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はクローズド蒸気冷却
ガスタービンコンバインドプラントの運転制御方法に関
する。
The present invention relates to an operation control method for a closed steam-cooled gas turbine combined plant.

【0002】[0002]

【従来の技術】クローズド蒸気冷却ガスタービンコンバ
インドプラントの運転制御方法については、起動時や非
常時に蒸気でガスタービンを冷却するのではなく圧縮機
からの空気で冷却することが特開平4−148035 号,特開
平4−242987 号に記載されている。また、95Us−442583
にも全般的な運転方法が記載されている。
2. Description of the Related Art An operation control method for a closed steam-cooled gas turbine combined plant is disclosed in Japanese Patent Application Laid-Open No. H4-148035, in which the gas turbine is not cooled with steam at the time of startup or emergency, but with air from a compressor. And JP-A-4-242987. Also, 95Us-442583
Also describes the general operation method.

【0003】[0003]

【発明が解決しようとする課題】再熱三重圧型ボトミン
グサイクルを有するクローズド蒸気冷却ガスタービンコ
ンバインドプラントで最も高効率となる冷却蒸気の供給
・回収系統は高圧蒸気タービン出口の蒸気の一部でガス
タービン高温部を冷却し、冷却後の蒸気を中圧蒸気ター
ビン入口に回収する系統である。本発明はこの系統に対
する課題を解決する事を目的としている。
The most efficient cooling steam supply and recovery system in a closed steam-cooled gas turbine combined plant having a reheat triple pressure bottoming cycle is a part of the steam at the outlet of the high-pressure steam turbine. This system cools the high-temperature part and collects the cooled steam at the inlet of the medium-pressure steam turbine. The present invention aims to solve the problem for this system.

【0004】ガスタービン高温部のメタル温度を低い温
度に保ち、かつ冷却蒸気量を少なくするためには冷却蒸
気温度を低くする必要がある。しかし、冷却蒸気圧力を
確保しつつ冷却蒸気温度を下げていくと飽和温度に近づ
いていき、蒸気に水分を含む可能性が出てくる。動翼は
高速回転しており遠心力を受けるため、動翼冷却蒸気に
水分が混入すると質量のアンバランスが生じ、ロータ振
動の原因となる可能性がある。ゆえに動翼冷却蒸気とし
てドレンの発生する恐れのある飽和蒸気を用いることは
避けなければならない。過熱蒸気を水もしくは飽和蒸気
で減温して動翼冷却に用いることも蒸気に水分を含む可
能性があるので避けた方が良い。
[0004] In order to keep the metal temperature in the high temperature portion of the gas turbine low and to reduce the amount of cooling steam, it is necessary to lower the cooling steam temperature. However, when the cooling steam temperature is lowered while securing the cooling steam pressure, the temperature approaches the saturation temperature, and the possibility that the steam contains moisture may appear. Since the moving blade rotates at high speed and receives a centrifugal force, if water is mixed into the moving blade cooling steam, an imbalance in mass occurs, which may cause rotor vibration. Therefore, it is necessary to avoid using saturated steam which may cause drainage as the blade cooling steam. It is preferable to avoid using superheated steam with water or saturated steam to cool the rotor blades because steam may contain moisture.

【0005】冷却蒸気は主流ガスよりも高圧力である必
要がある。主流ガスが冷却蒸気よりも高圧力であると冷
却部の僅かな隙間からガスが冷却蒸気に混入することに
なる。冷却蒸気にガスが混入すると蒸気中の酸素濃度が
増加して蒸気タービンや排熱回収ボイラの腐食の原因と
なる。特にガスタービンが低負荷の時は排熱回収ボイラ
で発生する蒸気圧力が低いために主流ガスが冷却蒸気よ
りも高圧力となる場合が生じる可能性がある。
[0005] The cooling steam must be at a higher pressure than the mainstream gas. If the mainstream gas is at a higher pressure than the cooling steam, the gas will enter the cooling steam from a slight gap in the cooling section. When gas is mixed into the cooling steam, the oxygen concentration in the steam increases, which causes corrosion of the steam turbine and the exhaust heat recovery boiler. Particularly when the gas turbine has a low load, the main stream gas may have a higher pressure than the cooling steam because the steam pressure generated in the exhaust heat recovery boiler is low.

【0006】ガスタービン低負荷時に、排熱回収ボイラ
で発生した蒸気を蒸気タービンに導かず復水器にバイパ
スする蒸気タービンバイパス運転を行う場合、冷却蒸気
は高圧蒸気タービン出口から供給されないことになる。
冷却蒸気がまったくガスタービン高温部に供給されなけ
れば、冷却蒸気通路にガスが逆流することになる。ま
た、冷却蒸気が高圧蒸気タービン出口から供給されない
ために冷却蒸気量が減少するとなれば、ガスタービンか
ら回収される冷却蒸気の温度が上昇し供給蒸気と回収蒸
気の温度差が大きくなり、ロータに作用する熱応力が過
大になる可能性がある。
When the steam generated by the exhaust heat recovery boiler is not guided to the steam turbine but is bypassed to the condenser at the time of low load on the gas turbine, the cooling steam is not supplied from the high-pressure steam turbine outlet. .
If no cooling steam is supplied to the gas turbine hot section, the gas will flow back into the cooling steam passage. Also, if the amount of cooling steam decreases because the cooling steam is not supplied from the high-pressure steam turbine outlet, the temperature of the cooling steam recovered from the gas turbine increases, and the temperature difference between the supplied steam and the recovered steam increases, causing The acting thermal stress can be excessive.

【0007】[0007]

【課題を解決するための手段】本発明の蒸気冷却ガスタ
ービンコンバインドプラントは、空気を圧縮する圧縮機
と、圧縮機で圧縮した空気と燃料とを燃焼させる燃焼器
と、燃焼器から出る燃焼排ガスで駆動するタービンとを
備えるガスタービンと、ガスタービンから排出される排
ガスを熱源として蒸気を発生させる排熱回収ボイラと、
該排熱回収ボイラで発生した蒸気により駆動する蒸気タ
ービンとを備え、前記蒸気タービンは、前記排熱回収ボ
イラで発生した蒸気が供給される高圧蒸気タービンと、
該高圧蒸気タービンから出る蒸気を再熱する前記排熱回
収ボイラに備えられた再熱器と、該再熱された蒸気を供
給する中圧タービンと、該中圧タービンから出た蒸気を
供給する低圧タービンとを備えるガスタービンコンバイ
ンドプラントにおいて、前記タービンは冷却流路を備
え、前記高圧タービンから出る蒸気の一部は前記タービ
ンの冷却流路に供給されると共に、前記タービンの冷却
流路を経た蒸気を前記再熱器を出た蒸気に合流するよう
構成される。そして、再熱器から出た蒸気と前記タービ
ンを冷却後の蒸気とを合流して中圧タービンに供給す
る。
SUMMARY OF THE INVENTION A steam-cooled gas turbine combined plant according to the present invention comprises a compressor for compressing air, a combustor for burning air and fuel compressed by the compressor, and a flue gas discharged from the combustor. A gas turbine including a turbine driven by a gas turbine, and an exhaust heat recovery boiler that generates steam using exhaust gas discharged from the gas turbine as a heat source,
A steam turbine driven by steam generated by the exhaust heat recovery boiler, wherein the steam turbine is supplied with steam generated by the exhaust heat recovery boiler;
A reheater provided in the exhaust heat recovery boiler for reheating steam from the high-pressure steam turbine, a medium-pressure turbine for supplying the reheated steam, and a supply of steam from the medium-pressure turbine In a gas turbine combined plant including a low-pressure turbine, the turbine includes a cooling passage, and a part of steam exiting from the high-pressure turbine is supplied to the cooling passage of the turbine and passes through the cooling passage of the turbine. Steam is configured to merge with the steam exiting the reheater. Then, the steam discharged from the reheater and the steam after cooling the turbine are merged and supplied to the medium-pressure turbine.

【0008】又、前記高圧タービンから出た蒸気は、前
記高圧タービンから出た蒸気より低い温度の前記排熱回
収ボイラから発生した過熱蒸気と混合した後、前記ター
ビン内の冷却流路に供給されるよう構成される。
Further, the steam discharged from the high-pressure turbine is mixed with superheated steam generated from the exhaust heat recovery boiler at a lower temperature than the steam discharged from the high-pressure turbine, and then supplied to a cooling passage in the turbine. It is configured to be.

【0009】又、前記排熱回収ボイラは低圧,中圧,高
圧の蒸気を発生する蒸気発生部を備え、前記蒸気発生器
は各々、給水が供給される節炭器と節炭器から出た供給
水が供給される蒸発器と該蒸発器からでた蒸気が供給さ
れる過熱器とを備え、前記高圧タービンから出た蒸気
は、前記中圧蒸気発生器部に備えられた過熱器から出る
蒸気と混合した後、前記タービン内の冷却流路に供給さ
れるよう構成される。
Further, the exhaust heat recovery boiler includes a steam generator for generating low-pressure, medium-pressure, and high-pressure steam, and the steam generators are respectively supplied from a conserving unit to which water is supplied and from a conserving unit. An evaporator to which supply water is supplied, and a superheater to which steam from the evaporator is supplied, wherein steam from the high-pressure turbine exits from a superheater provided in the medium-pressure steam generator section. After being mixed with the steam, it is configured to be supplied to a cooling passage in the turbine.

