[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1032370A - Growfh method of nitride compound semiconductor and semiconductor device - Google Patents

Growfh method of nitride compound semiconductor and semiconductor device

Info

Publication number
JPH1032370A
JPH1032370A JP18721096A JP18721096A JPH1032370A JP H1032370 A JPH1032370 A JP H1032370A JP 18721096 A JP18721096 A JP 18721096A JP 18721096 A JP18721096 A JP 18721096A JP H1032370 A JPH1032370 A JP H1032370A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
nitride
based compound
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18721096A
Other languages
Japanese (ja)
Inventor
Kenji Uchida
憲治 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18721096A priority Critical patent/JPH1032370A/en
Publication of JPH1032370A publication Critical patent/JPH1032370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To turn a buffer layer into columnar crystal of high density without deteriorating it in surface state by a method in which the buffer layer is turned into columnar crystal after a dielectric film is formed on its surface. SOLUTION: An N-GaN contact layer 4, an N-GaN clad layer 5, a Zn-doped GaInN active layer 6, a P-GaN clad layer 7, and a P-GaN contact layer 8 are successively regrown on a GaN buffer layer 2 of columnar crystal. Thereafter, an etching mask is formed on the P-GaN contact layer 8, and the laminate composed of the layers 4 to 8 is dry-etched as far as a part of the N-GaN contact layer 4. Then, a P-side electrode 9 and an N-side electrode 10 are formed, and the laminate with the electrodes 9 and 10 is divided into light emitting diode element chips of nitride compound semiconductor. A light emitting diode device of this structure is possessed of an epitaxial layer uniform in crystal orientation, so that it is lessened in light scattering loss, and a regrown nitride compound layer is improved in crystallinity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高品質な窒化物系化
合物半導体層を得る結晶成長法に係わる。特に、紫外領
域から可視領域にかけての自然放出発光および誘導放出
光によるレーザ光を得るに好適な窒化物系化合物半導体
発光素子構造の成長法及びこれを応用した発光ダイオー
ド並びに半導体レーザ素子等の半導体装置及びその製造
方法に関する。
The present invention relates to a crystal growth method for obtaining a high-quality nitride-based compound semiconductor layer. In particular, a method of growing a nitride-based compound semiconductor light emitting device structure suitable for obtaining laser light by spontaneous emission light and stimulated emission light from the ultraviolet region to the visible region, and a semiconductor device such as a light emitting diode and a semiconductor laser device using the same And its manufacturing method.

【0002】[0002]

【従来の技術】GaNを中心とするAlN、InNから
成る(AlxGa1-x1-yInyN窒化物系化合物半導体
は、全ての組成領域において直接遷移型であり、大きな
バンドギャップエネルギを有する材料である。このた
め、次世代の短波長発光素子材料として強く期待されて
いる。しかし、これらの化合物半導体は六方晶構造の結
晶構造を有するため、従来のGaAs、InP等のIII
−V族化合物半導体のように格子整合する基板結晶が存
在しない。このため、現在窒化物系化合物半導体の結晶
成長は、同様な六方晶構造を有するサファイアを基板結
晶に用いて成長されてきた。しかしながら、(000
1)面サファイア基板結晶と窒化物系化合物半導体で代
表的なGaNとの間には約16%近くもの格子不整が存
在する。したがって、サファイア基板上への窒化物系化
合物半導体層の成長では、良好な表面モフォロジを有す
るエピタキシャル膜を得ることが非常に困難であった。
2. Description of the Related Art An (Al x Ga 1 -x ) 1 -y In y N nitride-based compound semiconductor composed of AlN and InN centered on GaN is a direct transition type in all composition regions and has a large band gap. It is a material having energy. Therefore, it is strongly expected as a next-generation short-wavelength light-emitting element material. However, since these compound semiconductors have a hexagonal crystal structure, conventional compound semiconductors such as GaAs, InP, etc.
There is no substrate crystal that is lattice-matched as in a group V compound semiconductor. For this reason, nitride compound semiconductors are currently grown using sapphire having a similar hexagonal structure as a substrate crystal. However, (000
1) Nearly 16% of lattice irregularities exist between a plane sapphire substrate crystal and GaN, which is a typical nitride-based compound semiconductor. Therefore, in growing a nitride-based compound semiconductor layer on a sapphire substrate, it has been very difficult to obtain an epitaxial film having good surface morphology.

【0003】これに対し、低温で成長したバッファ層を
用いる2段階成長法が提案された。(S.Nakamu
ra,Jpn.J.Appl.Phys.30,L17
05(1991))。これは、サファイア基板上に低温
(約600度)にてバッファ層なるものを形成し、続け
て高温(約1000度)に昇温し窒化物系化合物半導体
層を成長する方法である。ここで、低温成長後のバッフ
ァ層は非晶質の状態である。つまり、基板結晶軸に対
し、バッファ層の結晶が配向していない状態である。し
かし、次に高温にて成長する半導体層の成長温度までの
昇温過程とその後の高温状態下によって、非晶質であっ
たバッファ層では基板の結晶軸に配向した柱状結晶が高
密度に形成される。この高密度な柱状結晶は、その後成
長する窒化物系化合物半導体成長時の核となって作用す
る。この結果、大きな格子不整が存在するにも関わらず
直接成長した場合よりも良好な窒化物系化合物半導体エ
ピタキシャル膜を成長出来るようになった。しかしなが
ら、上記従来技術では以下のような問題があった。
On the other hand, a two-step growth method using a buffer layer grown at a low temperature has been proposed. (S. Nakamu
ra, Jpn. J. Appl. Phys. 30, L17
05 (1991)). In this method, a buffer layer is formed on a sapphire substrate at a low temperature (about 600 ° C.), and then heated to a high temperature (about 1000 ° C.) to grow a nitride-based compound semiconductor layer. Here, the buffer layer after low-temperature growth is in an amorphous state. That is, the crystal of the buffer layer is not oriented with respect to the substrate crystal axis. However, due to the process of raising the temperature to the growth temperature of the semiconductor layer that grows at the next higher temperature and the subsequent high temperature, columnar crystals oriented in the crystal axis of the substrate are formed at a high density in the buffer layer that was amorphous. Is done. This high-density columnar crystal acts as a nucleus during the growth of a nitride-based compound semiconductor that is subsequently grown. As a result, it becomes possible to grow a nitride-based compound semiconductor epitaxial film better than the case of direct growth despite the presence of a large lattice mismatch. However, the conventional technique has the following problems.

【0004】低温バッファ層の成長時より高温状態下と
なる昇温過程および高温成長前においては、バッファ層
表面からV族元素である窒素の分解、脱離が起こり、そ
の表面平坦性が著しく悪化する。これは、窒素の平衡蒸
気圧が高いことに起因している。この表面平坦性の悪化
は、その後の窒化物系化合物半導体層の高温成長初期お
いて重要である核の低密度化、不均一化をもたらす。こ
の結果、基板結晶軸に対しエピタキシャル膜の配向性が
乱れるばかりではなく、その表面モフォロジも不均一に
なるという問題があった。また、このようなバッファ層
表面状態の悪化は急峻な界面平坦性が要求される量子井
戸構造の作製時に問題となる。
[0004] In the temperature raising process in which the temperature is higher than that in the growth of the low-temperature buffer layer and before the high-temperature growth, decomposition and desorption of nitrogen, which is a Group V element, occur from the surface of the buffer layer, and the surface flatness is significantly deteriorated. I do. This is due to the high equilibrium vapor pressure of nitrogen. The deterioration of the surface flatness leads to a reduction in the density of the nucleus and an unevenness of the nucleus which are important in the initial stage of the subsequent high-temperature growth of the nitride-based compound semiconductor layer. As a result, not only is the orientation of the epitaxial film disturbed with respect to the substrate crystal axis, but also the surface morphology becomes non-uniform. In addition, such deterioration of the surface state of the buffer layer becomes a problem when manufacturing a quantum well structure that requires steep interface flatness.

【0005】また、窒化物系化合物半導体レーザを考慮
した場合、このようなエピタキシャル膜の配向性の乱れ
等を含めた結晶性の悪化は、注入キャリアの再結合によ
り活性層で発生した放出光を共振器間で誘導する際に、
光散乱損出の増大要因となる。これは、光学利得の低下
をもたらし、閾電流密度の増大につながる。
When a nitride-based compound semiconductor laser is taken into consideration, the deterioration of crystallinity including the disorder of the orientation of the epitaxial film causes emission light generated in the active layer by recombination of injected carriers. When guiding between resonators,
It becomes an increase factor of light scattering loss. This leads to a decrease in optical gain and an increase in threshold current density.

【0006】さらに、従来技術ではバッファ層を一定の
膜厚範囲内に制御することが重要な要素であった。具体
的には、その膜厚は20nm前後にする必要がある。こ
れは、バッファ層の膜厚が薄い場合には、窒素の分解、
脱離が起こるものの、再結晶時間が短時間で済むために
表面状態の悪化を最小限に抑えることが出来る。一方、
厚くした場合には、その再結晶化の時間を要するために
バッファ層の表面状態悪化、つまり核形成密度の低下を
無視することが出来なくなるため、厚膜化出来ないとい
う問題があった。
Further, in the prior art, it was an important factor to control the buffer layer within a certain thickness range. Specifically, the film thickness needs to be around 20 nm. This is because when the thickness of the buffer layer is thin, decomposition of nitrogen,
Desorption occurs, but the recrystallization time is short, so that deterioration of the surface state can be minimized. on the other hand,
When the thickness is increased, the time required for recrystallization is required, so that the deterioration of the surface state of the buffer layer, that is, the decrease in the nucleation density cannot be ignored.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、低温
にて成長した非晶質なバッファ層の表面平坦性を悪化さ
せること無く、且つ高密度で均一な柱状結晶化を行い、
基板結晶軸に対し均一に配向した窒化物系化合物半導体
層をエピタキシャル成長することである。さらにバッフ
ァ層を厚膜化することにより窒化物系化合物半導体の結
晶欠陥密度を低減することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to perform high-density and uniform columnar crystallization without deteriorating the surface flatness of an amorphous buffer layer grown at a low temperature.
This is to epitaxially grow a nitride-based compound semiconductor layer uniformly oriented with respect to the substrate crystal axis. It is another object of the present invention to reduce the crystal defect density of the nitride-based compound semiconductor by increasing the thickness of the buffer layer.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明では次の手段(工程)をとる。第1の手段(工
程)として、低温にて成長した窒化物系化合物半導体層
上に誘電体膜を形成し成長温度よりも高温で熱処理を加
えた後、その膜を除去し窒化物系化合物半導体層を高温
にて再成長する。第2の手段として、これら低温および
高温再成長する窒化物系化合物半導体層は、(Alx
1-x1-yInyN(但し、0≦x≦1、0≦y≦1)
とする。そして、第3の手段として、これらの工程によ
って成長される窒化物系化合物半導体層による素子構造
は、発光ダイオードまたはレーザダイオード等の半導体
装置とする。
In order to achieve the above object, the present invention adopts the following means (steps). As a first means (step), a dielectric film is formed on a nitride-based compound semiconductor layer grown at a low temperature, a heat treatment is applied at a temperature higher than the growth temperature, and the film is removed to remove the nitride-based compound semiconductor. The layer is regrown at high temperature. As a second means, these nitride-based compound semiconductor layers that regrow at low and high temperatures are made of (Al x G
a 1-x ) 1-y In y N (however, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1)
And As a third means, a semiconductor device such as a light-emitting diode or a laser diode is used as an element structure using a nitride-based compound semiconductor layer grown by these steps.

【0009】まず、第1の手段である低温にて成長した
非晶質である窒化物系化合物半導体層上に誘電体膜を形
成することは、熱処理に伴うバッファ層表面からの窒素
の分解、脱離を抑制するためである。この結果、バッフ
ァ層は表面状態が悪化することなく柱状結晶化が進行す
る。さらに、本発明を用いればバッファ層の膜厚は従来
技術よりも厚膜化することができる。このバッファ層の
厚膜化は、サファイア基板と窒化物系化合物半導体間の
大きな格子不整に起因した結晶欠陥密度を従来技術より
も低減させる効果もある。
First, forming a dielectric film on an amorphous nitride-based compound semiconductor layer grown at a low temperature, which is a first means, involves decomposing nitrogen from the buffer layer surface due to heat treatment. This is for suppressing desorption. As a result, columnar crystallization proceeds without deteriorating the surface state of the buffer layer. Further, by using the present invention, the thickness of the buffer layer can be made thicker than in the prior art. Increasing the thickness of the buffer layer also has the effect of reducing the crystal defect density due to large lattice mismatch between the sapphire substrate and the nitride-based compound semiconductor as compared with the prior art.

【0010】詳述すれば、サファイア等の六方晶構造を
有する結晶基板にアンモニア(NH3)雰囲気で且つ5
00〜600℃の温度で窒化物系化合物半導体からなる
非晶質構造の半導体層を形成する。この半導体層は、上
述のNakamuraにより提案されたバッファ層である。本発
明者は、非晶質として形成された窒化物系化合物半導体
においてNの結合、即ちV族元素である窒素(N)がII
I族元素から受ける拘束力が結晶における場合より弱い
ことに着眼した。そしてNは当該窒化物系化合物半導体
層が非晶質構造として形成されたときの温度以上(60
0℃より高温)に加熱されると、当該半導体層からのN
の脱離が温度に応じ顕著となる現象に注目した。一方、
窒化物系化合物半導体の結晶成長温度は約1000℃で
ある。即ち、バッファ層を非晶質の状態でその層上に窒
化物系化合物半導体の結晶を成長させると、バッファ層
の結晶化とこれからのN脱離が略同時に進行するのであ
る。
More specifically, a crystal substrate having a hexagonal structure such as sapphire is placed in an ammonia (NH 3 )
A semiconductor layer having an amorphous structure made of a nitride-based compound semiconductor is formed at a temperature of 00 to 600 ° C. This semiconductor layer is a buffer layer proposed by Nakamura described above. The present inventor has reported that, in a nitride-based compound semiconductor formed as amorphous, N bonds, that is, nitrogen (N) which is a group V element is II
We noticed that the binding force from the group I elements was weaker than in the crystals. N is equal to or higher than the temperature at which the nitride-based compound semiconductor layer is formed as an amorphous structure (60).
(Higher than 0 ° C.), the N
We focused on a phenomenon in which the desorption of methane becomes remarkable according to the temperature. on the other hand,
The crystal growth temperature of the nitride-based compound semiconductor is about 1000 ° C. That is, when a nitride-based compound semiconductor crystal is grown on the buffer layer in an amorphous state, crystallization of the buffer layer and N desorption therefrom proceed substantially simultaneously.

【0011】本発明者は、バッファ層の組成がN脱離に
伴い化学量論比から外れることにより結晶中に配列され
る原子のサイトに空き部分(vacancy)が増え、これが
原子の規則的な配列を阻害し結晶構造を損なう、即ち結
晶の配向性の低下、結晶成長表面の不均一化、ひいては
結晶欠陥を招くと考えた。そして、この問題を解決すべ
くバッファ層上に窒化物系化合物半導体を成長させる前
にバッファ層を結晶化すること、バッファ層の結晶化過
程においてNが脱離しないように誘電体膜でバッファ層
表面を覆いNの抜け道を塞ぐことを考えた。
The inventor of the present invention has found that the composition of the buffer layer deviates from the stoichiometric ratio due to the desorption of N, so that vacancies increase at the sites of the atoms arranged in the crystal, and this increases the regularity of the atoms. It is considered that the alignment is hindered and the crystal structure is impaired, that is, the crystal orientation decreases, the crystal growth surface becomes uneven, and crystal defects are caused. In order to solve this problem, the buffer layer is crystallized before growing the nitride-based compound semiconductor on the buffer layer, and the buffer layer is formed of a dielectric film so that N is not eliminated during the crystallization process of the buffer layer. We considered to cover the surface and block the path of N.

【0012】誘電体膜は、例えばSiO2のように60
0℃以下(500〜600℃)での熱CVD法で形成で
きるものがある。本発明で用いる誘電体材料はSiO2
に限定されないが、600℃以下で成膜でき且つ非晶質
の窒化物系化合物半導体を結晶化させる温度(約100
0℃)まで加熱しても当該誘電体膜が破損しないことが
選定条件となる。誘電体膜の形成温度は、望ましくは5
00℃以下、さらには400〜300℃と低温である方
が誘電体膜形成時におけるN脱離の確率を0に近づける
観点で好ましい。さらに誘電体膜は、結晶化した窒化物
系化合物半導体層に損傷を与えることなく且つ完全に当
該窒化物系化合物半導体層から除去できるという化学的
又は物理的な性質を備える材料であることが望ましい。
The dielectric film is made of, for example, SiO 2
Some can be formed by a thermal CVD method at 0 ° C. or lower (500 to 600 ° C.). The dielectric material used in the present invention is SiO 2
However, the temperature is not limited to 600 ° C., and the temperature at which an amorphous nitride-based compound semiconductor can be crystallized (about 100 ° C.).
(0 ° C.) is a condition that the dielectric film is not damaged. The formation temperature of the dielectric film is preferably 5
A temperature as low as 00 ° C. or lower, more preferably 400 to 300 ° C., is preferable from the viewpoint of making the probability of N desorption at the time of forming a dielectric film close to zero. Further, the dielectric film is desirably a material having chemical or physical properties such that the crystallized nitride-based compound semiconductor layer can be completely removed from the nitride-based compound semiconductor layer without damaging it. .

【0013】次に、第2、第3の手段であるバッファ層
上に形成(積層)される窒化物系化合物半導体層の組成
を(AlxGa1-x1-yInyN(但し、0≦x≦1、0
≦y≦1)とし、当該半導体層(積層構造)を用いて発
光ダイオードまたはレーザ素子構造を形成することは、
紫外領域から可視領域の発光を実現する上で好ましい。
Next, the composition of the nitride-based compound semiconductor layer formed (laminated) on the buffer layer, which is the second and third means, is changed to (Al x Ga 1 -x ) 1 -y In y N (however, , 0 ≦ x ≦ 1, 0
≦ y ≦ 1) and forming a light emitting diode or a laser element structure using the semiconductor layer (laminated structure)
It is preferable in realizing light emission from the ultraviolet region to the visible region.

【0014】このように、低温成長したバッファ層上に
誘電体膜を形成し再結晶化後、誘電体膜を除去したバッ
ファ層上に窒化物系化合物半導体層を再成長すること
で、良好な結晶性を有する窒化物系化合物半導体エピタ
キシャル膜を得ることが出来る。
As described above, by forming a dielectric film on the buffer layer grown at a low temperature and recrystallizing it, the nitride-based compound semiconductor layer is regrown on the buffer layer from which the dielectric film has been removed. A nitride-based compound semiconductor epitaxial film having crystallinity can be obtained.

【0015】以上に記した本発明の窒化物系化合物半導
体の成長方法によれば、次のような構成上の特徴を有す
る半導体装置(特に、発光ダイオードや半導体レーザ素
子等の半導体光素子)を形成できる。その構成は、(1)
六方晶構造を有する基板結晶上に窒素を含むIII−V族
化合物半導体からなる半導体層を積層して構成され、
(2)積層された半導体層は六方晶構造を有し、且つ(3)基
板結晶との接合面における該半導体層の組成は実質的に
化学量論比を満たしているという要件で規定される。完
成した半導体装置として見ると、(1)(2)についてはサフ
ァイア等の六方晶構造を有する基板結晶に形成された上
述のバッファ層及びこの層上に積層された窒化物系化合
物半導体層を巨視的に捉えた当該半導体装置の基本構造
である。これに対し、(3)は上述の窒化物系化合物半導
体の成長方法に基づく特徴であり、基板結晶と接合され
る半導体層即ちバッファ層におけるN脱離が生じない結
果によるものである。ここで「実質上」なる規定を入れ
たのは、バッファ層がp導電型又はn導電型の不純物を
含めて形成された場合(例えば、V族元素のごく一部が
IV族元素に置換された場合)を考慮したためである。バ
ッファ層は化学量論組成にあっても、基板結晶と窒化物
系化合物半導体結晶との格子不整合からバッファ層に欠
陥が入るため、接合界面にて必ずしも単結晶構造となる
とは限らない。このような半導体装置の構成をベース
に、窒化物系化合物半導体層を積層して少なくともpn
接合を備えた発光ダイオード構造を形成してもよく、ま
た少なくともpn接合及び共振器を備えたレーザダイオ
ード構造(レーザ共振器構造)を形成してもよい。
According to the method for growing a nitride-based compound semiconductor of the present invention described above, a semiconductor device (particularly, a semiconductor optical device such as a light emitting diode or a semiconductor laser device) having the following structural characteristics can be manufactured. Can be formed. Its composition is (1)
It is configured by stacking a semiconductor layer made of a III-V compound semiconductor containing nitrogen on a substrate crystal having a hexagonal structure,
(2) The laminated semiconductor layer has a hexagonal structure, and (3) the composition of the semiconductor layer at the bonding surface with the substrate crystal is defined by the requirement that the composition substantially satisfies the stoichiometric ratio. . Looking at the completed semiconductor device, (1) and (2) are macroscopic views of the buffer layer formed on the substrate crystal having a hexagonal structure such as sapphire and the nitride-based compound semiconductor layer laminated on this layer. This is the basic structure of the semiconductor device as viewed from the perspective. On the other hand, (3) is a feature based on the method for growing a nitride-based compound semiconductor described above, and is based on the result that N desorption does not occur in the semiconductor layer, that is, the buffer layer bonded to the substrate crystal. Here, the definition of “substantially” is given when the buffer layer is formed including p-type or n-type impurities (for example, when a very small part of the group V element is used).
This is because the case of substitution with a group IV element) was considered. Even if the buffer layer has a stoichiometric composition, a defect is introduced into the buffer layer due to a lattice mismatch between the substrate crystal and the nitride-based compound semiconductor crystal. Based on the configuration of such a semiconductor device, a nitride-based compound semiconductor layer is
A light emitting diode structure having a junction may be formed, or a laser diode structure (laser resonator structure) having at least a pn junction and a resonator may be formed.

【0016】なお、上述の説明、及び以降の説明におけ
る窒化物系化合物半導体とは、V族元素として少なくと
もN(窒素)を含むIII−V族化合物半導体として定義
し、この半導体はIII族元素としてAl、Ga、及びI
nの群から選ばれるいずれかの元素を含み、またV族元
素としてNの他にP、As、及びSbの群から選ばれる
いずれかの元素を含み得る。V族元素がNのみの場合も
ある。
In the above description and in the following description, a nitride-based compound semiconductor is defined as a group III-V compound semiconductor containing at least N (nitrogen) as a group V element. Al, Ga, and I
It includes any element selected from the group of n, and may include any element selected from the group of P, As, and Sb in addition to N as the group V element. In some cases, the group V element is only N.

【0017】[0017]

【発明の実施の形態】以下、窒化物系化合物半導体から
なるバッファ層を柱状結晶化した後、当該バッファ層上
へ窒化物系化合物半導体層を成長させて作製した発光ダ
イオードおよび半導体レーザ素子の実施例を以て、本発
明の実施の形態を具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a light emitting diode and a semiconductor laser device manufactured by column-crystallization of a buffer layer made of a nitride-based compound semiconductor and then growing a nitride-based compound semiconductor layer on the buffer layer will be described. Embodiments of the present invention will be specifically described with reference to examples.

【0018】<実施例1>はじめに、本発明の第1の実
施例である窒化物系化合物半導体発光ダイオードについ
て図1、2を用いて説明する。
Embodiment 1 First, a nitride-based compound semiconductor light-emitting diode according to a first embodiment of the present invention will be described with reference to FIGS.

【0019】原料には、有機金属原料であるトリメチル
ガリウム、トリメチルアルミニウムおよびアンモニアガ
スを用いた。有機金属気相成長法により(0001)面
サファイア基板1上に成長温度600度にてGaN低温
バッファ層(厚さ20nm)2を堆積した。その後、成
長反応室より試料を取り出し、常圧(約760Tor
r)のSiH4+O2雰囲気での熱CVD法(温度500
〜600℃)を用いてSiO2膜(厚さ200nm)3
を形成した。ここで、バッファ層上に形成する誘電体膜
の形成方法、膜種は他のいずれでも良い。
As raw materials, trimethylgallium, trimethylaluminum and ammonia gas, which are organic metal raw materials, were used. A GaN low-temperature buffer layer (thickness: 20 nm) 2 was deposited on a (0001) plane sapphire substrate 1 at a growth temperature of 600 ° C. by metal organic chemical vapor deposition. Thereafter, the sample was taken out from the growth reaction chamber, and was subjected to normal pressure (about 760 Torr).
r) thermal CVD method in SiH 4 + O 2 atmosphere (temperature 500
To 600 ° C.) using an SiO 2 film (200 nm thick) 3
Was formed. Here, the method of forming the dielectric film formed on the buffer layer and the type of film may be any other.

【0020】図1にSiO2膜3を形成した基板断面図
を示す。再び有機金属気相成長装置を用いてアンモニア
のみを流した温度1000度の雰囲気中で熱処理を行
い、バッファ層2の再結晶化を行った。ここで、バッフ
ァ層表面はSiO2膜3で覆われているために窒素の分
解、脱離が進むことなく、基板結晶軸に対し配向した柱
状結晶を高密度且つ均一に形成することができる。この
バッファ層再結晶化の後、SiO2膜3を取り除き、1
000度の高温にて以下に示すような窒化物系化合物半
導体多層構造を再成長した。
FIG. 1 is a sectional view of a substrate on which an SiO 2 film 3 is formed. The buffer layer 2 was recrystallized again by using a metalorganic vapor phase epitaxy apparatus in a 1000 ° C. atmosphere in which only ammonia flowed. Here, since the surface of the buffer layer is covered with the SiO 2 film 3, columnar crystals oriented with respect to the substrate crystal axis can be formed with high density and uniformity without decomposition and desorption of nitrogen. After the recrystallization of the buffer layer, the SiO 2 film 3 is removed and 1
At a high temperature of 000 ° C., a nitride-based compound semiconductor multilayer structure as shown below was regrown.

【0021】まず、柱状結晶化したGaNバッファ層2
上に、n−GaNコンタクト層(厚さ4μm、n=3×
1018cm-3)4、n−GaNクラッド層(厚さ2.5
μm、n=1×1018cm-3)5、ZnドープGa0.9
In0.1N活性層(厚さ0.1μm、p=1×1018cm
-3)6、p−GaNクラッド層(厚さ1.5μm、p=
8×1017cm-3)7、およびp−GaNコンタクト層
(厚さ0.5μm、n=3×1018cm-3)8を順次再
成長した。その後、熱CVD法およびホトリソグラフィ
技術によりp−GaNコンタクト層8上にエッチングマ
スクを形成後、ドライエッチング技術を用いてn−Ga
Nコンタクト層4の一部までエッチングを行った。この
際のエッチングはウエット、RIE、RIBE、イオン
ミリング等、方法は問わない。その後、酸化膜およびホ
トリソグラフィ技術を用いて電子ビーム蒸着法およびリ
フトオフにてp側電極9、n側電極10を形成後、チッ
プ化し、図2に示すような窒化物系化合物半導体による
発光ダイオード素子を作製した。
First, the columnar crystallized GaN buffer layer 2
An n-GaN contact layer (thickness 4 μm, n = 3 ×
10 18 cm −3 ) 4, n-GaN cladding layer (thickness 2.5)
μm, n = 1 × 10 18 cm −3 ) 5, Zn-doped Ga 0.9
In 0.1 N active layer (0.1 μm thick, p = 1 × 10 18 cm)
-3 ) 6, p-GaN cladding layer (1.5 μm thick, p =
8 × 10 17 cm −3 ) 7 and a p-GaN contact layer (0.5 μm in thickness, n = 3 × 10 18 cm −3 ) 8 were sequentially regrown. After that, an etching mask is formed on the p-GaN contact layer 8 by a thermal CVD method and a photolithography technique, and then n-Ga is etched by a dry etching technique.
Etching was performed up to a part of the N contact layer 4. Etching at this time may be performed by any method such as wet, RIE, RIBE, and ion milling. Thereafter, a p-side electrode 9 and an n-side electrode 10 are formed by an electron beam evaporation method and a lift-off method using an oxide film and a photolithography technique, and then formed into a chip, and a light emitting diode element using a nitride-based compound semiconductor as shown in FIG. Was prepared.

【0022】この発光ダイオード素子において、電流注
入を行ったところ強い自然放出発光を確認した。その発
光スペクトルは、電流値20mAにおいて波長440n
mであった。比較のために、従来技術である2段階成長
により作製した同様構造の発光ダイオード素子と比べた
場合、その発光強度は本発明によって作製した素子が1
桁強いものであった。これは、再成長した窒化物系化合
物半導体層の結晶性が向上したことを示す結果である。
つまり、エピタキシャル膜の結晶配向性が均一であるた
めに光散乱損出が低減されたためと考えられる。
In the light emitting diode device, when current was injected, strong spontaneous emission was confirmed. Its emission spectrum shows a wavelength of 440 n at a current value of 20 mA.
m. For comparison, when compared with a light emitting diode device having a similar structure manufactured by two-stage growth, which is a conventional technique, the light emitting intensity of the device manufactured according to the present invention is 1 unit.
It was an order of magnitude stronger. This is a result showing that the crystallinity of the regrown nitride-based compound semiconductor layer was improved.
That is, it is considered that the light scattering loss was reduced because the crystal orientation of the epitaxial film was uniform.

【0023】<実施例2>次に本発明の第2の実施例で
ある窒化物系化合物半導体レーザ素子の製造法について
図3を用いて説明する。低温にて成長したバッファ層の
柱状結晶化の方法は、本発明の第1の実施例と同様に行
った。但し本実施例では、GaNバッファ層2の厚さは
0.5μmとした。その後、実施例1と同様に有機金属
気相成長法によって順次レーザ用ダブルヘテロ多層構造
を再成長した。まず、1000度にて柱状結晶化したG
aNバッファ層2(厚さ0.5μm)上に、n−GaN
コンタクト層(厚さ4μm、n=3×1018cm-3
4、n−GaNクラッド層(厚さ2.5μm、n=1×
1018cm-3)5、アンドープ多重量子井戸構造活性層
(井戸層Ga0.9In0.1N、厚さ3nm、障壁層Ga
N、厚さ3nm)11、p−GaNクラッド層(厚さ
1.5μm、p=8×1017cm-3)7を順次再成長し
た。その後、熱CVD法およびホトリソグラフィ技術に
よりp−GaNクラッド層上に幅5μmのストライプエ
ッチングマスクを形成し、ドライエッチング技術を用い
てp−GaNクラッド層7を0.3μm残すまでエッチ
ングを行い導波路構造12を形成した。さらに、このエ
ッチングマスクを選択成長マスクとしてn−GaN電流
狭窄層(厚さ1μm、n=3×1018cm-3)13を選
択成長し、エッチングマスクを除去後p−GaNコンタ
クト層(厚さ0.5μm、n=3×1018cm-3)8に
て埋込成長を行った。
Embodiment 2 Next, a method for manufacturing a nitride-based compound semiconductor laser device according to a second embodiment of the present invention will be described with reference to FIG. The columnar crystallization of the buffer layer grown at a low temperature was performed in the same manner as in the first embodiment of the present invention. However, in the present embodiment, the thickness of the GaN buffer layer 2 was 0.5 μm. Thereafter, the double hetero multilayer structure for laser was sequentially regrown by the metal organic chemical vapor deposition method in the same manner as in Example 1. First, columnar crystallized G at 1000 degrees
On the aN buffer layer 2 (0.5 μm thickness), n-GaN
Contact layer (4 μm thickness, n = 3 × 10 18 cm −3 )
4. n-GaN cladding layer (2.5 μm in thickness, n = 1 ×
10 18 cm −3 ) 5, undoped multiple quantum well structure active layer (well layer Ga 0.9 In 0.1 N, thickness 3 nm, barrier layer Ga
N, thickness 3 nm) 11 and a p-GaN cladding layer (thickness 1.5 μm, p = 8 × 10 17 cm −3 ) 7 were sequentially regrown. Thereafter, a stripe etching mask having a width of 5 μm is formed on the p-GaN cladding layer by a thermal CVD method and a photolithography technique, and etching is performed using a dry etching technique until the p-GaN cladding layer 7 remains at 0.3 μm. Structure 12 was formed. Further, an n-GaN current confinement layer (thickness 1 μm, n = 3 × 10 18 cm −3 ) 13 is selectively grown using this etching mask as a selective growth mask, and after removing the etching mask, the p-GaN contact layer (thickness) is removed. Embedding growth was performed at 0.5 μm, n = 3 × 10 18 cm −3 ) 8.

【0024】その後、実施例1と同様に、n−GaNコ
ンタクト層4の一部までエッチングを行い、p側電極9
およびn側電極10を形成後、劈開法によって共振器を
形成しチップとした。この後、素子の劈開面に低反射膜
14と高反射膜15をスパッタ法により形成した。図3
に本発明の第2の実施例であるレーザダイオード素子構
造図を示す。
Thereafter, similarly to the first embodiment, etching is performed up to a part of the n-GaN contact layer 4, and the p-side electrode 9 is etched.
After forming the n-side electrode 10, a resonator was formed by a cleavage method to obtain a chip. Thereafter, a low reflection film 14 and a high reflection film 15 were formed on the cleavage plane of the device by a sputtering method. FIG.
2 shows a laser diode element structure diagram according to a second embodiment of the present invention.

【0025】このレーザ素子に電流注入を行ったとこ
ろ、電流値20mA時にはピーク波長365nmの強い
自然放出光が見られた。さらに、注入電流量を増加しい
くと、自然放出光強度は更に強くなりその半値幅も狭く
変化した。そして、電流値60mAで誘導放出光が見ら
れはじめた。その時の発振波長は、360nmであっ
た。これに対し、同様な構造を従来の2段階成長法によ
り成長した素子構造において、電流注入を行ったところ
誘導放出光は見られなかった。これは、低温で成長した
バッファ層表面からの窒素の分解、脱離によって表面平
坦性が悪化したために、成長した窒化物系化合物半導体
層によるレーザ構造の結晶配向性が乱れ結晶内部の光散
乱損出が増大したためである。
When current injection was performed on this laser element, strong spontaneous emission light having a peak wavelength of 365 nm was observed at a current value of 20 mA. Further, as the amount of injected current was increased, the intensity of spontaneous emission light was further increased, and the half-value width was also narrowed. Then, stimulated emission light began to be seen at a current value of 60 mA. The oscillation wavelength at that time was 360 nm. On the other hand, when a current was injected in a device structure in which a similar structure was grown by a conventional two-step growth method, no stimulated emission light was observed. This is because the surface flatness is deteriorated due to the decomposition and desorption of nitrogen from the surface of the buffer layer grown at a low temperature, so that the crystal orientation of the laser structure by the grown nitride-based compound semiconductor layer is disturbed and light scattering loss inside the crystal is caused. This is because the outflow has increased.

【0026】また、これらの結晶中の欠陥密度を透過電
子顕微鏡観察により評価したところ、従来の2段階成長
法で成長した試料では約109cm-3もの貫通転位が観
察されたのに対し、本実施例で成長した厚膜のバッファ
層を用いた試料では約105cm-3まで低減された。この
ように本発明では、バッファ層の厚膜化によって結晶欠
陥密度を低減することもできる。
When the defect density in these crystals was evaluated by observation with a transmission electron microscope, threading dislocations of about 10 9 cm -3 were observed in the sample grown by the conventional two-step growth method. In the sample using the thick buffer layer grown in the present example, it was reduced to about 10 5 cm −3 . Thus, in the present invention, the crystal defect density can be reduced by increasing the thickness of the buffer layer.

【0027】[0027]

【発明の効果】本発明であるバッファ層の柱状結晶化を
その層表面に誘電体膜を形成して行うことにより、柱状
結晶化時におけるバッファ層表面からの窒素の分解、脱
離が抑制できるため、バッファ層の表面状態を悪化させ
ることなく高密度な柱状結晶化が可能となる。また何れ
のバッファ層膜厚の場合にも、基板の結晶軸に均一に配
向し、且つ低欠陥の窒化物系化合物半導体エピタキシャ
ル層を成長することができる。
The columnar crystallization of the buffer layer according to the present invention is performed by forming a dielectric film on the surface of the layer, whereby the decomposition and desorption of nitrogen from the buffer layer surface during columnar crystallization can be suppressed. Therefore, high-density columnar crystallization can be performed without deteriorating the surface state of the buffer layer. Also, regardless of the thickness of the buffer layer, it is possible to grow a nitride-based compound semiconductor epitaxial layer that is uniformly oriented to the crystal axis of the substrate and has low defects.

【0028】従って、バッファ層の膜厚は従来技術より
も厚膜化することができ、これによりサファイア基板と
窒化物系化合物半導体間に存在する大きな格子不整に起
因した結晶欠陥密度を従来技術よりも低減させることが
できる。即ち、バッファ層をサファイア基板接合界面か
らの結晶欠陥を十分吸収できる厚さに形成できるので、
バッファ層上に積層されて半導体装置を構成する各半導
体層への結晶欠陥の拡がりを低減できる。
Therefore, the thickness of the buffer layer can be made thicker than in the prior art, thereby reducing the crystal defect density caused by the large lattice mismatch existing between the sapphire substrate and the nitride-based compound semiconductor as compared with the prior art. Can also be reduced. That is, the buffer layer can be formed to a thickness that can sufficiently absorb crystal defects from the sapphire substrate bonding interface.
It is possible to reduce the spread of crystal defects to each semiconductor layer that is stacked on the buffer layer and configures the semiconductor device.

【0029】さらに、バッファ層及びその上部に形成さ
れる半導体層を(AlxGa1-x1-yInyN窒化物系化
合物半導体で形成し、発光ダイオードまたはレーザ素子
構造を形成することにより、紫外領域から可視領域の発
光が可能な光源を実現することができる。この結果、強
い光強度の窒化物半導体発光ダイオードおよび低閾値の
半導体レーザ発振を容易に実現させることができる。
Further, the buffer layer and the semiconductor layer formed thereon are formed of (Al x Ga 1 -x ) 1 -y In y N nitride compound semiconductor to form a light emitting diode or a laser device structure. Thereby, a light source capable of emitting light in the ultraviolet region to the visible region can be realized. As a result, a nitride semiconductor light emitting diode having a high light intensity and a semiconductor laser oscillation having a low threshold can be easily realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SiO2膜を形成した基板断面図。FIG. 1 is a cross-sectional view of a substrate on which an SiO 2 film is formed.

【図2】本発明の第1の実施例である発光ダイオード素
子構造図。
FIG. 2 is a structural view of a light emitting diode element according to a first embodiment of the present invention.

【図3】本発明の第2の実施例であるレーザダイオード
素子構造図。
FIG. 3 is a structural view of a laser diode element according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…サファイア基板、2…バッファ層、3…SiO
2膜、4…n−GaNコンタクト層、5…n−GaNク
ラッド層、6…ZnドープGaInN活性層、7…p−
GaNクラッド層、8…p−GaNコンタクト層、9…
p側電極、10…n側電極、11…多重量子井戸活性
層、12…導波路構造、13…n−GaN電流狭窄層、
14…前方低反射膜、15…後方高反射膜。
DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate, 2 ... Buffer layer, 3 ... SiO
2 film, 4 ... n-GaN contact layer, 5 ... n-GaN cladding layer, 6 ... Zn-doped GaInN active layer, 7 ... p-
GaN cladding layer, 8 ... p-GaN contact layer, 9 ...
p-side electrode, 10 n-side electrode, 11 multiple quantum well active layer, 12 waveguide structure, 13 n-GaN current confinement layer,
14: front low reflection film, 15: rear high reflection film.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板上に成長した窒化物系化合物半導体層
上に誘電体膜を形成後熱処理する工程と、該誘電体膜を
除去した後の該半導体層上に窒化物系化合物半導体を再
成長する工程からなることを特徴とする窒化物系化合物
半導体の成長方法。
1. A step of forming a dielectric film on a nitride-based compound semiconductor layer grown on a substrate and then performing a heat treatment, and removing the nitride-based compound semiconductor on the semiconductor layer after removing the dielectric film. A method for growing a nitride-based compound semiconductor, comprising a step of growing.
【請求項2】上記窒化物系化合物半導体層は(Alx
1-x)InyN(但し、0≦x≦1、0≦y≦1)であ
ることを特徴とする請求項1に記載の窒化物系化合物半
導体の成長方法。
2. The method according to claim 1, wherein the nitride-based compound semiconductor layer comprises (Al x G
2. The method for growing a nitride-based compound semiconductor according to claim 1, wherein a 1-x ) In y N (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1).
【請求項3】上記窒化物系化合物半導体層の再成長工程
において、少なくともpn接合を備えた発光ダイオード
構造を形成することを特徴とする請求項1又は請求項2
に記載の窒化物系化合物半導体の成長方法。
3. The light-emitting diode structure having at least a pn junction in the step of regrowing the nitride-based compound semiconductor layer.
3. The method for growing a nitride-based compound semiconductor according to item 1.
【請求項4】上記窒化物系化合物半導体層の再成長工程
において、少なくともpn接合及び共振器を備えたレー
ザダイオード構造であることを特徴とする請求項1又は
請求項2に記載の窒化物系化合物半導体の成長方法。
4. The nitride-based semiconductor device according to claim 1, wherein the regrowth step of the nitride-based compound semiconductor layer has a laser diode structure having at least a pn junction and a resonator. A method for growing a compound semiconductor.
【請求項5】六方晶構造を有する基板結晶上に窒素を含
むIII−V族化合物半導体からなる半導体層を積層して
構成され、上記積層された半導体層は六方晶構造を有
し、且つ上記基板結晶との接合面における該半導体層の
組成は実質的に化学量論比を満たしていることを特徴と
する半導体装置。
5. A semiconductor crystal comprising a group III-V compound semiconductor containing nitrogen, which is laminated on a substrate crystal having a hexagonal structure, wherein the laminated semiconductor layer has a hexagonal structure, and A semiconductor device, wherein a composition of the semiconductor layer at a bonding surface with a substrate crystal substantially satisfies a stoichiometric ratio.
JP18721096A 1996-07-17 1996-07-17 Growfh method of nitride compound semiconductor and semiconductor device Pending JPH1032370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18721096A JPH1032370A (en) 1996-07-17 1996-07-17 Growfh method of nitride compound semiconductor and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18721096A JPH1032370A (en) 1996-07-17 1996-07-17 Growfh method of nitride compound semiconductor and semiconductor device

Publications (1)

Publication Number Publication Date
JPH1032370A true JPH1032370A (en) 1998-02-03

Family

ID=16202018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18721096A Pending JPH1032370A (en) 1996-07-17 1996-07-17 Growfh method of nitride compound semiconductor and semiconductor device

Country Status (1)

Country Link
JP (1) JPH1032370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100631840B1 (en) 2004-06-03 2006-10-09 삼성전기주식회사 Nitride semiconductor light emitting device for flip chip
WO2017043628A1 (en) * 2015-09-11 2017-03-16 国立大学法人三重大学 Method for manufacturing nitride semiconductor substrate, nitride semiconductor substrate, and device for heating same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100631840B1 (en) 2004-06-03 2006-10-09 삼성전기주식회사 Nitride semiconductor light emitting device for flip chip
WO2017043628A1 (en) * 2015-09-11 2017-03-16 国立大学法人三重大学 Method for manufacturing nitride semiconductor substrate, nitride semiconductor substrate, and device for heating same
JP2017055116A (en) * 2015-09-11 2017-03-16 国立大学法人三重大学 Nitride semiconductor substrate manufacturing method, nitride semiconductor substrate and heating device of the same
JP2018056568A (en) * 2015-09-11 2018-04-05 国立大学法人三重大学 Nitride semiconductor substrate manufacturing method
US10260146B2 (en) 2015-09-11 2019-04-16 Mie University Method for manufacturing nitride semiconductor substrate

Similar Documents

Publication Publication Date Title
JP3785970B2 (en) Method for manufacturing group III nitride semiconductor device
JP3830051B2 (en) Nitride semiconductor substrate manufacturing method, nitride semiconductor substrate, optical semiconductor device manufacturing method, and optical semiconductor device
JP3470623B2 (en) Method for growing nitride III-V compound semiconductor, method for manufacturing semiconductor device, and semiconductor device
JP4284188B2 (en) Nitride semiconductor substrate manufacturing method and nitride semiconductor device manufacturing method
JP3569807B2 (en) Method for manufacturing nitride semiconductor device
US6518082B1 (en) Method for fabricating nitride semiconductor device
US6777253B2 (en) Method for fabricating semiconductor, method for fabricating semiconductor substrate, and semiconductor light emitting device
JP2000232238A (en) Nitride semiconductor light-emitting element and manufacture thereof
JPH1126883A (en) Gallium nitride semiconductor light-emitting device and its manufacture
JP2001308462A (en) Method of manufacturing nitride semiconductor element
JP2003069159A (en) Nitride semiconductor and manufacturing method thereof, and nitride semiconductor device
JP2001135892A (en) Light emitting device of nitride semiconductor
JP3269344B2 (en) Crystal growth method and semiconductor light emitting device
WO2008029915A1 (en) Semiconductor light emitting device and process for producing the same
JPH11243253A (en) Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JPH08274411A (en) Semiconductor laser
JP2001148544A (en) Semiconductor light-emitting element
JPH10215035A (en) Compound semiconductor element and manufacture thereof
US20090135873A1 (en) Process for producing gallium nitride-based compound semiconductor laser element and gallium nitride-based compound semiconductor laser element
JP3458625B2 (en) Semiconductor growth method
JP4631214B2 (en) Manufacturing method of nitride semiconductor film
JP2002008980A (en) Method of growing semiconductor layer, and method of manufacturing semiconductor light-emitting element
JP2001057463A (en) Film structure and element of nitrogen compound semiconductor element, and manufacture of them
JPH10256666A (en) Crystal growth method of nitride based compound semiconductor and semiconductor light emitting element
JPH10326750A (en) Selective formation of high quality gallium nitride layer, high quality gallium nitride layer formation substrate and semiconductor device manufactured on high quality gallium nitride layer grown substrate