JPH10327865A - Carotenoid glycoside and its production - Google Patents
Carotenoid glycoside and its productionInfo
- Publication number
- JPH10327865A JPH10327865A JP9140460A JP14046097A JPH10327865A JP H10327865 A JPH10327865 A JP H10327865A JP 9140460 A JP9140460 A JP 9140460A JP 14046097 A JP14046097 A JP 14046097A JP H10327865 A JPH10327865 A JP H10327865A
- Authority
- JP
- Japan
- Prior art keywords
- leu
- ala
- gly
- arg
- ctg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Non-Alcoholic Beverages (AREA)
- Saccharide Compounds (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【0001】[発明の背景][Background of the Invention]
【発明の属する技術分野】本発明は、カロテノイド配糖
体である新規なアスタキサンチンジグルコシドおよびア
ドニキサンチン−3′−グルコシド、並びにこれら新規
カロテノイド配糖体および既知のアスタキサンチンモノ
グルコシドの製造法、更にそれらの用途に関するもので
ある。これらの色素は、水への溶解度が高く、養殖魚介
類の色調改善剤、食品添加物等に有用である。The present invention relates to novel carotenoid glycosides such as novel astaxanthin diglucoside and adonixanthin-3'-glucoside, and a process for producing these novel carotenoid glycosides and known astaxanthin monoglucoside. It is about their use. These pigments have high solubility in water and are useful as color improvers for cultured fish and shellfish, food additives and the like.
【0002】[0002]
【従来の技術】β- カロチン (ベータカロテン) を始め
とするカロテノイド (カロチノイド)は、微生物、植物
をはじめとして、各種動物に広く分布している。また、
動物に含まれる代表的カロテノイドであるアスタキサン
チンは、エビ、カニ、マダイの体表や、サケの筋肉に分
布する赤色カロテノイドとして知られており、養殖魚介
類の色調改善剤、色揚げ剤として利用されている。さら
にアスタキサンチンは、近年抗酸化剤等の作用も報告さ
れ (清水延寿、幹渉、海洋生物のカロテノイド、幹渉
編、恒星社厚生閣、平成5年) 、食品添加物等への応用
も期待されている。しかしながら、アスタキサンチン
は、他のカロテノイド色素と同様に脂溶性物質であるこ
とから、水溶性溶媒への溶解性や水溶性化合物への添加
等、溶解性の面で問題が生じる。[0002] Carotenoids (carotenoids) such as β-carotene (beta-carotene) are widely distributed in various animals including microorganisms and plants. Also,
Astaxanthin, a typical carotenoid contained in animals, is known as a red carotenoid distributed on the surface of shrimp, crab, red sea bream, and muscle of salmon, and is used as a color improver and deepener for cultured fish and shellfish. ing. In addition, astaxanthin has recently been reported to have an antioxidant action (Nobuto Shimizu, Wataru Watari, Carotenoids of marine organisms, Wataru Watari, Koseisha Koseikaku, 1993), and is expected to be applied to food additives, etc. ing. However, astaxanthin is a fat-soluble substance like other carotenoid pigments, and thus causes problems in solubility such as solubility in a water-soluble solvent and addition to a water-soluble compound.
【0003】[発明の概要][Summary of the Invention]
【発明が解決しようとする課題】そのため、新規な高極
性カロテノイド、特にアスタキサンチンと同一の基本骨
格を有する高極性カロテノイドの開発が望まれる。上記
事情に鑑み、本発明は新規な高極性カロテノイドを検索
し、その新規物質およびその製造法、並びにその用途を
提供することを目的とする。Therefore, it is desired to develop a novel high-polar carotenoid, particularly a high-polar carotenoid having the same basic skeleton as astaxanthin. In view of the above circumstances, an object of the present invention is to search for a novel highly polar carotenoid, and to provide a novel substance thereof, a production method thereof, and a use thereof.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者らはカ
ロテノイド配糖体に着目し、カロテノイド生合成遺伝子
を組み合わせて、細菌等の微生物に導入し、その培養物
を検索した結果、特定の新規カロテイノイド配糖体を見
出し、この知見に基づいて本発明を完成させるに至っ
た。すなわち、本発明によるカロテノイド配糖体は、下
記の化学構造式(1) および(2) でそれぞれ表される新規
化合物のアスタキサンチンジグルコシドおよびアドニキ
サンチン−3′−グルコシドである。Therefore, the present inventors focused on carotenoid glycosides, combined carotenoid biosynthesis genes, introduced them into microorganisms such as bacteria, and searched for cultures. A novel carotenoid glycoside was found, and the present invention was completed based on this finding. That is, the carotenoid glycosides according to the present invention are astaxanthin diglucoside and adonixanthin-3'-glucoside, which are novel compounds represented by the following chemical structural formulas (1) and (2), respectively.
【化3】 Embedded image
【化4】 Embedded image
【0005】また本発明は、上記の新規カロテノイド配
糖体の製造法、更にまた既知物質であるアスタキサンチ
ンモノグルコシド[下記化学構造式 (3)]の製造法も提
供する。すなわち、本発明によるカロテノイド配糖体の
製造法は、カロテノイド生合成遺伝子crtE、crtB、crt
I、crtY、crtZ、crtX、およびcrtWの全部または一部を
微生物に導入してこれら7種の遺伝子を発現可能に存在
させ、該形質転換微生物を培地で培養し、培養物からア
スタキサンチンジグルコシド、アドニキサンチン−3′
−グルコシドおよびアスタキサンチンモノグルコシドの
少なくとも1種を採取することを特徴とするものであ
る。The present invention also provides a method for producing the above-mentioned novel carotenoid glycoside and a method for producing astaxanthin monoglucoside [chemical formula (3) shown below] which is a known substance. That is, the method for producing a carotenoid glycoside according to the present invention comprises a carotenoid biosynthesis gene crtE , crtB , crt
All or part of I , crtY , crtZ , crtX , and crtW are introduced into a microorganism to allow these seven genes to be expressed, and the transformed microorganism is cultured in a medium, and astaxanthin diglucoside is cultured from the culture. Adonixanthin-3 '
-At least one of glucoside and astaxanthin monoglucoside is collected.
【化5】 Embedded image
【0006】本発明はまた、上記カロテノイドの食品用
途、該カロテノイドを産生する植物の製造法にも関す
る。すなわち、食品用途に関する本発明は、アスタキサ
ンチンジグルコシド、アドニキサンチン−3′−グルコ
シドおよびアスタキサンチンモノグルコシドの少なくと
も1種(ただし、アスタキサンチンモノグルコシド単独
の場合を除く)を含有してなる、食品改善剤または食品
である。[0006] The present invention also relates to a food use of the carotenoid and a method for producing a plant producing the carotenoid. That is, the present invention relating to food applications comprises a food improving agent comprising at least one of astaxanthin diglucoside, adonixanthin-3'-glucoside and astaxanthin monoglucoside (excluding the case of astaxanthin monoglucoside alone). Or food.
【0007】また、本発明によるカロテノイド配糖体を
有する植物の製造法は、カロテノイド生合成遺伝子crt
X, crtW, crtZ, crtE, crtB, crtI, crtYの一部または
全部を植物に導入してこれら7種の遺伝子を発現可能に
存在させ、該形質転換植物を栽培し、栽培物にアスタキ
サンチンジグルコシド、アドニキサンチン−3′−グル
コシドおよびアスタキサンチンモノグルコシドの少なく
とも1種を産生させることを特徴とするものである。Further, the method for producing a plant having a carotenoid glycoside according to the present invention provides a method for producing a carotenoid biosynthesis gene crt.
X , crtW , crtZ , crtE , crtB , crtI , crtY are partially or entirely introduced into a plant so that these seven genes can be expressed so that the transformed plant is cultivated, and the astaxanthin diglucoside is cultivated in the cultivation. , Adonixanthin-3'-glucoside and astaxanthin monoglucoside.
【0008】[発明の具体的な説明][Specific description of the invention]
【発明の実施の形態】以下に本発明を詳細に説明する。カロテノイド配糖体 本発明による新規なカロテノイド配糖体はアスタキサン
チンジグルコシド(化学構造式(1) )およびアドニキサ
ンチン−3′−グルコシド(化学構造式(2) )であるこ
とは前記した通りであり、下記の様な理化学的性質を有
するものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. Carotenoid glycoside As described above, the novel carotenoid glycoside according to the present invention is astaxanthin diglucoside (chemical structural formula (1)) and adonixanthin-3'-glucoside (chemical structural formula (2)). And have the following physicochemical properties.
【0009】<カロテノイド配糖体の理化学的性質> 1.アスタキサンチンジグルコシドの理化学的性質 以下にアスタキサンチンジグルコシド[化学構造式(1)
の化合物]の理化学的性質を示す。 (1) 物質の色:赤色粉末 (2) 分子量:920 (3) 分子式:C52H72O14 (4) 質量分析:高分解FABMS 理論値:921.5000 (M+H)+ 実測値:921.4992 (5) 可視部吸収スペクトル(クロロホルム:メタノー
ル=2:1 中で測定):λmax 492 nm (6) 1H-NMR(重クロロホルム:重メタノール=2:1 中
で測定、400 MHz ) δppm(水素数、多重度、結合定数):1.19 (6H, s),
1.31 (6H, s), 1.86 (6H, s), 1.94 (2H, m), 1.95 (6
H, s), 1.97 (6H, s), 2.18 (2H, dd, 5,13), 3.27 (2
H, m), 3.36 (2H, t, 9), 3.42 (2H, t, 9), 3.43 (2H,
t, 9), 3.70 (2H,dd, 5,12), 3.83 (2H, dd, 3,12),
4.49 (2H, d, 8), 6.18-6.67 (14H, m) (7) 溶解性:含水メタノール、メタノール、エタノー
ルに易溶。クロロホルム、アセトン、酢酸エチル、ヘキ
サンに難溶。<Physicochemical properties of carotenoid glycoside> Physicochemical properties of astaxanthin diglucoside Astaxanthin diglucoside [Chemical Structural Formula (1)
Of the compound]. (1) Color of substance: red powder (2) Molecular weight: 920 (3) Molecular formula: C 52 H 72 O 14 (4) Mass spectrometry: high resolution FABMS Theoretical value: 921.5000 (M + H) + actual value: 921.4992 ( 5) Visible absorption spectrum (measured in chloroform: methanol = 2: 1): λmax 492 nm (6) 1 H-NMR (measured in heavy chloroform: methanol = 2: 1, 400 MHz) δppm (hydrogen number) , Multiplicity, coupling constant): 1.19 (6H, s),
1.31 (6H, s), 1.86 (6H, s), 1.94 (2H, m), 1.95 (6
H, s), 1.97 (6H, s), 2.18 (2H, dd, 5,13), 3.27 (2
H, m), 3.36 (2H, t, 9), 3.42 (2H, t, 9), 3.43 (2H,
t, 9), 3.70 (2H, dd, 5,12), 3.83 (2H, dd, 3,12),
4.49 (2H, d, 8), 6.18-6.67 (14H, m) (7) Solubility: Easily soluble in aqueous methanol, methanol and ethanol. Poorly soluble in chloroform, acetone, ethyl acetate and hexane.
【0010】2.アドニキサンチン−3′−グルコシド
の理化学的性質 以下にアドニキサンチン−3′−グルコシド[化学構造
式(2 )の化合物]の理化学的性質を示す。 (1) 物質の色:赤色粉末 (2) 分子量:744 (3) 分子式:C46H64O8 (4) 質量分析:高分解FABMS 理論値:745.4679 (M+H)+ 実測値:745.4677 (5) 可視部吸収スペクトル(クロロホルム:メタノー
ル=2:1 中で測定):λmax 487 nm (6) 1H-NMR(重クロロホルム:重メタノール=2:1 中
で測定、400 MHz ) δppm(水素数、多重度、結合定数):1.03 (6H, s),
1.18 (3H, s), 1.29 (3H, s), 1.52 (1H, t 、12), 1.6
9 (3H, s), 1.79 (1H, m), 1.83 (1H, m), 1.87(3H,
s), 1.92 (3H, s), 1.94 (6H, s), 1.96 (3H, s), 2.06
(1H, m), 2.08 (1H, m), 2.42 (1H, dd, 4,17), 3.19
(1H, m), 3.27 (1H, m), 3.38 (2H, m), 3.72 (1H, dd,
5,12), 3.83 (1H, dd, 3,12), 4.05 (1H, m), 4.28 (1
H, dd, 6,14), 4.42 (1H, d, 8), 6.05-6.70 (14H, m) (7) 溶解性:含水メタノール、メタノール、エタノー
ルに易溶。クロロホルム、アセトン、酢酸エチル、ヘキ
サンに難溶。[0010] 2. Physicochemical properties of adonixanthin-3'-glucoside The physicochemical properties of adonixanthin-3'-glucoside [compound of the chemical structural formula (2)] are shown below. (1) Color of substance: red powder (2) Molecular weight: 744 (3) Molecular formula: C 46 H 64 O 8 (4) Mass spectrometry: high resolution FABMS Theoretical value: 745.4679 (M + H) + Actual value: 745.4677 ( 5) Visible absorption spectrum (measured in chloroform: methanol = 2: 1): λmax 487 nm (6) 1 H-NMR (measured in heavy chloroform: methanol = 2: 1, 400 MHz) δppm (hydrogen number) , Multiplicity, coupling constant): 1.03 (6H, s),
1.18 (3H, s), 1.29 (3H, s), 1.52 (1H, t, 12), 1.6
9 (3H, s), 1.79 (1H, m), 1.83 (1H, m), 1.87 (3H,
s), 1.92 (3H, s), 1.94 (6H, s), 1.96 (3H, s), 2.06
(1H, m), 2.08 (1H, m), 2.42 (1H, dd, 4,17), 3.19
(1H, m), 3.27 (1H, m), 3.38 (2H, m), 3.72 (1H, dd,
5,12), 3.83 (1H, dd, 3,12), 4.05 (1H, m), 4.28 (1
H, dd, 6,14), 4.42 (1H, d, 8), 6.05-6.70 (14H, m) (7) Solubility: Easily soluble in aqueous methanol, methanol and ethanol. Poorly soluble in chloroform, acetone, ethyl acetate and hexane.
【0011】本発明によるカロテノイド配糖体は、典型
的には上記の新規カロテノイド配糖体の各単離物を意味
するが、該2種のカロテノイド配糖体および既知のアス
タキサンチンモノグルコシド(化学構造式(3))の2
種または3種の混合物をも包含する。The carotenoid glycoside according to the present invention typically means each isolate of the above-mentioned novel carotenoid glycosides, and the two carotenoid glycosides and the known astaxanthin monoglucoside (chemical structure Equation (3) 2
Also included are species or mixtures of three.
【0012】カロテノイド配糖体の製造法およびそれを
産生する植物の作製法 本発明によるカロテノイド配糖体は、合目的的な任意の
方法により化学合成的または遺伝子工学的に製造するこ
とができるが、カロテノイド生合成に関与する遺伝子を
適切に組合せることにより遺伝子工学的に大量生産する
ことができる。Process for producing carotenoid glycoside and method for producing the same
Method for Producing Producing Plant The carotenoid glycoside according to the present invention can be produced chemically or genetically by any suitable method, but appropriately combines genes involved in carotenoid biosynthesis. Thus, it can be mass-produced by genetic engineering.
【0013】本発明によるカロテノイド配糖体の製造法
は、カロテノイド生合成遺伝子crtE、crtB、crtI、crt
Y、crtZ、crtX、およびcrtWをの全部または一部を微生
物に導入してこれら7種の遺伝子を発現可能に存在さ
せ、該形質転換微生物を培地で培養し、培養物からアス
タキサンチンジグルコシド、アドニキサンチン−3′−
グルコシドおよびアスタキサンチンモノグルコシドの少
なくとも1種を採取することを特徴とするものであるこ
とは前記した通りである。The method for producing a carotenoid glycoside according to the present invention comprises the steps of carotenoid biosynthesis genes crtE , crtB , crtI , crt
All or part of Y , crtZ , crtX , and crtW are introduced into a microorganism so that these seven genes can be expressed, and the transformed microorganism is cultured in a medium, and astaxanthin diglucoside, Nixanthin-3'-
As described above, at least one of glucoside and astaxanthin monoglucoside is collected.
【0014】また、本発明においては、カロテノイド生
合成遺伝子crtX, crtW, crtZ, crtE, crtB, crtI, crtY
の一部または全部を植物に導入してこれら7種の遺伝子
を発現可能に存在させ、該形質転換植物を栽培し、栽培
物にアスタキサンチンジグルコシド、アドニキサンチン
−3′−グルコシドおよびアスタキサンチンモノグルコ
シドの少なくとも1種を産生させることを特徴とする方
法により、上記カロテノイド配糖体を有する植物を作製
することができる。なお、ここで「全部または一部…7
種の遺伝子を発現可能に存在させ」とは、後述のように
上記7種の遺伝子(もしくはこれらと同じ機能を有する
遺伝子)のうちの一部の遺伝子をすでに保有している宿
主の場合には、該保有遺伝子と補足の導入遺伝子を合わ
せた7種の遺伝子を発現可能な状態で存在させる場合を
も包含することを意味する。Further, in the present invention, the carotenoid biosynthesis genes crtX , crtW , crtZ , crtE , crtB , crtI , crtY
Is introduced into a plant so that these seven genes can be expressed, and the transformed plant is cultivated. Astaxanthin diglucoside, adonixanthin-3'-glucoside and astaxanthin monoglucoside are cultivated in the cultivation. By producing at least one kind of the above, a plant having the carotenoid glycoside can be produced. Here, "all or part ... 7
The expression of a gene of a species is referred to as "if the host already has some of the above seven genes (or genes having the same functions as those described above), as described below. This means that seven types of genes, including the retained gene and the supplementary transgene, are present in an expressible state.
【0015】上記のような遺伝子の組合せの使用により
高極性の本発明カロテノイド配糖体が得られることは思
いがけないことであった。It was unexpectedly possible to obtain the carotenoid glycoside of the present invention with high polarity by using the above-mentioned gene combination.
【0016】<カロテノイド配糖体の合成に必要な遺伝
子群およびそれらの製造法>以下に、アスタキサンチン
ジグルコシド、アドニキサンチン−3′−グルコシド、
およびアスタキサンチンモノグルコシドの合成に必要な
遺伝子群、及びそれらの製造法の例について説明する。 (1) アスタキサンチンジグルコシド (およびアスタ
キサンチンモノグルコシド) アスタキサンチンジグルコシド (およびアスタキサンチ
ンモノグルコシド) の製造に必要な遺伝子群および製造
法の好ましい例について以下に説明する。植物常在 (ep
iphytic)細菌Erwinia ( たとえばErwinia uredovora)の
カロテノイド生合成遺伝子であるcrtE, crtB, crtI, cr
tY, crtZ, crtX遺伝子、及び、アスタキサンチンを産生
する海洋細菌 (たとえばAgrobacterium aurantiacum)の
カロテノイド生合成遺伝子であるcrtW遺伝子を適当なベ
クター(具体例は後述)により、大腸菌等の細菌、Sacc
haromyces cerevisiaeまたはCandida utilis等の酵母等
の微生物、好ましくは大腸菌等の細菌に導入し、発現さ
せることにより、主としてアスタキサンチンジグルコシ
ド、およびアスタキサンチンモノグルコシドを得ること
ができる。目的のカロテノイド配糖体は、後述するよう
に微生物代謝産物を培養物から分離するための通常の方
法により単離精製することができる。ただし、宿主の微
生物によっては、たとえば酵母等では、発現レベルの違
い等の理由によりErwinia のcrtZの代わりに海洋細菌の
crtZを用いてもよい。また、cr tYは海洋細菌由来のもの
を用いてもよい。<Genes Required for the Synthesis of Carotenoid Glycosides and Methods for Producing the Same> Astaxanthin diglucoside, adonixanthin-3'-glucoside,
And a group of genes required for the synthesis of astaxanthin monoglucoside, and examples of their production methods. (1) Astaxanthin diglucoside (and astaxanthin monoglucoside) A gene group necessary for producing astaxanthin diglucoside (and astaxanthin monoglucoside) and preferable examples of the production method will be described below. Plant resident (ep
iphytic) crtE , crtB , crtI , cr , carotenoid biosynthesis genes of bacteria Erwinia (e.g., Erwinia uredovora )
tY, crtZ, crtX gene, and, carotenoid biosynthesis genes in which crtW gene appropriate vector marine bacteria which produce astaxanthin (e.g. Agrobacterium aurantiacum) (specific examples are described below), bacteria such as E. coli, Sacc
By introducing and expressing in a microorganism such as yeast such as haromyces cerevisiae or Candida utilis , preferably a bacterium such as Escherichia coli, astaxanthin diglucoside and astaxanthin monoglucoside can be mainly obtained. The target carotenoid glycoside can be isolated and purified by a usual method for separating a microbial metabolite from a culture as described below. However, depending on the host microorganism, for example, in yeast and the like, marine bacteria may be used instead of Erwinia 's crtZ due to differences in expression levels.
crtZ may be used. In addition, cr tY may be derived from marine bacteria.
【0017】また、海洋細菌はcrtB, crtI, crtY, crt
Z, crtW遺伝子を有しているので、海洋細菌由来のこれ
ら5種の遺伝子をErwinia のcrtE, crtX遺伝子とともに
使用することも可能である。本発明においては、上記の
7種の遺伝子すなわちcrtE, cr tB, crtI, crtY, crtZ,
crtX, crtWを組合せて発現させればよく、従って各遺伝
子の由来は上記の細菌の他Flavobacterium sp.strain R
1534(Luis Pasamontes et al., Isolation and Charact
erization of the carotenoid biosynthesis genes of
Flavobacterium sp.strain R1534 Gene, 185, 35-41, 1
997)など任意のものでよく、また必要に応じて、上記7
種の遺伝子を複数の宿主(同種または異種)に分配して
導入し発現させることもできる。[0017] In addition, the marine bacteria crtB, crtI, crtY, crt
Since they have the Z and crtW genes, these five genes derived from marine bacteria can be used together with the crtE and crtX genes of Erwinia . In the present invention, the above seven genes i.e. crtE, cr tB, crtI, crtY , crtZ,
It is sufficient that crtX and crtW are expressed in combination. Therefore, the origin of each gene is Flavobacterium sp.
1534 (Luis Pasamontes et al., Isolation and Charact
erization of the carotenoid biosynthesis genes of
Flavobacterium sp.strain R1534 Gene, 185, 35-41, 1
997), and if necessary, the above 7
Species genes can also be distributed and introduced and expressed in multiple hosts (homogeneous or heterologous).
【0018】上記Erwinia および海洋細菌の遺伝子の構
造や機能、生合成経路等は、たとえば下記の4つの文献
に詳しく説明されており、また、実施例1でも説明され
ている。本発明で用いる各crt 遺伝子の機能を略記すれ
ば、crtE遺伝子はゲラニルゲラニルピロリン酸シンター
ゼ活性を有するタンパク質をコードするものであり、cr
tB遺伝子はフィトエンシンターゼ活性を有するタンパク
質をコードするものであり、crtI遺伝子はフィトエンデ
サチュラーゼ活性を有するタンパク質をコードするもの
であり、crtY遺伝子はリコペンサイクラーゼ活性を有す
るタンパク質をコードするものであり、crtZは3,
(3′)−β−イオノン環ハイドロキシラーゼ活性を有
するタンパク質をコードするものであり、crtXはゼアキ
カンチングルコシルトランスフェラーゼ活性を有するタ
ンパク質をコードするものであり、cr tWは4,(4′)
−β−イオノン環オキシゲナーゼをコードするものであ
る。本発明においては、上記crt 遺伝子を組み合わせて
用いることにより、アスタキサンチン等を中間体として
経て目的のアスタキサンチンモノグルコシドおよびアス
タキサンチンジグルコシド、更にはアドニキサンチン等
を中間体としてアドニキサンチン−3′−グルコシドへ
と変換される。 ・三沢典彦, 遺伝子レベルで解明されたカロテノイド生
合成経路, 蛋白質 核酸酵素, 41, 337-346, 1996 (Er
winia 及び海洋細菌の(カロテノイド生合成)遺伝子) ・Norihiko Misawa et al., Elucidation of the Erwin
ia uredovora carotenoid biosynthetic pathway by fu
nctional analysis of gene products expressedin Esc
herichia coli. J. Bacteriol., 172, 6704-6712, 1990
(Erwinia 遺伝子) ・Norihiko Misawa et al., Structure and functional
analysis of a marinebacterial carotenoid biosynth
esis gene cluster and astaxanthin biosynthetic pat
hway proposed at the gene level. J. Bacteriol., 17
7, 6575-6584, 1995 (海洋細菌遺伝子) ・Paul D. Fraser, Y. Miura, N. Misawa, In vitro ch
aracterization of astaxanthin biosynthetic enzyme
s. J. Biol. Chem., 272, 6128-6135, 1997(Erwi nia
のcrtZ及び海洋細菌のcrtZ, crtW遺伝子)The structures and functions of the genes of Erwinia and marine bacteria, the biosynthetic pathway, and the like are described in detail in the following four documents, for example, and also in Example 1. In brief the function of each crt gene used in the present invention, crtE gene is one that encodes a protein having geranylgeranyl pyrophosphate synthase activity, cr
The tB gene encodes a protein having phytoene desaturase activity, the crtI gene encodes a protein having phytoene desaturase activity, the crtY gene encodes a protein having lycopene cyclase activity, and crtZ Is 3,
(3 ') - are those that encode a protein having a β- ionone ring hydroxylase activity, crtX is one that encodes a protein having a peptidase Aki Kang Chin glucosyltransferase activity, cr tW is 4, (4')
It encodes -β-ionone ring oxygenase. In the present invention, by using the above crt gene in combination, astaxanthin monoglucoside and astaxanthin diglucoside through astaxanthin or the like as an intermediate, and further adonixanthin-3′-glucoside using adonixanthin or the like as an intermediate Is converted to・ Norihiko Misawa, Carotenoid biosynthetic pathway elucidated at the gene level, Protein nucleic acid enzyme, 41, 337-346, 1996 ( Er
(Carotenoid biosynthesis) genes of winia and marine bacteria) ・ Norihiko Misawa et al., Elucidation of the Erwin
ia uredovora carotenoid biosynthetic pathway by fu
nctional analysis of gene products expressed in Esc
herichia coli.J. Bacteriol., 172, 6704-6712, 1990
( Erwinia gene) ・ Norihiko Misawa et al., Structure and functional
analysis of a marinebacterial carotenoid biosynth
esis gene cluster and astaxanthin biosynthetic pat
hway proposed at the gene level.J. Bacteriol., 17
7, 6575-6584, 1995 (marine bacterial genes) ・ Paul D. Fraser, Y. Miura, N. Misawa, In vitro ch
aracterization of astaxanthin biosynthetic enzyme
s. J. Biol. Chem., 272, 6128-6135, 1997 (Erwi nia
Of crtZ and of marine bacteria crtZ, crtW gene)
【0019】一方、カロテノイドをもともと生産してい
る生物(微生物、植物など)にアスタキサンチンジグル
コシド等のカロテノイド配糖体を製造させたい場合は、
crtE遺伝子から始まる7個すべての遺伝子を導入する必
要はない(宿主に不足している遺伝子を補足すればよ
い)のは言うまでもない。たとえば、酵母Phaffia rhod
ozyma の場合は、アスタキサンチンまで生産しているの
で、crtXのみ導入・発現で十分であろう。また、β‐カ
ロチンを蓄積するPhaffia rhodozyma の突然変異株も単
離されている(P. Girard et al., β-carotene produc
ing mutants of Phaffia rhodozyma. Appl. Microbiol.
Biorechnol, 41, 183-191, 1994)。この突然変異株に
アスタキサンチンジグルコシド等のカロテノイド配糖体
を製造させたい場合は、crtZ, crtX, crtWの3遺伝子を
導入すればよい。On the other hand, when it is desired to produce carotenoid glycosides such as astaxanthin diglucoside in organisms (microorganisms, plants, etc.) that originally produce carotenoids,
Needless to say, it is not necessary to introduce all seven genes starting from the crtE gene (it is only necessary to supplement the missing gene in the host). For example, the yeast Phaffia rhod
In the case of ozyma , since up to astaxanthin is produced, introduction and expression of only crtX will be sufficient. A mutant strain of Phaffia rhodozyma that accumulates β-carotene has also been isolated (P. Girard et al., Β-carotene produc).
ing mutants of Phaffia rhodozyma.Appl.Microbiol.
Biorechnol, 41, 183-191, 1994). When it is desired to produce a carotenoid glycoside such as astaxanthin diglucoside in this mutant strain, three genes of crtZ , crtX and crtW may be introduced.
【0020】植物も、もともとカロテノイドを合成する
ことができる。たとえば、トマトの実は多量のリコペン
と少量のβ‐カロチンを生産しており、ニンジンは多量
のβ‐カロチンを、コーンの種子は多量のゼアキサンチ
ンを生産している。したがって、これらの組織にアスタ
キサンチンジグルコシド等のカロテノイド配糖体を製造
させたい場合は、少なくともcrtX, crtWの2つの遺伝子
は必要であるが、これ以外に不足しているcrt 遺伝子を
導入し、発現させればよい。Plants can also naturally synthesize carotenoids. For example, tomato fruits produce large amounts of lycopene and small amounts of β-carotene, carrots produce large amounts of β-carotene, and corn seeds produce large amounts of zeaxanthin. Therefore, when it is desired to produce carotenoid glycosides such as astaxanthin diglucoside in these tissues, at least two genes, crtX and crtW , are required, but in addition to these, a lacking crt gene is introduced and expressed. It should be done.
【0021】本発明で用いる遺伝子は、由来の異なる各
crt 遺伝子の他同じ機能を有する(同じ活性の変異体酵
素をコードする)遺伝子であってもよい。これらcrt 遺
伝子の配列の代表例は上記文献に記載されているが、具
体的に例示すれば、crtEは本願明細書の配列番号7のア
ミノ酸番号1〜302、crtBは配列番号6のアミノ酸番
号1〜296、crtIは配列番号8のアミノ酸番号1〜4
92、crtYは配列番号10のアミノ酸番号1〜382ま
たは配列番号3の1〜386、crtZは配列番号2または
5のアミノ酸番号1〜162または配列番号11のアミ
ノ酸番号1〜175、crtXは配列番号9のアミノ酸番号
1〜431、crtWは配列番号1のアミノ酸番号1〜21
2もしくは配列番号4のアミノ酸番号1〜242、でそ
れぞれ示されるアミノ酸配列およびそれと実質的に同一
なアミノ酸配列のタンパク質(例えば1もしくは数個の
アミノ酸が置換、欠失、挿入もしくは付加されたアミノ
酸配列を有しかつ同じ酵素活性を有するタンパク質)を
コードする遺伝子を使用することができる。The genes used in the present invention are those having different origins.
In addition to the crt gene, it may be a gene having the same function (encoding a mutant enzyme having the same activity). Representative examples of the sequences of these crt genes are described in the above-mentioned documents. To be specific, crtE is amino acid numbers 1 to 302 of SEQ ID NO: 7 of the present specification, and crtB is amino acid number 1 of SEQ ID NO: 6. -296, crtI is the amino acid number 1-4 of SEQ ID NO: 8
92, crtY is amino acid numbers 1 to 382 of SEQ ID NO: 10 or 1 to 386 of SEQ ID NO: 3, crtZ is amino acid numbers 1 to 162 of SEQ ID NO: 2 or 5, or amino acid numbers 1 to 175 of SEQ ID NO: 11, and crtX is SEQ ID NO: 9, amino acid numbers 1 to 431, and crtW are amino acid numbers 1 to 21 of SEQ ID NO: 1.
2 or a protein having an amino acid sequence substantially identical to amino acid Nos. 1-242 of SEQ ID NO: 4 (for example, an amino acid sequence in which one or several amino acids have been substituted, deleted, inserted or added) And a gene encoding a protein having the same enzymatic activity).
【0022】なお、上記の具体的なcrt 遺伝子は、後述
のように工業技術院生命工学工業技術研究所に寄託され
ている。The above-mentioned specific crt gene has been deposited in the Institute of Biotechnology and Industrial Technology, National Institute of Advanced Industrial Science and Technology as described below.
【0023】(2) アドニキサンチン−3′−グルコ
シド 次に、アドニキサンチン−3′−グルコシドの製造に必
要な遺伝子群および製造法の好ましい例について説明す
る。植物常在細菌Erwinia ( たとえばErwinia uredovor
a)のカロテノイド生合成遺伝子であるcrtE, crtB, crt
I, crtY, crtX遺伝子、及び、アスタキサンチンを産生
する海洋細菌 (たとえばAgrobacterium aurantiacum)の
カロテノイド生合成遺伝子であるcrtZ, crtW遺伝子を適
当なベクター(具体例は後述)により、大腸菌等の細
菌、Saccharomyces cerevisiaeまたはCandida utilis等
の酵母等の微生物、好ましくは大腸菌等の細菌に導入
し、発現させることにより、主としてアドニキサンチン
−3′−グルコシドを得ることができる。目的のカロテ
ノイド配糖体は、後述するように微生物代謝産物を培養
から分離するための通常の方法により単離精製すること
ができる。ただし、宿主の微生物によっては、たとえば
酵母等では発現レベルの違い等の理由により海洋細菌の
crtZの代わりにErwinia のcrtZを用いてもよい。(2) Adonixanthin-3'-glucoside Next, the genes required for producing adonixanthin-3'-glucoside and preferred examples of the production method will be described. Plant-resident bacteria Erwinia (for example, Erwinia uredovor
a ) the carotenoid biosynthesis genes crtE , crtB , crt
The I , crtY , crtX genes and crtZ , crtW genes, which are carotenoid biosynthesis genes of marine bacteria (for example, Agrobacterium aurantiacum ) that produce astaxanthin, are transformed into bacteria such as Escherichia coli and Saccharomyces cerevisiae using appropriate vectors (specific examples are described later). Alternatively, adonixanthin- 3'-glucoside can be mainly obtained by introducing into a microorganism such as yeast such as Candida utilis or the like, preferably a bacterium such as Escherichia coli and expressing it. The target carotenoid glycoside can be isolated and purified by a usual method for separating a microbial metabolite from a culture as described below. However, depending on the host microorganism, for example, yeast, etc.
It may be used crtZ of Erwinia instead of crtZ.
【0024】また、海洋細菌はcrtB, crtI, crtY, crt
Z, crtW遺伝子を有しているので、海洋細菌由来のこれ
ら5種の遺伝子をErwinia のcrtE, crtX遺伝子とともに
使用することも可能である。本発明においては、上記の
7種の遺伝子すなわちcrtE, cr tB, crtI, crtY, crtZ,
crtX, crtWを組合せて発現させればよく、従って各遺伝
子の由来は上記の細菌の他Flavobacterium sp.strain R
1534(Luis Pasamontes et al., Isolation and Charact
erization of the carotenoid biosynthesis genes of
Flavobacterium sp.strain R1534 Gene, 185, 35-41, 1
997)など任意のものでよく、また必要に応じて、上記7
種の遺伝子を複数の宿主(同種または異種)に分配して
導入し発現させることもできる。Marine bacteria are crtB , crtI , crtY , crt
Since they have the Z and crtW genes, these five genes derived from marine bacteria can be used together with the crtE and crtX genes of Erwinia . In the present invention, the above seven genes i.e. crtE, cr tB, crtI, crtY , crtZ,
It is sufficient that crtX and crtW are expressed in combination. Therefore, the origin of each gene is Flavobacterium sp.
1534 (Luis Pasamontes et al., Isolation and Charact
erization of the carotenoid biosynthesis genes of
Flavobacterium sp.strain R1534 Gene, 185, 35-41, 1
997), and if necessary, the above 7
Species genes can also be distributed and introduced and expressed in multiple hosts (homogeneous or heterologous).
【0025】本発明で用いるcrt 遺伝子は上記で定義し
た通りであり、由来の異なる各crt遺伝子の他同じ機能
を有する(同じ活性の変異体酵素をコードする)遺伝子
であってもよいことは前述の通りである。The crt gene used in the present invention is as defined above, and it may be mentioned that each of the crt genes having different origins may be a gene having the same function (encoding a mutant enzyme having the same activity). It is as follows.
【0026】<各種crt 遺伝子を含むプラスミドの作製
法、及び各種微生物への導入・発現法>次に、前述した
各種crt 遺伝子を含むプラスミドの作製法、及びこれら
のプラスミドの各種生物への導入・発現法の例について
さらに詳しく説明する。 1) DNA 鎖の取得 上記の各種crt 遺伝子を取得する一つの手段は、核酸合
成の方法に従って、その鎖長の少なくとも一部を化学合
成することであるが、遺伝子のサイズが大きく数が多い
ということを考えれば、この化学合成法よりもErwinia
uredovora またはAgrobacterium aurantiacum などの染
色体DNA ライブラリーを大腸菌で作製し、このライブラ
リーから遺伝子工学の分野で慣用されている方法、たと
えば適当なプローブ(たとえば、化学合成したDNAプ
ローブなど)によるハイブリダイゼーション法、によ
り、これを取得するほうが早いと言える。<Methods for preparing plasmids containing various crt genes and methods for introducing and expressing them in various microorganisms> Next, methods for preparing plasmids containing various crt genes described above, and introducing and introducing these plasmids into various organisms are described. Examples of the expression method will be described in more detail. 1) Acquisition of DNA chain One means of acquiring the above-mentioned various crt genes is to chemically synthesize at least a part of the chain length according to the method of nucleic acid synthesis. Given this, Erwinia
A chromosomal DNA library such as uredovora or Agrobacterium aurantiacum is prepared in Escherichia coli, and a method commonly used in the field of genetic engineering from this library, such as a hybridization method using an appropriate probe (eg, a chemically synthesized DNA probe), It can be said that it is faster to obtain this.
【0027】2) 生物の形質転換および遺伝子発現 上述のようなcrt 遺伝子群を含むプラスミドを作製し、
これを大腸菌等の適切な宿主微生物に導入し、発現させ
ることにより、目的とするカロテノイド配糖体を得るこ
とができる。2) Transformation of organism and gene expression A plasmid containing the crt gene group as described above was prepared,
By introducing this into a suitable host microorganism such as Escherichia coli and expressing it, a target carotenoid glycoside can be obtained.
【0028】以下は、好ましい微生物への外来遺伝子の
導入・発現法の概要について記載したものである。外来
遺伝子を含むプラスミドの作製法、大腸菌等の微生物へ
のプラスミドの導入および発現のための手順ないし方法
は、本発明において下記したところ以外のものにおいて
も、遺伝子工学の分野により慣用されているものを含
み、その手法ないし方法(たとえば、"Vectors for clo
ning genes", Methods in Enzymology, 216, p. 469-63
1, 1992, Academic Press 、および、"Other bacterial
systems", Methods in Enzymology, 204, p.305-636,
1991, Academic Press参照)に準じて実施すればよい。The following is an outline of a preferred method for introducing and expressing a foreign gene into a microorganism. Procedures and methods for preparing a plasmid containing a foreign gene and introducing and expressing the plasmid into a microorganism such as Escherichia coli are not limited to those described below in the present invention, and may be those commonly used in the field of genetic engineering. And its methods or methods (eg, "Vectors for clo
ning genes ", Methods in Enzymology, 216, p. 469-63
1, 1992, Academic Press and "Other bacterial
systems ", Methods in Enzymology, 204, p.305-636,
1991, Academic Press).
【0029】(1 )大腸菌 大腸菌への外来遺伝子(crt 遺伝子群)の導入法は、ハ
ナハンの方法、ルビジウム法などすでに確立されたいく
つかの効率的方法があり、それを用いて行えばよい(た
とえば、Sambrook, J., Fritsch,E. F., Maniatis, T.,
"Molecular cloning -A laboratory manual." Cold Sp
ring Harbor Laboratory Press, 1989参照)。大腸菌で
の外来遺伝子の発現は常法に従って行えばよいが(たと
えば、前述の "Molecular cloning -A laboratory manu
al."参照)、たとえば、pUC 系やpBluescript 系等のla
c のプロモーター等を有する大腸菌用ベクターを用いて
行うことができる。本発明者等は、lac のプロモーター
等を有する大腸菌用ベクターpBluescript II SK-を用い
て、lac のプロモーターの転写のリードスルーを受ける
方向に、Agrobacterium aurantiacum のcrtW、または c
rtWおよびcrtZ 遺伝子を挿入し、これらの遺伝子を大腸
菌で発現させた。さらに、Erwinia uredovor a のcrtE,
crtB, crtI, crtY, crtZ (Agrobacterium のcrtZを用い
ない場合) およびcrtXを、pBluescript IIと1つの細胞
内で共存できる大腸菌ベクターpACYC184を用いて発現さ
せた。(1) Escherichia coli There are several well-established methods for introducing a foreign gene ( crt gene group) into Escherichia coli, such as the Hanahan's method and the rubidium method. For example, Sambrook, J., Fritsch, EF, Maniatis, T.,
"Molecular cloning -A laboratory manual." Cold Sp
ring Harbor Laboratory Press, 1989). Expression of a foreign gene in Escherichia coli may be performed according to a conventional method (for example, as described in "Molecular cloning -A laboratory manu
al. "), for example, pUC and pBluescript
c) using a vector for E. coli having the promoter and the like. The present inventors have, for E. coli vector pBluescript II SK having promoter of the lac etc. - with, in the direction to receive a read-through transcription of the promoter of the lac, the Agrobacterium aurantiacum crtW or c,
The rtW and crtZ genes were inserted and these genes were expressed in E. coli. In addition, Erwinia uredovor a crtE ,
crtB , crtI , crtY , crtZ (when crt Z of Agrobacterium was not used) and crtX were expressed using an E. coli vector pACYC184 that can coexist with pBluescript II in one cell.
【0030】(2 )Zymomonas mobilis エタノール生産細菌 Zymomonas mobilisへの外来遺伝子
の(7種のcrt 遺伝子)導入法は、グラム陰性菌に共通
な接合伝達法により行うことができ、Zymomona s mobili
s での外来遺伝子の発現は、たとえば Zymomonas mobil
is用ベクターpZA22 を用いて行うことができる(中村克
己、「Zymomonas 細菌の分子育種」、日本農芸化学会
誌, 63, p.1016-1018, 1989 、および、N. Misawa, S.
Yamano, H.Ikenaga, Production of β-carotene in Zy
momonas mobilis and Agrobacteri um tumefaciens by i
ntroduction of the biosynthesis genes from Erwinia
ur edovora.Appl. Environ. Microbiol., 57, 1847-184
9, 1991参照)。[0030] (2) Zymomonas mobilis ethanol producing bacterium Zymomonas mobilis of foreign genes into (seven crt genes) transfer method can be carried out by common conjugal transfer method Gram-negative bacteria, Zymomona s mobili
expression of foreign genes in s, for example Zymomonas mobil
can be carried out using a is a vector for pZA22 (Katsumi Nakamura, "molecular breeding of Zymomonas bacteria", Japan Agricultural Chemistry Journal, 63, p.1016-1018, 1989, and, N. Misawa, S.
Yamano, H. Ikenaga, Production of β-carotene in Zy
momonas mobilis and Agrobacteri um tumefaciens by i
ntroduction of the biosynthesis genes from Erwinia
ur edovora .Appl.Environ.Microbiol., 57, 1847-184
9, 1991).
【0031】(3 )酵母 酵母Saccharomyces cerevisiaeへの外来遺伝子(7種の
crt 遺伝子)の導入法は、リチウム法などすでに確立さ
れた方法があり、それを用いて行えばよい(たとえば、
秋山裕一監修バイオインダストリー協会編集、「酵母の
ニューバイオテクノロジー」医学出版センター刊参
照)。酵母での外来遺伝子の発現は、PGK やGPD (GAP)
等のプロモーターおよびターミネーターを用いて、外来
遺伝子をこのプロモーターとターミネーターの間に転写
のリードスルーを受けるように挿入した発現カセットを
構築し、この発現カセットを、 S. cerevisiaeのベクタ
ー、たとえば、YRp 系(酵母染色体のARS 配列を複製起
点とする酵母用マルチコピーベクター)、YEp 系(酵母
の2 μm DNA の複製起点を持つ酵母用マルチコピーベ
クター)、YIp 系(酵母の複製起点を持たない酵母染色
体組込み用ベクター)等のベクターに挿入することによ
り行うことができる(前述の「酵母のニューバイオテク
ノロジー」医学出版センター刊、日本農芸化学会ABC シ
リーズ「物質生産のための遺伝子工学」朝倉書店刊、お
よび、S. Yamano, T. Ishii, M. Nakagawa, H. Ikenag
a, N. Misawa, Metabolic engineering for production
ofβ-carotene and lycopene in Saccharomyces cerev
isiae. Biosci. Biotech. Biochem.,58, 1112-1114, 19
94参照)。酵母Candida utilisへの外来遺伝子の導入法
については、すでに本発明者らにより開示された方法
(近藤、三沢、梶原、特開平8-173170号公報)に従って
実施できる。具体的にはシクロヘキシミド耐性遺伝子、
G418耐性遺伝子、あるいはハイグロマイシン耐性遺伝子
などの薬剤耐性マーカー遺伝子を含んだプラスミドを直
鎖状にした後、電気パルス法もしくはリチウム法によっ
て、染色体上に組み込むことができる。外来遺伝子の発
現には同特許出願公開公報に記載されたGAP, P GK, PMA
などのプロモーターを使用することができる。酵母Phaf
fia rhodozyma への外来遺伝子(7種のcrt 遺伝子)の
導入法については、Van Ooyen らにより、開示された方
法(Van Ooyen et al., Transformation of Phaffia rh
odozyma,WO94/06918, 1994)により、G418耐性遺伝子な
どの選択マーカー遺伝子を含むプラスミドをリチウム法
などによって染色体上に組み込むことができる。(3) Yeast A foreign gene to the yeast Saccharomyces cerevisiae (7
There are already established methods such as the lithium method for introducing the crt gene), and the method may be used (for example,
Edited by the Bioindustry Association, supervised by Yuichi Akiyama, see "Yeast New Biotechnology", published by Medical Publishing Center). Expression of foreign genes in yeast is controlled by PGK or GPD (GAP)
Using such a promoter and terminator, an expression cassette is constructed in which a foreign gene is inserted between the promoter and the terminator so as to receive read-through of transcription, and this expression cassette is used as a vector of S. cerevisiae , for example, a YRp system. (Multicopy vector for yeast using the ARS sequence of the yeast chromosome as an origin of replication), YEp system (multicopy vector for yeast having a replication origin of 2 μm DNA of yeast), YIp system (yeast chromosome having no yeast replication origin) This can be performed by inserting the vector into a vector such as an integration vector ("Yeast New Biotechnology" mentioned above, published by the Medical Publishing Center, ABC Series of Japanese Society for Agricultural Chemistry, "Genetic Engineering for Substance Production," published by Asakura Shoten, And S. Yamano, T. Ishii, M. Nakagawa, H. Ikenag
a, N. Misawa, Metabolic engineering for production
ofβ-carotene and lycopene in Saccharomyces cerev
isiae. Biosci. Biotech. Biochem., 58, 1112-1114, 19
94). The method for introducing a foreign gene into the yeast Candida utilis can be carried out according to the method already disclosed by the present inventors (Kondo, Misawa, Kajiwara, JP-A-8-173170). Specifically, a cycloheximide resistance gene,
After linearizing a plasmid containing a drug resistance marker gene such as a G418 resistance gene or a hygromycin resistance gene, the plasmid can be integrated on a chromosome by an electric pulse method or a lithium method. GAP is the expression of foreign genes described in the patent application publication, P GK, PMA
Such promoters can be used. Yeast Phaf
The method of introducing a foreign gene (seven crt genes) into fia rhodozyma is disclosed by Van Ooyen et al. (Van Ooyen et al., Transformation of Phaffia rh).
odozyma, WO94 / 06918, 1994), a plasmid containing a selectable marker gene such as a G418 resistance gene can be integrated on a chromosome by a lithium method or the like.
【0032】酵母Candida tropicalisへの外来遺伝子
(7種のcrt 遺伝子)の導入は、特開平4505557 号公報
により開示された方法で、また、Yarrowia lipolytica
への外来遺伝子の導入は、特開昭 60199386 、特開昭61
21087 、特開昭 63164889 号公報などにより開示された
方法により、それぞれ実施可能である。The introduction of foreign genes (seven kinds of crt genes) into the yeast Candida tropicalis was carried out by the method disclosed in Japanese Patent Application Laid-Open No. 4505557 and by the method disclosed in Yarrowia lipolytica.
For example, Japanese Patent Laid-Open Nos. 60199386 and 61
21087 and JP-A-63164889, respectively.
【0033】<微生物の培養法およびカロテノイド配糖
体の精製法>本発明によるカロテノイド配糖体の製造法
においては、7種のcrt 遺伝子を導入した上記形質転換
微生物を、一般に使用宿主微生物の培養に用いられる培
地で培養し、生産されるアスタキサンチンジグルコシ
ド、アスタキサンチンモノグルコシドおよびアドニキサ
ンチン−3′−グルコシドを培養物から常法により採取
する。<Culture Method of Microorganism and Purification Method of Carotenoid Glycoside> In the method of producing a carotenoid glycoside according to the present invention, the above transformed microorganism into which seven kinds of crt genes have been introduced is generally cultured with a host microorganism. The astaxanthin diglucoside, astaxanthin monoglucoside, and adonixanthin-3'-glucoside produced by culturing in the medium used for the above are collected from the culture by a conventional method.
【0034】まず一般的な培養法について述べる。アス
タキサンチンジグルコシド、アスタキサンチンモノグル
コシドおよびアドニキサンチン−3′−グルコシドの生
産能を有する形質転換微生物の培養には、使用宿主微生
物に関して通常の培養方法を用いることができる(たと
えば、前述のMolecular cloning 参照)。培地としては
一般にペプトン類、酵母エキス、糖類(グルコースな
ど)および無機物(NaCl(塩化ナトリウム)など)
が使用可能である(たとえば、前述のMolecular clonin
g 及び(財)発酵研究所発行LIST OF CULTURES参照)。
また、カロテノイド生合成上の前駆体と考えられる代謝
マップ(日本生化学会編、東京化学同人発行、1980
年),123 〜125 頁記載の前駆体(例えば、ピルビン酸
やメバロン酸など)やアスタキサンチン、アドニキサン
チンなどの生産を促進する微量成分(例えば、Fe2+,
α−ケトグルタル酸(2−オキソグルタル酸)など)
(P.D.Fraser et al., J.Biol.Chem. 272,6128-6135,19
97, 参照)を必要に応じて添加することができる。First, a general culture method will be described. For culturing a transformed microorganism capable of producing astaxanthin diglucoside, astaxanthin monoglucoside, and adonixanthin-3'-glucoside, a usual culturing method can be used for the host microorganism to be used (for example, see Molecular Cloning described above). ). In general, peptones, yeast extracts, sugars (such as glucose) and inorganic substances (such as NaCl (sodium chloride)) are used as culture media.
Can be used (for example, the molecular clonin described above).
g and LIST OF CULTURES issued by Fermentation Research Institute).
In addition, metabolic maps considered to be precursors for carotenoid biosynthesis (edited by the Biochemical Society of Japan, published by Tokyo Chemical Dojin, 1980
), Pages 123-125 (e.g., pyruvate and mevalonic acid) and trace components that promote the production of astaxanthin, adonixanthin, etc. (e.g., Fe2 + ,
α-Ketoglutaric acid (2-oxoglutaric acid) etc.)
(PDFraser et al., J. Biol. Chem. 272, 6128-6135, 19
97, ref.) Can be added as needed.
【0035】培養法としては、液体培養法が最も適して
いる。宿主微生物の種類により最適の培養条件は異なる
が、通常培養温度は16〜40℃、特に20〜30℃が適当であ
り、培養中の培地のpHは4 〜10、特に6 〜8 に維持する
ことが望ましい。液体培養で通常半日〜4 日培養をおこ
なうと、アスタキサンチンジグルコシド、アスタキサン
チンモノグルコシドおよびアドニキサンチン−3′−グ
ルコシドが微生物体中に生成蓄積される。培養物中の生
成量が最大に達したときに培養を停止するのが望まし
い。本発明に関連する一般的培養法に関しては、例えば
前述のMolecularCloning などを参照することができ
る。The most suitable culture method is a liquid culture method. The optimal culture conditions vary depending on the type of host microorganism, but usually the culture temperature is 16 to 40 ° C, particularly 20 to 30 ° C, and the pH of the medium during the culture is maintained at 4 to 10, particularly 6 to 8 It is desirable. When liquid culture is performed for half to four days, astaxanthin diglucoside, astaxanthin monoglucoside, and adonixanthin-3'-glucoside are produced and accumulated in the microorganism. It is desirable to stop the culture when the production in the culture reaches a maximum. For general culture methods related to the present invention, for example, the above-mentioned Molecular Cloning and the like can be referred to.
【0036】培養物からのアスタキサンチンジグルコシ
ド、アスタキサンチンモノグルコシドおよびアドニキサ
ンチン−3′−グルコシドの単離精製は、微生物代謝生
産物をその培養物から単離精製するために常用される方
法に従って行なうことができる(例えば、大岳望ら著、
物質の単離と精製、東京大学出版会1981年参照)。
例えば、培養物をろ過や遠心分離により培養ろ液と菌体
に分け、菌体を有機溶剤(たとえば、メタノール、クロ
ロホルム、アセトンまたはこれらの2種以上の混合物な
ど)で抽出する。次いで抽出液を濃縮後、および必要に
応じて培養ろ液を、例えばシリカゲル、化学結合型シリ
カゲル、ゲルろ過剤などを用いた液体クロマトグラフィ
−により精製することができる。アスタキサンチンジグ
ルコシド、アスタキサンチンモノグルコシドおよびアド
ニキサンチン−3′−グルコシドの動向は、例えば薄層
クロマトグラフィ−によるそれぞれのカロテノイド配糖
体に特徴的な赤橙色を目安として追跡し、各カロテノイ
ド配糖体を分離精製することができる。The isolation and purification of astaxanthin diglucoside, astaxanthin monoglucoside and adonixanthin-3'-glucoside from the culture are carried out according to a method commonly used for isolating and purifying microbial metabolites from the culture. (For example, by Noboru Otake,
Isolation and purification of substances, see The University of Tokyo Press, 1981).
For example, the culture is separated into a culture filtrate and cells by filtration or centrifugation, and the cells are extracted with an organic solvent (eg, methanol, chloroform, acetone or a mixture of two or more of these). Next, after the extract is concentrated, and if necessary, the culture filtrate can be purified by liquid chromatography using, for example, silica gel, chemically bonded silica gel, a gel filtration agent, or the like. The trends of astaxanthin diglucoside, astaxanthin monoglucoside and adonixanthin-3'-glucoside are tracked, for example, using the red-orange color characteristic of each carotenoid glycoside by thin-layer chromatography as a guide. It can be separated and purified.
【0037】上記カロテノイド配糖体は、それぞれ単一
の配糖体として得てもよいし、2種または3種の混合物
として得てもよくいずれの形態でも高水溶性のカロテノ
イドとして食品添加物等に用いることができる。このこ
とは前述のように、本発明によるカロテノイド配糖体
は、典型的には新規物質であるアスタキサンチンジグル
コシドおよびアドニキサンチン−3′−グルコシドの各
単離物であるが、これら2種の新規カロテノイド配糖体
および既知のアスタキサンチンモノグルコシドの2種ま
たは3種の混合物をも包含することを意味する。The carotenoid glycosides described above may be obtained as a single glycoside or as a mixture of two or three types, and in any form, as a highly water-soluble carotenoid, a food additive or the like. Can be used. This means, as mentioned above, that the carotenoid glycosides according to the invention are typically isolates of the novel substances astaxanthin diglucoside and adonixanthin-3'-glucoside, respectively. It is meant to include mixtures of two or three of the novel carotenoid glycosides and known astaxanthin monoglucosides.
【0038】3) 植物の形質転換および遺伝子発現 前述のように、7種のcrt 遺伝子の全てまたは植物細胞
に不足しているcrt 遺伝子を該細胞に導入することによ
りカロテノイド配糖体を産出する植物を作製することが
できる。好ましい例として例えば、前述のcrtX, crtW遺
伝子とこれ以外の5種のcrtZ遺伝子を含むプラスミドを
作製し、これをトマトなどの適切な植物に導入し、発現
させることにより、目的とするカロテノイド配糖体を産
生する植物を得ることができる。[0038] 3) As Transformation and Gene Expression aforementioned plants, seven plants the crt gene missing all or plant cells crt genes to produce the carotenoid glycosides by introducing into the cell Can be produced. As a preferred example, for example, a plasmid containing the above-mentioned crtX and crtW genes and five other crtZ genes is prepared, introduced into an appropriate plant such as tomato, and expressed, whereby the desired carotenoid glycoside is obtained. A plant that produces a body can be obtained.
【0039】以下は、植物への外来遺伝子の導入・発現
法の概要について記載したものである。外来遺伝子を含
むプラスミドの作製法、植物(葉、茎、根等の細胞)へ
のプラスミドの導入および発現のための手順ないし方法
は、本発明において下記したところ以外のものにおいて
も、植物の遺伝子工学の分野により慣用されているもの
を含み、その手法ないし方法(たとえば、石田功、三沢
典彦、細胞工学実験操作入門、講談社、1992参照)に準
じて実施すればよい。The following is an outline of a method for introducing and expressing a foreign gene into a plant. The method for preparing a plasmid containing a foreign gene and the procedure or method for introducing and expressing the plasmid into a plant (cells such as leaves, stems and roots) are not limited to those described below in the present invention. The method may be performed according to the method or method (for example, Isao Ishida and Norihiko Misawa, Introduction to Cell Engineering Experiment Operation, Kodansha, 1992), including those commonly used in the field of engineering.
【0040】植物への外来遺伝子の導入法は、植物病原
細菌Agrobacterium tumefaciens を介する方法、エレク
トロポレーション法、パーティクルガンを用いる方法等
が知られている。導入したい植物の種類に応じてこれら
の方法を使い分けることができるが、現在では、Agroba
cterium tumefaciens を介する方法が最も多用されてい
る。プロモーターは、全身高発現プロモーターであるカ
リフラワーモザイクウイルス(CaMV)の35Sプロ
モーターを始めとして、種々の器官特異的に発現するも
のも使うことができる。CaMV 35Sプロモーター
を含んだバイナリーベクターpBI121はClontech社
より入手でき、Agrobacterium tumefaci ens を介するた
めのベクターとして、広く使われているものである。Er
winia のcrtIなどのcrt 遺伝子は、pBI121をベク
ターとして用いることにより、タバコやトマト等の植物
に導入でき、crt 遺伝子がタバコの葉やトマトの実など
で発現し、機能することがすでに示されている(三沢典
彦、カロテノイド生合成阻害剤抵抗性植物の作出、植物
の化学調節、31,143-149,1996 )。なお、この際、植物
細胞質内で合成されたCrt タンパク質を、カロテノイド
生産の場である葉緑体や色素体などのプラスチドに移行
させるのに、トランジットペプチド配列(例えばRubisc
o の小サブユニットのトランジットペプチド配列)をcr
t 遺伝子の開始コドンの直前に付与する必要がある(三
沢典彦、カロテノイド生合成阻害剤抵抗性植物の作出、
植物の化学調節、31,143-149,1996 )。As a method for introducing a foreign gene into a plant, a method involving a plant pathogenic bacterium Agrobacterium tumefaciens , an electroporation method, a method using a particle gun, and the like are known. You can use these methods depending on the type of plant you want to introduce, but currently Agroba
The method via cterium tumefaciens is most frequently used. As the promoter, a 35S promoter of cauliflower mosaic virus (CaMV), which is a high expression promoter for whole body, and other promoters that are expressed in various organs can be used. Binary vector pBI121 containing the CaMV 35S promoter can be obtained from Clontech, Inc., as a vector to through Agrobacterium tumefaci ens, those widely used. Er
A crt gene such as winia crtI can be introduced into plants such as tobacco and tomato by using pBI121 as a vector, and it has been shown that the crt gene is expressed and functions in tobacco leaves and tomato fruits. Norihiko Misawa, Production of Plants Resistant to Carotenoid Biosynthesis Inhibitors, Chemical Regulation of Plants, 31, 143-149, 1996). At this time, the transit peptide sequence (for example, Rubisc) was used to transfer the Crt protein synthesized in the plant cytoplasm to plastids such as chloroplasts and plastids, which are places for carotenoid production.
cr the transit peptide sequence) of the small subunit of o
It must be added immediately before the start codon of the t gene (Norihiko Misawa, creation of carotenoid biosynthesis inhibitor-resistant plants,
Chemical regulation of plants, 31, 143-149, 1996).
【0041】4) 微生物の寄託 本発明DNA 鎖の遺伝子源となった単離された遺伝子を組
み込んだ大腸菌は、工業技術院生命工学工業技術研究所
に下記の通りに寄託されている。 (1 )Escherichia coli JM109 (pCAR1) 受託番号:FERM BP-2377 受託年月日:平成元年4 月11日 (2 )Escherichia coli JM101 (pAccrt-EIB, pAK92) 受託番号:FERM BP-4505 受託年月日:平成5 年12月20日 菌株(1 )は、Erwinia uredovora のcrtE, crtB, crt
I, crtY, crtZ, crtX遺伝子を含んでおり、菌株(2 )
は、Agrobacterium aurantiacum のcrtZ, crtW遺伝子を
含んでいる。4) Deposit of Microorganism The Escherichia coli incorporating the isolated gene, which has become the source of the DNA strand of the present invention, has been deposited with the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology as follows. (1) Escherichia coli JM109 (pCAR1) Accession number: FERM BP-2377 Accession date: April 11, 1989 (2) Escherichia coli JM101 (pAccrt-EIB, pAK92) Accession number: FERM BP-4505 Date: December 20, 1993 Strain (1) was obtained from crtE , crtB , crt of Erwinia uredovora
Contains the I , crtY , crtZ , and crtX genes, and is a strain (2)
Contains the crtZ and crtW genes of Agrobacterium aurantiacum .
【0042】カロテノイド配糖体の用途 上述のようにして得ることができる本発明によるカロテ
ノイド配糖体は食品分野に用いることができる。すなわ
ち、本発明は、アタキサンチンジクルコシド、アドニキ
サンチン−3′−グルコシドおよびアスタキサンチンモ
ノグルコシドの1種または複数種(ただし、アスタキサ
ンチンモノグルコシド単独の使用を除く)を任意に食料
油やグリセリン、エタノール等の添加剤と共に適量含有
してなる食品改善剤または食品をも提供する。ここで食
品改善剤とは、食品の色調改善剤、色揚げ剤、食品添加
物、抗酸化剤等を包含するものであり、また食品として
は、固形(カマボコなど)、半流動(シチューなど)、
液体(食料油や清涼飲料水など)等の種々の飲食品を包
含するものである。 Use of carotenoid glycoside The carotenoid glycoside according to the present invention, which can be obtained as described above, can be used in the food field. That is, the present invention relates to a method of optionally adding one or more of ataxanthin diculcoside, adonixanthin-3'-glucoside and astaxanthin monoglucoside (excluding the use of astaxanthin monoglucoside alone) to food oil, glycerin, There is also provided a food improving agent or food which is contained in an appropriate amount together with an additive such as ethanol. Here, the food improving agent includes a food color improving agent, a color enhancer, a food additive, an antioxidant, and the like, and the food includes a solid (such as kamaboko) and a semi-fluid (such as stew). ,
It includes various foods and drinks such as liquids (food oil, soft drinks, etc.).
【0043】[0043]
【実施例】以下実施例により本発明を更に具体的に説明
するが、本発明はこれによって限定されるものではない
ことは言うまでもない。 [実施例1]プラスミドの作製 植物常在 (epiphytic)細菌Erwinia から得ることができ
るcrtE遺伝子は、ファルネシルピロリン酸 (FPP)をゲラ
ニルゲラニルピロリン酸 (GGPP) に変換する酵素である
GGPPシンターゼをコードしている。Erwinia から得るこ
とができるcrtB遺伝子は、GGPPをフィトエンに変換する
酵素であるフィトエンシンターゼをコードしている。さ
らに、Erwinia から得ることができるcrtI遺伝子は、フ
ィトエンをリコペンに変換する酵素であるフィトエンデ
サチュラーゼをコードしており、Erwinia から得ること
ができるcrtY遺伝子は、リコペンをβ- カロチンに変換
する酵素であるリコペン サイクラーゼをコードしてい
る (以上、三沢典彦, 遺伝子レベルで解明されたカロテ
ノイド生合成経路, 蛋白質 核酸 酵素, 41, 337-346,
1996 、Norihiko Misawa et al., Elucidation of the
Erwinia uredovoracarotenoid biosynthetic pathway
by functional analysis of gene productsexpressed i
n Escherichia coli. J. Bacteriol., 172, 6704-6712,
1990 、およびGerhard Sandmann, N. Misawa, New fun
ctional aasignment of the carotenogenic genes crtB
and crtE with constructs of these genes from Erwi
niaspecies.FEMS Microbiol. Lett. 90, 253-258, 1992
参照) 。したがって、上記4つのcrt 遺伝子を大腸菌
等の微生物に導入し発現させると、その形質転換微生物
はβ- カロチンを合成するようになる。アスタキサンチ
ン産生海洋細菌Agrobacterium aurantiacum またはAlca
ligene s sp. strain PC-1 から得ることができるcrtW
は、カロテノイド 4,(4′)-β-イオノン環オキシゲナー
ゼをコードしており、A. aurantiacumまたはAlcaligene
s sp. strain PC-1 、または Erwiniaから得ることがで
きるcrtZは、カロテノイド 3,(3′)-β- イオノン環ハ
イドロキシラーゼをコードしている (Paul D. Fraser,
Y. Miura, N. Misawa, In vitro characterization of
astaxanthin biosynthetic enzymes. J. Biol. Chem.,
272, 6128-6135, 1997) 。β- カロチンを産生する大腸
菌等の微生物に crtW とcrtZの両方を導入し発現させる
と、最終産物としてアスタキサンチンを生成するように
なる。なお、β- カロチンを産生する大腸菌等の微生物
に、crtWを導入し発現させるとカンタキサンチンを、 c
rtZを導入し発現させるとゼアキサンチン生成するよう
になる (三沢典彦, 遺伝子レベルで解明されたカロテノ
イド生合成経路, 蛋白質 核酸 酵素, 41, 337-346,19
96 、Norihiko Misawa et al., Structure and functio
nal analysis of a marine bacterial carotenoid bios
ynthesis gene cluster and astaxanthin biosynthetic
pathway proposed at the gene level. J. Bacterio
l., 177, 6575-6584, 1995 、およびPaul D. Fraser,
Y. Miura, N. Misawa, In vitro characterization of
astaxanthin biosynthetic enzymes. J. Biol. Chem.,
272, 6128-6135, 1997参照) 。Erwinia から得ることが
できるcrtXは、ゼアキサンチングルコシルトランスフェ
ラーゼをコードしており、ゼアキサンチンを産生する大
腸菌等の微生物に crtX を導入し発現させるとゼアキサ
ンチン- β-D- ジグルコシドを合成するようになる (No
rihiko Misawa et al., Elucidation of the Erwiniaur
edovora carotenoid biosynthetic pathway by functio
nal analysis of gene products expressed in Escheri
chia coli. J. Bacteriol., 172, 6704-6712,1990 参
照) 。A. aurantiacum のcrtWを含む0.91 kb BamHI-Hin
cII断片をpBluescript II SK-のBamHI-HincII部位に挿
入し、プラスミド pAK916 を作製した。さらに、A. aur
antiacumのcrtWとcrtZの2つの遺伝子を含む1.88 kb Ba
mHI-KpnI断片をpBluescript II SK-のBamHI-KpnI部位に
挿入し、プラスミド pAK96K を作製した。これらのプラ
スミドは、N. Misawa et al., J. Bacteriol., 177, 65
75-6584, 1995 に開示されている。Erwinia uredovora
の6個全部のcrt 遺伝子を含む6.50 kb Asp718 (KpnI)-
EcoRI 断片を、プラスミドpCAR25 (N. Misawa et al.,
J. Bacteriol., 172, 6704-6712, 1990)から切りだし、
Klenow断片処理をした後、ベクター pACYC184 (R. E.Ro
se, The nucleotide sequence of pACYC184, Nucleic A
cids Res., 16, 355,1988)のEcoRV 部位に挿入し、プラ
スミドpACCAR25 (図1) を作製した。次に、E. uredovo
raのcrtZ以外の5個のcrt 遺伝子を含む6.01 kb Asp718
(KpnI)-EcoRI 断片を、プラスミドpCAR16 (N. Misawa
et al., J. Bacteriol., 172, 6704-6712, 1990)から切
りだし、Klenow断片処理をした後、ベクター pACYC184
のEcoRV 部位に挿入し、プラスミドpACCAR16 (図1) を
作製した。 [実施例2]アスタキサンチンジグルコシド等の取得法 種菌として大腸菌JM101 (pACCAR25, pAK916)を用いた。
培養には、LB培地(10g Tryptone (Bacto)、5g Yeast E
xtract (Bacto)、10g NaClを1 リットルの蒸留水に溶解
しpH7.2 に調整後、オートクレーブにて滅菌)にアンピ
シリン150 mg、クロランフェニコール30 mg 、イソプロ
ピルβ-D- チオガラクトピラノシド50 mg (各培地1 リ
ットル中)を添加したものを用いた。1000 ml 容量三角
フラスコ中の300 mlの培地40本、計12リットルに、該菌
株を一白金耳づつ植菌し、30℃で48時間振とう(100 rp
m )培養した。培養液を遠心分離 (5,000 rpm)して菌体
分画を得た後、アセトン500 mlを添加し撹拌した後、沈
殿物をろ別し、沈殿物をアセトン:メタノール(7:3 )
500 mlにて再度抽出した。抽出液を合一し、濃縮後、ヘ
キサン300 mlと80%含水メタノール300 mlにて分配し
た。80%含水メタノール画分を濃縮後、シリカゲルカラ
ム(2x20 cm 、メルク社製Silica gel 60)にクロロホ
ルム:メタノール(8:2 )を溶出溶媒として用い分画し
た。さらにTSK gel ODS-80Ts(7.8x300 mm、東ソー社
製)と蒸留水:メタノール(1:9 )を用いた高速液体ク
ロマトグラフィーによりアスタキサンチンジグルコシド
1 mg を得た。また、シリカゲルカラムにおいてアスタ
キサンチンジグルコシドより早く溶出する画分を、TSK
gel ODS-80Ts(7.8x300 mm、東ソー社製)と蒸留水:メ
タノール(5:95)を用いた高速液体クロマトグラフィー
によりアスタキサンチンモノグルコシド 3 mg を得た。
アスタキサンチンモノグルコシドの可視部吸収スペクト
ル、質量分析および1H-NMRスペクトルは、既に報告され
ているアスタキサンチンモノグルコシドの値と一致した
(Akihiro Yokoyama, Kyouko Adachi, and Yoshikazu S
hizuri, Journal of Natural Products, Vol. 58, pp.
1929-1933)。The present invention will be described more specifically with reference to the following examples.
However, the present invention is not limited thereby.
Needless to say. [Example 1] Preparation of plasmid Plant-resident (epiphytic) bacteriaErwinia Can be obtained from
TocrtEThe gene gels farnesyl pyrophosphate (FPP)
An enzyme that converts to nilgeranyl pyrophosphate (GGPP)
Encodes GGPP synthase.Erwinia Get from
Can becrtBGene converts GGPP to phytoene
It encodes the enzyme phytoene synthase. Sa
In addition,Erwinia Can be obtained fromcrtIGenes are
Phytoende, an enzyme that converts phytoene to lycopene
Encodes a saturase,Erwinia Gaining from
CancrtYGene converts lycopene to β-carotene
Encoding lycopene cyclase,
(The above, Norihiko Misawa, Carote clarified at the genetic level
Noid biosynthetic pathway, protein, nucleic acid, enzyme, 41, 337-346,
1996, Norihiko Misawa et al., Elucidation of the
Erwinia uredovoracarotenoid biosynthetic pathway
by functional analysis of gene productsexpressed i
n Escherichia coli. J. Bacteriol., 172, 6704-6712,
1990, and Gerhard Sandmann, N. Misawa, New fun
ctional aasignment of the carotenogenic genes crtB
and crtE with constructs of these genes from Erwi
niaspecies.FEMS Microbiol. Lett. 90, 253-258, 1992
See). Therefore, the above four crt genes were
When introduced and expressed in microorganisms such as
Begins to synthesize β-carotene. Astaxanthi
Marine bacteriaAgrobacterium aurantiacum OrAlca
ligene s sp. can be obtained from strain PC-1crtW
Is the carotenoid 4, (4 ')-β-ionone ring oxygenator
CodeA. aurantiacumOrAlcaligene
s sp. strain PC-1 orErwiniaCan get from
WearcrtZIs a carotenoid 3, (3 ′)-β-ionone ring
Encodes idroxylase (Paul D. Fraser,
Y. Miura, N. Misawa, In vitro characterization of
astaxanthin biosynthetic enzymes. J. Biol. Chem.,
272, 6128-6135, 1997). Large intestine producing beta-carotene
For microorganisms such as bacteriacrtW WhencrtZIntroduce and express both
To produce astaxanthin as a final product
Become. Microorganisms such as E. coli that produce β-carotene
TocrtWWhen introduced and expressed, canthaxanthin,c
rtZZeaxanthin is produced when introduced and expressed
(Norihiko Misawa, Caroteno revealed at the genetic level
Id biosynthetic pathway, protein nucleic acid enzyme, 41, 337-346,19
96, Norihiko Misawa et al., Structure and functio
nal analysis of a marine bacterial carotenoid bios
ynthesis gene cluster and astaxanthin biosynthetic
pathway proposed at the gene level.J. Bacterio
l., 177, 6575-6584, 1995, and Paul D. Fraser,
Y. Miura, N. Misawa, In vitro characterization of
astaxanthin biosynthetic enzymes. J. Biol. Chem.,
272, 6128-6135, 1997).Erwinia Can get from
it cancrtXIs zeaxanthin glucosyltransfer
Enzyme that produces zeaxanthin
For microorganisms such as enterobacteriacrtX Zeaxa is introduced and expressed
To synthesize tintin-β-D-diglucoside (No
rihiko Misawa et al., Elucidation of the Erwiniaur
edovora carotenoid biosynthetic pathway by functio
nal analysis of gene products expressed in Escheri
See chia coli. J. Bacteriol., 172, 6704-6712, 1990.
See).A. aurantiacum ofcrtW0.91 kb including BamHI-Hin
Insert the cII fragment into the BamHI-HincII site of pBluescript II SK-
Then, the plasmid pAK916 was prepared. further,A. aur
antiacumofcrtWWhencrtZ1.88 kb Ba containing two genes
Insert the mHI-KpnI fragment into the BamHI-KpnI site of pBluescript II SK-
The resulting plasmid was inserted into the plasmid pAK96K. These plastic
Sumid is described in N. Misawa et al., J. Bacteriol., 177, 65.
75-6584, 1995.Erwinia uredovora
Of all sixcrt 6.50 kb Asp718 (KpnI)-including gene
The EcoRI fragment was converted to plasmid pCAR25 (N. Misawa et al.,
J. Bacteriol., 172, 6704-6712, 1990)
After Klenow fragment treatment, the vector pACYC184 (R.E.Ro
se, The nucleotide sequence of pACYC184, Nucleic A
cids Res., 16, 355, 1988).
Smid pACCAR25 (FIG. 1) was prepared. next,E. uredovo
raofcrtZOther than 5crt 6.01 kb Asp718 including gene
The (KpnI) -EcoRI fragment was ligated with plasmid pCAR16 (N. Misawa
et al., J. Bacteriol., 172, 6704-6712, 1990).
After processing the Klenow fragment, the vector pACYC184
And the plasmid pACCAR16 (Figure 1) was inserted into the EcoRV site of
Produced. [Example 2] Method for obtaining astaxanthin diglucoside and the like Escherichia coli JM101 (pACCAR25, pAK916) was used as the inoculum.
For culture, use LB medium (10 g Tryptone (Bacto), 5 g Yeast E
xtract (Bacto), dissolve 10g NaCl in 1 liter of distilled water
After adjusting to pH 7.2, sterilize in an autoclave).
Syrin 150 mg, chloramphenicol 30 mg, isopro
Pill β-D-thiogalactopyranoside 50 mg (1 medium per medium)
(In the bottle) was used. 1000 ml volume triangle
The bacteria were added to a total of 12 liters of 40 300 ml culture media in a flask.
Inoculate the strains one platinum loop at a time and shake at 30 ° C for 48 hours (100 rp
m) Cultured. Centrifuge the culture solution (5,000 rpm) and centrifuge the cells.
After obtaining the fraction, add 500 ml of acetone, stir,
The precipitate is filtered off and the precipitate is acetone: methanol (7: 3)
Extracted again with 500 ml. The extracts are combined, concentrated,
Partition with 300 ml of xanth and 300 ml of 80% aqueous methanol.
Was. After concentrating the 80% aqueous methanol fraction,
(2x20 cm, Silica gel 60 manufactured by Merck)
Lum: fractionation using methanol (8: 2) as the elution solvent
Was. In addition, TSK gel ODS-80Ts (7.8x300 mm, Tosoh Corporation)
Liquid) and distilled water: high-speed liquid crystal using methanol (1: 9).
Astaxanthin diglucoside by chromatography
1 mg was obtained. In addition, an asterisk
Fractions that elute earlier than xanthine diglucoside are
gel ODS-80Ts (7.8x300 mm, manufactured by Tosoh Corporation) and distilled water:
High Performance Liquid Chromatography Using Tanol (5:95)
As a result, 3 mg of astaxanthin monoglucoside was obtained.
Visible absorption spectrum of astaxanthin monoglucoside
, Mass spectrometry and 1H-NMR spectra have already been reported
Astaxanthin monoglucoside
(Akihiro Yokoyama, Kyouko Adachi, and Yoshikazu S
hizuri, Journal of Natural Products, Vol. 58, pp.
1929-1933).
【0044】[実施例3]アドニキサンチン−3′−グ
ルコシドの取得法 種菌として大腸菌JM101 (pACCAR16, pAK96K)を用いた。
培養には、LB培地にアンピシリン150 mg、クロランフェ
ニコール30 mg 、イソプロピルβ-D- チオガラクトピラ
ノシド50 mg (各培地 1リットル中)を添加したものを
用いた。1000 ml 容量三角フラスコ中の300 mlの培地40
本、計12リットルに、該菌株を一白金耳づつ植菌し、30
℃で48時間振とう(100 rpm )培養した。培養液を遠心
分離 (5,000 rpm)して菌体分画を得た後、アセトン500
mlを添加し撹拌した後、沈殿物をろ別し、沈殿物をアセ
トン:メタノール(7:3 )500 mlにて再度抽出した。抽
出液を合一し、濃縮後、ヘキサン300 mlと80%含水メタ
ノール300 mlにて分配した。80%含水メタノール画分を
濃縮後、シリカゲルカラム(2x20 cm 、メルク社製Sili
ca gel 60)にクロロホルム:メタノール(8:2 )を溶
出溶媒として用い分画した。さらにTSK gel ODS-80Ts
(7.8x300 mm、東ソー社製)と蒸留水:メタノール(1:
9 )を用いた高速液体クロマトグラフィーによりアドニ
キサンチン−3′−グルコシド 2 mg を得た。Example 3 Method for Obtaining Adonixanthin-3'-Glucoside Escherichia coli JM101 (pACCAR16, pAK96K) was used as the inoculum.
For cultivation, LB medium supplemented with 150 mg of ampicillin, 30 mg of chloramphenicol, and 50 mg of isopropyl β-D-thiogalactopyranoside (in 1 liter of each medium) was used. 300 ml of medium 40 in a 1000 ml Erlenmeyer flask
A total of 12 liters of this strain was inoculated with one platinum loop at a time.
The culture was carried out with shaking (100 rpm) at 48 ° C for 48 hours. After centrifuging the culture solution (5,000 rpm) to obtain a cell fraction, acetone 500
After adding and stirring the precipitate, the precipitate was separated by filtration and the precipitate was extracted again with 500 ml of acetone: methanol (7: 3). The extracts were combined, concentrated, and partitioned with 300 ml of hexane and 300 ml of 80% aqueous methanol. After concentrating the 80% aqueous methanol fraction, a silica gel column (2x20 cm,
Ca gel 60) was fractionated using chloroform: methanol (8: 2) as an elution solvent. Furthermore, TSK gel ODS-80Ts
(7.8x300 mm, manufactured by Tosoh Corporation) and distilled water: methanol (1:
9 mg of adonixanthin-3'-glucoside was obtained by high performance liquid chromatography using 9).
【0045】[実施例4]食品改善剤および食品の配合
例 アスタキサンチンジグルコシドを含むカロテノイド配糖
体1mgを25mlのエタノールに均一に溶かした後、
その1mlを透明の清涼飲料水(たとえばキリンレモン
[セレクト])350mlに加えたところ、均一に赤色
(赤っぽい橙色)に着色された。Example 4 Example of Formulation of Food Improving Agent and Food After 1 mg of carotenoid glycoside containing astaxanthin diglucoside was uniformly dissolved in 25 ml of ethanol,
When 1 ml of the mixture was added to 350 ml of clear soft drink (for example, Kirin Lemon [Select]), the mixture was uniformly colored red (reddish orange).
【0046】[0046]
【発明の効果】本発明により、高極性カロテノイド配糖
体である新規なアスタキサンチンジグルコシド、アドニ
キサンチン−3′−グルコシド、並びにこれらの新規カ
ロテノイド配糖体および既知の高極性カロテノイドであ
るアスタキサンチンモノグルコシドの製造方法が提供さ
れる。本発明で得られるカロテノイド配糖体は、水溶性
を有する食品添加物、養殖魚介類の色調改善剤等の用途
として有用であり、遺伝子工学的手法により大量に製造
することができる。また、上記のcrt 遺伝子を用いて植
物中で発現させることにより、本発明で得られるカロテ
ノイド配糖体を含有する(実、葉、花、茎、根等におい
て)食用あるいは観賞用等の植物として有用な植物体を
得ることができる。本発明において、crt 遺伝子を組合
わせることによって高極性のカロテノイド配糖体が得ら
れたことは思いがけなかったことと解される。Industrial Applicability According to the present invention, novel astaxanthin diglucoside and adonixanthin-3'-glucoside, which are highly polar carotenoid glycosides, as well as these novel carotenoid glycosides and astaxanthin monosaccharide which is a known highly polar carotenoid A method for producing a glucoside is provided. The carotenoid glycoside obtained in the present invention is useful as a water-soluble food additive, a color improver for cultured fish and shellfish, and the like, and can be produced in large quantities by a genetic engineering technique. In addition, by expressing the carotenoid glycoside obtained in the present invention (in fruits, leaves, flowers, stems, roots, etc.) as a plant for edible or ornamental use by expressing in a plant using the above crt gene. Useful plants can be obtained. In the present invention, it is understood that the combination of the crt gene and the carotenoid glycoside with high polarity was unexpectedly obtained.
【0047】[0047]
配列番号:1 配列の長さ:639 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Agrobacterium aurantiacum 配列の特徴: 他の情報:crtW(遺伝子名) 配列 GTG CAT GCG CTG TGG TTT CTG GAC GCA GCG GCG CAT CCC ATC CTG GCG 48 Met His Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala 1 5 10 15 ATC GCA AAT TTC CTG GGG CTG ACC TGG CTG TCG GTC GGA TTG TTC ATC 96 Ile Ala Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile 20 25 30 ATC GCG CAT GAC GCG ATG CAC GGG TCG GTG GTG CCG GGG CGT CCG CGC 144 Ile Ala His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg 35 40 45 GCC AAT GCG GCG ATG GGC CAG CTT GTC CTG TGG CTG TAT GCC GGA TTT 192 Ala Asn Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe 50 55 60 TCG TGG CGC AAG ATG ATC GTC AAG CAC ATG GCC CAT CAC CGC CAT GCC 240 Ser Trp Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala 65 70 75 80 GGA ACC GAC GAC GAC CCC GAT TTC GAC CAT GGC GGC CCG GTC CGC TGG 288 Gly Thr Asp Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp 85 90 95 TAC GCC CGC TTC ATC GGC ACC TAT TTC GGC TGG CGC GAG GGG CTG CTG 336 Tyr Ala Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu 100 105 110 CTG CCC GTC ATC GTG ACG GTC TAT GCG CTG ATC CTT GGG GAT CGC TGG 384 Leu Pro Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp 115 120 125 ATG TAC GTG GTC TTC TGG CCG CTG CCG TCG ATC CTG GCG TCG ATC CAG 432 Met Tyr Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln 130 135 140 CTG TTC GTG TTC GGC ACC TGG CTG CCG CAC CGC CCC GGC CAC GAC GCG 480 Leu Phe Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala 145 150 155 160 TTC CCG GAC CGC CAC AAT GCG CGG TCG TCG CGG ATC AGC GAC CCC GTG 528 Phe Pro Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val 165 170 175 TCG CTG CTG ACC TGC TTT CAC TTT GGC GGT TAT CAT CAC GAA CAC CAC 576 Ser Leu Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His 180 185 190 CTG CAC CCG ACG GTG CCG TGG TGG CGC CTG CCC AGC ACC CGC ACC AAG 624 Leu His Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys 195 200 205 GGG GAC ACC GCA TGA 639 Gly Asp Thr Ala *** 210 SEQ ID NO: 1 Sequence length: 639 Sequence type: number of strands: double-stranded Topology: linear Sequence type: Genomic DNA Origin: Organism: Agrobacterium aurantiacum Sequence characteristics: Other information: crtW (gene Name) Sequence GTG CAT GCG CTG TGG TTT CTG GAC GCA GCG GCG CAT CCC ATC CTG GCG 48 Met His Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala 1 5 10 15 ATC GCA AAT TTC CTG GGG CTG ACC TGG CTG TCG GTC GGA TTG TTC ATC 96 Ile Ala Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile 20 25 30 ATC GCG CAT GAC GCG ATG CAC GGG TCG GTG GTG CCG GGG CGT CCCGCGC 144 Ile Ala His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg 35 40 45 GCC AAT GCG GCG ATG GGC CAG CTT GTC CTG TGG CTG TAT GCC GGA TTT 192 Ala Asn Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe 50 55 60 TCG TGG CGC AAG ATG ATC GTC AAG CAC ATG GCC CAT CAC CGC CAT GCC 240 Ser Trp Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala 65 70 75 80 GGA ACC GAC GAC GAC CCC GAT TTC GAC C AT GGC GGC CCG GTC CGC TGG 288 Gly Thr Asp Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp 85 90 95 TAC GCC CGC TTC ATC GGC ACC TAT TTC GGC TGG CGC GAG GGG CTG CTG 336 Tyr Ala Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu 100 105 110 CTG CCC GTC ATC GTG ACG GTC TAT GCG CTG ATC CTT GGG GAT CGC TGG 384 Leu Pro Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp 115 120 125 ATG TAC GTG GTC TTC TGG CCG CTG CCG TCG ATC CTG GCG TCG ATC CAG 432 Met Tyr Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln 130 135 140 CTG TTC GTG TTC GGC ACC TGG CTG CCG CAC CGC CCC GGC CAC GAC GCG 480 Leu Phe Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala 145 150 155 160 TTC CCG GAC CGC CAC AAT GCG CGG TCG TCG CGG ATC AGC GAC CCC GTG 528 Phe Pro Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val 165 170 175 TCG CTG CTG ACC TGC TTT CAC TTT GGC GGT TAT CAT CAC GAA CAC CAC 576 Ser Leu Leu Thr Cys Phe His Phe Gly Gly Tly His His Glu His His 180 185 190 CTG CAC CCG ACG GTG CCG TGG TGG CGC CTG CCC AGC ACC CGC ACC AAG 624 Leu His Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys 195 200 205 GGG GAC ACC GCA TGA 639 Gly Asp Thr Ala *** 210
【0048】配列番号:2 配列の長さ:489 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Agrobacterium aurantiacum 配列の特徴: 他の情報:crtZ(遺伝子名) 配列 ATG ACC AAT TTC CTG ATC GTC GTC GCC ACC GTG CTG GTG ATG GAG TTG 48 Met Thr Asn Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 1 5 10 15 ACG GCC TAT TCC GTC CAC CGC TGG ATC ATG CAC GGC CCC CTG GGC TGG 96 Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp 20 25 30 GGC TGG CAC AAG TCC CAC CAC GAG GAA CAC GAC CAC GCG CTG GAA AAG 144 Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys 35 40 45 AAC GAC CTG TAC GGC CTG GTC TTT GCG GTG ATC GCC ACG GTG CTG TTC 192 Asn Asp Leu Tyr Gly Leu Val Phe Ala Val Ile Ala Thr Val Leu Phe 50 55 60 ACG GTG GGC TGG ATC TGG GCG CCG GTC CTG TGG TGG ATC GCC TTG GGC 240 Thr Val Gly Trp Ile Trp Ala Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80 ATG ACT GTC TAT GGG CTG ATC TAT TTC GTC CTG CAT GAC GGG CTG GTG 288 Met Thr Val Tyr Gly Leu Ile Tyr Phe Val Leu His Asp Gly Leu Val 85 90 95 CAT CAG CGC TGG CCG TTC CGT TAT ATC CCG CGC AAG GGC TAT GCC AGA 336 His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr Ala Arg 100 105 110 CGC CTG TAT CAG GCC CAC CGC CTG CAC CAT GCG GTC GAG GGG CGC GAC 384 Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125 CAT TGC GTC AGC TTC GGC TTC ATC TAT GCG CCC CCG GTC GAC AAG CTG 432 His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140 AAG CAG GAC CTG AAG ATG TCG GGC GTG CTG CGG GCC GAG GCG CAG GAG 480 Lys Gln Asp Leu Lys Met Ser Gly Val Leu Arg Ala Glu Ala Gln Glu 145 150 155 160 CGC ACG TGA 489 Arg Thr --- *** SEQ ID NO: 2 Sequence length: 489 Sequence type: number of strands: double stranded Topology: linear Sequence type: Genomic DNA Origin: Organism: Agrobacterium aurantiacum Sequence characteristics: Other information: crtZ (Gene name) Sequence ATG ACC AAT TTC CTG ATC GTC GTC GCC ACC GTG CTG GTG ATG GAG TTG 48 Met Thr Asn Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 1 5 10 15 ACG GCC TAT TCC GTC CAC CGC TGG ATC ATG CAC GGC CCC CTG GGC TGG 96 Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp 20 25 30 GGC TGG CAC AAG TCC CAC CAC GAG GAA CAC GAC CAC GCG CTG GAA AAG 144 Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys 35 40 45 AAC GAC CTG TAC GGC CTG GTC TTT GCG GTG ATC GCC ACG GTG CTG TTC 192 Asn Asp Leu Tyr Gly Leu Val Phe Ala Val Ile Ala Thr Val Leu Phe 50 55 60 ACG GTG GGC TGG ATC TGG GCG CCG GTC CTG TGG TGG ATC GCC TTG GGC 240 Thr Val Gly Trp Ile Trp Ala Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80 ATG ACT GTC TAT GGG CTG ATC TAT TTC GTC CTG CAT GAC GGG CTG GTG 288 Met Thr Val Tyr Gly Leu Ile Tyr Phe Val Leu His Asp Gly Leu Val 85 90 95 CAT CAG CGC TGG CCG TTC CGT TAT ATC CCG CGC AAG GGC TAT GCC AGA 336 His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr Ala Arg 100 105 110 CGC CTG TAT CAG GCC CAC CGC CTG CAC CAT GCG GTC GAG GGG CGC GAC 384 Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125 CAT TGC GTC AGC TTC GGC TTC ATC TAT GCG CCC CCG GTC GAC AAG CTG 432 His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140 AAG CAG GAC CTG AAG ATG TCG GGC GTG CTG CGG GCC GAG GCG CAG GAG 480 Lys Gln Asp Leu Lys Met Ser Gly Val Leu Arg Ala Glu Ala Gln Glu 145 150 155 160 CGC ACG TGA 489 Arg Thr --- ***
【0049】配列番号:3 配列の長さ:1161 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Agrobacterium aurantiacum 配列の特徴: 他の情報:crtY(遺伝子名) 配列 GTG ACC CAT GAC GTG CTG CTG GCA GGG GCG GGC CTT GCC AAC GGG CTG 48 Met Thr His Asp Val Leu Leu Ala Gly Ala Gly Leu Ala Asn Gly Leu 1 5 10 15 ATC GCC CTG GCG CTG CGC GCG GCG CGG CCC GAC CTG CGC GTG CTG CTG 96 Ile Ala Leu Ala Leu Arg Ala Ala Arg Pro Asp Leu Arg Val Leu Leu 20 25 30 CTG GAC CAT GCC GCA GGA CCG TCA GAC GGC CAC ACC TGG TCC TGC CAC 144 Leu Asp His Ala Ala Gly Pro Ser Asp Gly His Thr Trp Ser Cys His 35 40 45 GAC CCC GAC CTG TCG CCG GAC TGG CTG GCG CGG CTG AAG CCC CTG CGC 192 Asp Pro Asp Leu Ser Pro Asp Trp Leu Ala Arg Leu Lys Pro Leu Arg 50 55 60 CGC GCC AAC TGG CCC GAC CAG GAG GTG CGC TTT CCC CGC CAT GCC CGG 240 Arg Ala Asn Trp Pro Asp Gln Glu Val Arg Phe Pro Arg His Ala Arg 65 70 75 80 CGG CTG GCC ACC GGT TAC GGG TCG CTG GAC GGG GCG GCG CTG GCG GAT 288 Arg Leu Ala Thr Gly Tyr Gly Ser Leu Asp Gly Ala Ala Leu Ala Asp 85 90 95 GCG GTG GTC CGG TCG GGC GCC GAG ATC CGC TGG GAC AGC GAC ATC GCC 336 Ala Val Val Arg Ser Gly Ala Glu Ile Arg Trp Asp Ser Asp Ile Ala 100 105 110 CTG CTG GAT GCG CAG GGG GCG ACG CTG TCC TGC GGC ACC CGG ATC GAG 384 Leu Leu Asp Ala Gln Gly Ala Thr Leu Ser Cys Gly Thr Arg Ile Glu 115 120 125 GCG GGC GCG GTC CTG GAC GGG CGG GGC GCG CAG CCG TCG CGG CAT CTG 432 Ala Gly Ala Val Leu Asp Gly Arg Gly Ala Gln Pro Ser Arg His Leu 130 135 140 ACC GTG GGT TTC CAG AAA TTC GTG GGT GTC GAG ATC GAG ACC GAC CGC 480 Thr Val Gly Phe Gln Lys Phe Val Gly Val Glu Ile Glu Thr Asp Arg 145 150 155 160 CCC CAC GGC GTG CCC CGC CCG ATG ATC ATG GAC GCG ACC GTC ACC CAG 528 Pro His Gly Val Pro Arg Pro Met Ile Met Asp Ala Thr Val Thr Gln 165 170 175 CAG GAC GGG TAC CGC TTC ATC TAT CTG CTG CCC TTC TCT CCG ACG CGC 576 Gln Asp Gly Tyr Arg Phe Ile Tyr Leu Leu Pro Phe Ser Pro Thr Arg 180 185 190 ATC CTG ATC GAG GAC ACG CGC TAT TCC GAT GGC GGC GAT CTG GAC GAC 624 Ile Leu Ile Glu Asp Thr Arg Tyr Ser Asp Gly Gly Asp Leu Asp Asp 195 200 205 GAC GCG CTG GCG GCG GCG TCC CAC GAC TAT GCC CGC CAG CAG GGC TGG 672 Asp Ala Leu Ala Ala Ala Ser His Asp Tyr Ala Arg Gln Gln Gly Trp 210 215 220 ACC GGG GCC GAG GTC CGG CGC GAA CGC GGC ATC CTT CCC ATC GCG CTG 720 Thr Gly Ala Glu Val Arg Arg Glu Arg Gly Ile Leu Pro Ile Ala Leu 225 230 235 240 GCC CAT GAT GCG GCG GGC TTC TGG GCC GAT CAC GCG GCG GGG CCT GTT 768 Ala His Asp Ala Ala Gly Phe Trp Ala Asp His Ala Ala Gly Pro Val 245 250 255 CCC GTG GGA CTG CGC GCG GGG TTC TTT CAT CCG GTC ACC GGC TAT TCG 816 Pro Val Gly Leu Arg Ala Gly Phe Phe His Pro Val Thr Gly Tyr Ser 260 265 270 CTG CCC TAT GCG GCA CAG GTG GCG GAC GTG GTG GCG GGT CTG TCC GGG 864 Leu Pro Tyr Ala Ala Gln Val Ala Asp Val Val Ala Gly Leu Ser Gly 275 280 285 CCG CCC GGC ACC GAC GCG CTG CGC GGC GCC ATC CGC GAT TAC GCG ATC 912 Pro Pro Gly Thr Asp Ala Leu Arg Gly Ala Ile Arg Asp Tyr Ala Ile 290 295 300 GAC CGG GCG CGC CGC GAC CGC TTT CTG CGC CTT TTG AAC CGG ATG CTG 960 Asp Arg Ala Arg Arg Asp Arg Phe Leu Arg Leu Leu Asn Arg Met Leu 305 310 315 320 TTC CGC GGC TGC GCG CCC GAC CGG CGC TAT ACC CTG CTG CAG CGG TTC 1008 Phe Arg Gly Cys Ala Pro Asp Arg Arg Tyr Thr Leu Leu Gln Arg Phe 325 330 335 TAC CGC ATG CCG CAT GGA CTG ATC GAA CGG TTC TAT GCC GGC CGG CTG 1056 Tyr Arg Met Pro His Gly Leu Ile Glu Arg Phe Tyr Ala Gly Arg Leu 340 345 350 AGC GTG GCG GAT CAG CTG CGC ATC GTG ACC GGC AAG CCT CCC ATT CCC 1104 Ser Val Ala Asp Gln Leu Arg Ile Val Thr Gly Lys Pro Pro Ile Pro 355 360 365 CTT GGC ACG GCC ATC CGC TGC CTG CCC GAA CGT CCC CTG CTG AAG GAA 1152 Leu Gly Thr Ala Ile Arg Cys Leu Pro Glu Arg Pro Leu Leu Lys Glu 370 375 380 AAC GCA TGA 1161 Asn Ala *** 385 SEQ ID NO: 3 Sequence length: 1161 Sequence type: Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA Origin: Organism: Agrobacterium aurantiacum Sequence characteristics: Other information: crtY (Gene name) Sequence GTG ACC CAT GAC GTG CTG CTG GCA GGG GCG GGC CTT GCC AAC GGG CTG 48 Met Thr His Asp Val Leu Leu Ala Gly Ala Gly Leu Ala Asn Gly Leu 1 5 10 15 ATC GCC CTG GCG CTG CGC GCG GCG CGG CCC GAC CTG CGC GTG CTG CTG 96 Ile Ala Leu Ala Leu Arg Ala Ala Arg Pro Asp Leu Arg Val Leu Leu 20 25 30 CTG GAC CAT GCC GCA GGA CCG TCA GAC GGC CAC ACC TGG TCC TGC CAC 144 Leu Asp His Ala Ala Gly Pro Ser Asp Gly His Thr Trp Ser Cys His 35 40 45 GAC CCC GAC CTG TCG CCG GAC TGG CTG GCG CGG CTG AAG CCC CTG CGC 192 Asp Pro Asp Leu Ser Pro Asp Trp Leu Ala Arg Leu Lys Pro Leu Arg 50 55 60 CGC GCC AAC TGG CCC GAC CAG GAG GTG CGC TTT CCC CGC CAT GCC CGG 240 Arg Ala Asn Trp Pro Asp Gln Glu Val Arg Phe Pro Arg His Ala Arg 65 70 75 80 CGG CTG GCC ACC GGT TAC GGG TCG CTG GAC GGG GCG GCG CTG GCG GAT 288 Arg Leu Ala Thr Gly Tyr Gly Ser Leu Asp Gly Ala Ala Leu Ala Asp 85 90 95 GCG GTG GTC CGG TCG GGC GCC GAG ATC CGC TGG GAC AGC GAC ATC GCC 336 Ala Val Val Arg Ser Gly Ala Glu Ile Arg Trp Asp Ser Asp Ile Ala 100 105 110 CTG CTG GAT GCG CAG GGG GCG ACG CTG TCC TGC GGC ACC CGG ATC GAG 384 Leu Leu Asp Ala Gln Gly Ala Thr Leu Ser Cys Gly Thr Arg Ile Glu 115 120 125 GCG GGC GCG GTC CTG GAC GGG CGG GGC GCG CAG CCG TCG CGG CAT CTG 432 Ala Gly Ala Val Leu Asp Gly Arg Gly Ala Gln Pro Ser Arg His Leu 130 135 140 ACC GTG GGT TTC CAG AAA TTC GTG GGT GTC GAG ATC GAG ACC GAC CGC 480 Thr Val Gly Phe Gln Lys Phe Val Gly Val Glu Ile Glu Thr Asp Arg 145 150 155 160 CCC CAC GGC GTG CCC CGC CCG ATG ATC ATG GAC GCG ACC GTC ACC CAG 528 Pro His Gly Val Pro Arg Pro Met Ile Met Asp Ala Thr Val Thr Gln 165 170 175 CAG GAC GGG TAC CGC TTC ATC TAT CTG CTG CCC TTC TCT CCG ACG CGC 576 Gln Asp Gly Tyr Arg Phe Ile Tyr Leu Leu Pro Phe Ser Pro Thr Arg 180 185 190 ATC CTG ATC GAG GAC ACG CGC TAT TCC GAT GGC GGC GAT CTG GAC GAC 624 Ile Leu Ile Glu Asp Thr Arg Tyr Ser Asp Gly Gly Asp Leu Asp Asp 195 200 205 GAC GCG CTG GCG GCG GCG TCC CAC GAC TAT GCC CGC CAG CAG GGC TGG 672 Asp Ala Leu Ala Ala Ala Ser His Asp Tyr Ala Arg Gln Gln Gly Trp 210 215 220 ACC GGG GCC GAG GTC CGG CGC GAA CGC GGC ATC CTT CCC ATC GCG CTG 720 Thr Gly Ala Glu Val Arg Arg Glu Arg Gly Ile Leu Pro Ile Ala Leu 225 230 235 240 GCC CAT GAT GCG GCG GGC TTC TGG GCC GAT CAC GCG GCG GGG CCT GTT 768 Ala His Asp Ala Ala Gly Phe Trp Ala Asp His Ala Ala Gly Pro Val 245 250 255 CCC GTG GGA CTG CGC GCG GGG TTC TTT CAT CCG GTC ACC GGC TAT TCG 816 Pro Val Gly Leu Arg Ala Gly Phe Phe His Pro Val Thr Gly Tyr Ser 260 265 270 CTG CCC TAT GCG GCA CAG GTG GCG GAC GTG GTG GCG GGT CTG TCC GGG 864 Leu Pro Tyr Ala Ala Gln Val Ala Asp Val Val Ala Gly Leu Ser Gly 275 280 285 CCG CCC GGC ACC GAC GCG CTG CGC GGC GCC ATC CGC GAT TAC GCG ATC 912 Pro Pro Gly Thr Asp Ala Leu Arg Gly Ala Ile Arg Asp Tyr Ala Ile 290 295 300 GAC CGG GCG CGC CGC GAC CGC TTT CTG CGC CTT TTG AAC CGG ATG CTG 960 Asp Arg Ala Arg Arg Asp Arg Phe Leu Arg Leu Leu Asn Arg Met Leu 305 310 315 320 TTC CGC GGC TGC GCG CCC GAC CGG CGC TAT ACC CTG CTG CAG CGG TTC 1008 Phe Arg Gly Cys Ala Pro Asp Arg Arg Tyr Thr Leu Leu Gln Arg Phe 325 330 335 TAC CGC ATG CCG CAT GGA CTG ATC GAA CGG TTC TAT GCC GGC CGG CTG 1056 Tyr Arg Met Pro His Gly Leu Ile Glu Arg Phe Tyr Ala Gly Arg Leu 340 345 350 AGC GTG GCG GAT CAG CTG CGC ATC GTG ACC GGC AAG CCT CCC ATT CCC 1104 Ser Val Ala Asp Gln Leu Arg Ile Val Thr Gly Lys Pro Pro Ile Pro 355 360 365 CTT GGC ACG GCC ATC CGC TGC CTG CCC GAA CGT CCC CTG CTG AAG GAA 1152 Leu Gly Thr Ala Ile Arg Cys Leu Pro Glu Arg Pro Leu Leu Lys Glu 370 375 380 AAC GCA TGA 1161 Asn Ala *** 385
【0050】配列番号:4 配列の長さ:729 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Alcaligenes 株名:sp. PC-1 配列の特徴: 他の情報:crtW(遺伝子名) 配列 ATG TCC GGA CGG AAG CCT GGC ACA ACT GGC GAC ACG ATC GTC AAT CTC 48 Met Ser Gly Arg Lys Pro Gly Thr Thr Gly Asp Thr Ile Val Asn Leu 1 5 10 15 GGT CTG ACC GCC GCG ATC CTG CTG TGC TGG CTG GTC CTG CAC GCC TTT 96 Gly Leu Thr Ala Ala Ile Leu Leu Cys Trp Leu Val Leu His Ala Phe 20 25 30 ACG CTA TGG TTG CTA GAT GCG GCC GCG CAT CCG CTG CTT GCC GTG CTG 144 Thr Leu Trp Leu Leu Asp Ala Ala Ala His Pro Leu Leu Ala Val Leu 35 40 45 TGC CTG GCT GGG CTG ACC TGG CTG TCG GTC GGG CTG TTC ATC ATC GCG 192 Cys Leu Ala Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60 CAT GAC GCA ATG CAC GGG TCC GTG GTG CCG GGG CGG CCG CGC GCC AAT 240 His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80 GCG GCG ATC GGG CAA CTG GCG CTG TGG CTC TAT GCG GGG TTC TCG TGG 288 Ala Ala Ile Gly Gln Leu Ala Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95 CCC AAG CTG ATC GCC AAG CAC ATG ACG CAT CAC CGG CAC GCC GGC ACC 336 Pro Lys Leu Ile Ala Lys His Met Thr His His Arg His Ala Gly Thr 100 105 110 GAC AAC GAT CCC GAT TTC GGT CAC GGA GGG CCC GTG CGC TGG TAC GGC 384 Asp Asn Asp Pro Asp Phe Gly His Gly Gly Pro Val Arg Trp Tyr Gly 115 120 125 AGC TTC GTC TCC ACC TAT TTC GGC TGG CGA GAG GGA CTG CTG CTA CCG 432 Ser Phe Val Ser Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Leu Pro 130 135 140 GTG ATC GTC ACC ACC TAT GCG CTG ATC CTG GGC GAT CGC TGG ATG TAT 480 Val Ile Val Thr Thr Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 145 150 155 160 GTC ATC TTC TGG CCG GTC CCG GCC GTT CTG GCG TCG ATC CAG ATT TTC 528 Val Ile Phe Trp Pro Val Pro Ala Val Leu Ala Ser Ile Gln Ile Phe 165 170 175 GTC TTC GGA ACT TGG CTG CCC CAC CGC CCG GGA CAT GAC GAT TTT CCC 576 Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Asp Phe Pro 180 185 190 GAC CGG CAC AAC GCG AGG TCG ACC GGC ATC GGC GAC CCG TTG TCA CTA 624 Asp Arg His Asn Ala Arg Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu 195 200 205 CTG ACC TGC TTC CAT TTC GGC GGC TAT CAC CAC GAA CAT CAC CTG CAT 672 Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220 CCG CAT GTG CCG TGG TGG CGC CTG CCT CGT ACA CGC AAG ACC GGA GGC 720 Pro His Val Pro Trp Trp Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly 225 230 235 240 CGC GCA TGA 729 Arg Ala***SEQ ID NO: 4 Sequence length: 729 Sequence type: Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA Origin: Organism: Alcaligenes strain: sp. PC-1 sequence Features: Other information: crtW (gene name) Sequence ATG TCC GGA CGG AAG CCT GGC ACA ACT GGC GAC ACG ATC GTC AAT CTC 48 Met Ser Gly Arg Lys Pro Gly Thr Thr Gly Asp Thr Ile Val Asn Leu 1 5 10 15 GGT CTG ACC GCC GCG ATC CTG CTG TGC TGG CTG GTC CTG CAC GCC TTT 96 Gly Leu Thr Ala Ala Ile Leu Leu Cys Trp Leu Val Leu His Ala Phe 20 25 30 ACG CTA TGG TTG CTA GAT GCG GCC GCG CAT CCG CTG CTT GCC GTG CTG 144 Thr Leu Trp Leu Leu Asp Ala Ala Ala His Pro Leu Leu Ala Val Leu 35 40 45 TGC CTG GCT GGG CTG ACC TGG CTG TCG GTC GGG CTG TTC ATC ATC GCG 192 Cys Leu Ala Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60 CAT GAC GCA ATG CAC GGG TCC GTG GTG CCG GGG CGG CCG CGC GCC AAT 240 His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80 GCG GCG ATC GGG CAA CTG GCG CTG TGG CTC TAT GCG GGG TTC TCG TGG 288 Ala Ala Ile Gly Gln Leu Ala Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95 CCC AAG CTG ATC GCC AAG CAC ATG ACG CAT CAC CGG CAC GCC GGC ACC 336 Pro Lys Leu Ile Ala Lys His Met Thr His His Arg His Ala Gly Thr 100 105 110 GAC AAC GAT CCC GAT TTC GGT CAC GGA GGG CCC GTG CGC TGG TAC GGC 384 Asp Asn Asp Pro Asp Phe Gly His Gly Gly Pro Val Arg Trp Tyr Gly 115 120 125 AGC TTC GTC TCC ACC TAT TTC GGC TGG CGA GAG GGA CTG CTG CTA CCG 432 Ser Phe Val Ser Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Leu Pro 130 135 140 GTG ATC GTC ACC ACC TAT GCG CTG ATC CTG GGC GAT CGC TGG ATG TAT 480 Val Ile Val Thr Thr Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 145 150 155 160 GTC ATC TTC TGG CCG GTC CCG GCC GTT CTG GCG TCG ATC CAG ATT TTC 528 Val Ile Phe Trp Pro Val Pro Ala Val Leu Ala Ser Ile Gln Ile Phe 165 170 175 GTC TTC GGA ACT TGG CTG CCC CAC CGC CCG GGA CAT GAC GAT TTT CCC 576 Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Asp Phe Pro 180 185 190 GAC CG G CAC AAC GCG AGG TCG ACC GGC ATC GGC GAC CCG TTG TCA CTA 624 Asp Arg His Asn Ala Arg Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu 195 200 205 CTG ACC TGC TTC CAT TTC GGC GGC TAT CAC CAC GAA CAT CAC CTG CAT 672 Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220 CCG CAT GTG CCG TGG TGG CGC CTG CCT CGT ACA CGC AAG ACC GGA GGC 720 Pro His Val Pro Trp Trp Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly 225 230 235 240 CGC GCA TGA 729 Arg Ala ***
【0051】配列番号:5 配列の長さ:489 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Alcaligenes 株名:sp. PC-1 配列の特徴: 他の情報:crtZ(遺伝子名) 配列 ATG ACG CAA TTC CTC ATT GTC GTG GCG ACA GTC CTC GTG ATG GAG CTG 48 Met Thr Gln Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 5 10 15 ACC GCC TAT TCC GTC CAC CGC TGG ATT ATG CAC GGC CCC CTA GGC TGG 96 Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp 20 25 30 GGC TGG CAC AAG TCC CAT CAC GAA GAG CAC GAC CAC GCG TTG GAG AAG 144 Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys 35 40 45 AAC GAC CTC TAC GGC GTC GTC TTC GCG GTG CTG GCG ACG ATC CTC TTC 192 Asn Asp Leu Tyr Gly Val Val Phe Ala Val Leu Ala Thr Ile Leu Phe 50 55 60 ACC GTG GGC GCC TAT TGG TGG CCG GTG CTG TGG TGG ATC GCC CTG GGC 240 Thr Val Gly Ala Tyr Trp Trp Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80 ATG ACG GTC TAT GGG TTG ATC TAT TTC ATC CTG CAC GAC GGG CTT GTG 288 Met Thr Val Tyr Gly Leu Ile Tyr Phe Ile Leu His Asp Gly Leu Val 85 90 95 CAT CAA CGC TGG CCG TTT CGG TAT ATT CCG CGG CGG GGC TAT TTC CGC 336 His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Arg Gly Tyr Phe Arg 100 105 110 AGG CTC TAC CAA GCT CAT CGC CTG CAC CAC GCG GTC GAG GGG CGG GAC 384 Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125 CAC TGC GTC AGC TTC GGC TTC ATC TAT GCC CCA CCC GTG GAC AAG CTG 432 His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140 AAG CAG GAT CTG AAG CGG TCG GGT GTC CTG CGC CCC CAG GAC GAG CGT 480 Lys Gln Asp Leu Lys Arg Ser Gly Val Leu Arg Pro Gln Asp Glu Arg 145 150 155 160 CCG TCG TGA 489 Pro Ser *** SEQ ID NO: 5 Sequence length: 489 Sequence type: Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA Origin: Organism: Alcaligenes strain: sp. PC-1 sequence Features: Other information: crtZ (Gene name) Sequence ATG ACG CAA TTC CTC ATT GTC GTG GCG ACA GTC CTC GTG ATG GAG CTG 48 Met Thr Gln Phe Leu Ile Val Val Ala Thr Val Leu Val Met Glu Leu 5 10 15 ACC GCC TAT TCC GTC CAC CGC TGG ATT ATG CAC GGC CCC CTA GGC TGG 96 Thr Ala Tyr Ser Val His Arg Trp Ile Met His Gly Pro Leu Gly Trp 20 25 30 GGC TGG CAC AAG TCC CAT CAC GAA GAG CAC GAC CAC GCG TTG GAG AAG 144 Gly Trp His Lys Ser His His Glu Glu His Asp His Ala Leu Glu Lys 35 40 45 AAC GAC CTC TAC GGC GTC GTC TTC GCG GTG CTG GCG ACG ATC CTC TTC 192 Asn Asp Leu Tyr Gly Val Val Phe Ala Val Leu Ala Thr Ile Leu Phe 50 55 60 ACC GTG GGC GCC TAT TGG TGG CCG GTG CTG TGG TGG ATC GCC CTG GGC 240 Thr Val Gly Ala Tyr Trp Trp Pro Val Leu Trp Trp Ile Ala Leu Gly 65 70 75 80 ATG ACG GTC TAT G GG TTG ATC TAT TTC ATC CTG CAC GAC GGG CTT GTG 288 Met Thr Val Tyr Gly Leu Ile Tyr Phe Ile Leu His Asp Gly Leu Val 85 90 95 CAT CAA CGC TGG CCG TTT CGG TAT ATT CCG CGG CGG GGC TAT TTC CGC 336 His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Arg Gly Tyr Phe Arg 100 105 110 AGG CTC TAC CAA GCT CAT CGC CTG CAC CAC GCG GTC GAG GGG CGG GAC 384 Arg Leu Tyr Gln Ala His Arg Leu His His Ala Val Glu Gly Arg Asp 115 120 125 CAC TGC GTC AGC TTC GGC TTC ATC TAT GCC CCA CCC GTG GAC AAG CTG 432 His Cys Val Ser Phe Gly Phe Ile Tyr Ala Pro Pro Val Asp Lys Leu 130 135 140 AAG CAG GAT CTG AAG CGG TCG GGT GTC CTG CGC CCC CAG GAC GAG CGT 480 Lys Gln Asp Leu Lys Arg Ser Gly Val Leu Arg Pro Gln Asp Glu Arg 145 150 155 160 CCG TCG TGA 489 Pro Ser ***
【0052】配列番号:6 配列の長さ:891 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Erwinia uredovora 配列の特徴: 他の情報:crtB(遺伝子名) 配列 ATG GCA GTT GGC TCG AAA AGT TTT GCG ACA GCC TCA AAG TTA TTT GAT 48 Met Ala Val Gly Ser Lys Ser Phe Ala Thr Ala Ser Lys Leu Phe Asp 1 5 10 15 GCA AAA ACC CGG CGC AGC GTA CTG ATG CTC TAC GCC TGG TGC CGC CAT 96 Ala Lys Thr Arg Arg Ser Val Leu Met Leu Tyr Ala Trp Cys Arg His 20 25 30 TGT GAC GAT GTT ATT GAC GAT CAG ACG CTG GGC TTT CAG GCC CGG CAG 144 Cys Asp Asp Val Ile Asp Asp Gln Thr Leu Gly Phe Gln Ala Arg Gln 35 40 45 CCT GCC TTA CAA ACG CCC GAA CAA CGT CTG ATG CAA CTT GAG ATG AAA 192 Pro Ala Leu Gln Thr Pro Glu Gln Arg Leu Met Gln Leu Glu Met Lys 50 55 60 ACG CGC CAG GCC TAT GCA GGA TCG CAG ATG CAC GAA CCG GCG TTT GCG 240 Thr Arg Gln Ala Tyr Ala Gly Ser Gln Met His Glu Pro Ala Phe Ala 65 70 75 80 GCT TTT CAG GAA GTG GCT ATG GCT CAT GAT ATC GCC CCG GCT TAC GCG 288 Ala Phe Gln Glu Val Ala Met Ala His Asp Ile Ala Pro Ala Tyr Ala 85 90 95 TTT GAT CAT CTG GAA GGC TTC GCC ATG GAT GTA CGC GAA GCG CAA TAC 336 Phe Asp His Leu Glu Gly Phe Ala Met Asp Val Arg Glu Ala Gln Tyr 100 105 110 AGC CAA CTG GAT GAT ACG CTG CGC TAT TGC TAT CAC GTT GCA GGC GTT 384 Ser Gln Leu Asp Asp Thr Leu Arg Tyr Cys Tyr His Val Ala Gly Val 115 120 125 GTC GGC TTG ATG ATG GCG CAA ATC ATG GGC GTG CGG GAT AAC GCC ACG 432 Val Gly Leu Met Met Ala Gln Ile Met Gly Val Arg Asp Asn Ala Thr 130 135 140 CTG GAC CGC GCC TGT GAC CTT GGG CTG GCA TTT CAG TTG ACC AAT ATT 480 Leu Asp Arg Ala Cys Asp Leu Gly Leu Ala Phe Gln Leu Thr Asn Ile 145 150 155 160 GCT CGC GAT ATT GTG GAC GAT GCG CAT GCG GGC CGC TGT TAT CTG CCG 528 Ala Arg Asp Ile Val Asp Asp Ala His Ala Gly Arg Cys Tyr Leu Pro 165 170 175 GCA AGC TGG CTG GAG CAT GAA GGT CTG AAC AAA GAG AAT TAT GCG GCA 576 Ala Ser Trp Leu Glu His Glu Gly Leu Asn Lys Glu Asn Tyr Ala Ala 180 185 190 CCT GAA AAC CGT CAG GCG CTG AGC CGT ATC GCC CGT CGT TTG GTG CAG 624 Pro Glu Asn Arg Gln Ala Leu Ser Arg Ile Ala Arg Arg Leu Val Gln 195 200 205 GAA GCA GAA CCT TAC TAT TTG TCT GCC ACA GCC GGC CTG GCA GGG TTG 672 Glu Ala Glu Pro Tyr Tyr Leu Ser Ala Thr Ala Gly Leu Ala Gly Leu 210 215 220 CCC CTG CGT TCC GCC TGG GCA ATC GCT ACG GCG AAG CAG GTT TAC CGG 720 Pro Leu Arg Ser Ala Trp Ala Ile Ala Thr Ala Lys Gln Val Tyr Arg 225 230 235 240 AAA ATA GGT GTC AAA GTT GAA CAG GCC GGT CAG CAA GCC TGG GAT CAG 768 Lys Ile Gly Val Lys Val Glu Gln Ala Gly Gln Gln Ala Trp Asp Gln 245 250 255 CGG CAG TCA ACG ACC ACG CCC GAA AAA TTA ACG CTG CTG CTG GCC GCC 816 Arg Gln Ser Thr Thr Thr Pro Glu Lys Leu Thr Leu Leu Leu Ala Ala 260 265 270 TCT GGT CAG GCC CTT ACT TCC CGG ATG CGG GCT CAT CCT CCC CGC CCT 864 Ser Gly Gln Ala Leu Thr Ser Arg Met Arg Ala His Pro Pro Arg Pro 275 280 285 GCG CAT CTC TGG CAG CGC CCG CTC TAG 891 Ala His Leu Trp Gln Arg Pro Leu * 290 295 SEQ ID NO: 6 Sequence length: 891 Sequence type: number of strands: double-stranded Topology: linear Sequence type: Genomic DNA Origin: Organism: Erwinia uredovora Sequence characteristics: Other information: crtB (gene name) Sequence ATG GCA GTT GGC TCG AAA AGT TTT GCG ACA GCC TCA AAG TTA TTT GAT 48 Met Ala Val Gly Ser Lys Ser Phe Ala Thr Ala Ser Lys Leu Phe Asp 1 5 10 15 GCA AAA ACC CGG CGC AGC GTA CTG ATG CTC TAC GCC TGG TGC CGC CAT 96 Ala Lys Thr Arg Arg Ser Val Leu Met Leu Tyr Ala Trp Cys Arg His 20 25 30 TGT GAC GAT GTT ATT GAC GAT CAG ACG CTG GGC TTT CAG GCC CGG CAG 144 Cys Asp Asp Val Ile Asp Asp Gln Thr Leu Gly Phe Gln Ala Arg Gln 35 40 45 CCT GCC TTA CAA ACG CCC GAA CAA CGT CTG ATG CAA CTT GAG ATG AAA 192 Pro Ala Leu Gln Thr Pro Glu Gln Arg Leu Met Gln Leu Glu Met Lys 50 55 60 ACG CGC CAG GCC TAT GCA GGA TCG CAG ATG CAC GAA CCG GCG TTT GCG 240 Thr Arg Gln Ala Tyr Ala Gly Ser Gln Met His Glu Pro Ala Phe Ala 65 70 75 80 GCT TTT CAG GAA GTG GCT ATG GCT CAT GAT ATC GCC CCG GCT TAC GCG 288 Ala Phe Gln Glu Val Ala Met Ala His Asp Ile Ala Pro Ala Tyr Ala 85 90 95 TTT GAT CAT CTG GAA GGC TTC GCC ATG GAT GTA CGC GAA GCG CAA TAC 336 Phe Asp His Leu Glu Gly Phe Ala Met Asp Val Arg Glu Ala Gln Tyr 100 105 110 AGC CAA CTG GAT GAT ACG CTG CGC TAT TGC TAT CAC GTT GCA GGC GTT 384 Ser Gln Leu Asp Asp Thr Leu Arg Tyr Cys Tyr His Val Ala Gly Val 115 120 125 GTC GGC TTG ATG ATG GCG CAA ATC ATG GGC GTG CGG GAT AAC GCC ACG 432 Val Gly Leu Met Met Ala Gln Ile Met Gly Val Arg Asp Asn Ala Thr 130 135 140 CTG GAC CGC GCC TGT GAC CTT GGG CTG GCA TTT CAG TTG ACC AAT ATT 480 Leu Asp Arg Ala Cys Asp Leu Gly Leu Ala Phe Gln Leu Thr Asn Ile 145 150 155 160 GCT CGC GAT ATT GTG GAC GAT GCG CAT GCG GGC CGC TGT TAT CTG CCG 528 Ala Arg Asp Ile Val Asp Asp Ala His Ala Gly Arg Cys Tyr Leu Pro 165 170 175 GCA AGC TGG CTG GAG CAT GAA GGT CTG AAC AAA GAG AAT TAT GCG GCA 576 Ala Ser Trp Leu Glu His Glu Gly Leu Asn Lys Glu Asn Tyr Ala Ala 180 185 190 CCT GAA AAC CGT CA G GCG CTG AGC CGT ATC GCC CGT CGT TTG GTG CAG 624 Pro Glu Asn Arg Gln Ala Leu Ser Arg Ile Ala Arg Arg Leu Val Gln 195 200 205 GAA GCA GAA CCT TAC TAT TTG TCT GCC ACA GCC GGC CTG GCA GGG TTG 672 Glu Ala Glu Pro Tyr Tyr Leu Ser Ala Thr Ala Gly Leu Ala Gly Leu 210 215 220 CCC CTG CGT TCC GCC TGG GCA ATC GCT ACG GCG AAG CAG GTT TAC CGG 720 Pro Leu Arg Ser Ala Trp Ala Ile Ala Thr Ala Lys Gln Val Tyr Arg 225 230 235 240 AAA ATA GGT GTC AAA GTT GAA CAG GCC GGT CAG CAA GCC TGG GAT CAG 768 Lys Ile Gly Val Lys Val Glu Gln Ala Gly Gln Gln Ala Trp Asp Gln 245 250 255 CGG CAG TCA ACG ACC ACG CCC GAA AAA TTA ACG CTG CTG CTG GCC GCC 816 Arg Gln Ser Thr Thr Thr Pro Glu Lys Leu Thr Leu Leu Leu Ala Ala 260 265 270 TCT GGT CAG GCC CTT ACT TCC CGG ATG CGG GCT CAT CCT CCC CGC CCT 864 Ser Gly Gln Ala Leu Thr Ser Arg Met Arg Ala His Pro Pro Arg Pro 275 280 285 GCG CAT CTC TGG CAG CGC CCG CTC TAG 891 Ala His Leu Trp Gln Arg Pro Leu * 290 295
【0053】配列番号:7 配列の長さ:909 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Erwinia uredovora 配列の特徴: 他の情報:crtE(遺伝子名) 配列 ATG ACG GTC TGC GCA AAA AAA CAC GTT CAT CTC ACT CGC GAT GCT GCG 48 Met Thr Val Cys Ala Lys Lys His Val His Leu Thr Arg Asp Ala Ala 1 5 10 15 GAG CAG TTA CTG GCT GAT ATT GAT CGA CGC CTT GAT CAG TTA TTG CCC 96 Glu Gln Leu Leu Ala Asp Ile Asp Arg Arg Leu Asp Gln Leu Leu Pro 20 25 30 GTG GAG GGA GAA CGG GAT GTT GTG GGT GCC GCG ATG CGT GAA GGT GCG 144 Val Glu Gly Glu Arg Asp Val Val Gly Ala Ala Met Arg Glu Gly Ala 35 40 45 CTG GCA CCG GGA AAA CGT ATT CGC CCC ATG TTG CTG TTG CTG ACC GCC 192 Leu Ala Pro Gly Lys Arg Ile Arg Pro Met Leu Leu Leu Leu Thr Ala 50 55 60 CGC GAT CTG GGT TGC GCT GTC AGC CAT GAC GGA TTA CTG GAT TTG GCC 240 Arg Asp Leu Gly Cys Ala Val Ser His Asp Gly Leu Leu Asp Leu Ala 65 70 75 80 TGT GCG GTG GAA ATG GTC CAC GCG GCT TCG CTG ATC CTT GAC GAT ATG 288 Cys Ala Val Glu Met Val His Ala Ala Ser Leu Ile Leu Asp Asp Met 85 90 95 CCC TGC ATG GAC GAT GCG AAG CTG CGG CGC GGA CGC CCT ACC ATT CAT 336 Pro Cys Met Asp Asp Ala Lys Leu Arg Arg Gly Arg Pro Thr Ile His 100 105 110 TCT CAT TAC GGA GAG CAT GTG GCA ATA CTG GCG GCG GTT GCC TTG CTG 384 Ser His Tyr Gly Glu His Val Ala Ile Leu Ala Ala Val Ala Leu Leu 115 120 125 AGT AAA GCC TTT GGC GTA ATT GCC GAT GCA GAT GGC CTC ACG CCG CTG 432 Ser Lys Ala Phe Gly Val Ile Ala Asp Ala Asp Gly Leu Thr Pro Leu 130 135 140 GCA AAA AAT CGG GCG GTT TCT GAA CTG TCA AAC GCC ATC GGC ATG CAA 480 Ala Lys Asn Arg Ala Val Ser Glu Leu Ser Asn Ala Ile Gly Met Gln 145 150 155 160 GGA TTG GTT CAG GGT CAG TTC AAG GAT CTG TCT GAA GGG GAT AAG CCG 528 Gly Leu Val Gln Gly Gln Phe Lys Asp Leu Ser Glu Gly Asp Lys Pro 165 170 175 CGC AGC GCT GAA GCT ATT TTG ATG ACG AAT CAC TTT AAA ACC AGC ACG 576 Arg Ser Ala Glu Ala Ile Leu Met Thr Asn His Phe Lys Thr Ser Thr 180 185 190 CTG TTT TGT GCC TCC ATG CAG ATG GCC TCG ATT GTT GCG AAT GCC TCC 624 Leu Phe Cys Ala Ser Met Gln Met Ala Ser Ile Val Ala Asn Ala Ser 195 200 205 AGC GAA GCG CGT GAT TGC CTG CAT CGT TTT TCA CTT GAT CTT GGT CAG 672 Ser Glu Ala Arg Asp Cys Leu His Arg Phe Ser Leu Asp Leu Gly Gln 210 215 220 GCA TTT CAA CTG CTG GAC GAT TTG ACC GAT GGC ATG ACC GAC ACC GGT 720 Ala Phe Gln Leu Leu Asp Asp Leu Thr Asp Gly Met Thr Asp Thr Gly 225 230 235 240 AAG GAT AGC AAT CAG GAC GCC GGT AAA TCG ACG CTG GTC AAT CTG TTA 768 Lys Asp Ser Asn Gln Asp Ala Gly Lys Ser Thr Leu Val Asn Leu Leu 245 250 255 GGC CCG AGG GCG GTT GAA GAA CGT CTG AGA CAA CAT CTT CAG CTT GCC 816 Gly Pro Arg Ala Val Glu Glu Arg Leu Arg Gln His Leu Gln Leu Ala 260 265 270 AGT GAG CAT CTC TCT GCG GCC TGC CAA CAC GGG CAC GCC ACT CAA CAT 864 Ser Glu His Leu Ser Ala Ala Cys Gln His Gly His Ala Thr Gln His 275 280 285 TTT ATT CAG GCC TGG TTT GAC AAA AAA CTC GCT GCC GTC AGT TAA 909 Phe Ile Gln Ala Trp Phe Asp Lys Lys Leu Ala Ala Val Ser * 290 295 300 SEQ ID NO: 7 Sequence length: 909 Sequence type: Number of strands: Double-stranded Topology: Linear Sequence type: Genomic DNA Origin: Organism: Erwinia uredovora Sequence characteristics: Other information: crtE (gene name) Sequence ATG ACG GTC TGC GCA AAA AAA CAC GTT CAT CTC ACT CGC GAT GCT GCG 48 Met Thr Val Cys Ala Lys Lys His Val His Leu Thr Arg Asp Ala Ala 1 5 10 15 GAG CAG TTA CTG GCT GAT ATT GAT CGA CGC CTT GAT CAG TTA TTG CCC 96 Glu Gln Leu Leu Ala Asp Ile Asp Arg Arg Leu Asp Gln Leu Leu Pro 20 25 30 GTG GAG GGA GAA CGG GAT GTT GTG GGT GCC GCG ATG CGT GAA GGT GCG 144 Val Glu Gly Glu Arg Asp Val Val Gly Ala Ala Met Arg Glu Gly Ala 35 40 45 CTG GCA CCG GGA AAA CGT ATT CGC CCC ATG TTG CTG TTG CTG ACC GCC 192 Leu Ala Pro Gly Lys Arg Ile Arg Pro Met Leu Leu Leu Leu Thr Ala 50 55 60 CGC GAT CTG GGT TGC GCT GTC AGC CAT GAC GGA TTA CTG GAT TTG GCC 240 Arg Asp Leu Gly Cys Ala Val Ser His Asp Gly Leu Leu Asp Leu Ala 65 70 75 80 TGT GCG GTG GAA ATG GTC CAC GCG GCT TCG CTG ATC CTT GAC GAT ATG 288 Cys Ala Val Glu Met Val His Ala Ala Ser Leu Ile Leu Asp Asp Met 85 90 95 CCC TGC ATG GAC GAT GCG AAG CTG CGG CGC GGA CGC CCT ACC ATT CAT 336 Pro Cys Met Asp Asp Ala Lys Leu Arg Arg Gly Arg Pro Thr Ile His 100 105 110 TCT CAT TAC GGA GAG CAT GTG GCA ATA CTG GCG GCG GTT GCC TTG CTG 384 Ser His Tyr Gly Glu His Val Ala Ile Leu Ala Ala Val Ala Leu Leu 115 120 125 AGT AAA GCC TTT GGC GTA ATT GCC GAT GCA GAT GGC CTC ACG CCG CTG 432 Ser Lys Ala Phe Gly Val Ile Ala Asp Ala Asp Gly Leu Thr Pro Leu 130 135 140 GCA AAA AAT CGG GCG GTT TCT GAA CTG TCA AAC GCC ATC GGC ATG CAA 480 Ala Lys Asn Arg Ala Val Ser Glu Leu Ser Asn Ala Ile Gly Met Gln 145 150 155 160 GGA TTG GTT CAG GGT CAG TTC AAG GAT CTG TCT GAA GGG GAT AAG CCG 528 Gly Leu Val Gln Gly Gln Phe Lys Asp Leu Ser Glu Gly Asp Lys Pro 165 170 175 CGC AGC GCT GAA GCT ATT TTG ATG ACG AAT CAC TTT AAA ACC AGC ACG 576 Arg Ser Ala Glu Ala Ile Leu Met Thr Asn His Phe Lys Thr Ser Thr 180 185 190 CTG TTT TGT GCC TC C ATG CAG ATG GCC TCG ATT GTT GCG AAT GCC TCC 624 Leu Phe Cys Ala Ser Met Gln Met Ala Ser Ile Val Ala Asn Ala Ser 195 200 205 AGC GAA GCG CGT GAT TGC CTG CAT CGT TTT TCA CTT GAT CTT GGT CAG 672 Ser Glu Ala Arg Asp Cys Leu His Arg Phe Ser Leu Asp Leu Gly Gln 210 215 220 GCA TTT CAA CTG CTG GAC GAT TTG ACC GAT GGC ATG ACC GAC ACC GGT 720 Ala Phe Gln Leu Leu Asp Asp Leu Thr Asp Gly Met Thr Asp Thr Gly 225 230 235 240 AAG GAT AGC AAT CAG GAC GCC GGT AAA TCG ACG CTG GTC AAT CTG TTA 768 Lys Asp Ser Asn Gln Asp Ala Gly Lys Ser Thr Leu Val Asn Leu Leu 245 250 255 GGC CCG AGG GCG GTT GAA GAA CGT CTG AGA CAA CAT CTT CAG CTT GCC 816 Gly Pro Arg Ala Val Glu Glu Arg Leu Arg Gln His Leu Gln Leu Ala 260 265 270 AGT GAG CAT CTC TCT GCG GCC TGC CAA CAC GGG CAC GCC ACT CAA CAT 864 Ser Glu His Leu Ser Ala Ala Cys Gln His Gly His Ala Thr Gln His 275 280 285 TTT ATT CAG GCC TGG TTT GAC AAA AAA CTC GCT GCC GTC AGT TAA 909 Phe Ile Gln Ala Trp Phe Asp Lys Lys Leu Ala Ala Val Ser * 290 295 300
【0054】配列番号:8 配列の長さ:1479 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Erwinia uredovora 配列の特徴: 他の情報:crtI(遺伝子名) 配列 ATG AAA CCA ACT ACG GTA ATT GGT GCA GGC TTC GGT GGC CTG GCA CTG 48 Met Lys Pro Thr Thr Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu 1 5 10 15 GCA ATT CGT CTA CAA GCT GCG GGG ATC CCC GTC TTA CTG CTT GAA CAA 96 Ala Ile Arg Leu Gln Ala Ala Gly Ile Pro Val Leu Leu Leu Glu Gln 20 25 30 CGT GAT AAA CCC GGC GGT CGG GCT TAT GTC TAC GAG GAT CAG GGG TTT 144 Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Tyr Glu Asp Gln Gly Phe 35 40 45 ACC TTT GAT GCA GGC CCG ACG GTT ATC ACC GAT CCC AGT GCC ATT GAA 192 Thr Phe Asp Ala Gly Pro Thr Val Ile Thr Asp Pro Ser Ala Ile Glu 50 55 60 GAA CTG TTT GCA CTG GCA GGA AAA CAG TTA AAA GAG TAT GTC GAA CTG 240 Glu Leu Phe Ala Leu Ala Gly Lys Gln Leu Lys Glu Tyr Val Glu Leu 65 70 75 80 CTG CCG GTT ACG CCG TTT TAC CGC CTG TGT TGG GAG TCA GGG AAG GTC 288 Leu Pro Val Thr Pro Phe Tyr Arg Leu Cys Trp Glu Ser Gly Lys Val 85 90 95 TTT AAT TAC GAT AAC GAT CAA ACC CGG CTC GAA GCG CAG ATT CAG CAG 336 Phe Asn Tyr Asp Asn Asp Gln Thr Arg Leu Glu Ala Gln Ile Gln Gln 100 105 110 TTT AAT CCC CGC GAT GTC GAA GGT TAT CGT CAG TTT CTG GAC TAT TCA 384 Phe Asn Pro Arg Asp Val Glu Gly Tyr Arg Gln Phe Leu Asp Tyr Ser 115 120 125 CGC GCG GTG TTT AAA GAA GGC TAT CTA AAG CTC GGT ACT GTC CCT TTT 432 Arg Ala Val Phe Lys Glu Gly Tyr Leu Lys Leu Gly Thr Val Pro Phe 130 135 140 TTA TCG TTC AGA GAC ATG CTT CGC GCC GCA CCT CAA CTG GCG AAA CTG 480 Leu Ser Phe Arg Asp Met Leu Arg Ala Ala Pro Gln Leu Ala Lys Leu 145 150 155 160 CAG GCA TGG AGA AGC GTT TAC AGT AAG GTT GCC AGT TAC ATC GAA GAT 528 Gln Ala Trp Arg Ser Val Tyr Ser Lys Val Ala Ser Tyr Ile Glu Asp 165 170 175 GAA CAT CTG CGC CAG GCG TTT TCT TTC CAC TCG CTG TTG GTG GGC GGC 576 Glu His Leu Arg Gln Ala Phe Ser Phe His Ser Leu Leu Val Gly Gly 180 185 190 AAT CCC TTC GCC ACC TCA TCC ATT TAT ACG TTG ATA CAC GCG CTG GAG 624 Asn Pro Phe Ala Thr Ser Ser Ile Tyr Thr Leu Ile His Ala Leu Glu 195 200 205 CGT GAG TGG GGC GTC TGG TTT CCG CGT GGC GGC ACC GGC GCA TTA GTT 672 Arg Glu Trp Gly Val Trp Phe Pro Arg Gly Gly Thr Gly Ala Leu Val 210 215 220 CAG GGG ATG ATA AAG CTG TTT CAG GAT CTG GGT GGC GAA GTC GTG TTA 720 Gln Gly Met Ile Lys Leu Phe Gln Asp Leu Gly Gly Glu Val Val Leu 225 230 235 240 AAC GCC AGA GTC AGC CAT ATG GAA ACG ACA GGA AAC AAG ATT GAA GCC 768 Asn Ala Arg Val Ser His Met Glu Thr Thr Gly Asn Lys Ile Glu Ala 245 250 255 GTG CAT TTA GAG GAC GGT CGC AGG TTC CTG ACG CAA GCC GTC GCG TCA 816 Val His Leu Glu Asp Gly Arg Arg Phe Leu Thr Gln Ala Val Ala Ser 260 265 270 AAT GCA GAT GTG GTT CAT ACC TAT CGC GAC CTG TTA AGC CAG CAC CCT 864 Asn Ala Asp Val Val His Thr Tyr Arg Asp Leu Leu Ser Gln His Pro 275 280 285 GCC GCG GTT AAG CAG TCC AAC AAA CTG CAG ACT AAG CGC ATG AGT AAC 912 Ala Ala Val Lys Gln Ser Asn Lys Leu Gln Thr Lys Arg Met Ser Asn 290 295 300 TCT CTG TTT GTG CTC TAT TTT GGT TTG AAT CAC CAT CAT GAT CAG CTC 960 Ser Leu Phe Val Leu Tyr Phe Gly Leu Asn His His His Asp Gln Leu 305 310 315 320 GCG CAT CAC ACG GTT TGT TTC GGC CCG CGT TAC CGC GAG CTG ATT GAC 1008 Ala His His Thr Val Cys Phe Gly Pro Arg Tyr Arg Glu Leu Ile Asp 325 330 335 GAA ATT TTT AAT CAT GAT GGC CTC GCA GAG GAC TTC TCA CTT TAT CTG 1056 Glu Ile Phe Asn His Asp Gly Leu Ala Glu Asp Phe Ser Leu Tyr Leu 340 345 350 CAC GCG CCC TGT GTC ACG GAT TCG TCA CTG GCG CCT GAA GGT TGC GGC 1104 His Ala Pro Cys Val Thr Asp Ser Ser Leu Ala Pro Glu Gly Cys Gly 355 360 365 AGT TAC TAT GTG TTG GCG CCG GTG CCG CAT TTA GGC ACC GCG AAC CTC 1152 Ser Tyr Tyr Val Leu Ala Pro Val Pro His Leu Gly Thr Ala Asn Leu 370 375 380 GAC TGG ACG GTT GAG GGG CCA AAA CTA CGC GAC CGT ATT TTT GCG TAC 1200 Asp Trp Thr Val Glu Gly Pro Lys Leu Arg Asp Arg Ile Phe Ala Tyr 385 390 395 400 CTT GAG CAG CAT TAC ATG CCT GGC TTA CGG AGT CAG CTG GTC ACG CAC 1248 Leu Glu Gln His Tyr Met Pro Gly Leu Arg Ser Gln Leu Val Thr His 405 410 415 CGG ATG TTT ACG CCG TTT GAT TTT CGC GAC CAG CTT AAT GCC TAT CAT 1296 Arg Met Phe Thr Pro Phe Asp Phe Arg Asp Gln Leu Asn Ala Tyr His 420 425 430 GGC TCA GCC TTT TCT GTG GAG CCC GTT CTT ACC CAG AGC GCC TGG TTT 1344 Gly Ser Ala Phe Ser Val Glu Pro Val Leu Thr Gln Ser Ala Trp Phe 435 440 445 CGG CCG CAT AAC CGC GAT AAA ACC ATT ACT AAT CTC TAC CTG GTC GGC 1392 Arg Pro His Asn Arg Asp Lys Thr Ile Thr Asn Leu Tyr Leu Val Gly 450 455 460 GCA GGC ACG CAT CCC GGC GCA GGC ATT CCT GGC GTC ATC GGC TCG GCA 1440 Ala Gly Thr His Pro Gly Ala Gly Ile Pro Gly Val Ile Gly Ser Ala 465 470 475 480 AAA GCG ACA GCA GGT TTG ATG CTG GAG GAT CTG ATT TGA 1479 Lys Ala Thr Ala Gly Leu Met Leu Glu Asp Leu Ile * 485 490 SEQ ID NO: 8 Sequence length: 1479 Sequence type: Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA Origin: Organism: Erwinia uredovora Sequence characteristics: Other information: crtI (Gene name) Sequence ATG AAA CCA ACT ACG GTA ATT GGT GCA GGC TTC GGT GGC CTG GCA CTG 48 Met Lys Pro Thr Thr Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu 1 5 10 15 GCA ATT CGT CTA CAA GCT GCG GGG ATC CCC GTC TTA CTG CTT GAA CAA 96 Ala Ile Arg Leu Gln Ala Ala Gly Ile Pro Val Leu Leu Leu Glu Gln 20 25 30 CGT GAT AAA CCC GGC GGT CGG GCT TAT GTC TAC GAG GAT CAG GGG TTT 144 Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Tyr Glu Asp Gln Gly Phe 35 40 45 ACC TTT GAT GCA GGC CCG ACG GTT ATC ACC GAT CCC AGT GCC ATT GAA 192 Thr Phe Asp Ala Gly Pro Thr Val Ile Thr Asp Pro Ser Ala Ile Glu 50 55 60 GAA CTG TTT GCA CTG GCA GGA AAA CAG TTA AAA GAG TAT GTC GAA CTG 240 Glu Leu Phe Ala Leu Ala Gly Lys Gln Leu Lys Glu Tyr Val Glu Leu 65 70 75 80 CTG CCG GTT ACG CCG TTT TAC CGC CTG TGT TGG GAG TCA GGG AAG GTC 288 Leu Pro Val Thr Pro Phe Tyr Arg Leu Cys Trp Glu Ser Gly Lys Val 85 90 95 TTT AAT TAC GAT AAC GAT CAA ACC CGG CTC GAA GCG CAG ATT CAG CAG 336 Phe Asn Tyr Asp Asn Asp Gln Thr Arg Leu Glu Ala Gln Ile Gln Gln 100 105 110 TTT AAT CCC CGC GAT GTC GAA GGT TAT CGT CAG TTT CTG GAC TAT TCA 384 Phe Asn Pro Arg Asp Val Glu Gly Tyr Arg Gln Phe Leu Asp Tyr Ser 115 120 125 CGC GCG GTG TTT AAA GAA GGC TAT CTA AAG CTC GGT ACT GTC CCT TTT 432 Arg Ala Val Phe Lys Glu Gly Tyr Leu Lys Leu Gly Thr Val Pro Phe 130 135 140 TTA TCG TTC AGA GAC ATG CTT CGC GCC GCA CCT CAA CTG GCG AAA CTG 480 Leu Ser Phe Arg Asp Met Leu Arg Ala Ala Pro Gln Leu Ala Lys Leu 145 150 155 160 CAG GCA TGG AGA AGC GTT TAC AGT AAG GTT GCC AGT TAC ATC GAA GAT 528 Gln Ala Trp Arg Ser Val Tyr Ser Lys Val Ala Ser Tyr Ile Glu Asp 165 170 175 GAA CAT CTG CGC CAG GCG TTT TCT TTC CAC TCG CTG TTG GTG GGC GGC 576 Glu His Leu Arg Gln Ala Phe Ser Phe His Ser Leu Leu Val Gly Gly 180 185 190 AAT CCC TTC GCC ACC TCA TCC ATT TAT ACG TTG ATA CAC GCG CTG GAG 624 Asn Pro Phe Ala Thr Ser Ser Ile Tyr Thr Leu Ile His Ala Leu Glu 195 200 205 CGT GAG TGG GGC GTC TGG TTT CCG CGT GGC GGC ACC GGC GCA TTA GTT 672 Arg Glu Trp Gly Val Trp Phe Pro Arg Gly Gly Thr Gly Ala Leu Val 210 215 220 CAG GGG ATG ATA AAG CTG TTT CAG GAT CTG GGT GGC GAA GTC GTG TTA 720 Gln Gly Met Ile Lys Leu Phe Gln Asp Leu Gly Gly Glu Val Val Leu 225 230 235 240 AAC GCC AGA GTC AGC CAT ATG GAA ACG ACA GGA AAC AAG ATT GAA GCC 768 Asn Ala Arg Val Ser His Met Glu Thr Thr Gly Asn Lys Ile Glu Ala 245 250 255 GTG CAT TTA GAG GAC GGT CGC AGG TTC CTG ACG CAA GCC GTC GCG TCA 816 Val His Leu Glu Asp Gly Arg Arg Phe Leu Thr Gln Ala Val Ala Ser 260 265 270 AAT GCA GAT GTG GTT CAT ACC ACC TAT CGC GAC CTG TTA AGC CAG CAC CCT 864 Asn Ala Asp Val Val His Thr Tyr Arg Asp Leu Leu Ser Gln His Pro 275 280 285 GCC GCG GTT AAG CAG TCC AAC AAA CTG CAG ACT AAG CGC ATG AGT AAC 912 Ala Ala Val Lys Gln Ser Asn Lys Leu Gln Thr Lys Arg Met Ser Asn 290 295 300 TCT CTG TTT GTG CTC TAT TTT GGT TTG AAT CAC CAT CAT GAT CAG CTC 960 Ser Leu Phe Val Leu Tyr Phe Gly Leu Asn His His Asp Gln Leu 305 310 315 320 GCG CAT CAC ACG GTT TGT TTC GGC CCG CGT TAC CGC GAG CTG ATT GAC 1008 Ala His His Thr Val Cys Phe Gly Pro Arg Tyr Arg Glu Leu Ile Asp 325 330 335 GAA ATT TTT AAT CAT GAT GGC CTC GCA GAG GAC TTC TCA CTT TAT CTG 1056 Glu Ile Phe Asn His Asp Gly Leu Ala Glu Asp Phe Ser Leu Tyr Leu 340 345 350 CAC GCG CCC TGT GTC ACG GAT TCG TCA CTG GCG CCT GAA GGT TGC GGC 1104 His Ala Pro Cys Val Thr Asp Ser Ser Leu Ala Pro Glu Gly Cys Gly 355 360 365 AGT TAC TAT GTG TTG GCG CCG GTG CCG CAT TTA GGC ACC GCG AAC CTC 1152 Ser Tyr Tyr Val Leu Ala Pro Val Pro His Leu Gly Thr Ala Asn Leu 370 375 380 GAC TGG ACG GTT GAG GGG CCA AAA CTA CGC GAC CGT ATT TTT GCG TAC 1200 Asp Trp Thr Val Glu Gly Pro Lys Leu Arg Asp Arg Ile Phe Ala Tyr 385 390 395 400 CTT GAG CAG CAT TAC ATG CCT GGC TTA CGG AGT CAG CTG GTC ACG CAC 1248 Leu Glu Gln His Tyr Met Pro Gly Leu Arg Ser Gln Leu Val T hr His 405 410 415 CGG ATG TTT ACG CCG TTT GAT TTT CGC GAC CAG CTT AAT GCC TAT CAT 1296 Arg Met Phe Thr Pro Phe Asp Phe Arg Asp Gln Leu Asn Ala Tyr His 420 425 430 GGC TCA GCC TTT TCT GTG GAG CCC GTT CTT ACC CAG AGC GCC TGG TTT 1344 Gly Ser Ala Phe Ser Val Glu Pro Val Leu Thr Gln Ser Ala Trp Phe 435 440 445 CGG CCG CAT AAC CGC GAT AAA ACC ATT ACT AAT CTC TAC CTG GTC GGC 1392 Arg Pro His Asn Arg Asp Lys Thr Ile Thr Asn Leu Tyr Leu Val Gly 450 455 460 GCA GGC ACG CAT CCC GGC GCA GGC ATT CCT GGC GTC ATC GGC TCG GCA 1440 Ala Gly Thr His Pro Gly Ala Gly Ile Pro Gly Val Ile Gly Ser Ala 465 470 475 475 480 AAA GCG ACA GCA GGT TTG ATG CTG GAG GAT CTG ATT TGA 1479 Lys Ala Thr Ala Gly Leu Met Leu Glu Asp Leu Ile * 485 490
【0055】配列番号:9 配列の長さ:1296 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Erwinia uredovora 配列の特徴: 他の情報:crtX(遺伝子名) 配列 ATG AGC CAT TTC GCG GCG ATC GCA CCG CCT TTT TAC AGC CAT GTT CGC 48 Met Ser His Phe Ala Ala Ile Ala Pro Pro Phe Tyr Ser His Val Arg 1 5 10 15 GCA TTA CAG AAT CTC GCT CAG GAA CTG GTC GCG CGC GGT CAT CGG GTG 96 Ala Leu Gln Asn Leu Ala Gln Glu Leu Val Ala Arg Gly His Arg Val 20 25 30 ACC TTT ATT CAG CAA TAC GAT ATT AAA CAC TTG ATC GAT AGC GAA ACC 144 Thr Phe Ile Gln Gln Tyr Asp Ile Lys His Leu Ile Asp Ser Glu Thr 35 40 45 ATT GGA TTT CAT TCC GTC GGG ACA GAC AGC CAT CCC CCC GGC GCG TTA 192 Ile Gly Phe His Ser Val Gly Thr Asp Ser His Pro Pro Gly Ala Leu 50 55 60 ACG CGC GTG CTA CAC CTG GCG GCT CAT CCT CTG GGG CCG TCA ATG CTG 240 Thr Arg Val Leu His Leu Ala Ala His Pro Leu Gly Pro Ser Met Leu 65 70 75 80 AAG CTC ATC AAT GAA ATG GCG CGC ACC ACC GAT ATG CTG TGC CGC GAA 288 Lys Leu Ile Asn Glu Met Ala Arg Thr Thr Asp Met Leu Cys Arg Glu 85 90 95 CTC CCC CAG GCA TTT AAC GAT CTG GCC GTC GAT GGC GTC ATT GTT GAT 336 Leu Pro Gln Ala Phe Asn Asp Leu Ala Val Asp Gly Val Ile Val Asp 100 105 110 CAA ATG GAA CCG GCA GGC GCG CTC GTT GCT GAA GCA CTG GGA CTG CCG 384 Gln Met Glu Pro Ala Gly Ala Leu Val Ala Glu Ala Leu Gly Leu Pro 115 120 125 TTT ATC TCT GTC GCC TGC GCG CTG CCT CTC AAT CGT GAA CCG GAT ATG 432 Phe Ile Ser Val Ala Cys Ala Leu Pro Leu Asn Arg Glu Pro Asp Met 130 135 140 CCC CTG GCG GTT ATG CCT TTC GAA TAC GGG ACC AGC GAC GCG GCT CGC 480 Pro Leu Ala Val Met Pro Phe Glu Tyr Gly Thr Ser Asp Ala Ala Arg 145 150 155 160 GAA CGT TAT GCC GCC AGT GAA AAA ATT TAT GAC TGG CTA ATG CGT CGT 528 Glu Arg Tyr Ala Ala Ser Glu Lys Ile Tyr Asp Trp Leu Met Arg Arg 165 170 175 CAT GAC CGT GTC ATT GCC GAA CAC AGC CAC AGA ATG GGC TTA GCC CCC 576 His Asp Arg Val Ile Ala Glu His Ser His Arg Met Gly Leu Ala Pro 180 185 190 CGG CAA AAG CTT CAC CAG TGT TTT TCG CCA CTG GCG CAA ATC AGC CAG 624 Arg Gln Lys Leu His Gln Cys Phe Ser Pro Leu Ala Gln Ile Ser Gln 195 200 205 CTT GTT CCT GAA CTG GAT TTT CCC CGC AAA GCG TTA CCG GCT TGT TTT 672 Leu Val Pro Glu Leu Asp Phe Pro Arg Lys Ala Leu Pro Ala Cys Phe 210 215 220 CAT GCC GTC GGG CCT CTG CGC GAA ACG CAC GCA CCG TCA ACG TCT TCA 720 His Ala Val Gly Pro Leu Arg Glu Thr His Ala Pro Ser Thr Ser Ser 225 230 235 240 TCC CGT TAT TTT ACA TCC TCA GAA AAA CCC CGG ATT TTC GCC TCG CTG 768 Ser Arg Tyr Phe Thr Ser Ser Glu Lys Pro Arg Ile Phe Ala Ser Leu 245 250 255 GGC ACG CTT CAG GGA CAC CGT TAT GGG CTG TTT AAA ACG ATA GTG AAA 816 Gly Thr Leu Gln Gly His Arg Tyr Gly Leu Phe Lys Thr Ile Val Lys 260 265 270 GCC TGT GAA GAA ATT GAC GGT CAG CTC CTG TTA GCC CAC TGT GGT CGT 864 Ala Cys Glu Glu Ile Asp Gly Gln Leu Leu Leu Ala His Cys Gly Arg 275 280 285 CTT ACG GAC TCT CAG TGT GAA GAG CTG GCG CGA AGC CGT CAT ACA CAG 912 Leu Thr Asp Ser Gln Cys Glu Glu Leu Ala Arg Ser Arg His Thr Gln 290 295 300 GTG GTG GAT TTT GCC GAT CAG TCA GCC GCG CTG TCT CAG GCG CAG CTG 960 Val Val Asp Phe Ala Asp Gln Ser Ala Ala Leu Ser Gln Ala Gln Leu 305 310 315 320 GCG ATC ACC CAC GGC GGC ATG AAT ACG GTA CTG GAC GCG ATT AAT TAC 1008 Ala Ile Thr His Gly Gly Met Asn Thr Val Leu Asp Ala Ile Asn Tyr 325 330 335 CGG ACG CCC CTT TTA GCG CTT CCG CTG GCC TTT GAT CAG CCC GGC GTC 1056 Arg Thr Pro Leu Leu Ala Leu Pro Leu Ala Phe Asp Gln Pro Gly Val 340 345 350 GCG TCA CGC ATC GTT TAT CAC GGC ATC GGC AAG CGT GCT TCC CGC TTT 1104 Ala Ser Arg Ile Val Tyr His Gly Ile Gly Lys Arg Ala Ser Arg Phe 355 360 365 ACC ACC AGC CAT GCT TTG GCT CGT CAG ATG CGT TCA TTG CTG ACC AAC 1152 Thr Thr Ser His Ala Leu Ala Arg Gln Met Arg Ser Leu Leu Thr Asn 370 375 380 GTC GAC TTT CAG CAG CGC ATG GCG AAA ATC CAG ACA GCC CTT CGT TTG 1200 Val Asp Phe Gln Gln Arg Met Ala Lys Ile Gln Thr Ala Leu Arg Leu 385 390 395 400 GCA GGG GGC ACC ATG GCC GCT GCC GAT ATC ATT GAG CAG GTT ATG TGC 1248 Ala Gly Gly Thr Met Ala Ala Ala Asp Ile Ile Glu Gln Val Met Cys 405 410 415 ACC GGT CAG CCT GTC TTA AGT GGG AGC GGC TAT GCA ACC GCA TTA TGA 1296 Thr Gly Gln Pro Val Leu Ser Gly Ser Gly Tyr Ala Thr Ala Leu * 420 425 430 SEQ ID NO: 9 Sequence length: 1296 Sequence type: number of strands: double-stranded Topology: linear Sequence type: Genomic DNA Origin: Organism name: Erwinia uredovora Sequence characteristics: Other information: crtX (gene name) Sequence ATG AGC CAT TTC GCG GCG ATC GCA CCG CCT TTT TAC AGC CAT GTT CGC 48 Met Ser His Phe Ala Ala Ile Ala Pro Pro Phe Tyr Ser His Val Arg 1 5 10 15 GCA TTA CAG AAT CTC GCT CAG GAA CTG GTC GCG CGC GGT CAT CGG GTG 96 Ala Leu Gln Asn Leu Ala Gln Glu Leu Val Ala Arg Gly His Arg Val 20 25 30 ACC TTT ATT CAG CAA TAC GAT ATT AAA CAC TTG ATC GAT AGC GAA ACC 144 Thr Phe Ile Gln Gln Tyr Asp Ile Lys His Leu Ile Asp Ser Glu Thr 35 40 45 ATT GGA TTT CAT TCC GTC GGG ACA GAC AGC CAT CCC CCC GGC GCG TTA 192 Ile Gly Phe His Ser Val Gly Thr Asp Ser His Pro Pro Gly Ala Leu 50 55 60 ACG CGC GTG CTA CAC CTG GCG GCT CAT CCT CTG GGG CCG TCA ATG CTG 240 Thr Arg Val Leu His Leu Ala Ala His Pro Leu Gly Pro Ser Met Leu 65 70 75 80 AAG CTC ATC AAT GAA ATG GCG CGC ACC ACC GAT ATG CTG TGC CGC GAA 288 Lys Leu Ile Asn Glu Met Ala Arg Thr Thr Asp Met Leu Cys Arg Glu 85 90 95 CTC CCC CAG GCA TTT AAC GAT CTG GCC GTC GAT GGC GTC ATT GTT GAT 336 Leu Pro Gln Ala Phe Asn Asp Leu Ala Val Asp Gly Val Ile Val Asp 100 105 110 CAA ATG GAA CCG GCA GGC GCG CTC GTT GCT GAA GCA CTG GGA CTG CCG 384 Gln Met Glu Pro Ala Gly Ala Leu Val Ala Glu Ala Leu Gly Leu Pro 115 120 125 TTT ATC TCT GTC GCC TGC GCG CTG CCT CTC AAT CGT GAA CCG GAT ATG 432 Phe Ile Ser Val Ala Cys Ala Leu Pro Leu Asn Arg Glu Pro Asp Met 130 135 140 CCC CTG GCG GTT ATG CCT TTC GAA TAC GGG ACC AGC GAC GCG GCT CGC 480 Pro Leu Ala Val Met Pro Phe Glu Tyr Gly Thr Ser Asp Ala Ala Arg 145 150 155 160 GAA CGT TAT GCC GCC AGT GAA AAA ATT TAT GAC TGG CTA ATG CGT CGT 528 Glu Arg Tyr Ala Ala Ser Glu Lys Ile Tyr Asp Trp Leu Met Arg Arg 165 170 175 CAT GAC CGT GTC ATT GCC GAA CAC AGC CAC AGA ATG GGC TTA GCC CCC 576 His Asp Arg Val Ile Ala Glu His Ser His Arg Met Gly Leu Ala Pro 180 185 190 CGG CAA AAG CTT CAC CAG TGT TTT TCG CCA CTG GCG CAA ATC AGC CAG 624 Arg Gln Lys Leu His Gln Cys Phe Ser Pro Leu Ala Gln Ile Ser Gln 195 200 205 CTT GTT CCT GAA CTG GAT TTT CCC CGC AAA GCG TTA CCG GCT TGT TTT 672 Leu Val Pro Glu Leu Asp Phe Pro Arg Lys Ala Leu Pro Ala Cys Phe 210 215 220 CAT GCC GTC GGG CCT CTG CGC GAA ACG CAC GCA CCG TCA ACG TCT TCA 720 His Ala Val Gly Pro Leu Arg Glu Thr His Ala Pro Ser Thr Ser Ser 225 230 235 240 TCC CGT TAT TTT ACA TCC TCA GAA AAA CCC CGG ATT TTC GCC TCG CTG 768 Ser Arg Tyr Phe Thr Ser Ser Glu Lys Pro Arg Ile Phe Ala Ser Leu 245 250 255 GGC ACG CTT CAG GGA CAC CGT TAT GGG CTG TTT AAA ACG ATA GTG AAA 816 Gly Thr Leu Gln Gly His Arg Tyr Gly Leu Phe Lys Thr Ile Val Lys 260 265 270 GCC TGT GAA GAA ATT GAC GGT CAG CTC CTG TTA GCC CAC TGT GGT CGT 864 Ala Cys Glu Glu Ile Asp Gly Gln Leu Leu Leu Ala His Cys Gly Arg 275 280 285 CTT ACG GAC TCT CAG TGT GAA GAG CTG GCG CGA AGC CGT CAT ACA CAG 912 Leu Thr Asp Ser Gln Cys Glu Glu Leu Ala Arg Ser Arg His Thr Gln 290 295 300 GTG GTG GAT TTT GCC GAT CAG TCA GCC GCG CTG TCT CAG GCG CAG CTG 960 Val Val Asp Phe Ala Asp Gln Ser Ala Ala Leu Ser Gln Ala Gln Leu 305 310 315 320 GCG ATC ACC CAC GGC GGC ATG AAT ACG GTA CTG GAC GCG ATT AAT TAC 1008 Ala Ile Thr His Gly Gly Met Asn Thr Val Leu Asp Ala Ile Asn Tyr 325 330 335 CGG ACG CCC CTT TTA GCG CTT CCG CTG GCC TTT GAT CAG CCC GGC GTC 1056 Arg Thr Pro Leu Leu Ala Leu Pro Leu Ala Phe Asp Gln Pro Gly Val 340 345 350 GCG TCA CGC ATC GTT TAT CAC GGC ATC GGC AAG CGT GCT TCC CGC TTT 1104 Ala Ser Arg Ile Val Tyr His Gly Ile Gly Lys Arg Ala Ser Arg Phe 355 360 365 ACC ACC AGC CAT GCT TTG GCT CGT CAG ATG CGT TCA TTG CTG ACC AAC 1152 Thr Thr Ser His Ala Leu Ala Arg Gln Met Arg Ser Leu Leu Thr Asn 370 375 380 GTC GAC TTT CAG CAG CGC ATG GCG AAA ATC CAG ACA GCC CTT CGT TTG 1200 Val Asp Phe Gln Gln Arg Met Ala Lys Ile Gln Thr Ala Leu Arg Leu 385 390 395 400 GCA GGG GGC ACC ATG GCC GCT GCC GAT ATC ATT GAG CAG GTT ATG TGC 1248 Ala Gly Gly Thr Met Ala Ala Ala Asp Ile Ile Glu Gln Val M et Cys 405 410 415 ACC GGT CAG CCT GTC TTA AGT GGG AGC GGC TAT GCA ACC GCA TTA TGA 1296 Thr Gly Gln Pro Val Leu Ser Gly Ser Gly Tyr Ala Thr Ala Leu * 420 425 430
【0056】配列番号:10 配列の長さ:1149 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Erwinia uredovora 配列の特徴: 他の情報:crtY(遺伝子名) 配列 ATG CAA CCG CAT TAT GAT CTG ATT CTC GTG GGG GCT GGA CTC GCG AAT 48 Met Gln Pro His Tyr Asp Leu Ile Leu Val Gly Ala Gly Leu Ala Asn 1 5 10 15 GGC CTT ATC GCC CTG CGT CTT CAG CAG CAG CAA CCT GAT ATG CGT ATT 96 Gly Leu Ile Ala Leu Arg Leu Gln Gln Gln Gln Pro Asp Met Arg Ile 20 25 30 TTG CTT ATC GAC GCC GCA CCC CAG GCG GGC GGG AAT CAT ACG TGG TCA 144 Leu Leu Ile Asp Ala Ala Pro Gln Ala Gly Gly Asn His Thr Trp Ser 35 40 45 TTT CAC CAC GAT GAT TTG ACT GAG AGC CAA CAT CGT TGG ATA GCT CCG 192 Phe His His Asp Asp Leu Thr Glu Ser Gln His Arg Trp Ile Ala Pro 50 55 60 CTG GTG GTT CAT CAC TGG CCC GAC TAT CAG GTA CGC TTT CCC ACA CGC 240 Leu Val Val His His Trp Pro Asp Tyr Gln Val Arg Phe Pro Thr Arg 65 70 75 80 CGT CGT AAG CTG AAC AGC GGC TAC TTT TGT ATT ACT TCT CAG CGT TTC 288 Arg Arg Lys Leu Asn Ser Gly Tyr Phe Cys Ile Thr Ser Gln Arg Phe 85 90 95 GCT GAG GTT TTA CAG CGA CAG TTT GGC CCG CAC TTG TGG ATG GAT ACC 336 Ala Glu Val Leu Gln Arg Gln Phe Gly Pro His Leu Trp Met Asp Thr 100 105 110 GCG GTC GCA GAG GTT AAT GCG GAA TCT GTT CGG TTG AAA AAG GGT CAG 384 Ala Val Ala Glu Val Asn Ala Glu Ser Val Arg Leu Lys Lys Gly Gln 115 120 125 GTT ATC GGT GCC CGC GCG GTG ATT GAC GGG CGG GGT TAT GCG GCA AAT 432 Val Ile Gly Ala Arg Ala Val Ile Asp Gly Arg Gly Tyr Ala Ala Asn 130 135 140 TCA GCA CTG AGC GTG GGC TTC CAG GCG TTT ATT GGC CAG GAA TGG CGA 480 Ser Ala Leu Ser Val Gly Phe Gln Ala Phe Ile Gly Gln Glu Trp Arg 145 150 155 160 TTG AGC CAC CCG CAT GGT TTA TCG TCT CCC ATT ATC ATG GAT GCC ACG 528 Leu Ser His Pro His Gly Leu Ser Ser Pro Ile Ile Met Asp Ala Thr 165 170 175 GTC GAT CAG CAA AAT GGT TAT CGC TTC GTG TAC AGC CTG CCG CTC TCG 576 Val Asp Gln Gln Asn Gly Tyr Arg Phe Val Tyr Ser Leu Pro Leu Ser 180 185 190 CCG ACC AGA TTG TTA ATT GAA GAC ACG CAC TAT ATT GAT AAT GCG ACA 624 Pro Thr Arg Leu Leu Ile Glu Asp Thr His Tyr Ile Asp Asn Ala Thr 195 200 205 TTA GAT CCT GAA TGC GCG CGG CAA AAT ATT TGC GAC TAT GCC GCG CAA 672 Leu Asp Pro Glu Cys Ala Arg Gln Asn Ile Cys Asp Tyr Ala Ala Gln 210 215 220 CAG GGT TGG CAG CTT CAG ACA CTG CTG CGA GAA GAA CAG GGC GCC TTA 720 Gln Gly Trp Gln Leu Gln Thr Leu Leu Arg Glu Glu Gln Gly Ala Leu 225 230 235 240 CCC ATT ACT CTG TCG GGC AAT GCC GAC GCA TTC TGG CAG CAG CGC CCC 768 Pro Ile Thr Leu Ser Gly Asn Ala Asp Ala Phe Trp Gln Gln Arg Pro 245 250 255 CTG GCC TGT AGT GGA TTA CGT GCC GGT CTG TTC CAT CCT ACC ACC GGC 816 Leu Ala Cys Ser Gly Leu Arg Ala Gly Leu Phe His Pro Thr Thr Gly 260 265 270 TAT TCA CTG CCG CTG GCG GTT GCC GTG GCC GAC CGC CTG AGT GCA CTT 864 Tyr Ser Leu Pro Leu Ala Val Ala Val Ala Asp Arg Leu Ser Ala Leu 275 280 285 GAT GTC TTT ACG TCG GCC TCA ATT CAC CAT GCC ATT ACG CAT TTT GCC 912 Asp Val Phe Thr Ser Ala Ser Ile His His Ala Ile Thr His Phe Ala 290 295 300 CGC GAG CGC TGG CAG CAG CAG GGC TTT TTC CGC ATG CTG AAT CGC ATG 960 Arg Glu Arg Trp Gln Gln Gln Gly Phe Phe Arg Met Leu Asn Arg Met 305 310 315 320 CTG TTT TTA GCC GGA CCC GCC GAT TCA CGC TGG CGG GTT ATG CAG CGT 1008 Leu Phe Leu Ala Gly Pro Ala Asp Ser Arg Trp Arg Val Met Gln Arg 325 330 335 TTT TAT GGT TTA CCT GAA GAT TTA ATT GCC CGT TTT TAT GCG GGA AAA 1056 Phe Tyr Gly Leu Pro Glu Asp Leu Ile Ala Arg Phe Tyr Ala Gly Lys 340 345 350 CTC ACG CTG ACC GAT CGG CTA CGT ATT CTG AGC GGC AAG CCG CCT GTT 1104 Leu Thr Leu Thr Asp Arg Leu Arg Ile Leu Ser Gly Lys Pro Pro Val 355 360 365 CCG GTA TTA GCA GCA TTG CAA GCC ATT ATG ACG ACT CAT CGT TAA 1149 Pro Val Leu Ala Ala Leu Gln Ala Ile Met Thr Thr His Arg * 370 375 380 SEQ ID NO: 10 Sequence length: 1149 Sequence type: Number of strands: double-stranded Topology: linear Sequence type: Genomic DNA Origin: Organism: Erwinia uredovora Sequence characteristics: Other information: crtY (gene name) Sequence ATG CAA CCG CAT TAT GAT CTG ATT CTC GTG GGG GCT GGA CTC GCG AAT 48 Met Gln Pro His Tyr Asp Leu Ile Leu Val Gly Ala Gly Leu Ala Asn 1 5 10 15 GGC CTT ATC GCC CTG CGT CTT CAG CAG CAG CAA CCT GAT ATG CGT ATT 96 Gly Leu Ile Ala Leu Arg Leu Gln Gln Gln Gln Pro Asp Met Arg Ile 20 25 30 TTG CTT ATC GAC GCC GCA CCC CAG GCG GGC GGG AAT CAT ACG TGG TCA 144 Leu Leu Ile Asp Ala Ala Pro Gln Ala Gly Gly Asn His Thr Trp Ser 35 40 45 TTT CAC CAC GAT GAT TTG ACT GAG AGC CAA CAT CGT TGG ATA GCT CCG 192 Phe His His Asp Asp Leu Thr Glu Ser Gln His Arg Trp Ile Ala Pro 50 55 60 CTG GTG GTT CAT CAC TGG CCC GAC TAT CAG GTA CGC TTT CCC ACA CGC 240 Leu Val Val His His Trp Pro Asp Tyr Gln Val Arg Phe Pro Thr Arg 65 70 75 80 CGT CGT AAG CTG AAC A GC GGC TAC TTT TGT ATT ACT TCT CAG CGT TTC 288 Arg Arg Lys Leu Asn Ser Gly Tyr Phe Cys Ile Thr Ser Gln Arg Phe 85 90 95 GCT GAG GTT TTA CAG CGA CAG TTT GGC CCG CAC TTG TGG ATG GAT ACC 336 Ala Glu Val Leu Gln Arg Gln Phe Gly Pro His Leu Trp Met Asp Thr 100 105 110 GCG GTC GCA GAG GTT AAT GCG GAA TCT GTT CGG TTG AAA AAG GGT CAG 384 Ala Val Ala Glu Val Asn Ala Glu Ser Val Arg Leu Lys Lys Gly Gln 115 120 125 GTT ATC GGT GCC CGC GCG GTG ATT GAC GGG CGG GGT TAT GCG GCA AAT 432 Val Ile Gly Ala Arg Ala Val Ile Asp Gly Arg Gly Tyr Ala Ala Asn 130 135 140 TCA GCA CTG AGC GTG GGC TTC CAG GCG TTT ATT GGC CAG GAA TGG CGA 480 Ser Ala Leu Ser Val Gly Phe Gln Ala Phe Ile Gly Gln Glu Trp Arg 145 150 155 160 TTG AGC CAC CCG CAT GGT TTA TCG TCT CCC ATT ATC ATG GAT GCC ACG 528 Leu Ser His Pro His Gly Leu Ser Ser Pro Ile Ile Met Asp Ala Thr 165 170 175 GTC GAT CAG CAA AAT GGT TAT CGC TTC GTG TAC AGC CTG CCG CTC TCG 576 Val Asp Gln Gln Asn Gly Tyr Arg Phe Val Tyr Ser Leu Pro Leu Ser 180 185 190 CCG ACC AGA TTG TTA ATT GAA GAC ACG CAC TAT ATT GAT AAT GCG ACA 624 Pro Thr Arg Leu Leu Ile Glu Asp Thr His Tyr Ile Asp Asn Ala Thr 195 200 205 TTA GAT CCT GAA TGC GCG CGG CAA AAT ATT TGC GAC TAT GCC GCG CAA 672 Leu Asp Pro Glu Cys Ala Arg Gln Asn Ile Cys Asp Tyr Ala Ala Gln 210 215 220 CAG GGT TGG CAG CTT CAG ACA CTG CTG CGA GAA GAA CAG GGC GCC TTA 720 Gln Gly Trp Gln Leu Gln Thr Leu Leu Arg Glu Glu Gln Gly Ala Leu 225 230 235 240 CCC ATT ACT CTG TCG GGC AAT GCC GAC GCA TTC TGG CAG CAG CGC CCC 768 Pro Ile Thr Leu Ser Gly Asn Ala Asp Ala Phe Trp Gln Gln Arg Pro 245 250 255 CTG GCC TGT AGT GGA TTA CGT GCC GGT CTG TTC CAT CCT ACC ACC GGC 816 Leu Ala Cys Ser Gly Leu Arg Ala Gly Leu Phe His Pro Thr Thr Gly 260 265 270 TAT TCA CTG CCG CTG GCG GTT GCC GTG GCC GAC CGC CTG AGT GCA CTT 864 Tyr Ser Leu Pro Leu Ala Val Ala Val Ala Asp Arg Leu Ser Ala Leu 275 280 285 GAT GTC TTT ACG TCG GCC TCA ATT CAC CAT GCC ATT ACG CAT TTT GCC 912 Asp Val Phe Thr Ser Ala Ser Ile His His Ala Ile Thr His Phe Ala 290 295 300 CGC GAG CGC TGG CAG CAG CAG GGC TTT TTC CGC ATG CTG AAT CGC ATG 960 Arg Glu Arg Trp Gln Gln Gln Gly Phe Phe Arg Met Leu Asn Arg Met 305 310 315 320 CTG TTT TTA GCC GGA CCC GCC GAT TCA CGC TGG CGG GGG ATG CAG CGT 1008 Leu Phe Leu Ala Gly Pro Ala Asp Ser Arg Trp Arg Val Met Gln Arg 325 330 335 TTT TAT GGT TTA CCT GAA GAT TTA ATT GCC CGT TTT TAT GCG GGA AAA 1056 Phe Tyr Gly Leu Pro Glu Asp Leu Ile Ala Arg Phe Tyr Ala Gly Lys 340 345 350 CTC ACG CTG ACC GAT CGG CTA CGT ATT CTG AGC GGC AAG CCG CCT GTT 1104 Leu Thr Leu Thr Asp Arg Leu Arg Ile Leu Ser Gly Lys Pro Pro Val 355 360 365 CCG GTA TTA GCA GCA TTG CAA GCC ATT ATG ACG ACT CAT CGT TAA 1149 Pro Val Leu Ala Ala Leu Gln Ala Ile Met Thr Thr His Arg * 370 375 380
【0057】配列番号:11 配列の長さ:528 配列の型:鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源: 生物名:Erwinia uredovora 配列の特徴: 他の情報:crtZ(遺伝子名) 配列 ATG TTG TGG ATT TGG AAT GCC CTG ATC GTT TTC GTT ACC GTG ATT GGC 48 Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly 1 5 10 15 ATG GAA GTG ATT GCT GCA CTG GCA CAC AAA TAC ATC ATG CAC GGC TGG 96 Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 20 25 30 GGT TGG GGA TGG CAT CTT TCA CAT CAT GAA CCG CGT AAA GGT GCG TTT 144 Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 35 40 45 GAA GTT AAC GAT CTT TAT GCC GTG GTT TTT GCT GCA TTA TCG ATC CTG 192 Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ala Leu Ser Ile Leu 50 55 60 CTG ATT TAT CTG GGC AGT ACA GGA ATG TGG CCG CTC CAG TGG ATT GGC 240 Leu Ile Tyr Leu Gly Ser Thr Gly Met Trp Pro Leu Gln Trp Ile Gly 65 70 75 80 GCA GGT ATG ACG GCG TAT GGA TTA CTC TAT TTT ATG GTG CAC GAC GGG 288 Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly 85 90 95 CTG GTG CAT CAA CGT TGG CCA TTC CGC TAT ATT CCA CGC AAG GGC TAC 336 Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr 100 105 110 CTC AAA CGG TTG TAT ATG GCG CAC CGT ATG CAT CAC GCC GTC AGG GGC 384 Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly 115 120 125 AAA GAA GGT TGT GTT TCT TTT GGC TTC CTC TAT GCG CCG CCC CTG TCA 432 Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser 130 135 140 AAA CTT CAG GCG ACG CTC CGG GAA AGA CAT GGC GCT AGA GCG GGC GCT 480 Lys Leu Gln Ala Thr Leu Arg Glu Arg His Gly Ala Arg Ala Gly Ala 145 150 155 160 GCC AGA GAT GCG CAG GGC GGG GAG GAT GAG CCC GCA TCC GGG AAG TAA 528 Ala Arg Asp Ala Gln Gly Gly Glu Asp Glu Pro Ala Ser Gly Lys * 165 170 175SEQ ID NO: 11 Sequence length: 528 Sequence type: number of strands: double-stranded Topology: linear Sequence type: Genomic DNA Origin: Organism name: Erwinia uredovora Sequence characteristics: Other information: crtZ (gene name) Sequence ATG TTG TGG ATT TGG AAT GCC CTG ATC GTT TTC GTT ACC GTG ATT GGC 48 Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Ile Gly 1 5 10 15 ATG GAA GTG ATT GCT GCA CTG GCA CAC AAA TAC ATC ATG CAC GGC TGG 96 Met Glu Val Ile Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp 20 25 30 GGT TGG GGA TGG CAT CTT TCA CAT CAT GAA CCG CGT AAA GGT GCG TTT 144 Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 35 40 45 GAA GTT AAC GAT CTT TAT GCC GTG GTT TTT GCT GCA TTA TCG ATC CTG 192 Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ala Leu Ser Ile Leu 50 55 60 CTG ATT TAT CTG GGC AGT ACA GGA ATG TGG CCG CTC CAG TGG ATT GGC 240 Leu Ile Tyr Leu Gly Ser Thr Gly Met Trp Pro Leu Gln Trp Ile Gly 65 70 75 80 GCA GGT ATG ACG GCG TAT GGA TTA CTC TAT TTT ATG GTG CAC GAC GGG 288 Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly 85 90 95 CTG GTG CAT CAA CGT TGG CCA TTC CGC TAT ATT CCA CGC AAG GGC TAC 336 Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr 100 105 110 CTC AAA CGG TTG TAT ATG GCG CAC CGT ATG CAT CAC GCC GTC AGG GGC 384 Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly 115 120 125 AAA GAA GGT TGT GTT TCT TTT GGC TTC CTC TAT GCG CCG CCC CTG TCA 432 Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser 130 135 140 AAA CTT CAG GCG ACG CTC CGG GAA AGA CAT GGC GCT AGA GCG GGC GCT 480 Lys Leu Gln Ala Thr Leu Arg Glu Arg His Gly Ala Arg Ala Gly Ala 145 150 155 160 GCC AGA GAT GCG CAG GGC GGG GAG GAT GAG CCC GCA TCC GGG AAG TAA 528 Ala Arg Asp Ala Gln Gly Glu Asp Glu Pro Ala Ser Gly Lys * 165 170 175
【図1】6種のcrt 遺伝子を含むプラスミドpACCA
R25および5種のcrt 遺伝子を含むプラスミドpAC
CAR16を示す説明図。FIG. 1. Plasmid pACCA containing six crt genes.
Plasmid pAC containing R25 and 5 crt genes
Explanatory drawing showing CAR16.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12P 23/00 C12P 23/00 // A23L 2/58 C09B 61/00 A C09B 61/00 A23L 2/00 M (C12N 15/09 ZNA C12R 1:01) (C12N 15/09 ZNA C12R 1:05) (C12N 15/09 ZNA C12R 1:18) (C12N 1/21 C12R 1:19) (C12P 23/00 C12R 1:19) ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI C12P 23/00 C12P 23/00 // A23L 2/58 C09B 61/00 A C09B 61/00 A23L 2/00 M (C12N 15 / 09 ZNA C12R 1:01) (C12N 15/09 ZNA C12R 1:05) (C12N 15/09 ZNA C12R 1:18) (C12N 1/21 C12R 1:19) (C12P 23/00 C12R 1:19)
Claims (9)
サンチンジグルコシド。 【化1】 1. An astaxanthin diglucoside represented by the following chemical structural formula (1). Embedded image
サンチン−3′−グルコシド。 【化2】 2. Adonixanthin-3'-glucoside represented by the following chemical structural formula (2). Embedded image
サンチン−3′−グルコシドおよびアスタキサンチンモ
ノグルコシドの2種または3種の混合物。3. A mixture of two or three of astaxanthin diglucoside, adonixanthin-3'-glucoside and astaxanthin monoglucoside.
tI、crtY、crtZ、crtX、およびcrtWの全部または一部を
微生物に導入してこれら7種の遺伝子を発現可能に存在
させ、該形質転換微生物を培地で培養し、培養物からア
スタキサンチンジグルコシド、アドニキサンチン−3′
−グルコシドおよびアスタキサンチンモノグルコシドの
少なくとも1種を採取することを特徴とする、カロテノ
イド配糖体の製造法。4. A carotenoid biosynthesis gene crtE , crtB , cr
All or a part of tI , crtY , crtZ , crtX , and crtW are introduced into a microorganism to allow these seven genes to be expressed, and the transformed microorganism is cultured in a medium, and astaxanthin diglucoside is cultured from the culture. Adonixanthin-3 '
-A method for producing carotenoid glycosides, comprising collecting at least one of glucoside and astaxanthin monoglucoside.
tI、crtY、crtXがErwinia 由来の遺伝子であり、crtZが
Erwinia またはアスタキサンチン産生海洋細菌由来の遺
伝子であり、crtWがアスタキサンチン産生海洋細菌由来
の遺伝子である、請求項4に記載のカロテノイド配糖体
の製造法。5. A carotenoid biosynthesis gene crtE , crtB , cr
tI , crtY , crtX are genes from Erwinia , and crtZ is
The method for producing a carotenoid glycoside according to claim 4, wherein the gene is derived from Erwinia or astaxanthin-producing marine bacteria, and crtW is a gene derived from astaxanthin-producing marine bacteria.
または5に記載のカロテノイド配糖体の製造法。6. The method according to claim 4, wherein the microorganism is a bacterium or a yeast.
Or the method for producing a carotenoid glycoside according to 5.
ロテノイド配糖体の製造法。7. The method for producing a carotenoid glycoside according to claim 6, wherein the bacterium is Escherichia coli.
サンチン−3′−グルコシドおよびアスタキサンチンモ
ノグルコシドの少なくとも1種(ただし、アスタキサン
チンモノグルコシド単独の場合を除く)を含有してな
る、食品改善剤または食品。8. A food improving agent or food comprising at least one of astaxanthin diglucoside, adonixanthin-3'-glucoside and astaxanthin monoglucoside (excluding the case of astaxanthin monoglucoside alone).
tZ、crtE、crtB、crtI、crtYの一部または全部を植物に
導入してこれら7種の遺伝子を発現可能に存在させ、該
形質転換植物を栽培し、栽培物にアスタキサンチンジグ
ルコシド、アドニキサンチン−3′−グルコシドおよび
アスタキサンチンモノグルコシドの少なくとも1種を産
生させることを特徴とする、カロテノイド配糖体を有す
る植物の製造法。9. The carotenoid biosynthesis genes crtX , crtW , cr
Some or all of tZ , crtE , crtB , crtI , and crtY are introduced into plants so that these seven genes can be expressed, and the transformed plants are cultivated. Astaxanthin diglucoside, adonixanthin A method for producing a plant having a carotenoid glycoside, comprising producing at least one of -3'-glucoside and astaxanthin monoglucoside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9140460A JPH10327865A (en) | 1997-05-29 | 1997-05-29 | Carotenoid glycoside and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9140460A JPH10327865A (en) | 1997-05-29 | 1997-05-29 | Carotenoid glycoside and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10327865A true JPH10327865A (en) | 1998-12-15 |
Family
ID=15269122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9140460A Pending JPH10327865A (en) | 1997-05-29 | 1997-05-29 | Carotenoid glycoside and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10327865A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004011423A3 (en) * | 2002-07-29 | 2004-05-06 | Hawaii Biotech Inc | Structural carotenoid analogs for the inhibition and amelioration of disease |
WO2005074907A1 (en) * | 2004-02-04 | 2005-08-18 | Fuji Chemical Industry Co., Ltd. | Gene expression controlling agent |
JP2005239953A (en) * | 2004-02-27 | 2005-09-08 | Sugiyo:Kk | Method for making sugar-carotenoid pigment fat solution and/or solid solution |
US7247752B2 (en) | 2004-10-01 | 2007-07-24 | Cardax Pharmaceuticals, Inc. | Methods for the synthesis of astaxanthin |
US7691901B2 (en) | 2004-04-14 | 2010-04-06 | Cardax Pharmaceuticals Inc. | Carotenoid analogs or derivatives for the inhibition and amelioration of inflammation |
JP2010284173A (en) * | 1999-07-27 | 2010-12-24 | Food Industry Research & Development Inst | Engineering of metabolic control |
WO2012169623A1 (en) * | 2011-06-10 | 2012-12-13 | 国立大学法人 千葉大学 | Method for producing carotenoids each having 50 carbon atoms |
WO2022245301A3 (en) * | 2021-05-21 | 2023-01-12 | Agency For Science, Technology And Research | De novo biosynthesis of glycosylated carotenoids |
-
1997
- 1997-05-29 JP JP9140460A patent/JPH10327865A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010284173A (en) * | 1999-07-27 | 2010-12-24 | Food Industry Research & Development Inst | Engineering of metabolic control |
WO2004011423A3 (en) * | 2002-07-29 | 2004-05-06 | Hawaii Biotech Inc | Structural carotenoid analogs for the inhibition and amelioration of disease |
JP2006517197A (en) * | 2002-07-29 | 2006-07-20 | ハワイ バイオテック, インコーポレイテッド | Structural carotenoid analogues for disease control and amelioration |
JP2010248243A (en) * | 2002-07-29 | 2010-11-04 | Cardax Pharmaceuticals Inc | Structural carotenoid analogue for inhibition and amelioration of disease |
WO2005074907A1 (en) * | 2004-02-04 | 2005-08-18 | Fuji Chemical Industry Co., Ltd. | Gene expression controlling agent |
US10828269B2 (en) | 2004-02-04 | 2020-11-10 | Fuji Chemical Industries Co., Ltd. | Reducing muscle atrophy by administering astaxanthin |
JP2005239953A (en) * | 2004-02-27 | 2005-09-08 | Sugiyo:Kk | Method for making sugar-carotenoid pigment fat solution and/or solid solution |
JP4666932B2 (en) * | 2004-02-27 | 2011-04-06 | 株式会社スギヨ | Method for producing carbohydrate-carotenoid pigment fat solution and / or solid solution |
US7691901B2 (en) | 2004-04-14 | 2010-04-06 | Cardax Pharmaceuticals Inc. | Carotenoid analogs or derivatives for the inhibition and amelioration of inflammation |
US7247752B2 (en) | 2004-10-01 | 2007-07-24 | Cardax Pharmaceuticals, Inc. | Methods for the synthesis of astaxanthin |
WO2012169623A1 (en) * | 2011-06-10 | 2012-12-13 | 国立大学法人 千葉大学 | Method for producing carotenoids each having 50 carbon atoms |
WO2022245301A3 (en) * | 2021-05-21 | 2023-01-12 | Agency For Science, Technology And Research | De novo biosynthesis of glycosylated carotenoids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Armstrong | Genetics of eubacterial carotenoid biosynthesis: a colorful tale | |
AU702584B2 (en) | DNA strands useful for the synthesis of xanthophylls and the process for producing the xanthophylls | |
Verdoes et al. | Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous | |
EP1229126B1 (en) | Process for producing carotenoid pigments | |
KR0178871B1 (en) | Keto group introducing enzyme dna coding for the same and process for producing ketocarotenoid | |
US6821749B1 (en) | Methods of producing carotenoids using DNA molecules encoding isopentenyl pyrophosphate isomerase | |
JP4460621B2 (en) | Novel carotenoid hydroxylase gene and hydroxylated carotenoid production method and novel geranylgeranyl pyrophosphate synthase gene | |
Lee et al. | Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis | |
JPH10327865A (en) | Carotenoid glycoside and its production | |
US5910433A (en) | Keto group-introducing enzyme, DNA coding therefor and method for producing ketocarotenoids | |
JP2005522193A (en) | Process for the production of astaxanthin by fermentation of selected strains of Xanthophyllomyces dendrrous house | |
US8373023B2 (en) | Biochemical route to astaxanthin | |
JP2003052357A (en) | Marine microorganism, and method for manufacturing carotenoid pigment and/or higher unsaturated fatty acid by using the microorganism | |
KR20220063159A (en) | Astaxanthin overproducing strain of papia rhodojima | |
US7252964B2 (en) | Isolated carotenoid biosynthesis gene cluster involved in canthaxanthin production and applications thereof | |
JP3874897B2 (en) | β-carotene hydroxylase gene and use thereof | |
EP3839056A1 (en) | Astaxanthin over-producing strains of phaffia rhodozyma | |
US20070157339A1 (en) | Biochemical route to astaxanthin | |
JP3403381B2 (en) | Methods for increasing the production of carotenoids | |
JP2960967B2 (en) | Keto group-introducing enzyme, DNA encoding the same, and method for producing ketocarotenoids | |
JP2005529619A (en) | How to make carotenoids | |
JP2004154061A (en) | Gene useful for synthesizing monocyclic carotenoid, and method for producing the monocyclic carotenoid | |
DE10341271A1 (en) | Preparing carotenoids or their precursors useful e.g. in cosmetics, pharmaceuticals, foods and animal feeds, comprises culturing genetically modified Blakeslea |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20031216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051122 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060314 |