[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10334916A - Negative electrode for lithium secondary battery and its manufacture - Google Patents

Negative electrode for lithium secondary battery and its manufacture

Info

Publication number
JPH10334916A
JPH10334916A JP9144301A JP14430197A JPH10334916A JP H10334916 A JPH10334916 A JP H10334916A JP 9144301 A JP9144301 A JP 9144301A JP 14430197 A JP14430197 A JP 14430197A JP H10334916 A JPH10334916 A JP H10334916A
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
lithium secondary
secondary battery
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9144301A
Other languages
Japanese (ja)
Other versions
JP3807691B2 (en
Inventor
Hisashi Tsukamoto
寿 塚本
Takeshi Nakajima
中島  剛
Tomohito Okamoto
朋仁 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP14430197A priority Critical patent/JP3807691B2/en
Publication of JPH10334916A publication Critical patent/JPH10334916A/en
Application granted granted Critical
Publication of JP3807691B2 publication Critical patent/JP3807691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve low temperature performance and high temperature storage characteristics of a lithium secondary battery. SOLUTION: Graphite is heated in a non-oxide atmosphere to perform an activation treatment to remove oxygen from its surface, and then an organic material is introduced under an inert atmosphere to combine carbon to a surface of an activated graphite. Thereby, a thin film containing crystalline low carbon and carbonic compounds are formed. If acentonitrile vapor is used as the organic material introduced, CxN is formed on a surface of the graphite to obtain more superior characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は活物質を炭素質材料
から構成したリチウム二次電池用負極及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a lithium secondary battery in which an active material is composed of a carbonaceous material, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】この種のリチウム二次電池は、負極の炭
素質材料にリチウムイオンが出入りして充放電がなされ
るため、安全性が高いという利点があり、近年、多くの
種類のものが開発されている。負極の炭素質材料として
は充放電容量の面からグラファイトが最も好ましいとさ
れているが、これはプロピレンカーボネート(PC)を
主体とする電解液に対して反応性があるため、低温特性
が悪いエチレンカーボネート(EC)等を使用せざるを
得ず、この点の改良が待たれていた。
2. Description of the Related Art Lithium secondary batteries of this type have the advantage of high safety because lithium ions enter and leave the carbonaceous material of the negative electrode and are charged and discharged. Is being developed. As the carbonaceous material of the negative electrode, graphite is considered to be most preferable from the viewpoint of charge / discharge capacity. However, since it is reactive with an electrolytic solution mainly composed of propylene carbonate (PC), ethylene has poor low-temperature characteristics. There has been no choice but to use carbonate (EC), and improvement in this respect has been awaited.

【0003】グラファイトのPCに対する反応性を抑制
する技術としては、例えば特開平5−121066号公
報に記載された発明が公知である。これは、グラファイ
ト粒子を石油ピッチ等と混合した後に焼成することによ
り、グラファイト粒子の表面に無定型炭素の被覆を形成
するものである。このような無定形炭素被覆のグラファ
イトを活物質として使用した負極では、PCとの反応性
が抑えられて低温特性に優れたリチウム二次電池を構成
することができる。
As a technique for suppressing the reactivity of graphite with respect to PC, for example, the invention described in Japanese Patent Application Laid-Open No. 5-110666 is known. In this method, graphite particles are mixed with petroleum pitch or the like and then fired to form a coating of amorphous carbon on the surfaces of the graphite particles. In the negative electrode using such an amorphous carbon-coated graphite as an active material, a lithium secondary battery excellent in low-temperature characteristics by suppressing reactivity with PC can be constituted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
炭素質材料を使用した負極では、電池として構成したと
きの高温保存特性が悪いという問題があった。すなわ
ち、電池を高温度に保存した場合に、電池容量が著しく
低下してしまうのである。これは、次のような原因によ
ると推定される。
However, the negative electrode using the above-mentioned carbonaceous material has a problem that the high-temperature storage characteristics when configured as a battery are poor. That is, when the battery is stored at a high temperature, the battery capacity is significantly reduced. This is presumed to be due to the following reasons.

【0005】すなわち、従来の方法で製造した負極の活
物質では、グラファイトと無定形炭素或いは低結晶性炭
素からなる皮膜との界面においてグラファイト層と皮膜
層との間で十分な化学結合が持たれておらず、グラファ
イトのエッジ面の炭素原子が不飽和結合の状態で多く残
留している。従って、この残留不飽和結合炭素が、高温
度になると電解液中のリチウムイオンと反応して充放電
に寄与するリチウムイオン量を減らしてしまうのであ
る。
That is, in the negative electrode active material manufactured by the conventional method, a sufficient chemical bond is provided between the graphite layer and the coating layer at the interface between the graphite and the coating made of amorphous carbon or low-crystalline carbon. However, many carbon atoms on the edge surface of graphite remain in an unsaturated bond state. Therefore, when the temperature of the residual unsaturated bond carbon becomes high, it reacts with lithium ions in the electrolytic solution to reduce the amount of lithium ions contributing to charge and discharge.

【0006】しかも、従来製法では、グラファイトを覆
う皮膜の厚さが相当に厚くなってしまうため、充放電容
量の少ない皮膜成分が不必要に増えて活物質のエネルギ
ー密度を低下させてしまうという問題もあった。
In addition, in the conventional production method, the thickness of the coating covering the graphite becomes considerably large, so that a coating component having a small charge / discharge capacity is unnecessarily increased and the energy density of the active material is reduced. There was also.

【0007】かかる事情にあるから、無定形炭素や低結
晶性炭素などによる耐PC性皮膜を形成するためには、
エッジ面の不飽和炭素のほとんどと化学的に結合し、し
かも、できるだけ薄い皮膜を形成することが望ましい。
しかし、グラファイト粒子の表面にいわは物理的なコー
ティングによって低結晶性炭素の被覆を形成するという
特開平5−121066号公報に記載された従来の製造
方法では、低結晶性炭素の膜厚を十分に薄くすることは
困難である。また、本発明者らは、グラファイトを高温
の不活性雰囲気において炭化水素を導入し、炭化水素の
熱分解によってグラファイト表面に低結晶性炭素の皮膜
を成長させることも試みたが、これでは薄い膜厚の被覆
を形成できるものの、電解液との反応性の抑制が十分に
行われないという問題が生ずるものであった。
Under these circumstances, in order to form a PC-resistant film of amorphous carbon, low-crystalline carbon, or the like,
It is desirable to form a film which is chemically bonded to most of the unsaturated carbon on the edge surface and is as thin as possible.
However, according to the conventional manufacturing method described in Japanese Patent Application Laid-Open No. 5-121066, in which the surface of graphite particles is coated with low-crystalline carbon by physical coating, the film thickness of low-crystalline carbon is not sufficiently increased. It is difficult to make it thin. The present inventors have also tried to introduce a hydrocarbon into graphite in a high-temperature inert atmosphere and grow a low-crystalline carbon film on the graphite surface by pyrolysis of the hydrocarbon. Although a thick coating can be formed, there is a problem that the reactivity with the electrolytic solution is not sufficiently suppressed.

【0008】本発明は上記事情に鑑みてなされたもの
で、その目的は、低温性能及び高温保存特性を改良で
き、しかも、容量増大も可能にできるリチウム二次電池
用負極及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a negative electrode for a lithium secondary battery capable of improving low-temperature performance and high-temperature storage characteristics and increasing capacity, and a method of manufacturing the same. The purpose is to do.

【0009】[0009]

【課題を解決するための手段及びその作用・効果】請求
項1の発明は、負極の活物質の製造に際し、グラファイ
トを非酸化雰囲気で加熱して表面の酸素を取り除く活性
化処理を行い、その後、高温不活性雰囲気下で有機物を
導入して活性化グラファイトの表面に低結晶性炭素又は
炭素化合物の薄膜を形成するところに特徴を有する。上
記発明において、グラファイトを非酸化雰囲気で高温度
に加熱すると、表面に結合している酸素がCO又はCO
2 の形で除去され、活性化された炭素原子が露出する。
その加熱温度については、グラファイト表面の汚れ状態
や生産性等を考慮して種々設定することができるが、8
00℃〜1200℃程度とすることが好ましい。
Means for Solving the Problems and Action / Effect The invention according to claim 1 provides an activation treatment for removing graphite from the surface by heating graphite in a non-oxidizing atmosphere when producing an active material for a negative electrode. It is characterized in that a thin film of low-crystalline carbon or a carbon compound is formed on the surface of activated graphite by introducing an organic substance under a high-temperature inert atmosphere. In the above invention, when graphite is heated to a high temperature in a non-oxidizing atmosphere, oxygen bonded to the surface becomes CO or CO.
Removed in the form of 2, exposing the activated carbon atoms.
The heating temperature can be variously set in consideration of the stain state of the graphite surface, productivity, and the like.
The temperature is preferably set to about 00C to 1200C.

【0010】この後、高温不活性雰囲気下で例えば炭化
水素等の有機物を導入すると、その有機物の熱分解によ
り生成した炭素がグラファイト粒子の表面に析出して低
結晶性炭素又は炭素化合物の薄膜が形成される。この場
合の加熱温度及び加熱時間も生産性等を考慮して設定す
ることができるが、600℃〜1200℃程度で30分
から90分程度が好ましく、有機物は例えば窒素ガス等
の不活性ガスと共に炉内に導入することが好ましい。
Thereafter, when an organic substance such as a hydrocarbon is introduced in a high-temperature inert atmosphere, carbon generated by thermal decomposition of the organic substance is deposited on the surface of the graphite particles to form a thin film of low-crystalline carbon or a carbon compound. It is formed. In this case, the heating temperature and the heating time can be set in consideration of productivity and the like. However, the heating temperature and the heating time are preferably from about 600 ° C. to 1200 ° C. for about 30 minutes to 90 minutes. It is preferred to be introduced into the inside.

【0011】このようにして低結晶性炭素又は炭素化合
物により被覆されたグラファイトを活物質とし、例えば
これにバインダを添加して集電体に塗布して乾燥させる
ことによりリチウム二次電池の負極を構成することがで
きる。この負極によれば、グラファイトの表面が低結晶
性炭素又は炭素化合物の薄膜により覆われており、グラ
ファイト部分にまでPC電解液が侵入できないため、P
Cの反応を抑えることができる。また、グラファイト表
面の炭素をいったん活性化してから有機物の熱分解によ
って低結晶性炭素又は炭素化合物をグラファイト表面に
結合させるから、化学結合が強固で均一な皮膜を形成す
ることができ、さらにグラファイト表面の未結合の炭素
原子(不対電子を有する炭素原子)の数を大幅に減らし
てグラファイトと低結晶性炭素又は炭素化合物との間の
C−C結合を増大させることができる。このことは、低
結晶性炭素又は炭素化合物の被覆の膜厚を薄くしても電
解液との反応性を十分に抑えることができることを意味
し、充放電容量が少ない部分の膜厚が薄い分、活物質の
エネルギー密度を高めて充放電容量を増大させることが
できる。しかも、この方法で製造された低結晶性炭素又
は炭素化合物の薄膜で覆ったグラファイトでは、上述の
ようにグラファイト層と低結晶性炭素層又は炭素化合物
との間の結合度が高まるから、サイクル特性も大きく向
上する。
The graphite coated with the low-crystalline carbon or carbon compound is used as an active material. For example, a binder is added to the active material and the resultant is coated on a current collector and dried to form a negative electrode of a lithium secondary battery. Can be configured. According to this negative electrode, the surface of graphite is covered with a thin film of low-crystalline carbon or a carbon compound, and the PC electrolyte cannot penetrate into the graphite portion.
The reaction of C can be suppressed. In addition, since the carbon on the graphite surface is activated once, and the low-crystalline carbon or carbon compound is bonded to the graphite surface by thermal decomposition of an organic substance, a uniform chemical film with a strong chemical bond can be formed. Can greatly reduce the number of unbonded carbon atoms (carbon atoms with unpaired electrons) to increase the CC bond between graphite and the low crystalline carbon or carbon compound. This means that the reactivity with the electrolytic solution can be sufficiently suppressed even when the thickness of the coating of the low-crystalline carbon or carbon compound is reduced, and the portion having a small charge / discharge capacity has a small thickness. In addition, the charge / discharge capacity can be increased by increasing the energy density of the active material. In addition, the graphite covered with a thin film of low-crystalline carbon or carbon compound produced by this method has a high degree of bonding between the graphite layer and the low-crystalline carbon layer or carbon compound as described above, and therefore has a cycle characteristic. Is also greatly improved.

【0012】請求項2の発明は、上記発明の活性化処理
に先だってグラファイト表面を酸又はアルカリ液により
洗浄する清浄化処理を行うところに特徴を有する。この
清浄化処理を行うと、グラファイト表面に付着・吸着或
いは結合している不純物が除去されるから、活性化処理
がより効率的に行われて一層の好結果が得られる。な
お、洗浄液としては、硝酸や硫酸等の強酸が最も好まし
い。
The invention of claim 2 is characterized in that prior to the activation treatment of the above invention, a cleaning treatment for cleaning the graphite surface with an acid or an alkali solution is performed. By performing this cleaning treatment, impurities adhering, adsorbing, or bonding to the graphite surface are removed, so that the activation treatment is performed more efficiently, and more favorable results are obtained. Note that a strong acid such as nitric acid or sulfuric acid is most preferable as the cleaning liquid.

【0013】ところで、本発明者らの研究によれば、低
結晶性炭素被覆を構成する炭素原子の一部を窒素原子で
置換した炭素化合物であるCxNの皮膜とすると、化学
的により安定となって高温保存特性が改善されることが
発見された。
According to the study of the present inventors, when a CxN film, which is a carbon compound in which a part of carbon atoms constituting a low-crystalline carbon coating is substituted with nitrogen atoms, becomes chemically more stable. It was found that the high temperature storage characteristics were improved.

【0014】このCxNの皮膜は、上述した請求項1又
は2の発明において、有機物として窒素を含有する有機
物を使用すると効率的に形成することができ(請求項3
の発明)、特にアセトニトリル蒸気を窒素ガスと共に導
入することが最も好ましい。なお、グラファイト粒子の
表面に形成されたCxNの皮膜は、XPS分析(X線光
電子分光法)によって確認することができる。XPS分
析によっては表面がCxO,CyNOzという成分として
分析されるが、測定深度を深めて行くとO,Nの相対量
が減少してゆくから、CxNの表面皮膜が形成されてい
ることが明らかである。
This CxN film can be efficiently formed by using an organic substance containing nitrogen as the organic substance in the above-mentioned invention of claim 1 or 2 (claim 3).
Invention), particularly, acetonitrile vapor is most preferably introduced together with nitrogen gas. The CxN film formed on the surface of the graphite particles can be confirmed by XPS analysis (X-ray photoelectron spectroscopy). According to the XPS analysis, the surface is analyzed as components of CxO and CyNOz. However, as the measurement depth is increased, the relative amounts of O and N decrease, and it is clear that a CxN surface film is formed. is there.

【0015】[0015]

【実施例】以下、本発明のいくつかの実施例を比較例と
ともに説明する。ここで、グラファイト粒子は平均粒径
7μmの天然黒鉛を使用している。
EXAMPLES Some examples of the present invention will be described below along with comparative examples. Here, the graphite particles use natural graphite having an average particle size of 7 μm.

【0016】[実施例1]まず、グラファイト粒子を9
4%硝酸によって洗浄してその表面の不純物を除去する
とともに、表面を酸化させた(清浄化処理)。次に、そ
のグラファイトを非酸化雰囲気で加熱して表面の酸素を
取り除く活性化処理を行った。これは高温還元炉又は高
温真空炉にグラファイトを収容して950℃に加熱する
ことにより行い、これにてグラファイト表面の酸素原子
がCO又はCO2 の形で取り除かれて活性な炭素原子が
表面に露出する。
Example 1 First, graphite particles were mixed with 9
The surface was washed with 4% nitric acid to remove impurities on the surface, and the surface was oxidized (cleaning treatment). Next, the graphite was heated in a non-oxidizing atmosphere to perform an activation treatment for removing oxygen on the surface. This is done by placing graphite in a high-temperature reduction furnace or high-temperature vacuum furnace and heating it to 950 ° C, whereby oxygen atoms on the graphite surface are removed in the form of CO or CO2 and active carbon atoms are exposed on the surface. I do.

【0017】次に、その活性化グラファイトを外気に触
れさせることなく窒素雰囲気炉に導入して950℃に加
熱しておき、ここにアセトニトリル蒸気を窒素ガスとと
もに導入した。このときアセトニトリルの分圧は0.9
×104 Paで、全圧は1×105 Paであり、処理時
間は30分から1時間30分であった。これにより、活
性化グラファイトの表面にCxNの皮膜が形成された。
Next, the activated graphite was introduced into a nitrogen atmosphere furnace without being exposed to the outside air, heated to 950 ° C., and acetonitrile vapor was introduced together with nitrogen gas. At this time, the partial pressure of acetonitrile was 0.9.
The pressure was × 10 4 Pa, the total pressure was 1 × 10 5 Pa, and the processing time was 30 minutes to 1 hour 30 minutes. As a result, a CxN film was formed on the surface of the activated graphite.

【0018】このグラファイト粒子の92重量部に対し
て、N−メチルピロリドンを溶媒とした10重量%濃度
のポリ弗化ビニリデン溶液をポリ弗化ビニリデンが8重
量部となるように加えて攪拌し、これを負極ペーストと
した。この負極ペーストを厚さ30μmの銅箔に厚みが
100μmとなるように塗布した後、100℃で2時間
真空乾燥した。これを2cm角に切り出して多孔度が25
%となるようにプレスして試験極とした。相手極には金
属リチウム板を用い、これらを例えばポリエチレン製の
微孔膜セパレータを挟んで周知の電池構造とし、ここに
プロピレンカーボネート(PC)とエチレンカーボネー
ト(EC)との体積比1:1の混合物に1モルLi PF
6を混合した電解液を注液してリチウム二次電池を構成
した。
To 92 parts by weight of the graphite particles, a 10% by weight polyvinylidene fluoride solution using N-methylpyrrolidone as a solvent was added so that the polyvinylidene fluoride became 8 parts by weight, followed by stirring. This was used as a negative electrode paste. This negative electrode paste was applied to a copper foil having a thickness of 30 μm so as to have a thickness of 100 μm, and then vacuum dried at 100 ° C. for 2 hours. This is cut into 2 cm squares and has a porosity of 25.
% To obtain a test electrode. A lithium metal plate is used as a counter electrode, and these have a well-known battery structure with a microporous membrane separator made of, for example, polyethylene, in which propylene carbonate (PC) and ethylene carbonate (EC) have a volume ratio of 1: 1. 1 mol Li PF in the mixture
The lithium secondary battery was constructed by injecting the electrolyte mixed with 6.

【0019】[実施例2]上述のアセトニトリル蒸気に
代えて炭化水素(ベンゼン又はフェノール)を使用した
ところが相違し、その他は同一条件である。
Example 2 A hydrocarbon (benzene or phenol) was used in place of the acetonitrile vapor, and the other conditions were the same.

【0020】[比較例]キノリン15重量部に3重量部
のバインダーピッチを溶解させ、実施例1,2と同一の
グラファイト粒子を1重量部浸漬し、次いでキノリンを
蒸発させた後に、窒素ガス中で400℃で焼成した。こ
のようにして製造したグラファイトを使用したところが
相違し、その他は実施例1と同一条件である。
Comparative Example 3 parts by weight of binder pitch were dissolved in 15 parts by weight of quinoline, 1 part by weight of the same graphite particles as in Examples 1 and 2 were immersed, and then quinoline was evaporated. At 400.degree. The difference was that the graphite thus produced was used, and the other conditions were the same as in Example 1.

【0021】[高温保存特性の評価]上記3種のリチウ
ム二次電池を0.2mA/cm2 の定電流で負極電位が金
属リチウム正極に対して0Vになるまで充電した後に、
45℃で30日間放置した。その後、室温で0.2mA
/cm2 の放電電流によって放電させて測定した場合の残
存容量と、初期容量との比率(容量保持率%)を計算し
た。測定結果は、次の表1のようであり、特にCxN皮
膜を形成した実施例1が格段に優れた高温保存性を示し
た。
[Evaluation of High-Temperature Storage Characteristics] The above three lithium secondary batteries were charged at a constant current of 0.2 mA / cm 2 until the negative electrode potential became 0 V with respect to the metallic lithium positive electrode.
It was left at 45 ° C. for 30 days. Then, 0.2 mA at room temperature
The ratio (capacity retention%) between the remaining capacity and the initial capacity measured by discharging with a discharge current of / cm @ 2 was calculated. The measurement results are as shown in Table 1 below. In particular, Example 1 in which the CxN film was formed showed remarkably excellent high-temperature storage property.

【0022】[0022]

【表1】 ちなみに、上述の実施例1及び実施例2において製造し
たCxN及び低結晶性炭素被覆のグラファイトのXPS
分析結果を次表に示す。実施例1では、測定深度を深め
て行くと(照射角度が大きいほど表面から深い部分の組
成を表す)、O,Nの相対量が減少してゆき、CxNの
表面皮膜が形成されていることが判る。
[Table 1] By the way, XPS of CxN and graphite of low crystalline carbon coating produced in Example 1 and Example 2 described above.
The analysis results are shown in the following table. In Example 1, as the measurement depth was increased (the larger the irradiation angle, the deeper the composition from the surface), the relative amounts of O and N gradually decreased, and a CxN surface film was formed. I understand.

【0023】[0023]

【表2】 [Table 2]

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年7月2日[Submission date] July 2, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】次に、その活性化グラファイトを外気に触
れさせることなく窒素雰囲気炉に導入して950℃に加
熱しておき、ここにアセトニトリル蒸気を窒素ガスとと
もに導入した。このときアセトニトリルの分圧は0.9
×104Paで、全圧は1×105Paであり、処理時間
は30分から1時間30分であった。これにより、活性
化グラファイトの表面にCxNの皮膜が形成された。
Next, the activated graphite was introduced into a nitrogen atmosphere furnace without being exposed to the outside air, heated to 950 ° C., and acetonitrile vapor was introduced together with nitrogen gas. At this time, the partial pressure of acetonitrile was 0.9.
× 10 4 Pa, the total pressure was 1 × 10 5 Pa, and the treatment time was 30 minutes to 1 hour 30 minutes. As a result, a CxN film was formed on the surface of the activated graphite.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】このグラファイト粒子の92重量部に対し
て、N−メチルピロリドンを溶媒とした10重量%濃度
のポリ弗化ビニリデン溶液をポリ弗化ビニリデンが8重
量部となるように加えて攪拌し、これを負極ペーストと
した。この負極ペーストを厚さ30μmの銅箔に厚みが
100μmとなるように塗布した後、100℃で2時間
真空乾燥した。これを2cm角に切り出して多孔度が25
%となるようにプレスして試験極とした。相手極には金
属リチウム板を用い、これらを例えばポリエチレン製の
微孔膜セパレータを挟んで周知の電池構造とし、ここに
プロピレンカーボネート(PC)とエチレンカーボネー
ト(EC)との体積比1:1の混合物に1モルLi PF
6を混合した電解液を注液してリチウム二次電池を構成
した。
To 92 parts by weight of the graphite particles, a 10% by weight polyvinylidene fluoride solution using N-methylpyrrolidone as a solvent was added so that the polyvinylidene fluoride became 8 parts by weight, followed by stirring. This was used as a negative electrode paste. This negative electrode paste was applied to a copper foil having a thickness of 30 μm so as to have a thickness of 100 μm, and then vacuum dried at 100 ° C. for 2 hours. This is cut into 2 cm squares and has a porosity of 25.
% To obtain a test electrode. A lithium metal plate is used as a counter electrode, and these have a well-known battery structure with a microporous membrane separator made of, for example, polyethylene, in which propylene carbonate (PC) and ethylene carbonate (EC) have a volume ratio of 1: 1. 1 mol Li PF in the mixture
The lithium secondary battery was constructed by injecting the electrolyte mixed with 6 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 朋仁 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tomohito Okamoto 1 Nishinosho Ino Babacho, Kichijoin, Minami-ku, Kyoto Inside Nippon Battery Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウム二次電池の非水電解質とともに
使用されるリチウム二次電池用負極の製造方法であっ
て、 負極の活物質は、グラファイトを非酸化雰囲気で加熱し
て表面の酸素を取り除く活性化処理を行い、その後、高
温の不活性雰囲気下で有機物を導入して活性化グラファ
イトの表面に炭素又は炭素化合物を結合させることによ
り炭素又は炭素化合物からなる薄膜を形成することを特
徴とするリチウム二次電池用負極の製造方法。
1. A method of manufacturing a negative electrode for a lithium secondary battery used together with a non-aqueous electrolyte of a lithium secondary battery, wherein an active material of the negative electrode is heated to graphite in a non-oxidizing atmosphere to remove oxygen from the surface. Performing an activation treatment, and thereafter, forming a thin film made of carbon or carbon compound by introducing organic matter under a high temperature inert atmosphere and bonding carbon or carbon compound to the surface of activated graphite. A method for producing a negative electrode for a lithium secondary battery.
【請求項2】 前記活性化処理に先だってグラファイト
表面を酸又はアルカリ液により洗浄する清浄化処理を行
うことを特徴とする請求項1記載のリチウム二次電池用
負極の製造方法。
2. The method for producing a negative electrode for a lithium secondary battery according to claim 1, wherein a cleaning treatment for cleaning the graphite surface with an acid or an alkali solution is performed prior to the activation treatment.
【請求項3】 前記有機物は窒素を含有する有機物であ
ることを特徴とする請求項1又は2に記載のリチウム二
次電池用負極の製造方法。
3. The method for producing a negative electrode for a lithium secondary battery according to claim 1, wherein the organic substance is an organic substance containing nitrogen.
【請求項4】 前記有機物はアセトニトリルであって、
これを窒素ガスと共に導入することを特徴とする請求項
3に記載のリチウム二次電池用負極の製造方法。
4. The organic substance is acetonitrile,
4. The method for producing a negative electrode for a lithium secondary battery according to claim 3, wherein the method is introduced together with nitrogen gas.
【請求項5】 リチウム二次電池の非水電解質とともに
使用されるものであって、負極の活物質が、グラファイ
トの表面にCxNの被覆が形成されたものであることを
特徴とするリチウム二次電池用負極。
5. A lithium secondary battery used together with a non-aqueous electrolyte of a lithium secondary battery, wherein the active material of the negative electrode is a graphite having a CxN coating formed on a surface thereof. Negative electrode for battery.
JP14430197A 1997-06-02 1997-06-02 Negative electrode for lithium secondary battery and method for producing the same Expired - Fee Related JP3807691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14430197A JP3807691B2 (en) 1997-06-02 1997-06-02 Negative electrode for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14430197A JP3807691B2 (en) 1997-06-02 1997-06-02 Negative electrode for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10334916A true JPH10334916A (en) 1998-12-18
JP3807691B2 JP3807691B2 (en) 2006-08-09

Family

ID=15358898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14430197A Expired - Fee Related JP3807691B2 (en) 1997-06-02 1997-06-02 Negative electrode for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3807691B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117334A (en) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd Carbon-covered graphite anode material for lithium-ion secondary battery, its manufacturing method, and anode for lithium-ion secondary battery and lithium-ion secondary battery using the anode
KR20190062400A (en) 2016-10-13 2019-06-05 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Lithium ion secondary battery and electric appliance using the same
CN116081615A (en) * 2021-11-08 2023-05-09 湖南中科星城石墨有限公司 Artificial graphite negative electrode material, preparation method and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276566B (en) * 2014-09-09 2016-09-14 深圳市本征方程石墨烯技术股份有限公司 A kind of Graphene and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117334A (en) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd Carbon-covered graphite anode material for lithium-ion secondary battery, its manufacturing method, and anode for lithium-ion secondary battery and lithium-ion secondary battery using the anode
KR20190062400A (en) 2016-10-13 2019-06-05 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Lithium ion secondary battery and electric appliance using the same
US11289706B2 (en) 2016-10-13 2022-03-29 National Institute Of Advanced Industrial Science And Technology Lithium ion secondary battery and electric device using same
CN116081615A (en) * 2021-11-08 2023-05-09 湖南中科星城石墨有限公司 Artificial graphite negative electrode material, preparation method and application
WO2023078159A1 (en) * 2021-11-08 2023-05-11 湖南中科星城石墨有限公司 Artificial graphite negative electrode material, preparation method, and use

Also Published As

Publication number Publication date
JP3807691B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
CA2772680C (en) Material consisting of composite oxide particles, method for preparing same, and use thereof as electrode active material
TWI568067B (en) Process for making fluorinated lithium vanadium polyanion powders for batteries
CA2817058C (en) Method for optimizing a cathode material and cathode material having enhanced electrochemical properties
CN111276674B (en) Modified graphite negative electrode material, preparation method thereof and battery containing modified graphite negative electrode
JP7122632B2 (en) Positive electrode for secondary battery and secondary battery
JP2018531497A (en) Method for manufacturing sodium ion battery
CN112768688A (en) Lithium iron phosphate material, preparation method thereof and lithium ion battery
CN111033871B (en) Aqueous secondary battery
CN111755690A (en) Alkali metal composite negative electrode material and preparation method thereof
CN112701260B (en) In-situ carbon-coated titanium niobate composite material and preparation method and application thereof
JP2004303496A (en) Secondary battery and method of manufacturing positive electrode material therefor
JP2018517256A (en) Method for protecting electrode material from moisture
JP2000357533A (en) Polycarbonate electrolyte and polymer lithium battery containing the same
CN112952075B (en) Composite negative electrode material, preparation method thereof, negative electrode material and lithium ion battery
JPH10334916A (en) Negative electrode for lithium secondary battery and its manufacture
JPH0325866A (en) Secondary battery
JP2011171248A (en) Solid electrolyte and all-solid lithium secondary battery
CN114361433A (en) Lithium battery negative electrode material MXene and preparation method and application thereof
KR102337900B1 (en) Lithium cobalt oxide positive electrode active material and secondary battery using the same
JP2020009560A (en) Positive electrode active material and method of producing positive electrode active material
JP7507406B2 (en) Secondary battery
Zhang et al. Insights into the multi-functional lithium difluoro (oxalate) borate additive in boosting the Li-ion reaction kinetics for Li 3 VO 4 anodes
WO2024070147A1 (en) Positive electrode for secondary battery, production method therefor, and secondary battery
JP4857653B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
CN115602849A (en) Carbon material substrate with three-dimensional support structure for alkali metal battery and preparation method and application thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees