[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10310839A - Super hard composite member with high toughness, and its production - Google Patents

Super hard composite member with high toughness, and its production

Info

Publication number
JPH10310839A
JPH10310839A JP13767797A JP13767797A JPH10310839A JP H10310839 A JPH10310839 A JP H10310839A JP 13767797 A JP13767797 A JP 13767797A JP 13767797 A JP13767797 A JP 13767797A JP H10310839 A JPH10310839 A JP H10310839A
Authority
JP
Japan
Prior art keywords
composite member
hard
phase
hard composite
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13767797A
Other languages
Japanese (ja)
Inventor
Hideki Moriguchi
秀樹 森口
Akihiko Ikegaya
明彦 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13767797A priority Critical patent/JPH10310839A/en
Publication of JPH10310839A publication Critical patent/JPH10310839A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To combine high toughness with high hardness in a diamond(CBN) dispersed composite member. SOLUTION: This composite member has a hard phase composed essentially of at least one compound selected from WC, TiC, TiN, and TiCN and diamond(CBN) grains and a binding phase composed essentially of iron group metal and also has a cross section containing binding-phase structures having a shape where aspect ratio is 5-20. Further, the composite material has density of >=95% theoretical density ratio. Because these binding-phase structures are flat, cracks necessarily cross the binding phases at the time of crack propagation and the crack propagation energy is dissipated by the plastic deformation of the binding phases at this time, by which high toughness can be attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高靱性の超硬質複
合部材とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-toughness super-hard composite member and a method for producing the same.

【従来の技術】[Prior art]

【0002】ダイヤモンド粒子とWC基超硬合金とが混
合して一体に焼結されてなるダイヤモンド分散超硬合金
材料は、特公昭61-56067号公報、特公昭61-58432号公
報、USP 5158148 号に記載されている。これらの材料は
超高圧発生容器を用いて作製されるため、緻密な焼結体
が作製できるが、コストが高い問題点を有している。ま
た、性能面でもダイヤモンド粒子を超硬合金に含有させ
ることにより、靱性が低下する問題点も有していた。
[0002] A diamond dispersed cemented carbide material obtained by mixing diamond particles and a WC-based cemented carbide and integrally sintering the same is disclosed in JP-B-61-56067, JP-B-61-58432, and US Pat. No. 5,158,148. It is described in. Since these materials are manufactured using an ultrahigh-pressure generating container, a dense sintered body can be manufactured, but there is a problem that the cost is high. Further, in terms of performance, there is also a problem that toughness is reduced by adding diamond particles to the cemented carbide.

【0003】これに対して、このような材料をホットプ
レスにより作製する試みも提案されている。この方法で
は製造コストを安価にすることはできたが、超硬合金に
液相が生成しない温度域での焼結であるため、十分緻密
な焼結体を作製できず、焼結体強度は十分なものではな
かった。中には、このような材料を液相出現温度で作製
し、緻密化させる試み(特開昭50-146614 号公報)もな
されているが、焼結に長時間を要していたことからダイ
ヤモンドの一部が黒鉛に変態してしまう問題点を有して
いた。また、USP 5096465 号には、結合相中にメタルコ
ートされた超硬粒子を保持する複合部材を溶浸法により
作製する技術が提案されている。この方法では結合相金
属を1300℃よりも低い温度でダイヤモンド粒子の間隙に
溶浸するものであるが、溶浸法では緻密な複合部材を作
製することは難しく、焼結体強度は不十分なものであっ
た。
On the other hand, there has been proposed an attempt to produce such a material by hot pressing. Although the production cost could be reduced by this method, sintering was carried out in a temperature range where a liquid phase was not formed in the cemented carbide, so that a sufficiently dense sintered body could not be produced, and the sintered body strength was low. It was not enough. Attempts have been made to produce such materials at the liquid phase appearance temperature and to densify them (Japanese Patent Application Laid-Open No. 50-146614), but since sintering took a long time, diamond Had a problem that part of the material was transformed into graphite. Further, US Pat. No. 5,096,655 proposes a technique for producing a composite member holding metal-coated superhard particles in a binder phase by an infiltration method. In this method, the binder phase metal is infiltrated into the gap between the diamond particles at a temperature lower than 1300 ° C. However, it is difficult to produce a dense composite member by the infiltration method, and the strength of the sintered body is insufficient. Was something.

【0004】一般的に硬質相をWCを主体とし結合相を
Co、Niなどの鉄族金属とする硬質合金はWC基超硬
合金と呼ばれ、硬質相をTiC(N)を主体とし結合相
を鉄族金属とする硬質合金はTiC(N)基サーメット
と呼ばれる。これらの硬質合金は一般的に1350℃以上16
00℃以下の温度で1時間ほど真空中で無加圧で保持され
て焼結が行われる。場合によってはその後、焼結温度よ
りも低い温度でHIP(熱間静水圧プレス処理)がなさ
れることもある。
In general, a hard alloy in which the hard phase is mainly WC and the binder phase is an iron group metal such as Co or Ni is called a WC-based cemented carbide, and the hard phase is mainly composed of TiC (N) and the binder phase is mainly composed of TiC (N). Is a TiC (N) -based cermet. These hard alloys are generally above 1350 ° C
The sintering is carried out at a temperature of not more than 00 ° C. and in a vacuum for about one hour without pressure. In some cases, thereafter, HIP (hot isostatic pressing) may be performed at a temperature lower than the sintering temperature.

【0005】これらの方法によって作製された硬質合金
の断面組織写真を図3に示す。図における白い斑点部分
が結合相だが、これらの結合相はどの切断面でも硬質相
の粒界や粒同士の間隙に存在するだけである。その形状
も結合相粒と呼べるような明確なものは少なく、存在し
てもアスペクト比が3より小さい形状のものである。こ
のような組織となる理由は、焼結中に結合相が溶解して
液相が発生すると、WC基超硬合金やTiC(N)基サ
ーメットでは硬質相と結合相間の濡れ性が高い(接触角
が小さい)ことにより、液相が硬質相粒界や間隙に流動
するためである。
FIG. 3 shows a photograph of a cross-sectional structure of the hard alloy produced by these methods. The white spots in the figure are the binder phases, but these binder phases are present only at the grain boundaries of the hard phase and at the gaps between the grains on any cut surface. There are few distinct shapes that can be called binder phase particles, and even if present, they have a shape with an aspect ratio smaller than 3. The reason for such a structure is that when the binder phase is dissolved during sintering and a liquid phase is generated, the wettability between the hard phase and the binder phase is high in a WC-based cemented carbide or TiC (N) -based cermet (contact This is because the liquid phase flows to the hard phase grain boundaries and gaps due to the small angle.

【0006】超高圧発生容器を用いた場合でも結合相は
このような組織となる。このような組織を有する超硬合
金は靱性が十分とはいえない。特に、ダイヤモンドのよ
うな硬質の脆性粒子を含有する硬質複合部材では、材料
の靱性低下を抑制するため結合相量を増大させることが
必要となり、耐摩耗性,耐熱性の低下を招く結果となっ
ていた。
[0006] Even when an ultrahigh-pressure generating vessel is used, the binder phase has such a structure. A cemented carbide having such a structure does not have sufficient toughness. In particular, in the case of a hard composite member containing hard brittle particles such as diamond, it is necessary to increase the amount of the binder phase in order to suppress a decrease in the toughness of the material, resulting in a reduction in wear resistance and heat resistance. I was

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の主目
的は、超高圧発生容器を用いなくても製造できると共
に、高靱性で硬度や強度にも優れる超硬質複合部材とそ
の製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an ultra-hard composite member which can be manufactured without using an ultra-high pressure generating vessel, has high toughness, and is excellent in hardness and strength, and a method of manufacturing the same. Is to do.

【0008】[0008]

【課題を解決するための手段】本発明は上記の目的を達
成するため、WC,TiC,TiNおよびTiCNから
選択された少なくとも1種の化合物とダイヤモンド粒子
とを主体とする硬質相と、鉄族金属を主体とする結合相
金属とを含む複合部材において、アスペクト比が5〜20
となる形状の結合相組織を含む断面を有し、理論密度比
が95%以上の緻密な組織を有することを特徴とする。特
に、アスペクト比が5〜20となる形状の結合相組織は、
その最大長さが硬質相の平均結晶粒径の3倍以上である
ことが好ましい。
According to the present invention, there is provided a hard phase mainly composed of at least one compound selected from WC, TiC, TiN and TiCN, diamond particles, and an iron group. In a composite member containing a binder phase metal mainly composed of metal, the aspect ratio is 5 to 20.
And a dense structure having a theoretical density ratio of 95% or more. In particular, the binder phase structure having a shape having an aspect ratio of 5 to 20 is
Preferably, the maximum length is at least three times the average crystal grain size of the hard phase.

【0009】ここで、アスペクト比とは結合相組織の最
大長さと平均厚みの比をいう。後述するように、本発明
の硬質合金は通電加圧焼結により得られ、その際の加圧
により結合相組織が押し潰される。その結果、上記アス
ペクト比の組織が形成されるのである。このような結合
相組織は焼結時の加圧により形成されるため、配列に方
向性を有し、扁平な形状となる。また、本発明の超硬質
複合部材は、結合相を構成する金属をスタンプミルなど
を用いて扁平な形状にしたり、通電加圧焼結の他に熱間
押し出し法や射出成形プロセスで結合相を細長く伸ばし
た後、低温,短時間焼結することによって得ることもで
きる。なお、言うまでもないが、本発明合金中には不可
避的不純物を含んでいてもよい。不可避的不純物には、
例えばAl,Ba,Ca,Cu,Fe,Mg,Mn,N
i,Si,Sr,S,O,N,Mo,Sn,Cr等が挙
げられる。
Here, the aspect ratio refers to the ratio between the maximum length and the average thickness of the binder phase structure. As will be described later, the hard alloy of the present invention is obtained by current pressure sintering, and the bonding phase structure is crushed by the pressing at that time. As a result, a structure having the above aspect ratio is formed. Since such a binder phase structure is formed by pressurization at the time of sintering, the structure has directionality and has a flat shape. Further, in the super-hard composite member of the present invention, the metal constituting the binder phase is formed into a flat shape using a stamp mill or the like, or the binder phase is formed by a hot extrusion method or an injection molding process in addition to current pressure sintering. It can also be obtained by sintering at a low temperature for a short time after elongation. Needless to say, the alloy of the present invention may contain unavoidable impurities. Inevitable impurities include:
For example, Al, Ba, Ca, Cu, Fe, Mg, Mn, N
i, Si, Sr, S, O, N, Mo, Sn, Cr and the like.

【0010】従来、このような不均一な結合相組織を有
する硬質合金は低い曲げ強度を示し、液相焼結材料とし
ては好ましくないと考えられた。しかし、後に実施例で
示すように、本発明複合部材の破壊靱性は従来の合金の
それよりも高い値を示す。これは、亀裂進展の際に亀裂
がこの扁平な結合相を必ず横切ることになるため、この
際の結合相の塑性変形に亀裂進展エネルギーが費やされ
るからと考えられる。しかも、本発明複合部材の曲げ強
度は従来の合金と同レベルであり、低い曲げ強度を示す
ことはない。これは結合相粒がアスペクト比の大きな形
状となっているため、応力集中源として作用しにくいた
めであると考えられる。また、理論密度比が95%以上の
緻密度を有する構造とすることでダイヤモンドの保持力
が高く、耐摩耗性,強度に優れた複合部材とできる。
Heretofore, it has been considered that a hard alloy having such a non-uniform binder phase structure exhibits low bending strength and is not preferable as a liquid phase sintered material. However, as will be shown in Examples later, the fracture toughness of the composite member of the present invention shows a higher value than that of the conventional alloy. This is presumably because the crack always crosses the flat binder phase during crack propagation, and the crack growth energy is expended in the plastic deformation of the binder phase at this time. Moreover, the bending strength of the composite member of the present invention is at the same level as that of the conventional alloy, and does not show low bending strength. It is considered that this is because the binder phase grains have a large aspect ratio and thus do not easily act as a stress concentration source. In addition, by adopting a structure having a denseness with a theoretical density ratio of 95% or more, a composite member having high diamond holding power, excellent wear resistance and strength can be obtained.

【0011】このような硬質複合部材は、さらに次の各
要件を単独で、または複合して具えることが好適であ
る。 (1) ISO規格でA00〜A04およびB00〜B04
までの範囲を満たす緻密度を有する。緻密であるかどう
かは、この材料の断面を鏡面加工後、光学顕微鏡により
組織観察することによって評価できる。
It is preferable that such a rigid composite member further includes the following requirements alone or in combination. (1) ISO standards A00 to A04 and B00 to B04
It has a density satisfying the range up to. Whether or not the material is dense can be evaluated by mirror-processing the cross section of this material and then observing the structure with an optical microscope.

【0012】(2) ダイヤモンド粒子がlr、Os、P
t、Re、Rh、Cr、MoおよびWから選択した少な
くとも一種の金属により被覆されている。WC基超硬合
金やTiC(N)基サーメットの緻密な焼結体を得るた
めには、1300℃を上回る焼結温度が好ましい。このよう
な条件では発生した液相からダイヤモンドやCBNがア
タックされやすい。これを防ぐには上記の金属被覆が非
常に有効である。これらの金属によりダイヤモンドやC
BNが完全に被覆されていると、ダイヤモンドの劣化防
止に特に優れた効果を発揮する。
(2) Diamond particles are lr, Os, P
It is coated with at least one metal selected from t, Re, Rh, Cr, Mo and W. In order to obtain a dense sintered body of a WC-based cemented carbide or a TiC (N) -based cermet, a sintering temperature exceeding 1300 ° C is preferable. Under such conditions, diamond and CBN are easily attacked from the generated liquid phase. To prevent this, the above metal coating is very effective. Diamond and C
When the BN is completely covered, it is particularly effective in preventing the deterioration of diamond.

【0013】(3) 超硬質複合部材中の一面側ほどダイヤ
モンド粒子の量が多く、他面側ほど少なくなるように厚
さ方向にダイヤモンドの含有量が連続的または段階的に
変化している。本超硬質複合部材では、ダイヤモンドの
含有により靱性の低下、コストの上昇、加工性の低下な
どの問題が生じる。そこで、必要な部位のみダイヤモン
ドの含有量が多く、不必要な部分はダイヤモンドの含有
がないか又は少なくすることでこのような問題を解決で
きる。なお、このダイヤモンドの含有量の変化は段階的
なものと実質上連続的なものとを含む。
(3) The content of diamond changes continuously or stepwise in the thickness direction such that the amount of diamond particles is larger on one surface side and smaller on the other surface side in the super-hard composite member. In the present super-hard composite member, the inclusion of diamond causes problems such as a decrease in toughness, an increase in cost, and a decrease in workability. Therefore, such a problem can be solved by increasing the content of diamond only in necessary portions and by reducing or eliminating the content of diamond in unnecessary portions. Note that the change in the diamond content includes a stepwise change and a substantially continuous change.

【0014】(4) WC基超硬合金、TiC(N)基サー
メットおよび金属材料のいずれかよりなる基体上に接合
されている。前記(3) 項と同じ理由で、超硬質複合部材
がWC基超硬合金、TiC(N)基サーメットおよび金
属材料のいずれかよりなる基体に接合されることは好ま
しい。特に鋼などの金属材料上に焼結接合されると、従
来、焼結体と金属基体とのろう付けによる接合で不十分
であった接合強度が向上し、ろう付け工程を省略でき
る。また、基体に鋼を用いることで他の鋼製品と鋼同士
のろう付け作業が可能となるため、接合強度、作業性が
大幅に改善される。
(4) Joined on a substrate made of any of a WC-based cemented carbide, a TiC (N) -based cermet, and a metal material. For the same reason as in the above item (3), it is preferable that the super-hard composite member is joined to a substrate made of any of a WC-based cemented carbide, a TiC (N) -based cermet, and a metal material. In particular, when sintering is performed on a metal material such as steel, the bonding strength, which has conventionally been insufficient by brazing the sintered body and the metal base, is improved, and the brazing step can be omitted. In addition, the use of steel as the base makes it possible to perform a brazing operation between other steel products and steel, so that the joining strength and workability are greatly improved.

【0015】このように、超硬質複合部材と超硬合金、
サーメットとの接合により、硬度と靱性とを兼備する部
材を得ることができる。その上、熱膨張係数の関係で表
面に圧縮残留応力を発生できるため好都合である。接合
順として超硬質複合部材、超硬合金、金属材料の順に焼
結することが好ましい。なお、金属材料と超硬合金とを
接続する際には、両者の間に薄いインサート材(例えば
Ni箔)を挿入し、金属材料のカーケンダール効果によ
るボイド抑制を行うこともできる。
Thus, the super-hard composite member and the super-hard alloy,
By joining with a cermet, a member having both hardness and toughness can be obtained. In addition, it is advantageous because a compressive residual stress can be generated on the surface due to the coefficient of thermal expansion. It is preferable to sinter the super-hard composite member, the super-hard alloy, and the metal material in this order. When connecting the metal material and the cemented carbide, a thin insert material (for example, Ni foil) may be inserted between the two to suppress the voids by the Kirkendall effect of the metal material.

【0016】(5) ダイヤモンド粒子の少なくとも一部を
立方晶形窒化硼素およびウルツ鉱型窒化硼素の少なくと
も一方に置き換える。立方晶形窒化硼素およびウルツ鉱
型窒化硼素はダイヤモンドに次いで硬く、ダイヤモンド
に比べて鉄族金属に対する安定性に優れるため、鉄族金
属相手の耐摩耗性ではダイヤモンドよりも優れた性能を
期待できる。また、本超硬質複合材料は結合相に鉄族金
属を主体とするため、液相焼結中でCBNの表面が侵食
されにくく、緻密で機械的特性に優れた焼結体を作製す
ることができる。
(5) At least a part of the diamond particles is replaced with at least one of cubic boron nitride and wurtzite boron nitride. Since cubic boron nitride and wurtzite boron nitride are harder than diamond and have better stability to iron group metals than diamond, they can be expected to have better performance than diamond in terms of wear resistance against iron group metals. In addition, since the present super-hard composite material is mainly composed of an iron group metal in the binder phase, the surface of the CBN is hardly eroded during liquid phase sintering, and it is possible to produce a sintered body that is dense and has excellent mechanical properties. it can.

【0017】上記超硬質複合部材の製造方法は、WC,
TiC,TiNおよびTiCNから選択された少なくと
も1種の化合物とダイヤモンド粒子とを主体とする硬質
相粉末と、硬質相粉末の3倍以上の粒径を有する鉄族金
属を主体とする結合相粉末とを混合する工程と、この混
合粉末から構成される原料部材を通電加熱装置に配置す
る工程と、この原料部材を1100℃〜1350℃、5〜200MPa
で通電加圧焼結する工程とを具えることを特徴とする。
結合相粉末の粒径は好ましくは5倍以上である。
The method for manufacturing the super-hard composite member is described in WC,
A hard phase powder mainly composed of diamond particles and at least one compound selected from TiC, TiN and TiCN; and a binder phase powder mainly composed of an iron group metal having a particle diameter three times or more as large as the hard phase powder. And a step of arranging a raw material member composed of the mixed powder in an electric heating device, and the raw material member is heated to 1100 ° C to 1350 ° C and 5 to 200 MPa.
And sintering under electric pressure.
The particle size of the binder phase powder is preferably at least 5 times.

【0018】ここで、原料部材には、各原料の粉末自体
や、予めプレスした圧粉体、中間焼結体、これらの積層
体などが含まれる。また、必要に応じて原料粉末を混合
する際に高融点化合物などの粒成長抑制材を加えればよ
い。高融点化合物としては、IVa,Va,VIa属元素の炭化
物,窒化物,炭窒化物を挙げることができる。粒成長抑
制材は無添加が最も好ましい。添加する場合には極力少
なくする。
Here, the raw material member includes the powder itself of each raw material, a green compact pressed in advance, an intermediate sintered body, a laminate thereof, and the like. Further, a grain growth inhibitor such as a high melting point compound may be added when mixing the raw material powders as necessary. Examples of the high melting point compound include carbides, nitrides, and carbonitrides of elements belonging to the group IVa, Va, and VIa. Most preferably, no grain growth inhibitor is added. When adding, minimize it.

【0019】通電加圧焼結では外部ヒータを用いずに被
焼結材料への直接通電により急速に加熱・加圧・冷却で
きるため、10分以内の短時間で焼結を終了できる。その
ため、従来の加圧焼結で最高温度保持時間を単に短くし
た場合よりも被焼結材料が高温にさらされる時間を短く
でき、ダイヤモンドが黒鉛に変態することなく焼結を終
了できる。その上、通電プロセスによりダイヤモンドと
マトリックスとの結合力を高めることができる。また、
パルス電流を通じて粒子間にプラズマを発生させ、焼結
およびダイヤモンドとマトリックス間の結合力をさらに
向上させることもできる。このように、通電加圧焼結で
は従来の加圧焼結法では得ることのできなかった本超硬
質複合部材特有の性能メリットを手に入れることができ
る。さらに、短時間での製造が可能なため、設備の稼働
率向上による低コスト化も期待できる。
In the electric pressure sintering, heating, pressurizing and cooling can be performed rapidly by direct energization to the material to be sintered without using an external heater, so that sintering can be completed in a short time within 10 minutes. Therefore, the time during which the material to be sintered is exposed to a high temperature can be shortened as compared with the case where the maximum temperature holding time is simply shortened by conventional pressure sintering, and the sintering can be completed without transforming the diamond into graphite. Moreover, the bonding process between diamond and the matrix can be increased by the energization process. Also,
A plasma may be generated between the particles through a pulsed current to further improve the sintering and bonding force between the diamond and the matrix. As described above, in the current pressure sintering, the performance merit unique to the present super-hard composite member, which cannot be obtained by the conventional pressure sintering method, can be obtained. Furthermore, since production can be performed in a short time, cost reduction can be expected by improving the operation rate of equipment.

【0020】この方法により急速昇温して低温で短時間
の焼結を行えば、結合相が移動する時間が十分でないた
め、結合相粒子が加圧軸の方向に押しつぶされた扁平な
形状に形成される。
If sintering is carried out for a short time at a low temperature by rapidly raising the temperature by this method, the time required for the binder phase to move is not sufficient, so that the binder phase particles have a flat shape crushed in the direction of the pressure axis. It is formed.

【0021】焼結は液相の存在下で行うことが望まし
い。焼結は固相焼結で行うと扁平な結合相組織が生成し
やすいが、液相を出現させて焼結を行うことで緻密化が
促進される。これにより、焼結体の強度は向上する。従
って、扁平な結合相組織が消失しない程度の温度で液相
を生成させて、短時間で焼結することにより、緻密で強
度、靱性、硬度に優れた合金を作製することができる。
The sintering is desirably performed in the presence of a liquid phase. When sintering is performed by solid-phase sintering, a flat bonded phase structure is easily generated, but sintering with the appearance of a liquid phase promotes densification. Thereby, the strength of the sintered body is improved. Therefore, by forming a liquid phase at a temperature at which the flat binder phase structure does not disappear and sintering it in a short time, a dense alloy having excellent strength, toughness, and hardness can be produced.

【0022】上記各焼結条件の限定理由は次の通りであ
る。焼結温度は、1100℃未満では緻密化が進行しにく
く、1350℃を越えると液相のシミ出しが生じやすくなる
ためである。なお、ここでいう焼結温度は焼結炉を制御
するときの黒鉛型表面の温度のことを指す。実際の試料
温度はこの温度よりも150℃〜300 ℃程度高い温度にな
っているものと思われる。
The reasons for limiting the above sintering conditions are as follows. If the sintering temperature is lower than 1100 ° C., the densification hardly proceeds, and if it exceeds 1350 ° C., the liquid phase tends to be stained. The sintering temperature here refers to the temperature of the graphite mold surface when controlling the sintering furnace. It is considered that the actual sample temperature is about 150 to 300 ° C. higher than this temperature.

【0023】また、加圧力は5MPa 以下では加圧焼結の
効果が見られず、200MPaより加圧力を大きくすることは
設備的に難しく、コストアップの要因となるためであ
る。特に好ましい圧力は10〜50MPa である。その理由は
安価な黒鉛型が利用できるためである。
If the pressing force is 5 MPa or less, the effect of pressure sintering is not seen, and it is difficult to increase the pressing force beyond 200 MPa in terms of equipment, which causes a cost increase. A particularly preferred pressure is between 10 and 50 MPa. The reason is that an inexpensive graphite type can be used.

【0024】さらに、焼結時間は3分以内であることが
好ましい。焼結時間を短くすることで硬質相の粒成長お
よび焼結中の液相の移動を抑制し、厚さ方向に結合層量
の異なる硬質合金を作製することができる。より好まし
くは1分以内である。なお、焼結雰囲気は 0.1Torr以下
の真空が好ましい。
Further, the sintering time is preferably within 3 minutes. By shortening the sintering time, grain growth of the hard phase and movement of the liquid phase during sintering can be suppressed, and a hard alloy having a different bonding layer amount in the thickness direction can be produced. More preferably, it is within one minute. The sintering atmosphere is preferably a vacuum of 0.1 Torr or less.

【0025】ダイヤモンド粒子の量が厚さ方向に変化す
る複合部材を製造するには、ダイヤモンド粒子の含有割
合の異なる複数種の混合粉末を準備しておけばよい。そ
して、原料部材を通電加熱装置に配置する工程におい
て、これら複数種の混合粉末をダイヤモンド粒子の含有
量の順に積層して配置する。準備された混合粉末の種類
が少なければ、厚さ方向に段階的にダイヤモンド粒子の
含有量が異なる超硬質複合部材(最低は2段階−ダイヤ
モンド粒子の有りと無し)を得ることができ、この種類
を多くして積層される各層の厚みを薄くすれば実質上連
続的にダイヤモンド粒子の含有量が変化する超硬質複合
部材を得ることができる。本発明の方法では焼結中の硬
質相の粒成長、液相の移動が少ないため、このような構
成の焼結体を安定して製造することができる。なお、同
様にして厚さ方向に結合相量の変化した超硬質複合部材
を製造することもできる。
In order to manufacture a composite member in which the amount of diamond particles changes in the thickness direction, a plurality of mixed powders having different diamond particle contents may be prepared. Then, in the step of arranging the raw material members in the electric heating device, these plural kinds of mixed powders are laminated and arranged in the order of the content of the diamond particles. If the type of the prepared powder mixture is small, it is possible to obtain an ultra-hard composite member (the minimum is two stages—with or without diamond particles) having a different diamond particle content stepwise in the thickness direction. If the thickness of each layer to be laminated is reduced by increasing the number of layers, an ultra-hard composite member in which the content of diamond particles changes substantially continuously can be obtained. According to the method of the present invention, the grain growth of the hard phase and the movement of the liquid phase during sintering are small, so that a sintered body having such a configuration can be stably manufactured. In the same manner, an ultra-hard composite member in which the amount of the binder phase changes in the thickness direction can be manufactured.

【0026】また、このような傾斜構造の硬質合金を超
硬合金やサーメットあるいは金属材料からなる基体上に
接合するには、基体と共に原料部材を通電加熱装置に配
置すればよい。例えば、超硬質複合部材用の原料粉末、
超硬合金基体、金属材料基体の三者を順に積層して通電
加熱装置中で接合することができる。
In order to join such a hard alloy having a tilted structure to a substrate made of a cemented carbide, a cermet or a metal material, the raw material member together with the substrate may be arranged in an electric heating device. For example, raw material powder for ultra-hard composite members,
A cemented carbide substrate and a metal material substrate can be sequentially laminated and joined in an electric heating device.

【0027】さらに、原料粉末のうち、ダイヤモンドを
予めlr、Os、Pt、Re、Rh、Cr、Moおよび
Wから選択した少なくとも一種の金属で被覆する際に
は、公知のメッキ法,CVD法,PVD法を利用すれば
よい。
Further, among the raw material powders, when diamond is previously coated with at least one metal selected from lr, Os, Pt, Re, Rh, Cr, Mo and W, a known plating method, CVD method, The PVD method may be used.

【0028】以下、発明の実施の形態について説明す
る。 (実施例1)平均粒径0.5μm ダイヤモンド粉末、平均
粒径1μmのWC粉末、平均粒径1μmのCo粉末、平均
粉径 1.5μmのTiCN粉末、平均粒径2μmのTiC粉
末、平均粒径1μmのNi粉末を準備し、表1に記載し
た組成に配合し、ボールミルで20時間混合粉砕して原料
粉末(No.1-1〜1-7)を作製した。また、Co粉末とN
i粉末をそれぞれ平均粒径3μmと5μmの粗い原料に変
えた原料粉末No.2-2〜2-7も同様にして作製した。
Hereinafter, embodiments of the present invention will be described. (Example 1) Diamond powder having an average particle diameter of 0.5 μm, WC powder having an average particle diameter of 1 μm, Co powder having an average particle diameter of 1 μm, TiCN powder having an average particle diameter of 1.5 μm, TiC powder having an average particle diameter of 2 μm, and an average particle diameter of 1 μm Was prepared, blended with the composition shown in Table 1, and mixed and pulverized with a ball mill for 20 hours to prepare raw material powders (Nos. 1-1 to 1-7). In addition, Co powder and N
Raw material powders Nos. 2-2 to 2-7 in which the i-powder was changed to coarse raw materials having an average particle size of 3 µm and 5 µm, respectively, were similarly prepared.

【0029】[0029]

【表1】 [Table 1]

【0030】次に、これらの粉末を黒鉛型に装入し、通
電加熱焼結装置を用いて、0.01Torr程度以下の真空で50
MPa の圧力を上下方向から負荷しながら昇温スピード 2
50℃/min となるように黒鉛型に電流を通じ、1100℃に
達した時点で1分間キープし、約 100℃/min の速度で
冷却を行うことによって25×8×5mmの形状の焼結体
(試料No. 1〜14)を得た。
Next, these powders were charged into a graphite mold, and were heated under a vacuum of about 0.01 Torr or less using an electric heating and sintering apparatus.
Heating speed 2 while applying MPa pressure from top to bottom
Pass a current through the graphite mold at 50 ° C / min, keep it for 1 minute when it reaches 1100 ° C, and cool at a rate of about 100 ° C / min to obtain a 25 × 8 × 5 mm sintered body. (Sample Nos. 1 to 14) were obtained.

【0031】得られた焼結体にはクラックは存在せず、
理論密度比で95〜100 %の緻密な組織を有していた。さ
らに、これらの焼結体を加圧軸に平行な面で切断して断
面を平面研削し、鏡面研磨後、光学顕微鏡により任意の
3視野の組織写真撮影を1500倍にて行い、この写真を用
いて、結合相金属のアスペクト比を算出した。ここで、
アスペクト比は最もアスペクト比が大きく見えた3つの
結合相粒の最大長さを平均厚みで割ることにより算出
し、計6つのアスペクト比の値の中から最も大きな値の
アスペクト比を表2中に記載した。また、ダイヤモンド
製ヴィッカース圧子を用いて50kgの荷重でインデンテー
ション法により硬度と破壊靱性を測定した。さらに3点
曲げ試験により、曲げ強度も測定した。これらの測定結
果を表2に示す。
There are no cracks in the obtained sintered body,
It had a dense structure with a theoretical density ratio of 95 to 100%. Furthermore, these sintered bodies are cut along a plane parallel to the pressure axis, the cross section is ground, and after mirror polishing, a photograph of the structure in any three visual fields is taken with an optical microscope at a magnification of 1500 times. Was used to calculate the aspect ratio of the binder phase metal. here,
The aspect ratio was calculated by dividing the maximum length of the three bonded phase grains having the largest aspect ratio by the average thickness. The aspect ratio of the largest value among the total of six aspect ratio values is shown in Table 2. Described. The hardness and fracture toughness were measured by a indentation method using a diamond Vickers indenter under a load of 50 kg. Further, the bending strength was measured by a three-point bending test. Table 2 shows the measurement results.

【0032】[0032]

【表2】 [Table 2]

【0033】表2より、主体となる硬質相粒径に対して
3倍以上大きな結合相金属粉末を用いた原料No.2-1〜2-
7の焼結体の結合相のアスペクト比は硬質相と結合相の
粒子径の差がない原料No.1-1〜1-7を焼結した合金のそ
れよりも大きく、約5〜15の値となっている。また、こ
れら試料No.2,4,6,8,10,12,14 の破壊靱性は試料No.1,
3,5,7,9,11,13の破壊靱性よりも大幅に優れることが確
認できた。さらに、試料No.2,4,6,8,10,12,14 の曲げ強
度は試料No.1,3,5,7,9,11,13の曲げ強度とほぼ同じ位で
あり、曲げ強度は低下していないことが確認できた。
From Table 2, it can be seen that raw material Nos. 2-1 to 2-
The aspect ratio of the binder phase of the sintered body of No. 7 is larger than that of the alloy obtained by sintering the raw materials No. 1-1 to 1-7 having no difference in the particle diameter of the hard phase and the binder phase, and about 5 to 15 Value. The fracture toughness of Sample Nos. 2, 4, 6, 8, 10, 12, and 14 was
It was confirmed that the fracture toughness was significantly superior to the fracture toughness of 3,5,7,9,11,13. Furthermore, the flexural strength of Sample Nos. 2, 4, 6, 8, 10, 12, and 14 was almost the same as the flexural strength of Samples No. 1, 3, 5, 7, 9, 11, and 13. Was not reduced.

【0034】焼結体を加圧軸に平行な面で切断し、平面
研削・鏡面研磨した断面の光学顕微鏡写真を図1に示
す。同写真の白い部分が結合相である。この写真から明
らかなように、一部の結合相は加圧軸に対して垂直な方
向に長く伸びた形状、すなわちアスペクト比で5〜20の
形状となっている。また、この組織写真中に確認できた
結合相金属は、焼結装置の加圧軸に垂直な方向に伸びる
ように配列しており、方向性を有していることがわか
る。なお、写真中の黒点はダイヤモンドである。
FIG. 1 shows an optical microscope photograph of a cross section of the sintered body cut along a plane parallel to the pressing axis and subjected to surface grinding and mirror polishing. The white part of the photograph is the binder phase. As is clear from this photograph, a part of the binder phase has a shape elongated in a direction perpendicular to the pressing axis, that is, a shape having an aspect ratio of 5 to 20. In addition, the binder phase metals identified in the structure photograph are arranged so as to extend in a direction perpendicular to the pressure axis of the sintering apparatus, and have directionality. The black dots in the photograph are diamonds.

【0035】次に、焼結体を加圧軸に垂直な面で切断
し、平面研削・鏡面研磨した断面の光学顕微鏡写真を図
2に示す。ここでも白い部分が結合相を表している。写
真中のいくつかの結合相粒は広がって円形あるいは不定
形に認められ、この結合相金属は扁平な形状であること
がわかる。
Next, FIG. 2 shows an optical microscope photograph of a cross section of the sintered body cut along a plane perpendicular to the pressing axis and subjected to surface grinding and mirror polishing. Again, the white portion represents the binding phase. Some of the binder phase grains in the photograph are spread and observed in a circular or irregular shape, indicating that the binder phase metal has a flat shape.

【0036】(実施例2)実施例1で作製した原料粉末
No.2-5と同一の原料および組成の粉末を用い、900,100
0,1100,1200,1300,1400℃の焼結温度で、実施例1と同
様にして焼結体を作製した。そして、この焼結体を♯25
0 の砥石で平面研削後、鏡面研磨し、WC−Co相中の
気孔の有無を光学顕微鏡を用いて×200 の倍率にて観察
した。観察結果をISOに基づいてA00〜B08まで
分類し、表3中に記載した。また、表3中には焼結時の
実際の試料温度を熱電対で測定した結果.結合相金属の
アスペクト比,理論密度比,各焼結体の曲げ強度も記載
した。なお、理論密度比はWCの比重を15.6g/cm3 、C
oの比重を8.9g/cm3、VCの比重を5.5g/cm3、ダイヤモ
ンドの比重を3.5g/cm3として本組成の理論密度を計算
し、焼結体の密度をアルキメデス法で測定することによ
り行った。
(Example 2) Raw material powder produced in Example 1
Using powder of the same raw material and composition as No.2-5, 900,100
At a sintering temperature of 0, 1100, 1200, 1300, 1400 ° C., a sintered body was produced in the same manner as in Example 1. Then, this sintered body is
After surface grinding with a grinding wheel No. 0, mirror polishing was performed, and the presence or absence of pores in the WC-Co phase was observed using an optical microscope at a magnification of × 200. The observation results were classified into A00 to B08 based on ISO, and are described in Table 3. Table 3 shows the results of measurement of the actual sample temperature during sintering with a thermocouple. The aspect ratio of the binder phase metal, the theoretical density ratio, and the bending strength of each sintered body are also described. The theoretical density ratio is 15.6 g / cm 3 for WC specific gravity,
Calculate the theoretical density of this composition by setting the specific gravity of o to 8.9 g / cm 3 , the specific gravity of VC to 5.5 g / cm 3 , and the specific gravity of diamond to 3.5 g / cm 3 , and measure the density of the sintered body by the Archimedes method It was done by doing.

【0037】[0037]

【表3】 [Table 3]

【0038】表3より、実際試料温度が1050℃のNo.2-1
の試料は理論密度比が90%と低く、B08よりも巣が多
いため曲げ強度が低いこと、Aタイプ及びBタイプの気
孔が04より少ない試料No.2-3,4,5は緻密で、得に優れ
た特性を示すことが確認できた。なお、試料No.2-6は焼
結時に液相が黒鉛型外にしみ出し、曲げ強度も低い値を
示した。
From Table 3, it can be seen that No. 2-1 when the actual sample temperature was 1050 ° C.
The sample No. has a low theoretical density ratio of 90% and has many nests compared to B08, so that the bending strength is low. Samples No. 2-3, 4, 5 of A type and B type having less than 04 pores are dense, It was confirmed that excellent characteristics were obtained. In Sample No. 2-6, the liquid phase oozed out of the graphite mold during sintering, and the flexural strength also showed a low value.

【0039】また、焼結温度としては、1100〜1300 ℃
の範囲が曲げ強度の観点で好ましいことも判明した。さ
らに温度制御のための焼結温度と実際の試料温度との差
は約200 ℃であることが確認できた。
The sintering temperature is 1100-1300 ° C.
It was also found that the range described above was preferable from the viewpoint of bending strength. Furthermore, it was confirmed that the difference between the sintering temperature for temperature control and the actual sample temperature was about 200 ° C.

【0040】(実施例3)平均粒径0.5μm のWC粉
末、平均粒径2μmのCo粉末,平均粒径1μmのCr3
2 粉末を準備し、これらを重量%でWC:Co:Cr
32 =89:10:1となるように配合し、超硬粉末を準
備した。さらに平均粒径50μmのダイヤモンド粉末を準
備し、この粉末の表面にPVD法で表4に示す各種金属
を2μm被覆し、これらのダイヤモンド粉末を先に準備
した超硬粉末に対して30体積%となるように配合し、ボ
ールミルで5時間混合して原料粉末を作製した。これら
の原料粉末を黒鉛型に装入し通電加熱焼結装置を用い
て、50MPa の圧力を上下方向から負荷しながら昇温スピ
ード200 ℃/min となるように黒鉛型に電流を通じ、11
00℃に達した時点で30秒間キープし、約100 ℃/min の
速度で冷却することによって試料No.3-1〜3-13の硬質合
金を作製した。
Example 3 WC powder having an average particle size of 0.5 μm, Co powder having an average particle size of 2 μm, and Cr 3 having an average particle size of 1 μm
A C 2 powder was prepared and these were weight% WC: Co: Cr.
The mixture was blended so that 3 C 2 = 89: 10: 1 to prepare a superhard powder. Further, a diamond powder having an average particle size of 50 μm was prepared, and the surface of this powder was coated with 2 μm of various metals shown in Table 4 by the PVD method. These diamond powders were 30% by volume with respect to the previously prepared carbide powder. And mixed with a ball mill for 5 hours to prepare a raw material powder. These raw material powders are charged into a graphite mold, and a current is passed through the graphite mold using an electric heating sintering apparatus at a heating rate of 200 ° C./min while applying a pressure of 50 MPa from above and below.
When the temperature reached 00 ° C., the sample was kept for 30 seconds and cooled at a rate of about 100 ° C./min to produce hard alloys of Sample Nos. 3-1 to 3-13.

【0041】このようにして得られた試料No.3-1〜3-13
を円板式のアブレーシブ摩擦試験(SiCスラリー中で
回転する幅10mmの円板の円周部に試験片を10kgの圧力で
押し付けて耐摩耗性を評価する方法)に供した。その結
果を表4に示す。評価結果はダイヤモンド粉末を金属被
覆なしで作製した試料No.3-1の摩耗量を1として、その
他の試料の摩耗試験結果を規格化して示した。
Samples Nos. 3-1 to 3-13 thus obtained
Was subjected to a disk-type abrasive friction test (a method of evaluating abrasion resistance by pressing a test piece at a pressure of 10 kg against the circumference of a 10-mm-wide circular disk rotating in SiC slurry). Table 4 shows the results. The evaluation results are shown by standardizing the wear test results of the other samples, with the wear amount of sample No. 3-1 made of diamond powder without metal coating being taken as 1.

【0042】[0042]

【表4】 [Table 4]

【0043】表4よりダイヤモンドに何も被覆しなかっ
た試料No.3-1およびダイヤモンドを含有しない(超硬合
金のみのこと)試料No.3-13 と比較して、ダイヤモンド
粒子にlr、Os、Pt、Re、Rh、Cr、Mo、W
を被覆したNo.3-2〜No.3-9の試料は非常に優れた耐摩耗
性を実現できることが判明した。
As shown in Table 4, compared with Sample No. 3-1 in which diamond was not coated at all and Sample No. 3-13 containing no diamond (only cemented carbide), lr and Os were added to the diamond particles. , Pt, Re, Rh, Cr, Mo, W
It was found that the samples No. 3-2 to No. 3-9 coated with No. 3 can realize extremely excellent wear resistance.

【0044】(実施例4)表5に示す組成(重量%)を
有する粉末および鋼を層状にプレスして黒鉛型に充填
し、10MPa の圧力を上下方向から負荷しながら昇温スピ
ード200 ℃/min となるように黒鉛型に電流を通じ、11
50℃に達した時点で1分キープして急冷を行った。得ら
れた直径50mm,厚み20mmの円盤状焼結体を観察したとこ
ろ、各層の間にクラックの発生はなく、よく接合してい
た。この焼結体の厚み方向の断面を鏡面研磨し、EPM
Aにて組成分析を行ったが、各層間でも元素の移動は比
較的少なく、従来の焼結体で問題があった層間の成分の
拡散が抑制されていた。
(Example 4) Powder and steel having the composition (% by weight) shown in Table 5 were pressed in layers and filled in a graphite mold, and the temperature was raised at a rate of 200 ° C / 200 ° C. while applying a pressure of 10 MPa from above and below. current through the graphite mold so that
When the temperature reached 50 ° C., it was kept for 1 minute to perform rapid cooling. Observation of the obtained disc-shaped sintered body having a diameter of 50 mm and a thickness of 20 mm revealed that no cracks occurred between the layers and the layers were well joined. The cross section in the thickness direction of this sintered body is mirror-polished, and the EPM
A composition analysis was performed at A. As a result, the movement of elements was relatively small even between the respective layers, and diffusion of components between the layers, which had a problem in the conventional sintered body, was suppressed.

【0045】[0045]

【表5】 [Table 5]

【0046】本構造の焼結体は表面層はダイヤモンドを
含有していることによる高耐摩耗性,内部層は超硬,鋼
層としたことによる高強度,高靱性を得ることができ、
通常相反する両特性を両立することのできる材料となっ
ている。さらに鋼層をつけたことにより、溶接が可能と
なるなど使用上のメリットも大きい、このような優れた
材料を超高圧容器を用いずに安価に製造できたメリット
は非常に大きい。
The sintered body of this structure can obtain high wear resistance due to the surface layer containing diamond, and high strength and high toughness due to the use of a super hard and steel layer as the inner layer.
Usually, it is a material that can achieve both contradictory characteristics. In addition, the use of a steel layer has a great advantage in use, such as enabling welding, and the advantage that such an excellent material can be manufactured at low cost without using an ultrahigh-pressure vessel is very significant.

【0047】(実施例5)実施例1に記載した原料粉末
No.2-1〜2-7 のダイヤモンドを平均粒径1μmのCBN
またはWBNに一部または全部を置き換えた試料No.4-1
〜4-7 を実施例1と同一条件にて焼結し、直径20mm,厚
さ5mmの焼結体を作製した。試料No.4-1〜4-7 の組成を
表6に示す。
(Example 5) Raw material powder described in Example 1
No. 2-1 to 2-7 diamond with average particle size of 1μm CBN
Or sample No.4-1 with WBN partially or completely replaced
4-7 were sintered under the same conditions as in Example 1 to produce a sintered body having a diameter of 20 mm and a thickness of 5 mm. Table 6 shows the compositions of Sample Nos. 4-1 to 4-7.

【0048】[0048]

【表6】 [Table 6]

【0049】これらの焼結体を♯250 のダイヤモンド砥
石にて平面研削し、鏡面研磨後に光学顕微鏡にて観察し
た。その結果、結合相金属のアスペクト比は各試料共に
最大で5〜15の範囲にあることが判明し、理論密度比も
いずれの試料も95%以上の値を示した。また、いずれの
試料にもクラックの発生、CBN(WBN)粒子の脱落
は観察されず、X線定性分析によりCBN(WBN)は
六方晶BNに変態することなく焼結できていることが確
認できた。
These sintered bodies were surface ground with a # 250 diamond grindstone, mirror-polished, and observed with an optical microscope. As a result, it was found that the aspect ratio of the binder phase metal was in the range of 5 to 15 at the maximum for each sample, and the theoretical density ratio of each sample showed a value of 95% or more. In addition, no cracks were generated and no CBN (WBN) particles were dropped off in any of the samples, and it was confirmed by X-ray qualitative analysis that CBN (WBN) was sintered without being transformed into hexagonal BN. Was.

【0050】[0050]

【発明の効果】以上説明したように、本発明複合部材
は、硬度,耐摩耗性に優れたダイヤモンド(CBN)粒
子を靱性の高い超硬合金やサーメットに強固に分散・保
持させ、かつ緻密な組織とすることで、極めて高い硬度
と強度とを両立することができる。
As described above, the composite member of the present invention is capable of firmly dispersing and holding diamond (CBN) particles having excellent hardness and abrasion resistance in a high-toughness cemented carbide or cermet. By forming a structure, both extremely high hardness and strength can be achieved.

【0051】従って、本発明の複合部材は、ケーシング
ビット,アースオーガビット,シールドカッタビットな
どの鉱山土木用工具、木工用,金属加工用,樹脂加工用
チップなどの切削加工用工具、工作機械の軸受け,セン
タレスブレード,ノズルなどの耐摩材料、線引ダイスな
どの塑性加工用工具、研削加工用の工具などに利用する
ことができる。
Accordingly, the composite member of the present invention can be used for cutting tools such as casing bits, earth auger bits, shield cutter bits, etc., cutting tools such as woodworking, metalworking, and resin processing chips, and machine tools. It can be used for wear-resistant materials such as bearings, centerless blades and nozzles, plastic working tools such as drawing dies, and tools for grinding.

【0052】また、本発明の製造方法では、通電加圧焼
結により、硬質相粒径に対して3倍以上粗粒の結合相粉
末を含む原料粉末を短時間に焼結することで、靱性,硬
度,耐摩耗性に優れ、緻密な超硬質複合部材を得ること
ができる。特に、昇温時間,キープ時間,冷却時間も短
縮できるため、従来の製造方法(超高圧発生容器を用い
る方法を含む)よりもさらに低コスト化が期待できる。
Further, in the production method of the present invention, the raw material powder containing the binder phase powder having a coarse particle size of at least three times the hard phase particle size is sintered in a short time by current pressure sintering, so that the toughness is improved. It is possible to obtain a dense super-hard composite member having excellent hardness, abrasion resistance and excellent hardness. In particular, since the heating time, the keeping time, and the cooling time can be shortened, further cost reduction can be expected as compared with the conventional manufacturing method (including the method using the ultrahigh pressure generating vessel).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明硬質合金を加圧軸と平行な面で切断した
断面の組織を示す顕微鏡写真である。
FIG. 1 is a micrograph showing the structure of a cross section of the hard alloy of the present invention cut along a plane parallel to a pressure axis.

【図2】本発明硬質合金を加圧軸と垂直な面で切断した
断面の組織を示す顕微鏡写真である。
FIG. 2 is a micrograph showing a structure of a cross section of the hard alloy of the present invention cut along a plane perpendicular to a pressing axis.

【図3】従来の硬質合金の断面組織を示す顕微鏡写真で
ある。
FIG. 3 is a micrograph showing a cross-sectional structure of a conventional hard alloy.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 29/02 B22F 3/14 101B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 29/02 B22F 3/14 101B

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 硬質相と結合相金属とを有する複合部材
であって、 前記硬質相はダイヤモンド粒子とWC,TiC,TiN
およびTiCNから選択された少なくとも1種の化合物
とを主体とし、 前記結合相金属は鉄族金属を主体として、 アスペクト比が5〜20となる形状の結合相組織を含む断
面を有し、理論密度比が95%以上の緻密な組織を有する
ことを特徴とする高靱性超硬質複合部材。
1. A composite member having a hard phase and a binder phase metal, wherein the hard phase is composed of diamond particles, WC, TiC, and TiN.
And at least one compound selected from the group consisting of TiCN and TiCN, wherein the binder phase metal is mainly composed of an iron group metal and has a cross section including a binder phase structure having an aspect ratio of 5 to 20; A high-toughness super-hard composite member having a dense structure with a ratio of 95% or more.
【請求項2】 ISO規格でA00〜A04およびB0
0〜B04までの範囲を満たす緻密度を有することを特
徴とする請求項1記載の高靱性超硬質複合部材。
2. ISO standards A00 to A04 and B0
The high-toughness super-hard composite member according to claim 1, having a denseness satisfying a range of 0 to B04.
【請求項3】 アスペクト比が5〜20の形状の結合相組
織の配列が方向性を有していることを特徴とする請求項
1記載の高靱性超硬質複合部材。
3. The high-toughness super-hard composite member according to claim 1, wherein the arrangement of the binder phase structure having an aspect ratio of 5 to 20 has directionality.
【請求項4】 アスペクト比が5〜20の形状の結合相組
織が扁平な形状を有することを特徴とする請求項1記載
の高靱性超硬質複合部材。
4. The high-toughness super-hard composite member according to claim 1, wherein the binder phase structure having an aspect ratio of 5 to 20 has a flat shape.
【請求項5】 ダイヤモンド粒子はlr、Os、Pt、
Re、Rh、Cr、MoおよびWから選択した少なくと
も一種の金属が被覆されていることを特徴とする請求項
1記載の高靱性超硬質複合部材。
5. The diamond particles are lr, Os, Pt,
The high-toughness super-hard composite member according to claim 1, wherein at least one metal selected from the group consisting of Re, Rh, Cr, Mo and W is coated.
【請求項6】 高靱性超硬質部材の一面側ほどダイヤモ
ンド粒子の量が多く、他面側ほど少なくなるように厚さ
方向にダイヤモンドの含有量が連続的または段階的に変
化されてなることを特徴とする請求項1記載の高靱性超
硬質複合部材。
6. The method according to claim 1, wherein the diamond content is changed continuously or stepwise in the thickness direction such that the amount of diamond particles is larger on one surface side of the high toughness super hard member and is smaller on the other surface side. The high-toughness super-hard composite member according to claim 1, wherein:
【請求項7】 WC基超硬合金、TiC(N)基サーメ
ットおよび金属材料のいずれかよりなる基体上に接合さ
れてなることを特徴とする請求項1記載の高靱性超硬質
複合部材。
7. The high-toughness super-hard composite member according to claim 1, wherein the high-toughness super-hard composite member is bonded to a substrate made of one of a WC-based cemented carbide, a TiC (N) -based cermet, and a metal material.
【請求項8】 ダイヤモンド粒子の少なくとも一部を立
方晶形窒化硼素およびウルツ鉱型窒化硼素の少なくとも
一方に置き換えたことを特徴とする請求項1記載の高靱
性超硬質複合部材。
8. The high-toughness super-hard composite member according to claim 1, wherein at least a part of the diamond particles is replaced with at least one of cubic boron nitride and wurtzite boron nitride.
【請求項9】 WC,TiC,TiNおよびTiCNか
ら選択された少なくとも1種の化合物とダイヤモンド粒
子とからなる硬質相粉末と、硬質相粉末の3倍以上の粒
径を有する鉄族金属の結合相粉末とを混合する工程と、 この混合粉末から構成される原料部材を通電加熱装置に
配置する工程と、 この原料部材を1100℃〜1350℃、5〜200MPaで通電加圧
焼結する工程とを具えることを特徴とする高靱性超硬質
複合部材の製造方法。
9. A hard phase powder composed of diamond particles and at least one compound selected from WC, TiC, TiN and TiCN, and a bonded phase of an iron group metal having a particle size three times or more the size of the hard phase powder. A step of mixing a raw material member composed of the mixed powder with an electric heating device; and a step of performing electric pressure sintering of the raw material member at 1100 ° C. to 1350 ° C. and 5 to 200 MPa. A method for producing a high-toughness super-hard composite member, comprising:
【請求項10】 原料粉末のうち、ダイヤモンド粒子を
予めlr、Os、Pt、Re、Rh、Cr、Moおよび
Wから選択した少なくとも一種の金属で被覆しておくこ
とを特徴とする請求項9記載の高靱性超硬質複合部材の
製造方法。
10. The raw material powder, wherein diamond particles are previously coated with at least one metal selected from lr, Os, Pt, Re, Rh, Cr, Mo and W. The method for producing a high-toughness super-hard composite member of the present invention.
【請求項11】 ダイヤモンド粒子の少なくとも一部を
立方晶形窒化硼素およびウルツ鉱型窒化硼素の少なくと
も一方に置き換えたことを特徴とする請求項9記載の高
靱性超硬質複合部材の製造方法。
11. The method according to claim 9, wherein at least a part of the diamond particles is replaced with at least one of cubic boron nitride and wurtzite boron nitride.
JP13767797A 1997-05-12 1997-05-12 Super hard composite member with high toughness, and its production Withdrawn JPH10310839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13767797A JPH10310839A (en) 1997-05-12 1997-05-12 Super hard composite member with high toughness, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13767797A JPH10310839A (en) 1997-05-12 1997-05-12 Super hard composite member with high toughness, and its production

Publications (1)

Publication Number Publication Date
JPH10310839A true JPH10310839A (en) 1998-11-24

Family

ID=15204246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13767797A Withdrawn JPH10310839A (en) 1997-05-12 1997-05-12 Super hard composite member with high toughness, and its production

Country Status (1)

Country Link
JP (1) JPH10310839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302767A (en) * 1998-04-21 1999-11-02 Toshiba Tungaloy Co Ltd Cemented carbide excellent in mechanical characteristic and its production
WO2002029127A3 (en) * 2000-10-06 2002-08-08 De Beers Ind Diamond Abrasive and wear resistant material
JP2011241464A (en) * 2010-05-21 2011-12-01 National Institute For Materials Science Super-hard composite material and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302767A (en) * 1998-04-21 1999-11-02 Toshiba Tungaloy Co Ltd Cemented carbide excellent in mechanical characteristic and its production
WO2002029127A3 (en) * 2000-10-06 2002-08-08 De Beers Ind Diamond Abrasive and wear resistant material
JP2011241464A (en) * 2010-05-21 2011-12-01 National Institute For Materials Science Super-hard composite material and method for producing the same

Similar Documents

Publication Publication Date Title
JP3309897B2 (en) Ultra-hard composite member and method of manufacturing the same
EP2462083B1 (en) Tough coated hard particles consolidated in a tough matrix material
KR100260368B1 (en) Composite material and process for producing the same
JP4274588B2 (en) Manufacturing method of composite material
JP3949181B2 (en) Diamond sintered body using hard alloy as binder and method for producing the same
JP5076044B2 (en) Composite wear-resistant member and manufacturing method thereof
JPH10310840A (en) Superhard composite member and its production
Huang et al. An environment-friendly metal bond diamond tool based on reactive sintered Fe3Al and grinding performance on ceramics
JPH10310839A (en) Super hard composite member with high toughness, and its production
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JP2006037160A (en) Sintered compact
JP4177467B2 (en) High toughness hard alloy and manufacturing method thereof
EP0731186A1 (en) Composite material and process for producing the same
JP4177468B2 (en) High hardness hard alloy and its manufacturing method
Simsir et al. Effects of sintering temperature and addition of Fe and B 4 C on hardness and wear resistance of diamond reinforced metal matrix composites
JPH10310838A (en) Superhard composite member and its production
JP3513547B2 (en) Grinding stone for polishing single crystal diamond or diamond sintered body and polishing method thereof
Kim et al. Mechanical properties of binderless tungsten carbide by spark plasma sintering
JP2001187431A (en) Laminated structural material
JP2627090B2 (en) Bonded body of boride ceramics and metal-based structural member and bonding method
JP2001040446A (en) Diamond-containing hard member and its production
US10201890B1 (en) Sintered metal carbide containing diamond particles and induction heating method of making same
JP3651285B2 (en) Cubic boron nitride-containing brazing composite material and method for producing the same
JP2002045957A (en) Member for molten metal excellent in erosion resistance to molten metal and its producing method
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20051028

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060308

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061025