【0010】又、排熱回収ボイラに中圧過熱器を備え、
ガスタービンの高温部を冷却するための高圧蒸気タービ
ン出口蒸気に、前記中圧過熱器で発生した中圧過熱蒸気
の一部もしくは全量を混合することを特徴とする。
[0010] Further, the exhaust heat recovery boiler is provided with a medium pressure superheater,
A part or all of the intermediate-pressure superheated steam generated by the intermediate-pressure superheater is mixed with high-pressure steam turbine outlet steam for cooling a high-temperature portion of the gas turbine.

【0011】又、排熱回収ボイラに中圧過熱器を備え、
ガスタービンの高温部を冷却するための高圧蒸気タービ
ン出口蒸気に、前記中圧過熱器で発生した中圧過熱蒸気
の一部もしくは全量を混合し、かつ定格運転時において
前記排熱回収ボイラの中圧過熱器で発生した中圧過熱蒸
気の温度を高圧蒸気タービン出口蒸気温度よりも低温度
としてガスタービンの高温部を冷却することを特徴とす
る。
Further, the exhaust heat recovery boiler is provided with a medium pressure superheater,
A part or all of the intermediate-pressure superheated steam generated by the intermediate-pressure superheater is mixed with the high-pressure steam turbine outlet steam for cooling the high-temperature portion of the gas turbine, and the exhaust heat recovery boiler is used during the rated operation. The temperature of the intermediate-pressure superheated steam generated by the pressure superheater is set lower than the high-pressure steam turbine outlet steam temperature to cool a high-temperature portion of the gas turbine.

【0012】又、ガスタービンの高温部を冷却し回収さ
れた過熱蒸気と排熱回収ボイラの再熱器で再熱した過熱
蒸気とを混合後の過熱蒸気を中圧蒸気タービンに供給す
る配管上に、ガスタービン高温部を冷却する蒸気の圧力
を制御する弁を設置することを特徴とする。
Further, a pipe for supplying superheated steam after cooling the high-temperature portion of the gas turbine and recovering the superheated steam and reheated by the reheater of the exhaust heat recovery boiler to the superheated steam to the medium pressure steam turbine. In addition, a valve for controlling the pressure of steam for cooling the high temperature portion of the gas turbine is provided.

【0013】又、ガスタービンの高温部を冷却し回収さ
れた過熱蒸気と排熱回収ボイラの再熱器で再熱した過熱
蒸気とを混合後の過熱蒸気を前記中圧蒸気タービンに供
給する配管上に、ガスタービン高温部を冷却する蒸気の
圧力を制御する弁を設置し、弁の制御変数として少なく
とも圧縮機の出口空気圧力を用いることを特徴とする。
A pipe for supplying the superheated steam after cooling the high-temperature portion of the gas turbine and mixing the superheated steam recovered by the reheater of the exhaust heat recovery boiler with the superheated steam to the intermediate-pressure steam turbine. A valve for controlling the pressure of steam for cooling the high-temperature portion of the gas turbine is provided above, and at least the outlet air pressure of the compressor is used as a control variable of the valve.

【0014】又、ガスタービンの高温部を冷却し回収さ
れた過熱蒸気と排熱回収ボイラの再熱器で再熱した過熱
蒸気とを混合後の過熱蒸気を前記中圧蒸気タービンに供
給する配管上に、ガスタービン高温部を冷却する蒸気の
圧力を制御する弁を設置し、弁の制御変数として前記弁
の入口圧力と前記圧縮機の出口空気圧力を用いることを
特徴とする。
Further, a pipe for supplying the superheated steam after cooling the high temperature portion of the gas turbine and mixing the superheated steam recovered by the reheater of the exhaust heat recovery boiler to the intermediate pressure steam turbine. A valve for controlling the pressure of steam for cooling the high-temperature portion of the gas turbine is provided above, and an inlet pressure of the valve and an outlet air pressure of the compressor are used as control variables of the valve.

【0015】又、ガスタービンの高温部を冷却し回収さ
れた過熱蒸気と排熱回収ボイラの再熱器で再熱した過熱
蒸気とを混合後の過熱蒸気を前記中圧蒸気タービンに供
給する配管上に、ガスタービン高温部を冷却する蒸気の
圧力を制御する弁を設置し、弁の制御変数として圧縮機
の出口空気圧力と高圧蒸気タービン出口もしくは中圧過
熱器出口から前記ガスタービン高温部に至る間の蒸気の
圧力を用いることを特徴とする。
Further, a pipe for supplying the superheated steam after cooling the high temperature portion of the gas turbine and mixing the superheated steam recovered by the reheater of the exhaust heat recovery boiler to the intermediate pressure steam turbine. On top, a valve is installed to control the pressure of the steam that cools the gas turbine hot section, and as the control variables for the valve, the compressor outlet air pressure and the high pressure steam turbine outlet or the medium pressure superheater outlet are connected to the gas turbine hot section. It is characterized by using the pressure of steam during the process.

【0016】又、ガスタービンの高温部を冷却し回収さ
れた過熱蒸気と排熱回収ボイラの再熱器で再熱した過熱
蒸気とを混合後の過熱蒸気を前記中圧蒸気タービンに供
給する配管上に、ガスタービン高温部を冷却する蒸気の
圧力を制御する弁を設置し、弁の制御変数として圧縮機
の出口空気圧力と前記ガスタービン高温部から中圧蒸気
タービンに至る間の蒸気の圧力を用いることを特徴とす
る。
A pipe for supplying the superheated steam after cooling the high-temperature portion of the gas turbine and mixing the superheated steam recovered by the reheater of the exhaust heat recovery boiler to the intermediate-pressure steam turbine. On top, a valve is installed to control the pressure of the steam that cools the high-temperature section of the gas turbine. Is used.

【0017】又、高圧蒸気タービン入口にストップ弁を
有し、ストップ弁前の蒸気が高圧蒸気タービンを回避し
て復水器に流れる第1の配管とこの配管上の第1の弁
と、排熱回収ボイラの高圧蒸発器出口から第1の配管手
前までのいずれかの位置とガスタービン高温部の冷却蒸
気供給配管とを連結し高圧蒸気がガスタービン高温部に
流れる第2の配管とこの配管上の第2の弁とを備えるこ
とを特徴とする。さらに、前記ストップ弁が閉のときは
前記第1の弁,前記第2の弁ともに開とし、前記ストッ
プ弁が開のときは前記第1の弁,前記第2の弁ともに閉
とすることを特徴とする。
Further, a stop valve is provided at the inlet of the high-pressure steam turbine, and a first pipe on which steam before the stop valve flows to the condenser while bypassing the high-pressure steam turbine, a first valve on the pipe, and a discharge pipe. A second pipe connecting any position from the high pressure evaporator outlet of the heat recovery boiler to just before the first pipe with a cooling steam supply pipe in the gas turbine high temperature section and high pressure steam flowing to the gas turbine high temperature section; And the second valve above. Further, when the stop valve is closed, the first valve and the second valve are both opened, and when the stop valve is open, both the first valve and the second valve are closed. Features.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施例を図1に
より説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.

【0019】ガスタービン装置は、圧縮機1,燃焼器
2,タービン3で構成され、蒸気タービン装置は高圧蒸
気タービン4,中圧蒸気タービン5,低圧蒸気タービン
6で構成され、発電機7とガスタービン装置と蒸気ター
ビン装置が同軸上に設置されている。
The gas turbine device comprises a compressor 1, a combustor 2, and a turbine 3. The steam turbine device comprises a high-pressure steam turbine 4, a medium-pressure steam turbine 5, and a low-pressure steam turbine 6, and a generator 7 and a gas turbine. The turbine device and the steam turbine device are installed coaxially.

【0020】タービン3から、経路8が排熱回収ボイラ
9に接続される。排熱回収ボイラ9には、低圧節炭器1
0,低圧ドラム11,低圧蒸発器12,中圧節炭器1
3,中圧ドラム14,中圧蒸発器15,低圧過熱器1
6,高圧節炭器17,中圧過熱器18,高圧ドラム1
9,高圧蒸発器20,高圧1次過熱器21,1次再熱器
22,2次再熱器23,高圧2次過熱器24,給水ポン
プ25,中圧ポンプ26,高圧ポンプ27,再循環ポン
プ28が設置されている。
From the turbine 3, a path 8 is connected to an exhaust heat recovery boiler 9. Exhaust heat recovery boiler 9 has low pressure economizer 1
0, low pressure drum 11, low pressure evaporator 12, medium pressure economizer 1
3, medium pressure drum 14, medium pressure evaporator 15, low pressure superheater 1
6, High pressure economizer 17, Medium pressure super heater 18, High pressure drum 1
9, high pressure evaporator 20, high pressure primary superheater 21, primary reheater 22, secondary reheater 23, high pressure secondary superheater 24, feed water pump 25, medium pressure pump 26, high pressure pump 27, recirculation A pump 28 is provided.

【0021】排熱回収ボイラ9はこれらにより高圧,中
圧,低圧の各々の蒸気を発生する蒸気発生部を備えてい
る。
The exhaust heat recovery boiler 9 is provided with a steam generating section for generating high-pressure, medium-pressure and low-pressure steam.

【0022】蒸気タービン系は、高圧蒸気タービン4,
中圧蒸気タービン5,低圧タービン6,復水器29で構
成されている。高圧蒸気タービン4入口にはストップ弁
30とストップ弁30入口前から復水器29に接続され
るバイパス管31とバイパス管31上にバイパス弁32
が設置されている。中圧蒸気タービン5入口にはストッ
プ弁33とストップ弁33入口前から復水器29に接続
されるバイパス管34とバイパス管34上にバイパス弁
35が設置されている。低圧蒸気タービン6入口にはス
トップ弁36とストップ弁36入口前から復水器29に
接続されるバイパス管37とバイパス管37上にバイパ
ス弁38が設置されている。
The steam turbine system includes a high-pressure steam turbine 4,
It comprises a medium-pressure steam turbine 5, a low-pressure turbine 6, and a condenser 29. At the inlet of the high-pressure steam turbine 4, a stop valve 30 and a bypass pipe 31 connected to the condenser 29 from the inlet of the stop valve 30 and a bypass valve 32 on the bypass pipe 31.
Is installed. At the inlet of the intermediate-pressure steam turbine 5, a stop valve 33 and a bypass pipe 34 connected to the condenser 29 from the inlet of the stop valve 33 and a bypass valve 35 on the bypass pipe 34 are installed. At the inlet of the low-pressure steam turbine 6, a stop valve 36 and a bypass pipe 37 connected to the condenser 29 from before the inlet of the stop valve 36 and a bypass valve 38 on the bypass pipe 37 are provided.

【0023】圧縮機入口空気39は圧縮機1で昇圧され
燃焼器2に供給される。燃焼器2に供給された空気は燃
料40と反応し高温の燃焼ガスがタービン3に供給され
る。タービン3を通過した燃焼ガスは排ガスとなって経
路8を通って排熱回収ボイラ9に供給される。排熱回収
ボイラ9で熱回収された排気ガスは大気に放出される。
The compressor inlet air 39 is pressurized by the compressor 1 and supplied to the combustor 2. The air supplied to the combustor 2 reacts with the fuel 40 and the high-temperature combustion gas is supplied to the turbine 3. The combustion gas that has passed through the turbine 3 becomes exhaust gas and is supplied to an exhaust heat recovery boiler 9 through a path 8. The exhaust gas recovered by the heat recovery boiler 9 is released to the atmosphere.

【0024】復水器29からの給水は、給水ポンプ25
を通り排熱回収ボイラ9内の低圧節炭器10に流入す
る。低圧節炭器10の出口給水は低圧ドラム11に供給
されると同時に、中圧ポンプ26及び再循環ポンプ28
へ供給される。再循環ポンプ28出口の給水は低圧節炭
器10入口に合流し、低圧節炭器入口給水温度を上げて
露結による低圧節炭器10の低温腐食を防止している。
中圧ポンプ26出口の給水は中圧節炭器13に導かれ中
圧ドラム14と高圧ポンプ27に供給される。高圧ポン
プ27出口の給水は、高圧節炭器17を通って高圧ドラ
ム19へ供給される。高圧ドラム19の給水は高圧蒸発
器20で飽和蒸気となり高圧1次過熱器21に供給され
る。高圧1次過熱器21を出た蒸気は高圧2次過熱器2
4に供給される。ガスタービン定格運転からある定めら
れた低負荷まではストップ弁30は開、バイパス弁32
は閉であり、高圧2次過熱器24出口蒸気は主蒸気配管
41を通って高圧蒸気タービン4に供給される。高圧蒸
気タービン4で仕事をした蒸気は配管42を通って分岐
点43に達し一部の蒸気が配管45と配管45上にある
絞り44を通って1次再熱器22に供給される。1次再
熱器22を出た蒸気は2次再熱器23に供給される。ガ
スタービン定格運転からある定められた低負荷まではス
トップ弁33は開、バイパス弁35は閉であり、2次再
熱器23を出た蒸気は配管46を通って中圧蒸気タービ
ン5に供給される。中圧蒸気タービン5で仕事をした蒸
気は配管55を通って低圧蒸気タービン6入口に供給さ
れる。一方、低圧ドラム11に供給された給水は低圧蒸
発器12で蒸発し低圧過熱器16に導かれる。ガスター
ビン定格運転からある定められた低負荷まではストップ
弁36は開、バイパス弁38は閉であり、低圧過熱器1
6を出た蒸気は配管47を通って低圧蒸気タービン6入
口で中圧蒸気タービン出口からの蒸気と合流し低圧蒸気
タービン6に供給される。低圧タービン6を出た蒸気は
復水器29で水となり、給水ポンプ25により排熱回収
ボイラ9へ供給される。
The water supplied from the condenser 29 is supplied to the water supply pump 25.
And flows into the low pressure economizer 10 in the exhaust heat recovery boiler 9. The outlet feedwater of the low-pressure economizer 10 is supplied to the low-pressure drum 11 and at the same time, the medium-pressure pump 26 and the recirculation pump 28
Supplied to The water supply at the outlet of the recirculation pump 28 joins the low-pressure economizer 10 inlet to raise the low-pressure economizer inlet feedwater temperature to prevent low-temperature corrosion of the low-pressure economizer 10 due to condensation.
The water supply at the outlet of the medium pressure pump 26 is guided to the medium pressure economizer 13 and supplied to the medium pressure drum 14 and the high pressure pump 27. The water supply at the outlet of the high-pressure pump 27 is supplied to the high-pressure drum 19 through the high-pressure economizer 17. The feed water of the high-pressure drum 19 becomes saturated steam in the high-pressure evaporator 20 and is supplied to the high-pressure primary superheater 21. The steam exiting the high-pressure primary superheater 21 is supplied to the high-pressure secondary superheater 2
4 is supplied. From the gas turbine rated operation to a predetermined low load, the stop valve 30 is opened and the bypass valve 32 is opened.
Is closed, and the high-pressure secondary superheater 24 outlet steam is supplied to the high-pressure steam turbine 4 through the main steam pipe 41. The steam that has worked in the high-pressure steam turbine 4 reaches the branch point 43 through the pipe 42, and a part of the steam is supplied to the primary reheater 22 through the pipe 45 and the throttle 44 on the pipe 45. The steam exiting the primary reheater 22 is supplied to a secondary reheater 23. From the gas turbine rated operation to a predetermined low load, the stop valve 33 is open and the bypass valve 35 is closed, and the steam exiting the secondary reheater 23 is supplied to the medium-pressure steam turbine 5 through the pipe 46. Is done. The steam that has worked in the medium-pressure steam turbine 5 is supplied to the low-pressure steam turbine 6 inlet through a pipe 55. On the other hand, the water supplied to the low-pressure drum 11 is evaporated by the low-pressure evaporator 12 and guided to the low-pressure superheater 16. From the gas turbine rated operation to a predetermined low load, the stop valve 36 is open, the bypass valve 38 is closed, and the low-pressure superheater 1 is closed.
The steam that has exited 6 passes through a pipe 47 and merges with the steam from the outlet of the medium-pressure steam turbine at the inlet of the low-pressure steam turbine 6 and is supplied to the low-pressure steam turbine 6. The steam that has exited the low-pressure turbine 6 becomes water in the condenser 29, and is supplied to the exhaust heat recovery boiler 9 by the water supply pump 25.

【0025】ガスタービンの冷却系統について説明す
る。分岐点43から配管48を通った蒸気は合流点49
に達する。合流点49では中圧過熱器出口蒸気と合流す
る。合流点49からの蒸気は分岐点50に達する。分岐
点50から冷却蒸気は静翼51と動翼52に供給され、
冷却後の蒸気は静翼51,動翼52から回収されて合流
点53に達する。合流点53に達した蒸気は、合流点5
4において2次再熱器23を出た蒸気と合流し、ストッ
プ弁33を通過して中圧蒸気タービン5に供給される。
分岐点43から1次再熱器22に至る配管45上に設け
た絞り44により、高圧蒸気タービン4出口から供給さ
れる冷却蒸気量を設定している。図2に、定格点におい
て中圧過熱器出口蒸気温度を高圧蒸気タービン出口蒸気
温度よりも低くなるように設定した場合の、ガスタービ
ン負荷と高圧蒸気タービン出口蒸気,中圧過熱器出口蒸
気,供給側冷却蒸気温度の関係を示す。コンバインドプ
ラントとして効率が最大となるガスタービン排ガス温度
は定格点で600℃程度である。ガスタービン排ガス温
度が600℃程度の場合に排熱回収ボイラから発生する
蒸気の条件を高圧蒸気566℃,165ata,再熱蒸気
を566℃,35ataとすると高圧蒸気タービン出口温
度,圧力は380℃,45ata 程度となる。
The cooling system of the gas turbine will be described. The steam that has passed through the pipe 48 from the branch point 43 is
Reach At the junction 49, it merges with the intermediate-pressure superheater outlet steam. The steam from the junction 49 reaches the branch point 50. From the branch point 50, the cooling steam is supplied to the stationary blade 51 and the moving blade 52,
The cooled steam is recovered from the stationary blades 51 and the moving blades 52 and reaches a junction 53. The steam that has reached the confluence point 53 is
At 4, the steam merges with the steam exiting the secondary reheater 23, passes through the stop valve 33, and is supplied to the medium-pressure steam turbine 5.
The amount of cooling steam supplied from the outlet of the high-pressure steam turbine 4 is set by a throttle 44 provided on a pipe 45 extending from the branch point 43 to the primary reheater 22. FIG. 2 shows the gas turbine load, the high-pressure steam turbine outlet steam, the medium-pressure superheater outlet steam, and the supply when the intermediate-pressure superheater outlet steam temperature is set to be lower than the high-pressure steam turbine outlet steam temperature at the rated point. The relationship of the side cooling steam temperature is shown. The gas turbine exhaust gas temperature at which the efficiency is maximized as a combined plant is about 600 ° C. at the rated point. When the gas turbine exhaust gas temperature is about 600 ° C., the conditions of the steam generated from the exhaust heat recovery boiler are 566 ° C. and 165 atm for the high pressure steam and 566 ° C. and 35 atm for the reheated steam. It is about 45ata.

【0026】45ata の飽和蒸気圧力は約255℃であ
り、中圧過熱器出口温度を定格点で280℃に設定する
と、供給側の冷却蒸気温度は350℃程度となる。本図
から、高圧蒸気タービン出口蒸気は中圧過熱器出口蒸気
との混合によって減温されるため、供給側冷却蒸気は高
圧蒸気タービン出口蒸気よりも30℃低温となってい
る。供給側冷却蒸気温度と下げることで、少量の冷却蒸
気で冷却が可能となるので効率向上につながる。高圧蒸
気タービン4の出口蒸気は常に過熱蒸気であるように運
転され、中圧過熱器出口蒸気も常に過熱蒸気となること
から、高圧蒸気タービン4の出口蒸気と中圧過熱器出口
蒸気の混合蒸気である供給側冷却蒸気も過熱蒸気であ
る。よって、動翼冷却蒸気に水分が混入する可能性も少
なくなり信頼性が向上する。さらに、高圧蒸気タービン
出口蒸気に中圧過熱器出口蒸気を合流することで、中圧
飽和蒸気を混合する場合よりも合流点での温度差が小さ
くなり配管の熱応力低減につながる。
The saturated steam pressure of 45ata is about 255 ° C., and if the outlet pressure of the medium pressure superheater is set to 280 ° C. at the rated point, the cooling steam temperature on the supply side becomes about 350 ° C. From this figure, since the outlet steam of the high-pressure steam turbine is cooled by mixing with the outlet steam of the intermediate-pressure superheater, the supply-side cooling steam is 30 ° C. lower than the outlet steam of the high-pressure steam turbine. By lowering the supply side cooling steam temperature, cooling can be performed with a small amount of cooling steam, which leads to an improvement in efficiency. Since the outlet steam of the high-pressure steam turbine 4 is always operated as superheated steam and the outlet steam of the intermediate-pressure superheater is also always superheated steam, the mixed steam of the outlet steam of the high-pressure steam turbine 4 and the intermediate-pressure superheater outlet steam is used. Is also superheated steam. Therefore, the possibility that moisture is mixed into the moving blade cooling steam is reduced, and the reliability is improved. Further, by combining the steam at the outlet of the high-pressure steam turbine with the steam at the outlet of the intermediate-pressure superheater, the temperature difference at the junction is smaller than in the case of mixing the steam with the medium-pressure saturated steam, leading to a reduction in the thermal stress of the piping.

【0027】本発明の他の実施例を図3に示す。本実施
例が図1の実施例と異なるのは、合流点54とタービン
バイパス分岐点57を結ぶ配管上に、圧力制御弁56を
設置した点である。圧力制御弁56を設置しない場合と
設置した場合の分岐点50における冷却蒸気の圧力と圧
縮機1出口空気圧力の関係を図4に示す。圧力制御弁5
6を設置しない場合は、ガスタービン負荷が低下するに
伴い、ガスタービン排ガス温度が低下するために排熱回
収ボイラ9で発生する蒸気圧力が低下する。排熱回収ボ
イラ9で発生する蒸気圧力が低下することにより、高圧
蒸気タービン出口圧力すなわち冷却蒸気圧力も低下す
る。定格点で供給蒸気圧力は45ata あるが、無負荷で
は5ata 程度にまで圧力は低下する。一方圧縮機1出口
空気圧力もガスタービン負荷が低下するに伴い低くなる
が、その低下は定格点25ata 程度から無負荷10ata
程度と冷却蒸気よりも低下率小さいので、ガスタービン
負荷約25%(A点)で圧力逆転が生じる。この圧力逆
転は、主流ガスが冷却蒸気よりも高圧力になることを誘
発し、冷却部の僅かな隙間からガスが冷却蒸気に混入す
ることになる。冷却蒸気にガスが混入すると蒸気中の酸
素濃度が増加して蒸気タービンや排熱回収ボイラの腐食
の原因となる。圧力制御弁56を設置し、ガスタービン
負荷約45%(B点)以下で圧力制御弁56より圧力制
御を行うことにより、冷却蒸気圧力を上げる事ができる
ので、冷却蒸気圧力と圧縮機1出口空気圧力の逆転、す
なわち主流ガスが冷却蒸気よりも高圧力になることを防
止する事ができる。
FIG. 3 shows another embodiment of the present invention. This embodiment differs from the embodiment of FIG. 1 in that a pressure control valve 56 is provided on a pipe connecting a junction 54 and a turbine bypass branch point 57. FIG. 4 shows the relationship between the pressure of the cooling steam at the branch point 50 and the air pressure at the outlet of the compressor 1 when the pressure control valve 56 is not installed and when it is installed. Pressure control valve 5
When the gas turbine 6 is not installed, the steam pressure generated in the exhaust heat recovery boiler 9 decreases because the gas turbine exhaust gas temperature decreases as the gas turbine load decreases. As the steam pressure generated by the exhaust heat recovery boiler 9 decreases, the outlet pressure of the high-pressure steam turbine, that is, the cooling steam pressure also decreases. At the rated point, the supply steam pressure is 45ata, but the pressure drops to about 5ata at no load. On the other hand, the air pressure at the outlet of the compressor 1 also decreases as the load on the gas turbine decreases.
Since the cooling rate is smaller than that of the cooling steam, the pressure reversal occurs at a gas turbine load of about 25% (point A). This pressure reversal induces the mainstream gas to have a higher pressure than the cooling steam, and the gas enters the cooling steam from a slight gap in the cooling section. When gas is mixed into the cooling steam, the oxygen concentration in the steam increases, which causes corrosion of the steam turbine and the exhaust heat recovery boiler. By installing the pressure control valve 56 and performing pressure control by the pressure control valve 56 at a gas turbine load of about 45% or less (point B), the cooling steam pressure can be increased. It is possible to prevent the reversal of the air pressure, that is, the mainstream gas from being at a higher pressure than the cooling steam.

【0028】本発明の他の実施例を図5に示す。本実施
例が図3の実施例と異なるのは、圧力制御弁56の制御
変数として、圧縮機1出口空気圧力61と圧力制御弁5
6入口蒸気圧力60を用いている点である。ここで、圧
縮機1出口空気圧力61とは、圧縮機出口から燃焼用空
気として燃焼器2に取り込まれるまでの間の任意の位置
の圧力である。圧縮機1出口空気圧力61と圧力制御弁
56入口蒸気圧力60は制御器62に取り込まれ、制御
器62からの信号で圧力制御弁56を制御する。制御器
62の詳細を図6に示す。圧縮機1出口空気圧力61の
信号Pcは制御器62内の演算器aに入力される。演算
器aでは圧縮機1出口空気圧力から被冷却部の主流ガス
側の圧力を算出し、被冷却部の主流ガス側圧力信号P
c′を出力する。圧力制御弁56入口蒸気圧力60の信
号Psは制御器62内の演算器bに入力される。演算器
bでは圧力制御弁56入口蒸気圧力から被冷却部の冷却
蒸気の圧力を算出し、被冷却部の冷却蒸気圧力信号P
s′を出力する。減算器63を通過したPs′−Pc′
の信号が演算器cに入力される。Ps′−Pc′が正値
の時は被冷却部で冷却蒸気の方が主流ガス側よりも高圧
であることを示し、Ps′−Pc′が負値の時は被冷却部
で冷却蒸気の方が主流ガス側よりも低圧であることを示
している。演算器cではPs′−Pc′があらかじめ設
定された目標値に一致するように圧力制御弁56の開度
信号Vcを出力する。Ps′−Pc′が目標値よりも小
さい場合は圧力制御弁56の弁開度を小さくして冷却蒸
気の圧力を大きくし、Ps′−Pc′が目標値よりも大
きい場合は圧力制御弁56の弁開度を大きくして冷却蒸
気の圧力を小さくするように制御器62は作動する。
FIG. 5 shows another embodiment of the present invention. This embodiment is different from the embodiment of FIG. 3 in that the control variables of the pressure control valve 56 are the compressor 1 outlet air pressure 61 and the pressure control valve 5.
6 in that a steam pressure of 60 at the inlet is used. Here, the compressor 1 outlet air pressure 61 is a pressure at an arbitrary position from the compressor outlet to the combustion air taken into the combustor 2 as combustion air. The compressor 1 outlet air pressure 61 and the pressure control valve 56 inlet steam pressure 60 are taken into the controller 62, and the signal from the controller 62 controls the pressure control valve 56. Details of the controller 62 are shown in FIG. The signal Pc of the compressor 1 outlet air pressure 61 is input to a calculator a in the controller 62. The computing unit a calculates the pressure on the mainstream gas side of the part to be cooled from the air pressure at the outlet of the compressor 1 and calculates the mainstream gas side pressure signal P of the part to be cooled.
c 'is output. The signal Ps of the steam pressure 60 at the inlet of the pressure control valve 56 is input to a calculator b in the controller 62. The computing unit b calculates the pressure of the cooling steam of the portion to be cooled from the steam pressure at the inlet of the pressure control valve 56, and outputs a cooling steam pressure signal P of the portion to be cooled.
Output s'. Ps'-Pc 'passed through the subtractor 63
Is input to the calculator c. When Ps'-Pc 'is a positive value, it indicates that the cooling steam is higher in the cooled portion than in the mainstream gas side, and when Ps'-Pc' is a negative value, the cooling steam is The pressure is lower than that of the mainstream gas. The computing unit c outputs the opening signal Vc of the pressure control valve 56 so that Ps'-Pc 'matches a preset target value. When Ps'-Pc 'is smaller than the target value, the valve opening of the pressure control valve 56 is reduced to increase the pressure of the cooling steam, and when Ps'-Pc' is larger than the target value, the pressure control valve 56 is increased. The controller 62 operates so as to increase the valve opening degree and decrease the pressure of the cooling steam.

【0029】本発明の他の実施例を図7に示す。本実施
例が図5の実施例と異なるのは、圧力制御弁56の制御
変数として、圧縮機1出口空気圧力61のみを用いてい
る点である。本実施例では、圧縮機1出口空気圧力61
から被冷却部での冷却蒸気と主流ガスの圧力を算出する
ことになる。
FIG. 7 shows another embodiment of the present invention. This embodiment differs from the embodiment of FIG. 5 in that only the air pressure 61 at the outlet of the compressor 1 is used as a control variable of the pressure control valve 56. In this embodiment, the compressor 1 outlet air pressure 61
From this, the pressure of the cooling steam and the mainstream gas in the portion to be cooled is calculated.

【0030】本発明の他の実施例を図8に示す。本実施
例が図5の実施例と異なるのは、圧力制御弁56の制御
変数として、圧力制御弁56入口蒸気圧力でなく合流点
49後の供給側冷却蒸気圧力64を用いている点であ
る。本実施例では、供給側冷却蒸気圧力64から被冷却
部での冷却蒸気の圧力を算出することになる。
FIG. 8 shows another embodiment of the present invention. This embodiment is different from the embodiment of FIG. 5 in that the control variable of the pressure control valve 56 is not the steam pressure at the inlet of the pressure control valve 56 but the supply-side cooling steam pressure 64 after the junction 49. . In the present embodiment, the pressure of the cooling steam in the portion to be cooled is calculated from the supply-side cooling steam pressure 64.

【0031】本発明の他の実施例を図9に示す。本実施
例が図5の実施例と異なるのは、圧力制御弁56の制御
変数として、圧力制御弁56入口蒸気圧力でなく合流点
54前の回収側冷却蒸気圧力65を用いている点であ
る。本実施例では、回収側冷却蒸気圧力65から被冷却
部での冷却蒸気の圧力を算出することになる。
FIG. 9 shows another embodiment of the present invention. This embodiment differs from the embodiment in FIG. 5 in that the control variable of the pressure control valve 56 is not the inlet steam pressure of the pressure control valve 56 but the recovery side cooling steam pressure 65 before the junction 54. . In the present embodiment, the pressure of the cooling steam in the portion to be cooled is calculated from the pressure 65 of the cooling steam on the recovery side.

【0032】本発明の他の実施例を図10に示す。本実
施例が図1の実施例と異なるのは、高圧蒸発器20出口
から高圧蒸気タービン4入口手前の分岐点72までの間
に位置する配管41から、冷却蒸気供給配管である中圧
過熱器出口配管73を連結する配管71と配管71上に
弁70を備えている点である。ガスタービン低負荷時や
緊急時にタービンバイパス運転を行う場合がある。ター
ビンバイパス運転ではストップ弁30,33,36は
閉、バイパス弁32,35,38は開となり、蒸気ター
ビン入口に達した蒸気は蒸気タービン4,5,6に流入
することなく、配管31,34,37を通って復水器2
9に流入する。ゆえにタービンバイパス運転では高圧蒸
気タービン4出口からは冷却蒸気が供給されず、中圧過
熱器18からの蒸気だけで冷却する事となり、冷却蒸気
が不足する。冷却蒸気が不足すると、静翼51,動翼5
2を許容温度以下に抑制することができなくなったり、
回収蒸気温度が上昇してロータ内での供給蒸気と回収蒸
気の温度差が大きくなり熱応力が問題となる可能性があ
る。よって、タービンバイパス運転時には弁70を開と
して、高圧2次過熱器出口蒸気も冷却蒸気として供給す
ることにより冷却蒸気量を確保することができる。
FIG. 10 shows another embodiment of the present invention. This embodiment is different from the embodiment in FIG. 1 in that a medium-pressure superheater, which is a cooling steam supply pipe, is provided from a pipe 41 located between an outlet of the high-pressure evaporator 20 and a branch point 72 just before an inlet of the high-pressure steam turbine 4. The point is that a pipe 71 connecting the outlet pipe 73 and a valve 70 on the pipe 71 are provided. The turbine bypass operation may be performed when the gas turbine is under a low load or in an emergency. In the turbine bypass operation, the stop valves 30, 33, and 36 are closed and the bypass valves 32, 35, and 38 are opened, and the steam reaching the steam turbine inlet does not flow into the steam turbines 4, 5, and 6, and the pipes 31, 34 are not used. , 37 through condenser 2
Flow into 9 Therefore, in the turbine bypass operation, no cooling steam is supplied from the outlet of the high-pressure steam turbine 4, and cooling is performed only by the steam from the intermediate-pressure superheater 18, resulting in a shortage of cooling steam. When the cooling steam is insufficient, the stationary blade 51 and the moving blade 5
2 cannot be suppressed below the allowable temperature,
The temperature of the recovered steam increases, and the temperature difference between the supplied steam and the recovered steam in the rotor increases, which may cause a problem of thermal stress. Therefore, at the time of the turbine bypass operation, the valve 70 is opened, and the high-pressure secondary superheater outlet steam is also supplied as the cooling steam, so that the cooling steam amount can be secured.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
排熱回収ボイラに中圧過熱器を備え、ガスタービンの高
温部を冷却するための高圧蒸気タービン出口蒸気に、前
記中圧過熱器で発生した中圧過熱蒸気の一部もしくは全
量を混合することにより、冷却蒸気は過熱蒸気となり、
動翼冷却蒸気に水分が混入し質量のアンバランスが生
じ、ロータ振動を生じる可能性がなくなり、信頼性が向
上する。
As described above, according to the present invention,
A medium-pressure superheater is provided in the exhaust heat recovery boiler, and a part or all of the medium-pressure superheated steam generated by the medium-pressure superheater is mixed with high-pressure steam turbine outlet steam for cooling a high-temperature portion of the gas turbine. As a result, the cooling steam becomes superheated steam,
Moisture is mixed into the moving blade cooling steam to cause an imbalance in mass, which eliminates the possibility of causing rotor vibration and improves reliability.

【0034】本発明によれば、排熱回収ボイラに中圧過
熱器を備え、ガスタービンの高温部を冷却するための高
圧蒸気タービン出口蒸気に、前記中圧過熱器で発生した
中圧過熱蒸気の一部もしくは全量を混合し、かつ定格運
転時において前記排熱回収ボイラの中圧過熱器で発生し
た中圧過熱蒸気の温度を高圧蒸気タービン出口蒸気温度
よりも低温度としてガスタービンの高温部を冷却するこ
とにより、冷却蒸気温度を下げることができ冷却蒸気量
が減少しプラント効率が向上する。
According to the present invention, the exhaust heat recovery boiler is provided with a medium-pressure superheater, and the medium-pressure superheated steam generated by the medium-pressure superheater is added to the high-pressure steam turbine outlet steam for cooling the high-temperature portion of the gas turbine. Part or all of the gas turbine, and the temperature of the medium-pressure superheated steam generated by the medium-pressure superheater of the exhaust heat recovery boiler during the rated operation is set to a temperature lower than the high-pressure steam turbine outlet steam temperature. By cooling the cooling water, the temperature of the cooling steam can be lowered, and the amount of the cooling steam decreases, and the plant efficiency improves.

【0035】本発明によれば、ガスタービンの高温部を
冷却し回収された過熱蒸気と排熱回収ボイラの再熱器で
再熱した過熱蒸気とを混合後の過熱蒸気を中圧蒸気ター
ビンに供給する配管上に、ガスタービン高温部を冷却す
る蒸気の圧力を制御する弁を設置することにより、冷却
蒸気の圧力を主流ガス圧力よりも常に高圧に維持するこ
とができ、蒸気へのガスの逆流を防止することができる
ので、蒸気タービンや排熱回収ボイラの腐食を抑制する
ことができる。
According to the present invention, the superheated steam after cooling the high-temperature portion of the gas turbine and recovered is mixed with the superheated steam reheated by the reheater of the exhaust heat recovery boiler, and the superheated steam is mixed into the medium-pressure steam turbine. By installing a valve on the supply pipe to control the pressure of the steam that cools the high-temperature section of the gas turbine, the pressure of the cooling steam can be constantly maintained at a higher pressure than the mainstream gas pressure. Since backflow can be prevented, corrosion of the steam turbine and the exhaust heat recovery boiler can be suppressed.

【0036】本発明によれば、高圧蒸気タービン入口に
ストップ弁を有し、ストップ弁前の蒸気が高圧蒸気ター
ビンを回避して復水器に流れる第1の配管とこの配管上
の第1の弁と、排熱回収ボイラの高圧蒸発器出口から第
1の配管手前までのいずれかの位置とガスタービン高温
部の冷却蒸気供給配管とを連結し高圧蒸気がガスタービ
ン高温部に流れる第2の配管とこの配管上の第2の弁と
を備えることにより、タービンバイパス運転時に中圧過
熱器出口からの蒸気と高圧蒸気の混合蒸気を冷却蒸気と
することができるので、冷却蒸気量を確保することがで
き、ガスタービンから回収される冷却蒸気の温度上昇を
抑え、供給蒸気と回収蒸気の温度差を小さくできるの
で、ロータに作用する熱応力の増加を防止することがで
きる。
According to the present invention, a stop valve is provided at the inlet of the high-pressure steam turbine, and the first pipe on which steam before the stop valve flows to the condenser while avoiding the high-pressure steam turbine and flows to the condenser. A second valve is connected to any position from the high-pressure evaporator outlet of the exhaust heat recovery boiler to just before the first pipe and the cooling steam supply pipe of the gas turbine high-temperature section, and the high-pressure steam flows to the gas turbine high-temperature section. By providing the pipe and the second valve on the pipe, the mixed steam of the steam and the high-pressure steam from the intermediate pressure superheater outlet can be used as the cooling steam during the turbine bypass operation, so that the cooling steam amount is secured. The temperature rise of the cooling steam recovered from the gas turbine can be suppressed, and the temperature difference between the supply steam and the recovered steam can be reduced, so that an increase in thermal stress acting on the rotor can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態によるクローズド蒸気冷却
ガスタービンコンバインドプラントの系統図。
FIG. 1 is a system diagram of a closed steam-cooled gas turbine combined plant according to an embodiment of the present invention.

【図2】本発明の一実施形態による冷却蒸気温度図。FIG. 2 is a cooling steam temperature diagram according to an embodiment of the present invention.

【図3】本発明の一実施形態によるクローズド蒸気冷却
ガスタービンコンバインドプラントの系統図。
FIG. 3 is a system diagram of a closed steam-cooled gas turbine combined plant according to an embodiment of the present invention.

【図4】本発明の一実施形態による供給側冷却蒸気と圧
縮機出口空気の圧力図。
FIG. 4 is a pressure diagram of supply-side cooling steam and compressor outlet air according to an embodiment of the present invention.

【図5】本発明の一実施形態によるクローズド蒸気冷却
ガスタービンコンバインドプラントの系統図。
FIG. 5 is a system diagram of a closed steam-cooled gas turbine combined plant according to an embodiment of the present invention.

【図6】本発明の一実施形態による弁制御図。FIG. 6 is a valve control diagram according to an embodiment of the present invention.

【図7】本発明の一実施形態によるクローズド蒸気冷却
ガスタービンコンバインドプラントの系統図。
FIG. 7 is a system diagram of a closed steam-cooled gas turbine combined plant according to an embodiment of the present invention.

【図8】本発明の一実施形態によるクローズド蒸気冷却
ガスタービンコンバインドプラントの系統図。
FIG. 8 is a system diagram of a closed steam-cooled gas turbine combined plant according to an embodiment of the present invention.

【図9】本発明の一実施形態によるクローズド蒸気冷却
ガスタービンコンバインドプラントの系統図。
FIG. 9 is a system diagram of a closed steam-cooled gas turbine combined plant according to an embodiment of the present invention.

【図10】本発明の一実施形態によるクローズド蒸気冷
却ガスタービンコンバインドプラントの系統図。
FIG. 10 is a system diagram of a closed steam-cooled gas turbine combined plant according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…燃焼器、3…タービン、4…高圧蒸気
タービン、5…中圧蒸気タービン、51…静翼、52…
動翼、56…圧力制御弁、60…圧力制御弁入口蒸気圧
力、61…圧縮機出口空気圧力、62…制御器、64…
供給側冷却蒸気圧力、65…回収側冷却蒸気圧力、70
…弁、71…配管。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Combustor, 3 ... Turbine, 4 ... High pressure steam turbine, 5 ... Medium pressure steam turbine, 51 ... Stator vane, 52 ...
Moving blades, 56: pressure control valve, 60: pressure steam at inlet of pressure control valve, 61: air pressure at compressor outlet, 62: controller, 64 ...
Supply side cooling steam pressure, 65 ... collection side cooling steam pressure, 70
... Valve, 71 ... Piping.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】圧縮機で圧縮した空気と燃料を燃焼器で燃
焼し、得られた燃焼ガスでタービンを駆動するガスター
ビンと、ガスタービンから排出された排ガスと給水を熱
交換して高圧,中圧,低圧の三種類の圧力の蒸気を発生
する蒸気発生部を有する排熱回収ボイラと、排熱回収ボ
イラから発生した蒸気で駆動する高圧,中圧,低圧蒸気
タービンを有し、前記高圧蒸気タービン出口蒸気の一部
を前記排熱回収ボイラの再熱器で再熱し、前記高圧蒸気
タービン出口蒸気の残りで前記ガスタービンの高温部を
冷却し回収され、回収された過熱蒸気と前記排熱回収ボ
イラの再熱器で再熱した過熱蒸気と混合して前記中圧蒸
気タービンに流入するクローズド蒸気冷却ガスタービン
コンバインドプラントであって、 前記排熱回収ボイラに中圧過熱器を備え、前記ガスター
ビンの高温部を冷却する前記高圧蒸気タービン出口蒸気
に、前記中圧過熱器で発生した中圧過熱蒸気の一部もし
くは全量を混合し、前記ガスタービンの高温部を冷却す
ることを特徴とするクローズド蒸気冷却ガスタービンコ
ンバインドプラント。
An air and a fuel compressed by a compressor are burned in a combustor, and a combustion gas is used to drive a turbine. An exhaust heat recovery boiler having a steam generator for generating steam of three types of pressures of medium pressure and low pressure; and a high-pressure, medium-pressure, and low-pressure steam turbine driven by the steam generated from the exhaust heat recovery boiler. A part of the steam at the steam turbine outlet is reheated by the reheater of the exhaust heat recovery boiler, and the high temperature part of the gas turbine is cooled and recovered by the rest of the steam at the high pressure steam turbine outlet. A closed steam cooling gas turbine combined plant that mixes with superheated steam reheated by a reheater of a heat recovery boiler and flows into the medium pressure steam turbine, wherein the waste heat recovery boiler includes a medium pressure superheater. Mixing part or all of the intermediate-pressure superheated steam generated by the intermediate-pressure superheater with the high-pressure steam turbine outlet steam that cools the high-temperature portion of the gas turbine, and cooling the high-temperature portion of the gas turbine. Features a closed steam-cooled gas turbine combined plant.
【請求項2】圧縮機で圧縮した空気と燃料を燃焼器で燃
焼し、得られた燃焼ガスでタービンを駆動するガスター
ビンと、ガスタービンから排出された排ガスと給水を熱
交換して高圧,中圧,低圧の三種類の圧力の蒸気を発生
する排熱回収ボイラと、排熱回収ボイラから発生した蒸
気で駆動する高圧,中圧,低圧蒸気タービンを有し、前
記高圧蒸気タービン出口蒸気の一部を前記排熱回収ボイ
ラの再熱器で再熱し、前記高圧蒸気タービン出口蒸気の
残りで前記ガスタービンの高温部を冷却し回収され、回
収された過熱蒸気と前記排熱回収ボイラの再熱器で再熱
した過熱蒸気と混合して前記中圧蒸気タービンに流入す
るクローズド蒸気冷却ガスタービンコンバインドプラン
トであって、 前記排熱回収ボイラに中圧過熱器を備え、前記ガスター
ビンの高温部を冷却する前記高圧蒸気タービン出口蒸気
に、前記中圧過熱器で発生した中圧過熱蒸気の一部もし
くは全量を混合し、かつ定格運転時において前記排熱回
収ボイラの中圧過熱器で発生した中圧過熱蒸気の温度を
前記高圧蒸気タービン出口蒸気温度よりも低温度として
前記ガスタービンの高温部を冷却することを特徴とする
クローズド蒸気冷却ガスタービンコンバインドプラン
ト。
2. A gas turbine in which air and fuel compressed by a compressor are burned in a combustor, and a turbine driven by the obtained combustion gas is heat-exchanged between exhaust gas discharged from the gas turbine and feed water to produce a high-pressure gas. An exhaust heat recovery boiler for generating steam of three types of pressures, medium pressure and low pressure; and a high pressure, medium pressure, and low pressure steam turbine driven by the steam generated from the exhaust heat recovery boiler. A part of the steam is reheated by the reheater of the heat recovery steam generator, and the high temperature part of the gas turbine is cooled and recovered by the remaining steam at the outlet of the high pressure steam turbine. A closed steam-cooled gas turbine combined plant that mixes with superheated steam reheated by a heater and flows into the medium-pressure steam turbine, wherein the exhaust heat recovery boiler includes a medium-pressure superheater, and the gas turbine A part or all of the intermediate-pressure superheated steam generated by the intermediate-pressure superheater is mixed with the high-pressure steam turbine outlet steam that cools the high-temperature portion of the exhaust heat recovery boiler during rated operation. Wherein the temperature of the intermediate-pressure superheated steam generated in the step (b) is lower than the outlet steam temperature of the high-pressure steam turbine to cool a high-temperature portion of the gas turbine.
【請求項3】圧縮機で圧縮した空気と燃料を燃焼器で燃
焼し、得られた燃焼ガスでタービンを駆動するガスター
ビンと、ガスタービンから排出された排ガスと給水を熱
交換して高圧,中圧,低圧の三種類の圧力の蒸気を発生
する排熱回収ボイラと、排熱回収ボイラから発生した蒸
気で駆動する高圧,中圧,低圧蒸気タービンを有し、前
記高圧蒸気タービン出口蒸気の一部を前記排熱回収ボイ
ラの再熱器で再熱し、前記高圧蒸気タービン出口蒸気の
残りで前記ガスタービンの高温部を冷却し回収され、回
収された過熱蒸気と前記排熱回収ボイラの再熱器で再熱
した過熱蒸気と混合して前記中圧蒸気タービンに流入す
るクローズド蒸気冷却ガスタービンコンバインドプラン
トであって、 前記ガスタービンの高温部を冷却し回収された過熱蒸気
と前記排熱回収ボイラの再熱器で再熱した過熱蒸気とを
混合後の過熱蒸気を前記中圧蒸気タービンに供給する配
管上に、前記ガスタービン高温部を冷却する蒸気の圧力
を制御する弁を設置したことを特徴とするクローズド蒸
気冷却ガスタービンコンバインドプラント。
3. A gas turbine for driving air and fuel compressed by a compressor in a combustor and driving the turbine with the obtained combustion gas, and an exhaust gas and a feed water discharged from the gas turbine are heat-exchanged to produce a high-pressure gas. An exhaust heat recovery boiler for generating steam of three types of pressures, medium pressure and low pressure; and a high pressure, medium pressure, and low pressure steam turbine driven by the steam generated from the exhaust heat recovery boiler. A part of the steam is reheated by the reheater of the heat recovery steam generator, and the high temperature part of the gas turbine is cooled and recovered by the remaining steam at the outlet of the high pressure steam turbine. A closed steam-cooled gas turbine combined plant that mixes with superheated steam reheated by a heater and flows into the intermediate-pressure steam turbine, wherein the superheated steam that cools a high-temperature portion of the gas turbine and is recovered A valve for controlling the pressure of steam for cooling the high-temperature portion of the gas turbine on a pipe for supplying the superheated steam after being mixed with the superheated steam reheated by the reheater of the exhaust heat recovery boiler to the medium-pressure steam turbine A closed steam cooled gas turbine combined plant characterized by the installation of
【請求項4】圧縮機で圧縮した空気と燃料を燃焼器で燃
焼し、得られた燃焼ガスでタービンを駆動するガスター
ビンと、ガスタービンから排出された排ガスと給水を熱
交換して高圧,中圧,低圧の三種類の圧力の蒸気を発生
する排熱回収ボイラと、排熱回収ボイラから発生した蒸
気で駆動する高圧,中圧,低圧蒸気タービンを有し、前
記高圧蒸気タービン出口蒸気の一部を前記排熱回収ボイ
ラの再熱器で再熱し、前記高圧蒸気タービン出口蒸気の
残りで前記ガスタービンの高温部を冷却し回収され、回
収された過熱蒸気と前記排熱回収ボイラの再熱器で再熱
した過熱蒸気と混合して前記中圧蒸気タービンに流入す
るクローズド蒸気冷却ガスタービンコンバインドプラン
トであって、 前記ガスタービンの高温部を冷却し回収された過熱蒸気
と前記排熱回収ボイラの再熱器で再熱した過熱蒸気とを
混合後の過熱蒸気を前記中圧蒸気タービンに供給する配
管上に、前記ガスタービン高温部を冷却する蒸気の圧力
を制御する弁を設置し、前記弁の制御変数として少なく
とも前記圧縮機の出口空気圧力を用いる事を特徴とする
クローズド蒸気冷却ガスタービンコンバインドプラン
ト。
4. A gas turbine, in which air and fuel compressed by a compressor are burned in a combustor, and the resulting combustion gas drives a turbine. An exhaust heat recovery boiler for generating steam of three types of pressures, medium pressure and low pressure; and a high pressure, medium pressure, and low pressure steam turbine driven by the steam generated from the exhaust heat recovery boiler. A part of the steam is reheated by the reheater of the heat recovery steam generator, and the high temperature part of the gas turbine is cooled and recovered by the remaining steam at the outlet of the high pressure steam turbine. A closed steam-cooled gas turbine combined plant that mixes with superheated steam reheated by a heater and flows into the intermediate-pressure steam turbine, wherein the superheated steam that cools a high-temperature portion of the gas turbine and is recovered A valve for controlling the pressure of steam for cooling the high-temperature portion of the gas turbine on a pipe for supplying the superheated steam after being mixed with the superheated steam reheated by the reheater of the exhaust heat recovery boiler to the medium-pressure steam turbine A closed steam-cooled gas turbine combined plant characterized by using at least an outlet air pressure of the compressor as a control variable of the valve.
【請求項5】請求項4において、前記弁の制御変数とし
て前記弁の入口圧力と前記圧縮機の出口空気圧力を用い
る事を特徴とするクローズド蒸気冷却ガスタービンコン
バインドプラント。
5. A closed steam-cooled gas turbine combined plant according to claim 4, wherein an inlet pressure of said valve and an outlet air pressure of said compressor are used as control variables of said valve.
【請求項6】請求項4において、前記弁の制御変数とし
て前記圧縮機の出口空気圧力と高圧蒸気タービン出口も
しくは中圧過熱器出口から前記ガスタービン高温部に至
る間の蒸気の圧力を用いる事を特徴とするクローズド蒸
気冷却ガスタービンコンバインドプラント。
6. The method according to claim 4, wherein an air pressure at the outlet of the compressor and a steam pressure from the outlet of the high-pressure steam turbine or the outlet of the intermediate-pressure superheater to the high-temperature portion of the gas turbine are used as control variables of the valve. A closed steam-cooled gas turbine combined plant characterized by:
【請求項7】請求項4において、前記弁の制御変数とし
て前記圧縮機の出口空気圧力と前記ガスタービン高温部
から中圧蒸気タービンに至る間の蒸気の圧力を用いる事
を特徴とするクローズド蒸気冷却ガスタービンコンバイ
ンドプラント。
7. A closed steam system according to claim 4, wherein an air pressure at the outlet of the compressor and a steam pressure from the high temperature section of the gas turbine to a medium pressure steam turbine are used as control variables of the valve. Cooling gas turbine combined plant.
【請求項8】圧縮機で圧縮した空気と燃料を燃焼器で燃
焼し、得られた燃焼ガスでタービンを駆動するガスター
ビンと、ガスタービンから排出された排ガスと給水を熱
交換して高圧,中圧,低圧の三種類の圧力の蒸気を発生
する排熱回収ボイラと、排熱回収ボイラから発生した蒸
気で駆動する高圧,中圧,低圧蒸気タービンを有し、前
記高圧蒸気タービン出口蒸気の一部を前記排熱回収ボイ
ラの再熱器で再熱し、前記高圧蒸気タービン出口蒸気の
残りで前記ガスタービンの高温部を冷却し回収され、回
収された過熱蒸気と前記排熱回収ボイラの再熱器で再熱
した過熱蒸気と混合して前記中圧蒸気タービンに流入す
るクローズド蒸気冷却ガスタービンコンバインドプラン
トであって、 高圧蒸気タービン入口にストップ弁を有し、前記ストッ
プ弁前の蒸気が高圧蒸気タービンを回避して復水器に流
れる第1の配管とこの配管上の第1の弁と、排熱回収ボ
イラの高圧蒸発器出口から第1の配管手前までのいずれ
かの位置とガスタービン高温部の冷却蒸気供給配管とを
連結し高圧蒸気がガスタービン高温部に流れる第2の配
管とこの配管上の第2の弁とを備える事を特徴とするク
ローズド蒸気冷却ガスタービンコンバインドプラント。
8. A gas turbine which burns air and fuel compressed by a compressor in a combustor and drives a turbine with the obtained combustion gas, and heat-exchanges exhaust gas and feed water discharged from the gas turbine to produce a high-pressure gas. An exhaust heat recovery boiler for generating steam of three types of pressures, medium pressure and low pressure; and a high pressure, medium pressure, and low pressure steam turbine driven by the steam generated from the exhaust heat recovery boiler. A part of the steam is reheated by the reheater of the heat recovery steam generator, and the high temperature part of the gas turbine is cooled and recovered by the remaining steam at the outlet of the high pressure steam turbine. A closed steam-cooled gas turbine combined plant that mixes with superheated steam reheated by a heater and flows into the intermediate-pressure steam turbine, comprising a stop valve at a high-pressure steam turbine inlet, and the stop valve A first pipe in which the previous steam flows to the condenser avoiding the high-pressure steam turbine, a first valve on the pipe, and any one of a portion from the high-pressure evaporator outlet of the exhaust heat recovery boiler to just before the first pipe. Closed steam cooling gas, comprising: a second pipe connecting the position of the gas turbine and a cooling steam supply pipe of the gas turbine hot section, and a second pipe on which high-pressure steam flows to the gas turbine hot section, and a second valve on the pipe. Turbine combined plant.
【請求項9】請求項8において、前記ストップ弁が閉の
ときは前記第1の弁,前記第2の弁ともに開とし、前記
ストップ弁が開のときは前記第1の弁,前記第2の弁と
もに閉とする事を特徴とするクローズド蒸気冷却ガスタ
ービンコンバインドプラント。
9. The system according to claim 8, wherein the first valve and the second valve are both opened when the stop valve is closed, and the first valve and the second valve are opened when the stop valve is open. Closed steam-cooled gas turbine combined plant characterized by closing both valves.
【請求項10】空気を圧縮する圧縮機と、圧縮機で圧縮
した空気と燃料とを燃焼させる燃焼器と、燃焼器から出
る燃焼排ガスで駆動するタービンとを備えるガスタービ
ンと、ガスタービンから排出される排ガスを熱源として
蒸気を発生させる排熱回収ボイラと、該排熱回収ボイラ
で発生した蒸気により駆動する蒸気タービンとを備え、 前記蒸気タービンは、前記排熱回収ボイラで発生した蒸
気が供給される高圧蒸気タービンと、該高圧蒸気タービ
ンから出る蒸気を再熱する前記排熱回収ボイラに備えら
れた再熱器と、該再熱された蒸気を供給する中圧タービ
ンと、該中圧タービンから出た蒸気を供給する低圧ター
ビンとを備えるガスタービンコンバインドプラントにお
いて、 前記タービンは冷却流路を備え、前記高圧タービンから
出る蒸気の一部は前記タービンの冷却流路に供給される
と共に、前記タービンの冷却流路を経た蒸気を前記再熱
器を出た蒸気に合流するよう構成され、再熱器から出た
蒸気と前記タービンを冷却後の蒸気とを合流して中圧タ
ービンに供給するよう構成すると共に、 前記高圧タービンから出た蒸気は、前記高圧タービンか
ら出た蒸気より低い温度の前記排熱回収ボイラから発生
した過熱蒸気と混合した後、前記タービン内の冷却流路
に供給されるよう構成されることを特徴とするガスター
ビンコンバインドプラント。
10. A gas turbine comprising a compressor for compressing air, a combustor for burning air and fuel compressed by the compressor, a turbine driven by combustion exhaust gas from the combustor, and exhaust gas from the gas turbine. An exhaust heat recovery boiler that generates steam using the exhaust gas to be discharged as a heat source, and a steam turbine that is driven by the steam generated by the exhaust heat recovery boiler. The steam turbine is supplied with steam generated by the exhaust heat recovery boiler. High pressure steam turbine, a reheater provided in the exhaust heat recovery boiler for reheating steam exiting from the high pressure steam turbine, a medium pressure turbine for supplying the reheated steam, and the medium pressure turbine And a low-pressure turbine for supplying steam exiting from the gas turbine, wherein the turbine has a cooling passage, and the steam exits from the high-pressure turbine. A part is supplied to the cooling passage of the turbine, and the steam that has passed through the cooling passage of the turbine is configured to be combined with the steam that has exited the reheater. Is combined with the cooled steam and supplied to the medium-pressure turbine, and the steam discharged from the high-pressure turbine is overheated from the exhaust heat recovery boiler at a lower temperature than the steam discharged from the high-pressure turbine. A gas turbine combined plant, which is configured to be supplied to a cooling flow path in the turbine after being mixed with steam.
JP13963697A 1997-05-29 1997-05-29 Closed steam cooled gas turbine combined plant and gas turbine combined plant Expired - Fee Related JP3518252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13963697A JP3518252B2 (en) 1997-05-29 1997-05-29 Closed steam cooled gas turbine combined plant and gas turbine combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13963697A JP3518252B2 (en) 1997-05-29 1997-05-29 Closed steam cooled gas turbine combined plant and gas turbine combined plant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003192540A Division JP2003343213A (en) 2003-07-07 2003-07-07 Combined plant constructed with closed steam cooling gas turbine

Publications (2)

Publication Number Publication Date
JPH10331608A true JPH10331608A (en) 1998-12-15
JP3518252B2 JP3518252B2 (en) 2004-04-12

Family

ID=15249902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13963697A Expired - Fee Related JP3518252B2 (en) 1997-05-29 1997-05-29 Closed steam cooled gas turbine combined plant and gas turbine combined plant

Country Status (1)

Country Link
JP (1) JP3518252B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530208B1 (en) 2000-08-08 2003-03-11 Mitsubishi Heavy Industries, Co., Ltd. Steam cooled gas turbine system with regenerative heat exchange
CN102493851A (en) * 2011-12-22 2012-06-13 吉林大学 Energy-saving technology utilizing device of integrated type natural gas compressor
CN112502788A (en) * 2020-09-30 2021-03-16 广西电网有限责任公司电力科学研究院 Control method of combined heat and power generation unit based on reheater cold and hot section cooperative steam extraction
CN112502789A (en) * 2020-09-30 2021-03-16 广西电网有限责任公司电力科学研究院 Combined heat and power generation unit with reheater cold and hot sections for steam extraction in cooperation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134301A (en) * 2017-05-10 2017-09-05 中国核动力研究设计院 The measuring method and its system of flow are flow backwards in a kind of steam generator heat-transfer pipe reversion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530208B1 (en) 2000-08-08 2003-03-11 Mitsubishi Heavy Industries, Co., Ltd. Steam cooled gas turbine system with regenerative heat exchange
US6668538B2 (en) 2000-08-08 2003-12-30 Mitsubishi Heavy Industries Co., Ltd. Steam cooled gas turbine system with regenerative heat exchange
CN102493851A (en) * 2011-12-22 2012-06-13 吉林大学 Energy-saving technology utilizing device of integrated type natural gas compressor
CN112502788A (en) * 2020-09-30 2021-03-16 广西电网有限责任公司电力科学研究院 Control method of combined heat and power generation unit based on reheater cold and hot section cooperative steam extraction
CN112502789A (en) * 2020-09-30 2021-03-16 广西电网有限责任公司电力科学研究院 Combined heat and power generation unit with reheater cold and hot sections for steam extraction in cooperation
CN112502789B (en) * 2020-09-30 2022-11-22 广西电网有限责任公司电力科学研究院 Combined heat and power generation unit with reheater cold and hot sections for steam extraction in cooperation
CN112502788B (en) * 2020-09-30 2022-11-22 广西电网有限责任公司电力科学研究院 Control method of combined heat and power generation unit based on reheater cold and hot section cooperative steam extraction

Also Published As

Publication number Publication date
JP3518252B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
JP3913328B2 (en) Operation method of combined cycle power plant and combined cycle power plant
JP4540472B2 (en) Waste heat steam generator
US20040045300A1 (en) Method and apparatus for starting a combined cycle power plant
JPH06264763A (en) Combined plant system
JPH094417A (en) Composite cycle-system
JP2000161014A (en) Combined power generator facility
JP2001214759A (en) Gas turbine combined cycle
JP3716188B2 (en) Gas turbine combined plant
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JP2000337107A (en) Closed gas turbine plant
JPH0693879A (en) Combined plant and operation thereof
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JP2000248962A (en) Operating method for combined cycle generating plant
JP3926048B2 (en) Combined cycle power plant
JP4208397B2 (en) Start-up control device for combined cycle power plant
JPS62101809A (en) Single-shaft combined plant having reheating system
JP2004169625A (en) Co-generation plant and its starting method
JP2003343213A (en) Combined plant constructed with closed steam cooling gas turbine
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP2915885B1 (en) Gas turbine combined cycle system
JP2002021508A (en) Condensate supply system
JP3750519B2 (en) Combined plant and operation method thereof
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JP4209060B2 (en) Steam cooling rapid start system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees