JPH10323543A - Method for separating product in microbial reaction - Google Patents
Method for separating product in microbial reactionInfo
- Publication number
- JPH10323543A JPH10323543A JP15032697A JP15032697A JPH10323543A JP H10323543 A JPH10323543 A JP H10323543A JP 15032697 A JP15032697 A JP 15032697A JP 15032697 A JP15032697 A JP 15032697A JP H10323543 A JPH10323543 A JP H10323543A
- Authority
- JP
- Japan
- Prior art keywords
- product
- separation membrane
- separation
- liquid
- microbes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/10—Perfusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/04—Filters; Permeable or porous membranes or plates, e.g. dialysis
Landscapes
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、微生物反応におけ
る生成系から、生成物を効率よく分離する方法に関す
る。[0001] The present invention relates to a method for efficiently separating a product from a production system in a microbial reaction.
【0002】[0002]
【従来の技術】近年、微生物の代謝を利用した種々の化
学工業製品、中間体の製造が試みられている。これらの
微生物を用いた反応では、生成系内に生成物、未反応の
出発物とともに、微生物およびその培地成分等が混在し
ているため、一般的には有機溶媒等による抽出法によ
り、生成系から生成物および未反応の出発物を分離して
取り出している。2. Description of the Related Art In recent years, production of various chemical products and intermediates utilizing metabolism of microorganisms has been attempted. In the reaction using these microorganisms, since the microorganisms and their medium components are mixed together with the products and unreacted starting materials in the production system, generally, the production system is extracted by an organic solvent or the like. The product and unreacted starting material are separated and taken out of the reaction.
【0003】しかし、抽出法では、生成物や未反応の出
発物のみを選択して分離するのは容易ではない。また、
抽出に用いる有機溶媒の毒性により微生物を死滅させて
しまうという欠点を有する。これに対する解決策は未だ
提示されていない。However, in the extraction method, it is not easy to select and separate only a product or an unreacted starting material. Also,
There is a disadvantage that microorganisms are killed due to the toxicity of the organic solvent used for extraction. A solution to this has not yet been proposed.
【0004】[0004]
【発明が解決しようとする課題】本発明は、微生物反応
における生成系から、微生物を死滅させることなく、生
成物を効率よく分離する方法を提供することを目的とす
る。An object of the present invention is to provide a method for efficiently separating a product from a production system in a microbial reaction without killing the microorganism.
【0005】[0005]
【課題を解決するための手段】本発明者らは、前記従来
技術の課題を解決すべく鋭意検討を行った結果、微生物
反応における生成系を、分離膜に接触させることによ
り、前記目的を達成できることを見出し、本発明を完成
するに至った。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, achieved the above object by bringing a production system in a microbial reaction into contact with a separation membrane. They have found that they can do this and have completed the present invention.
【0006】すなわち、本発明は、出発物を微生物の存
在下で反応させて得られた生成物を含む生成系を、分離
膜に接触させ、生成系から生成物を分離することを特徴
とする微生物反応における生成物の分離方法に関する。That is, the present invention is characterized in that a production system containing a product obtained by reacting a starting material in the presence of a microorganism is brought into contact with a separation membrane to separate the product from the production system. The present invention relates to a method for separating products in a microbial reaction.
【0007】[0007]
【発明の実施の形態】本発明の分離方法の対象は、出発
物を微生物の存在下で反応させて得られた生成物を含む
生成系である。かかる生成系を生じる微生物を用いた反
応は、特に制限されず、各種の反応があげられる。たと
えば、カニンガメラ(Cunninghamella)属やアブシディ
ア(Absidia )属の微生物を用いてビフェニルからヒド
ロキシビフェニル類を製造する方法(R.D.Scgwartz,A.
l.Williams and D.B.Hutchinson, Applied and Environ
mental Microbiology,1980年,702-708頁 )、シュード
モナス(Pseudomonas )属の微生物を用いてメチルナフ
タレンからナフタレンカルボン酸を製造する方法、バシ
ラス(Bacillus)属の微生物を用いてインダンからイン
ダノール類を製造する方法(特開平8−266293号
公報)、バシラス(Bacillus)属の微生物を用いてナフ
タレンからナフトールを製造する方法、コリネバクテリ
ウム(Corynebacterium )属の微生物を用いてエタノー
ルアミンからグリシンを製造する方法等の各種酸化反
応、パン酵母(Beaker's yeast)を用いてアセト酢酸エ
チルを不斉還元する方法(Org.Synth.col.7卷,215頁)
等の各種還元反応、バシラス(Bacillus)属の微生物を
用いて環状アセテートを加水分解する方法(有機合成化
学協会誌,41卷1054頁,1983年)等の各種加水分解反応
等があげられる。なお、微生物を用いた各種反応は、各
種化合物に適用可能であり、当該選択する反応および出
発物により、生成系内の生成物も異なる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The object of the separation method of the present invention is a production system containing a product obtained by reacting a starting material in the presence of a microorganism. The reaction using a microorganism that produces such a production system is not particularly limited, and includes various reactions. For example, a method for producing hydroxybiphenyls from biphenyl using microorganisms of the genus Cunninghamella or Absidia (RDScgwartz, A. et al.
l.Williams and DBHutchinson, Applied and Environ
mental Microbiology, 1980, pp. 702-708), a method for producing naphthalenecarboxylic acid from methylnaphthalene using microorganisms of the genus Pseudomonas, and producing indanols from indane using microorganisms of the genus Bacillus. (JP-A-8-266293), a method for producing naphthol from naphthalene using a microorganism of the genus Bacillus, a method for producing glycine from ethanolamine using a microorganism of the genus Corynebacterium, and the like. Asymmetric reduction of ethyl acetoacetate using beaker's yeast (Org. Synth. Col., Vol. 7, p. 215)
And various hydrolysis reactions such as a method of hydrolyzing cyclic acetate using a microorganism of the genus Bacillus (Journal of the Society of Synthetic Organic Chemistry, vol. 41, p. 1054, 1983). Note that various reactions using a microorganism can be applied to various compounds, and the products in the production system differ depending on the selected reaction and starting material.
【0008】また、微生物を用いた反応は、通常、蒸留
水中または液体培地中で行われるが、反応の収率の点か
ら液体培地中で行なうのが好ましい。したがって、通
常、微生物を用いた反応における生成系内には、液体培
地が含まれる。液体培地は、通常、蒸留水に微生物の培
養に必要な栄養源を加え調製する。栄養源としては、炭
素源および窒素源として肉エキス、ペプトンなどが用い
られる。さらに、リン、マグネシウム、鉄、マンガン、
塩化ナトリウムなどの無機物質およびビタミン類などが
適宜混合される。このような培地の例としては、たとえ
ば蒸留水に魚(カツオ)肉エキス、ポリペプトン、塩化
ナトリウムを溶解した液体培地等があげられる。培地は
滅菌することが必要であり、通常の高圧蒸気滅菌などに
より行なうことができる。[0008] The reaction using a microorganism is usually carried out in distilled water or a liquid medium, but is preferably carried out in a liquid medium from the viewpoint of the yield of the reaction. Therefore, usually, a liquid medium is included in the production system in the reaction using the microorganism. The liquid medium is usually prepared by adding nutrients necessary for culturing microorganisms to distilled water. As a nutrient source, meat extract, peptone and the like are used as a carbon source and a nitrogen source. In addition, phosphorus, magnesium, iron, manganese,
Inorganic substances such as sodium chloride and vitamins are appropriately mixed. Examples of such a medium include a liquid medium obtained by dissolving fish (bonito) meat extract, polypeptone, and sodium chloride in distilled water. The medium needs to be sterilized, and can be performed by ordinary high-pressure steam sterilization or the like.
【0009】微生物は、前記液体培地で培養されたもの
をそのまま用いることができるが、支持体に固定化して
用いることもできる。支持体用材料としてはたとえばカ
ラギーナン、アルギン酸、寒天類などの、海藻からえら
れた多糖類を含む種々のゲル化基剤、またはポリアクリ
ルアミド、ポリビニルアルコール、ポリアクリル酸
(塩)等のゲル化能を有する吸水性ポリマーがあげられ
る。これら支持体用材料のうちとくにカラギーナン、ア
ルギン酸を用いることが好ましい。The microorganisms cultured in the liquid medium can be used as they are, but they can also be used by immobilizing them on a support. Examples of the support material include various gelling bases including polysaccharides obtained from seaweed, such as carrageenan, alginic acid, and agar, or gelling ability of polyacrylamide, polyvinyl alcohol, polyacrylic acid (salt), and the like. And a water-absorbing polymer having: Among these support materials, it is particularly preferable to use carrageenan and alginic acid.
【0010】なお、反応に際しては、出発物が水に難溶
性な場合には、出発物を少量の有機溶媒に溶解した後に
添加してもよい。有機溶媒としてはメタノール、アセト
ニトリルなどの親水性が高いもの、アセトン、ジメチル
スルホキシドなどの親水性の低いものを適宜に選択して
使用できる。In the reaction, when the starting material is hardly soluble in water, it may be added after dissolving the starting material in a small amount of an organic solvent. As the organic solvent, those having high hydrophilicity such as methanol and acetonitrile, and those having low hydrophilicity such as acetone and dimethyl sulfoxide can be appropriately selected and used.
【0011】本発明では前記微生物を用いた反応におけ
る生成系を、分離膜に接触させ、生成系から生成物を分
離する。生成系内に、生成物の他、未反応のまま残存し
ている出発物を含む場合には、かかる出発物も生成物と
ともに生成系から分離される。In the present invention, the production system in the reaction using the microorganism is brought into contact with a separation membrane to separate a product from the production system. In the case where the production system contains a starting material remaining unreacted in addition to the product, such a starting material is also separated from the production system together with the product.
【0012】分離膜としては、各種市販のものを用いる
ことができる。例えば、ポリビニルアルコール膜、テフ
ロン膜、ポリオレフィン膜、ポリスルフォン膜、再生セ
ルロース膜、ポリプロピレン膜、ニトロセルロース膜、
酢酸セルロース膜、ポリエチレン膜、アセチルセルロー
ス膜、ポリテトラフルオロエチレン膜、セラミック膜、
セルロース混合エステル膜、ポリ塩化ビニル膜、ポリフ
ッ化ビニリデン膜、ポリアミド膜、ナイロン6膜、ニト
ロセルロース膜、ポリアクリロニトリル膜、ポリイミド
膜、ポリエーテルスルフォン膜などがあげられる。これ
らのなかでも分離膜としては、セルロース膜が好まし
い。なお、分離膜は、出発物、生成物、微生物等の種類
により、好適な分離膜が異なるため、微生物反応の種類
に応じて、適宜に選択して用いる。また、分離膜として
は、MWCO(Molecular Weight Cut Off:分子量分
離)機能を有するものが好適である。Various commercially available separation membranes can be used. For example, polyvinyl alcohol film, Teflon film, polyolefin film, polysulfone film, regenerated cellulose film, polypropylene film, nitrocellulose film,
Cellulose acetate membrane, polyethylene membrane, acetylcellulose membrane, polytetrafluoroethylene membrane, ceramic membrane,
Examples thereof include a cellulose mixed ester film, a polyvinyl chloride film, a polyvinylidene fluoride film, a polyamide film, a nylon 6 film, a nitrocellulose film, a polyacrylonitrile film, a polyimide film, and a polyethersulfone film. Among them, the separation membrane is preferably a cellulose membrane. Note that a suitable separation membrane differs depending on the type of starting material, product, microorganism, and the like. Therefore, the separation membrane is appropriately selected and used according to the type of the microbial reaction. Further, as the separation membrane, one having a MWCO (Molecular Weight Cut Off: molecular weight separation) function is preferable.
【0013】前記微生物反応における生成系を、分離膜
に接触させる際には、分離膜を挟んだ生成系とは反対側
に、生成系から分離された生成物等を捕集するために、
通常、捕集剤を存在させる。捕集剤としては水、緩衝
液、有機溶媒等またはそれらの混合物等を使用できる。
なお、分離膜により分離され、捕集剤中に含まれる生成
物等は、適当な公知の手段で単離される。When the production system in the microbial reaction is brought into contact with the separation membrane, a product or the like separated from the production system is collected on the opposite side of the production system with the separation membrane interposed therebetween.
Usually, a collector is present. As the collecting agent, water, a buffer, an organic solvent or the like or a mixture thereof can be used.
The product and the like separated by the separation membrane and contained in the collecting agent are isolated by an appropriate known means.
【0014】生成系を分離膜に接触させる方法として
は、たとえば、静置法と流通法を採用できる。As a method for bringing the production system into contact with the separation membrane, for example, a stationary method and a flow method can be adopted.
【0015】静置法は、図1に示すように、処理槽1お
よび捕集槽2を分離膜3で区切った装置を用い、処理槽
1には処理液(微生物反応における生成系)4を満たす
とともに、捕集槽2には捕集液5を満たし、静置するこ
とにより、処理液4中の生成物等の分離を行う。すなわ
ち、静置した時間経過とともに処理液4中の生成物等
が、分離膜3を通して、捕集槽2側へ移行して分離が行
われる。静置時間は、分離膜の種類、分離する生成物等
の種類によっても異なる。静置時間としては、生成物等
の分離が80%以上起こる時間が好ましい。In the stationary method, as shown in FIG. 1, an apparatus in which a processing tank 1 and a collecting tank 2 are separated by a separation membrane 3 is used. At the same time, the collection tank 2 is filled with the collection liquid 5 and allowed to stand to separate products and the like in the processing liquid 4. In other words, the products and the like in the treatment liquid 4 move to the collection tank 2 through the separation membrane 3 with the elapse of the standing time, and are separated. The standing time varies depending on the type of the separation membrane and the type of the product to be separated. As the standing time, a time at which the separation of the product or the like occurs at 80% or more is preferable.
【0016】また、流通法では、図2に示すように、分
離膜3をチューブ状にした分離膜チューブ3の外面に捕
集液5を満たした捕集槽2を有する装置を用い、処理液
4を分離膜チューブ3内を通過させることにより、処理
液4中の生成物および残存する出発物の分離を行う。分
離膜チューブの管内口径、長さはスケールによって適宜
選択できる。処理液4の流通は、処理液4を1時間流通
させたときの容量を分離膜チューブの容積で除した値
(液空間速度)が、0.01〜100時間−1程度とな
る範囲が望ましい。処理時間が長くかかる経済性の点を
考慮すれば、液空間速度の下限は1時間−1とするのが
望ましく、また分離膜による処理を効率よく行なうに
は、上限は30時間−1とするのが望ましい。Further, in the flow method, as shown in FIG. 2, an apparatus having a collection tank 2 filled with a collection liquid 5 on the outer surface of a separation membrane tube 3 in which the separation membrane 3 is formed into a tube is used as a treatment liquid. The product 4 and the remaining starting material in the processing liquid 4 are separated by passing the solution 4 through the separation membrane tube 3. The inner diameter and length of the separation membrane tube can be appropriately selected depending on the scale. The circulation of the treatment liquid 4 is desirably in a range where a value (liquid hourly space velocity) obtained by dividing the volume when the treatment liquid 4 is caused to flow for 1 hour by the volume of the separation membrane tube is about 0.01 to 100 hours -1. . In view of the economics that the processing time is long, the lower limit of the liquid hourly space velocity is desirably 1 hour-1. In order to efficiently perform the treatment by the separation membrane, the upper limit is 30 hours-1. It is desirable.
【0017】なお、静置法においては処理槽1への処理
液4の供給、一方、流通法においては分離膜チューブ3
内への処理液4の供給は、図1または図2にそれぞれ示
すように、微生物反応を行なった反応器6(反応器から
一旦取り出したものでも可)から、ポンプなどの作動に
より供給ライン7を通して行なうことができる。また、
分離膜3(分離膜チューブ3)により処理され、生成物
等が取り出された処理液4は、返送ライン8により回収
器9で回収される。回収された処理液4中に生成物等を
含む場合には、再度、当該処理液4を分離膜3に接触さ
せ、分離処理を行なうことができる。また、生成物等を
取り出した処理液4は、反応器6に戻し、再度、微生物
反応に供することもできる。かかる循環工程により、一
定量の微生物、培地組成物にて繰り返して反応を行なう
ことが可能となり、反応収率が上昇する。なお、供給ラ
イン7、返送ライン8としては、微生物、培地等の付着
が少ないフッ素系樹脂製のものが好ましい。In the stationary method, the processing solution 4 is supplied to the processing tank 1, while in the flow method, the separation membrane tube 3 is supplied.
As shown in FIG. 1 or FIG. 2, the supply of the processing liquid 4 from the reactor 6 (which may be taken out from the reactor once) to the supply line 7 by operating a pump or the like, as shown in FIG. Through. Also,
The treatment liquid 4 that has been treated by the separation membrane 3 (separation membrane tube 3) and from which products and the like have been taken out is collected by a collection unit 9 by a return line 8. When a product or the like is contained in the collected processing liquid 4, the processing liquid 4 can be brought into contact with the separation membrane 3 again to perform a separation process. Further, the processing liquid 4 from which the products and the like have been taken out can be returned to the reactor 6 and used again for the microbial reaction. By such a circulation step, the reaction can be repeatedly performed with a certain amount of the microorganism and the medium composition, and the reaction yield is increased. Note that the supply line 7 and the return line 8 are preferably made of a fluororesin with little adhesion of microorganisms, culture media, and the like.
【0018】分離処理は、通常、処理液4および/また
は捕集液5が凍結しない温度以上で、かつ処理液4およ
び/または捕集液5が沸騰しないか微生物が死滅しない
温度以下で行う。経済的観点より室温もしくは常温で行
うことが望ましい。また、分離処理に供される処理液4
は、微生物反応終了後のものに限らず、微生物反応が進
行中のものでもよい。The separation treatment is usually carried out at a temperature not lower than the temperature at which the processing liquid 4 and / or the collecting liquid 5 does not freeze and at a temperature lower than the temperature at which the processing liquid 4 and / or the collecting liquid 5 does not boil or the microorganisms do not die. It is desirable to carry out at room temperature or normal temperature from an economic viewpoint. In addition, the processing solution 4 used for the separation process
Is not limited to the one after the completion of the microbial reaction, and may be the one in which the microbial reaction is in progress.
【0019】[0019]
【発明の効果】本発明の方法によれば、生成物等の他
に、微生物、培地等の混合物を多く含む微生物反応にお
ける生成系から、生成物等を効率よく分離して取り出す
ことができる。また、本発明の方法は、分離操作の際に
微生物を死滅させたりすることがないため、生成系から
生成物等を分離したものは、一定量の微生物で、また培
地の組成が崩れることなく存在しており、これを繰り返
し微生物反応に利用できる。さらには、本発明の方法
は、微生物反応とともに、分離処理を行なうことができ
るため、自らが生産した反応生成物が毒となり反応生成
物の収率が上昇しないという問題や、反応工程中の生成
物の増加による微生物の静菌化の問題も解決できる。こ
れらの結果、高い収率で生成物を収得できる。According to the method of the present invention, products and the like can be efficiently separated and extracted from a production system in a microbial reaction containing a large amount of a mixture of microorganisms and a medium in addition to the products and the like. Further, since the method of the present invention does not kill microorganisms during the separation operation, those obtained by separating products and the like from the production system are a certain amount of microorganisms, and the composition of the medium is not disrupted. Exists and can be used repeatedly for microbial reactions. Furthermore, since the method of the present invention can perform a separation treatment together with a microbial reaction, the reaction product produced by the method itself becomes poisonous and the yield of the reaction product does not increase. The problem of bacteriostasis of microorganisms due to an increase in the number of substances can be solved. As a result, a product can be obtained in a high yield.
【0020】[0020]
【実施例】以下に実施例をあげて本発明をさらに具体的
に説明するが、本発明はこれら実施例に限定されるもの
ではない。EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.
【0021】(微生物反応:ナフタレンの微生物酸化)
魚肉(かつお)エキス10g、ポリペプトン10gおよ
び塩化ナトリウム2gを蒸留水1000mlに溶解し、
pHを7.0に調整して120℃で20分間高圧滅菌し
た液体培地を調製した。坂口フラスコに、前記液体培地
150mlおよび微生物としてバシラス.セレウス(Ba
cillus cereus )を加え、30℃、24時間振とう培養
を行った。次いで、ナフタレン108μモルを加えて2
5℃24時間振とうして反応を行い、ナフトールを得
た。ナフトールの収率は8%(8.64μモル)であっ
た。これを処理液とした(Microbial Reaction: Microbial Oxidation of Naphthalene)
Dissolve 10 g of fish meat (bonito) extract, 10 g of polypeptone and 2 g of sodium chloride in 1000 ml of distilled water,
The pH was adjusted to 7.0, and a liquid medium sterilized by high pressure at 120 ° C. for 20 minutes was prepared. In a Sakaguchi flask, 150 ml of the liquid medium and Bacillus. Cereus (Ba
cillus cereus) and shaking culture was performed at 30 ° C. for 24 hours. Then, 108 μmol of naphthalene was added to obtain 2
The reaction was carried out by shaking at 5 ° C for 24 hours to obtain naphthol. The yield of naphthol was 8% (8.64 μmol). This was used as the processing solution
【0022】(生成物の分析)処理液中のナフタレンお
よびナフトールの定量は、処理液10mlを酢酸エチル
2mlで3回抽出し、高速液体クロマトグラフィ(カラ
ム:ODS−A、150×4.6mmI.D. YMC C
o.,グラジエントシステム、メタノール:水=3:7
−9:1、1ml/min)で分析した。(Analysis of Product) To determine the amounts of naphthalene and naphthol in the treatment solution, 10 ml of the treatment solution was extracted three times with 2 ml of ethyl acetate, and high performance liquid chromatography (column: ODS-A, 150 × 4.6 mm ID) was used. YMC C
o. , Gradient system, methanol: water = 3: 7
-9: 1, 1 ml / min).
【0023】(分離膜による生成系からの生成物および
残存する出発物の分離)図2に示す装置(流通法)によ
り分離処理を行なった。分離膜チューブ3としてBiotec
h Dialysis Membrance(長さ40cm×直径3.8m
m、膜厚4mm(乾燥時)Spectra/Por,MWCO;8000,Spec
torum Medical Industries Inc.製 )を用い、当該分離
膜チューブ3を、捕集槽2として用いるガラス管(50
cm×20mm)内に設置し、ガラス管の両端を密封し
て横置きとした。捕集槽2に水(150ml)を満たし
た後、20mlの処理液4を送液ポンプの作動により、
室温、約36分間(液空間速度=10時間−1)の条件
で、供給ライン7を通じて分離膜チューブ3内を流通さ
せた。返送ライン8により分離膜チューブ3で処理され
た処理液4を回収器9に回収した。捕集槽2中の水15
0mlを取り出して上記と同様にしてナフタレンおよび
ナフトールの定量分析を行なった。かかる定量分析の結
果から膜分離処理を行なった後の、処理液4中のナフタ
レンおよびナフトールの残存率(処理後/処理前)を算
出した値を表1に示す。また、別に処理液4(20m
l)について同様の操作を行い、この操作を合計4回行
なった。(Separation of Product and Residual Starting Product from Production System by Separation Membrane) Separation treatment was carried out by an apparatus (flow method) shown in FIG. Biotec as separation membrane tube 3
h Dialysis Membrance (length 40cm x diameter 3.8m)
m, thickness 4mm (when dry) Spectra / Por, MWCO; 8000, Spec
torum Medical Industries Inc.), and using the separation membrane tube 3 as a glass tube (50
cm × 20 mm), and both ends of the glass tube were sealed and placed horizontally. After the collection tank 2 is filled with water (150 ml), 20 ml of the treatment liquid 4 is supplied by the operation of the liquid sending pump.
Under the conditions of room temperature and about 36 minutes (liquid hourly space velocity = 10 hours-1), the solution was allowed to flow through the separation membrane tube 3 through the supply line 7. The treatment liquid 4 treated in the separation membrane tube 3 by the return line 8 was collected in the collection device 9. Water 15 in collection tank 2
0 ml was taken out and quantitative analysis of naphthalene and naphthol was performed in the same manner as described above. Table 1 shows the calculated values of the residual rates of naphthalene and naphthol (after / before treatment) in the treatment liquid 4 after performing the membrane separation treatment from the results of the quantitative analysis. Separately, treatment liquid 4 (20 m
The same operation was performed for 1), and this operation was performed four times in total.
【0024】[0024]
【表1】 [Table 1]
【0025】回収した処理液4中の微生物は死滅してお
らず、再度、微生物反応への利用が可能であった。The microorganisms in the recovered treatment liquid 4 were not killed, and could be used again for microbial reactions.
【図1】静置法による、膜分離装置の概略図である。FIG. 1 is a schematic view of a membrane separation apparatus by a stationary method.
【図2】流通法による、膜分離装置の概略図である。FIG. 2 is a schematic diagram of a membrane separation device by a flow method.
1:処理槽 2:捕集槽 3:分離膜 4:処理液 5:捕集液 6:反応器 7:供給ライン 8:返送ライン 9:回収器 1: Treatment tank 2: Collection tank 3: Separation membrane 4: Treatment liquid 5: Collection liquid 6: Reactor 7: Supply line 8: Return line 9: Recovery unit
Claims (5)
られた生成物を含む生成系を、分離膜に接触させ、生成
系から生成物を分離することを特徴とする微生物反応に
おける生成物の分離方法。Claims: 1. Production in a microbial reaction characterized by contacting a production system containing a product obtained by reacting a starting material in the presence of a microorganism with a separation membrane, and separating the product from the production system. How to separate things.
記載の分離方法。2. The method according to claim 1, wherein the separation membrane is a cellulose membrane.
Separation method as described.
Cut Off:分子量分離)機能を有する請求項1または2
記載の分離方法。3. The method according to claim 1, wherein the separation membrane is a MWCO (Molecular Weight).
3. A cut off (molecular weight separation) function.
Separation method as described.
当該分離膜チューブ内に生成系を流通させる請求項1、
2または3記載の分離方法。4. The separation membrane is a separation membrane tube,
Claim 1, wherein the production system is circulated in the separation membrane tube.
4. The separation method according to 2 or 3.
llus)属を用いた酸化反応である請求項1、2、3また
は4記載の分離方法。5. A reaction using a microorganism, wherein Bacillus (Baci
The separation method according to claim 1, 2, 3, or 4, which is an oxidation reaction using the genus llus).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15032697A JPH10323543A (en) | 1997-05-22 | 1997-05-22 | Method for separating product in microbial reaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15032697A JPH10323543A (en) | 1997-05-22 | 1997-05-22 | Method for separating product in microbial reaction |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10323543A true JPH10323543A (en) | 1998-12-08 |
Family
ID=15494581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15032697A Pending JPH10323543A (en) | 1997-05-22 | 1997-05-22 | Method for separating product in microbial reaction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10323543A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097260A1 (en) * | 2006-02-24 | 2007-08-30 | Toray Industries, Inc. | Method of producing chemical product and continuous fermentation apparatus |
JP2007252367A (en) * | 2006-02-24 | 2007-10-04 | Toray Ind Inc | Method for producing chemical by continuous fermentation and continuous fermentation apparatus |
JP2008043329A (en) * | 2006-07-19 | 2008-02-28 | Toray Ind Inc | Method for producing 1, 3-propane diol by continuous fermentation |
JP2008054670A (en) * | 2006-08-02 | 2008-03-13 | Toray Ind Inc | Method for producing succinic acid by continuous fermentation |
JP2008104451A (en) * | 2006-09-26 | 2008-05-08 | Toray Ind Inc | Method for producing d-lactic acid by continuous fermentation |
JP2008131931A (en) * | 2006-11-01 | 2008-06-12 | Toray Ind Inc | Method for producing lactic acid by continuous fermentation |
JP2008237101A (en) * | 2007-03-27 | 2008-10-09 | Toray Ind Inc | Method for producing chemical by continuous fermentation |
JP2008263945A (en) * | 2007-03-28 | 2008-11-06 | Toray Ind Inc | Method for producing lactic acid by continuous fermentation |
JP2009039074A (en) * | 2007-08-10 | 2009-02-26 | Toray Ind Inc | Method for producing protein by continuous fermentation |
JP2009065966A (en) * | 2007-08-22 | 2009-04-02 | Toray Ind Inc | Method for producing chemical product by continuous fermentation |
JP2009296921A (en) * | 2008-06-12 | 2009-12-24 | Toray Ind Inc | Continuous culture device and method for producing chemical |
-
1997
- 1997-05-22 JP JP15032697A patent/JPH10323543A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097260A1 (en) * | 2006-02-24 | 2007-08-30 | Toray Industries, Inc. | Method of producing chemical product and continuous fermentation apparatus |
JP2007252367A (en) * | 2006-02-24 | 2007-10-04 | Toray Ind Inc | Method for producing chemical by continuous fermentation and continuous fermentation apparatus |
US9587253B2 (en) | 2006-02-24 | 2017-03-07 | Toray Industries, Inc. | Method of producing chemical product with continuous fermentation and filtering |
JP2008043329A (en) * | 2006-07-19 | 2008-02-28 | Toray Ind Inc | Method for producing 1, 3-propane diol by continuous fermentation |
JP2008054670A (en) * | 2006-08-02 | 2008-03-13 | Toray Ind Inc | Method for producing succinic acid by continuous fermentation |
JP2008104451A (en) * | 2006-09-26 | 2008-05-08 | Toray Ind Inc | Method for producing d-lactic acid by continuous fermentation |
JP2008131931A (en) * | 2006-11-01 | 2008-06-12 | Toray Ind Inc | Method for producing lactic acid by continuous fermentation |
JP2008237101A (en) * | 2007-03-27 | 2008-10-09 | Toray Ind Inc | Method for producing chemical by continuous fermentation |
JP2008263945A (en) * | 2007-03-28 | 2008-11-06 | Toray Ind Inc | Method for producing lactic acid by continuous fermentation |
JP2009039074A (en) * | 2007-08-10 | 2009-02-26 | Toray Ind Inc | Method for producing protein by continuous fermentation |
JP2009065966A (en) * | 2007-08-22 | 2009-04-02 | Toray Ind Inc | Method for producing chemical product by continuous fermentation |
JP2009296921A (en) * | 2008-06-12 | 2009-12-24 | Toray Ind Inc | Continuous culture device and method for producing chemical |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qureshi et al. | Butanol recovery from model solution/fermentation broth by pervaporation: evaluation of membrane performance | |
Qureshi et al. | Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum | |
DE68923805T2 (en) | METHOD FOR PRODUCING OPTICALLY ACTIVE 1,3-BUTANEDIOL. | |
KR970005052B1 (en) | Method for resolution of stereo-isomers in multiphase and extractive membrane reactors | |
JPH10323543A (en) | Method for separating product in microbial reaction | |
JP2012184215A (en) | Method for producing methionine | |
CN107614479A (en) | Method for purifying 1,4 diaminobutanes | |
CN1319585A (en) | Process for refining amidate | |
JP3845912B2 (en) | Method for producing erythritol | |
JP6994805B2 (en) | Purification method of 1,5-diaminopentane | |
WO2021060334A1 (en) | Acetoin production method | |
CN100516229C (en) | Method for purifying aqueous amide compound solution and method for producing amide compound | |
FR2583060A1 (en) | Production of butanol and acetone by fermentation, with recycling of the biomass by ultrafiltration | |
JP2883712B2 (en) | Production method of optically active 1,3-butanediol | |
JPH02195897A (en) | Production of optically active 1,3-butanediol | |
FR2616354A1 (en) | Process and apparatus for continuous extraction of ethanol contained in an aqueous phase | |
EP1019327B1 (en) | Method for eliminating a nitrogenated heterocyclic, or aromatic, compound in an effluent | |
JP2761063B2 (en) | Method for producing optically active 3-hydroxybutyric acid | |
JPH1142094A (en) | Production of 9-hydroxyfluorene | |
JP3061422B2 (en) | Method for producing optically active (S) -2-chloro-1-phenylpropanol | |
CH393638A (en) | Process for preparing a new antibiotic | |
JP2001017195A (en) | Production of substance using microbial catalyst | |
DE69801789T2 (en) | Process for the preparation of optically active 1,2,4-butanetriols | |
JP2761064B2 (en) | Production method of optically active 1,3-butanediol | |
JPH04234990A (en) | Production of optically active (r)-3-chloro-1-phenyl-1-propanol |