[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10301058A - Reflection refraction type projecting optical system - Google Patents

Reflection refraction type projecting optical system

Info

Publication number
JPH10301058A
JPH10301058A JP9127925A JP12792597A JPH10301058A JP H10301058 A JPH10301058 A JP H10301058A JP 9127925 A JP9127925 A JP 9127925A JP 12792597 A JP12792597 A JP 12792597A JP H10301058 A JPH10301058 A JP H10301058A
Authority
JP
Japan
Prior art keywords
optical system
half mirror
optical path
catadioptric projection
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9127925A
Other languages
Japanese (ja)
Inventor
Yasuhiro Omura
泰弘 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9127925A priority Critical patent/JPH10301058A/en
Publication of JPH10301058A publication Critical patent/JPH10301058A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflection/refraction type projecting optical system attaining a large numerical aperture in the wavelength region of a ultraviolet ray. SOLUTION: In a reflection/refraction type projecting optical system projecting all images of patterns of a first plane R on a second plane W by forming the image in an exposing area A from among the patterns of the first plane R on the second plane W with a reduced magnification and synchronously scanning the first plane R and the second plane W with a velocity ratio mutually corresponding to the reduced magnification, this optical system is composed, in order of the passage of light ray from the first plane R, of a first optical system G1 , a half mirror HM, a second optical system G2 arranged on at least either optical path among the transmitting path or the reflecting path of the half mirror and a third optical system G3 arranged on the optical path on the opposite side to the reflecting optical path of the half mirror, the exposing area A is located in one half-circle area bisected by a diameter L orthogonal to the scanning direction, the second optical system G2 has a concave mirror and, by representing the image forming magnification by βm , the conditional relation: 0.7<|βm |<1.3 is satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体素
子、または液晶表示素子等をフォトリソグラフィ工程で
製造する際に使用される投影光学系に関し、特に光学系
の要素として屈折系のほかに反射系を用いることによ
り、紫外線波長域でクオーターミクロン単位の解像度を
有する反射屈折投影光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection optical system used for manufacturing, for example, a semiconductor device or a liquid crystal display device by a photolithography process, and more particularly to a reflection system in addition to a refraction system as an optical system element. The present invention relates to a catadioptric projection optical system having a resolution of a quarter micron unit in the ultraviolet wavelength region.

【0002】[0002]

【従来の技術】半導体素子等を製造するためのフォトグ
ラフィ工程において、フォトマスクまたはレチクル(以
下、まとめて「レチクル」という)のパターン像を投影
光学系を介して、フォトレジスト等が塗布されたウエハ
(またはガラスプレート等)上に露光する投影露光装置
が使用されている。半導体素子等の集積度が向上するに
つれて、投影露光装置に使用されている投影光学系に要
求される解像力は益々高まっている。この要求を満足す
るために、照明光の波長を短く且つ投影光学系の開口数
(N.A.)を大きくする必要が生じた。しかし、照明
光の波長が短くなると、光の吸収によって実用に耐える
硝材の種類は限られ、波長が300nm以下になると実
用上使える硝材は合成石英と蛍石だけとなる。両者のア
ッベ数は、色収差を補正するのに十分な程は離れていな
いので、波長が300nm以下になった場合には、屈折
系だけで投影光学系を構成すると、色収差をはじめとす
る諸収差の補正が困難となる。
2. Description of the Related Art In a photolithography process for manufacturing a semiconductor device or the like, a photoresist or the like is applied via a projection optical system to a pattern image of a photomask or a reticle (hereinafter collectively referred to as a "reticle"). A projection exposure apparatus for exposing a wafer (or a glass plate or the like) is used. As the degree of integration of semiconductor elements and the like increases, the resolution required for a projection optical system used in a projection exposure apparatus has been increasing. In order to satisfy this requirement, it has been necessary to shorten the wavelength of the illumination light and increase the numerical aperture (NA) of the projection optical system. However, when the wavelength of the illumination light is shortened, the types of glass materials that can withstand practical use by absorbing light are limited, and when the wavelength is 300 nm or less, only synthetic quartz and fluorite are practically usable. Since the Abbe numbers of both are not far enough apart to correct the chromatic aberration, if the wavelength becomes 300 nm or less, if the projection optical system is constituted only by the refraction system, various aberrations including the chromatic aberration Correction becomes difficult.

【0003】これに対して反射系は色収差がないため、
反射系と屈折系とを組み合わせたいわゆる反射屈折光学
系によって投影光学系を構成した種々の技術が提案され
ている。反射系に対する光束の入出力を行うための光路
変換用ビームスプリッターを有する反射屈折縮小光学系
としては、特公平7−117648号公報、特開平6−
300973号公報、特開平5−88089号公報、特
開平3−282527号公報及びPCT/EP95/0
1719等に開示されている。
On the other hand, since the reflection system has no chromatic aberration,
Various techniques have been proposed in which a projection optical system is configured by a so-called catadioptric system combining a reflection system and a refraction system. A catadioptric reduction optical system having an optical path changing beam splitter for inputting / outputting a light beam to / from a reflecting system is disclosed in Japanese Patent Publication No. Hei.
No. 300973, JP-A-5-88089, JP-A-3-282527 and PCT / EP95 / 0
1719 and the like.

【0004】[0004]

【発明が解決しようとする課題】上記の如き従来の技術
は、光路分割のために透過反射面を持ったビームスプリ
ッターを使う必要がある。光量ロスやフレアー等の迷光
の発生を防ぐためには、特開平3−282527号公報
等にも開示されているように、偏光ビームスプリッター
の採用が考えられるが、偏光ビームスプリッターの透過
反射面には入射光がP偏光の場合透過し、S偏光の場合
反射する多層構造の透過反射膜が必要である。また偏光
を変えるための1/4波長板が不可欠となる。これら光
学要素は製造が非常に困難であり、クオーターミクロン
単位の解像度を達成するためには製造コストも非常に高
くなる。一方、偏光を使わずにハーフミラーによって光
路を分離する場合、ウエハまで届く光量は照明光量の1
/2〜1/4となるが、近時投影露光に用いられる照明
光の光源にレーザーが用いられるようになり、従来のg
線やi線等の高圧水銀ランプの輝線スペクトルを照明光
に用いる場合に比べ、光量は遥かに大きいためハーフミ
ラーの採用も可能となる。しかしハーフミラーを採用し
た場合、ウエハまで到達しない1/2〜3/4の光線が
迷光となり、フレアーやゴースト等を発生し結像性能を
劣化させる。
The prior art as described above requires the use of a beam splitter having a transmission / reflection surface for splitting an optical path. In order to prevent the generation of stray light such as light amount loss and flare, as disclosed in Japanese Patent Application Laid-Open No. 3-282527, it is conceivable to employ a polarizing beam splitter. A transmission / reflection film having a multilayer structure that transmits when the incident light is P-polarized light and reflects when the incident light is S-polarized light is required. In addition, a quarter-wave plate for changing polarization is indispensable. These optical elements are very difficult to manufacture and the manufacturing costs are very high in order to achieve quarter-micron resolution. On the other hand, when the optical path is separated by a half mirror without using polarized light, the amount of light reaching the wafer is one of the amount of illumination light.
/ 2 to 4, but a laser is used as a light source of illumination light used for recent projection exposure, and the conventional g
Since the amount of light is much larger than the case where the emission line spectrum of a high-pressure mercury lamp such as a line or an i-line is used for the illumination light, a half mirror can be employed. However, when a half mirror is employed, 2〜 to 光線 of the light rays that do not reach the wafer become stray light, causing flares, ghosts, and the like, thereby deteriorating the imaging performance.

【0005】本発明はかかる点に鑑み、紫外線波長域で
大きな開口数を達成し、光学系が実用的な大きさで、像
側の作動距離も十分に確保され、光路分離のためにハー
フミラーを使用しても結像性能の劣化や、フレアー、ゴ
ースト等の迷光の発生がなく、クオーターミクロン単位
の解像度を有する反射屈折投影光学系を提供することを
課題とする。
In view of the foregoing, the present invention achieves a large numerical aperture in the ultraviolet wavelength range, has a practical size optical system, has a sufficient working distance on the image side, and has a half mirror for separating the optical path. It is an object of the present invention to provide a catadioptric projection optical system having a resolution of a quarter-micron unit without deteriorating the imaging performance and generating stray light such as flare and ghost even if is used.

【0006】[0006]

【課題を解決するための手段】上述の課題を達成するた
めに、本発明の投影光学系は、レンズと凹面鏡とを含
み、第1面のパターンのうちの露光領域の像を縮小倍率
にて第2面に結像させ、第1面と第2面とを互いに縮小
倍率に対応した速度比にて同期して走査することによ
り、第1面のパターンのすべての像を第2面に投影する
反射屈折投影光学系において、第1面から光線が通る順
に、第1光学系と、ハーフミラーと、ハーフミラーの透
過光路と反射光路とのうちの少なくともいずれか一方の
光路に配置した第2光学系と、ハーフミラーの反射光路
の反対側の光路に配置した第3光学系とから構成され、
露光領域は、投影光学系の有効領域のうち、走査方向と
直交する直径によって2分される一方の半円領域内にあ
り、第2光学系は凹面鏡を有し、凹面鏡の結像倍率をβ
mとしたとき、 0.7<|βm|<1.3 (1) なる条件式を満足するように構成している。
In order to achieve the above object, a projection optical system according to the present invention includes a lens and a concave mirror, and forms an image of an exposure area in a pattern on a first surface at a reduced magnification. All images of the pattern on the first surface are projected onto the second surface by forming an image on the second surface and scanning the first and second surfaces in synchronization with each other at a speed ratio corresponding to the reduction magnification. In the catadioptric projection optical system, the first optical system, the half mirror, and the second mirror disposed in at least one of the transmission optical path and the reflection optical path of the half mirror in the order in which light rays pass from the first surface. An optical system, and a third optical system disposed in an optical path opposite to the reflected optical path of the half mirror,
The exposure area is in one semicircular area of the effective area of the projection optical system divided into two by a diameter perpendicular to the scanning direction, the second optical system has a concave mirror, and the imaging magnification of the concave mirror is β
When m , 0.7 <| β m | <1.3 (1) It is configured to satisfy the following conditional expression.

【0007】上述の構成の如き本発明においては、第1
面を発した光束は、第1光学系を通過し、ハーフミラー
で反射又は透過し、第2光学系で反射し、ハーフミラー
を透過又は反射し、第3光学系を通過して第2面に至
る。しかるに本発明の露光領域Aは、図1に示すよう
に、投影光学系の光軸zを中心とした有効領域のうち、
走査方向と直交する直径Lによって2分されるいずれか
一方の半円領域内に設けられている。すなわちこの露光
領域Aは、直径Lによって2分される双方の半円領域に
またがるようには形成されていない。また第2光学系の
凹面鏡の結像倍率は、(1)式に示すようにほぼ等倍に
形成されている。
In the present invention as described above, the first aspect
The light beam emitted from the surface passes through the first optical system, is reflected or transmitted by the half mirror, is reflected by the second optical system, is transmitted or reflected by the half mirror, passes through the third optical system, and passes through the third optical system. Leads to. However, the exposure area A of the present invention is, as shown in FIG. 1, an effective area centered on the optical axis z of the projection optical system.
It is provided in one of the semicircular regions divided by the diameter L perpendicular to the scanning direction. That is, the exposure area A is not formed so as to extend over both semicircular areas divided into two by the diameter L. Further, the imaging magnification of the concave mirror of the second optical system is formed at approximately the same magnification as shown in equation (1).

【0008】この結果、図2の点線に示す如く、第1面
Rを発した光束のうち、第1光学系G1を通過し、ハー
フミラーHMで反射又は透過し、第2光学系G2で反射
し、ハーフミラーHMで往路と同じく反射又は透過した
光束は、再び第1面R上に戻ってくるものの、その位置
は光軸zに関して対称な位置に戻る。また第2面Wにウ
エハ等の反射率の高い感光材を用いた場合には、光束は
第2面Wで反射するが、この反射光束のうち、第3光学
系G3を通過し、ハーフミラーHMで反射又は透過し、
第2光学系G2で反射し、ハーフミラーHMで往路と同
じく反射又は透過した光束は、再び第2面W上に戻って
くるものの、その位置もまた、光軸zに関して対称な位
置に戻る。すなわちこれらの第1面R又は第2面Wに戻
る迷光は、実際に使用する第1面又は第2面上の露光領
域A外に戻るようになり、投影露光の結像性能の悪化を
防ぐことができる。
As a result, as shown by the dotted line in FIG. 2, of the light beam emitted from the first surface R, it passes through the first optical system G 1 , is reflected or transmitted by the half mirror HM, and is transmitted to the second optical system G 2. The light flux reflected by the half mirror HM and reflected or transmitted by the half mirror HM in the same way as on the outward path returns to the first surface R again, but returns to a position symmetrical with respect to the optical axis z. In the case of using a high sensitive material reflectance such as a wafer on a second surface W, the light beam is reflected by the second surface W, of the reflected light beam passes through the third optical system G 3, half Reflected or transmitted by the mirror HM,
Second reflected by the optical system G 2, the light beam which has also reflected or transmitted the forward half mirror HM, although returns again on the second surface W, its position also returns to the symmetrical positions with respect to the optical axis z . That is, the stray light returning to the first surface R or the second surface W returns to the outside of the exposure area A on the first surface or the second surface to be actually used, thereby preventing the deterioration of the imaging performance of the projection exposure. be able to.

【0009】条件式(1)は凹面鏡の結像倍率に関する
条件式で、この式を満たさない場合、第1面または第2
面に戻ってくる光線が、実際に使用する第1面または第
2面上の露光領域A内に戻るようになり、投影露光の結
像性能を悪化させる。さらに好ましくは、条件式(1)
の上限を1.2とし、下限を0.8とすると良い。また
上述の第2面上に戻る光線による迷光の発生を防ぎ、第
2面上の露光領域A以外が露光されることを防ぐため
に、第3光学系の最後のレンズ面と第2面との間に視野
絞りSWを設けることが望ましい。同様にして第1面上
に戻る光線による迷光の発生を防ぐために、第1光学系
の最初のレンズ面と第1面との間に視野絞りSRを設け
ることが望ましい。
The conditional expression (1) is a conditional expression relating to the imaging magnification of the concave mirror. If this expression is not satisfied, the first surface or the second surface
Light rays returning to the surface return to the exposure area A on the first surface or the second surface to be actually used, thereby deteriorating the imaging performance of projection exposure. More preferably, conditional expression (1)
Is preferably set to 1.2 and the lower limit to 0.8. Further, in order to prevent the generation of stray light due to the light returning to the second surface described above and to prevent exposure of an area other than the exposure area A on the second surface, the last lens surface of the third optical system and the second surface must be it is desirable to provide a field stop S W between. To prevent the occurrence of stray light due to light returning to the first surface in the same manner, it is desirable to provide a field stop S R between the first lens surface and the first surface of the first optical system.

【0010】一方、光量損失を防ぐためには、第1光学
系が正の屈折力を有し、第1光学系によってハーフミラ
ーに導かれた光束が、ハーフミラー面で透過光と反射光
に分けられたとき、透過光の光路と反射光の光路との双
方にそれぞれ同様に配置された2組のほぼ等倍の結像倍
率を持つ第2光学系を採用することが望ましい。他方、
光源の光量が十分大きく、光学系による光量損失が問題
とならない場合は、第1光学系によってハーフミラーに
導かれた光束が、ハーフミラー面で透過光と反射光に分
けられたとき、透過光の光路と反射光の光路とのいずれ
か一方の光路のみにほぼ等倍の結像倍率を持つ第2光学
系を配置し、いずれか他方の光路に光吸収部材を配置す
ることで、迷光の発生を防ぐことができる。
On the other hand, in order to prevent the light quantity loss, the first optical system has a positive refractive power, and the light beam guided to the half mirror by the first optical system is divided into transmitted light and reflected light on the half mirror surface. In this case, it is desirable to employ two sets of second optical systems having approximately the same magnification as the optical path of the transmitted light and the optical path of the reflected light. On the other hand,
In the case where the light amount of the light source is sufficiently large and the light amount loss due to the optical system is not a problem, when the light flux guided to the half mirror by the first optical system is divided into transmitted light and reflected light on the half mirror surface, the transmitted light By disposing the second optical system having an imaging magnification of approximately the same magnification only on one of the optical paths of the reflected light and the reflected light, and disposing the light absorbing member on the other optical path, Occurrence can be prevented.

【0011】第2光学系としては、1枚の凹面鏡のほか
に、少なくとも1枚の負の屈折力を持つレンズを用いる
ことで、各収差を良好に補正し、特にペッツバール和を
容易に0に近づけることができるようになる。また第3
光学系が正の屈折力を持ち、ハーフミラーの第3光学系
側射出面と第3光学系との間、又は第3光学系の内部
に、可変可能な開口絞りASを有することで、露光パタ
ーンに最適となるように解像力と焦点深度を調節するこ
とができる。投影露光に用いられる光の波長が300n
m以下のレーザ光であるとき、本発明は特に効果が大き
く、クオーターミクロン単位の解像度を達成できる。
As the second optical system, at least one lens having a negative refracting power is used in addition to one concave mirror, so that each aberration can be satisfactorily corrected. You will be able to get closer. Also the third
Since the optical system has a positive refractive power and has a variable aperture stop AS between the third optical system side exit surface of the half mirror and the third optical system or inside the third optical system, the exposure can be performed. The resolution and depth of focus can be adjusted to be optimal for the pattern. The wavelength of light used for projection exposure is 300n
When the laser beam is less than m, the present invention is particularly effective, and can achieve a resolution of a quarter micron unit.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図面によっ
て説明する。図3は本発明による反射屈折投影光学系の
第1実施例を示し、この投影光学系は、レチクルR上の
パターンのうちの露光領域Aの像を縮小倍率にてウエハ
W上に結像させ、レチクルRとウエハWとを互いに縮小
倍率に対応した速度比にて同期して走査することによ
り、レチクルR上のパターンのすべての像をウエハWに
投影する光学系である。この光学系は、レチクルR側か
ら順に、第1光学系G1と、ハーフミラーHMと、ハー
フミラーHMの透過光路と反射光路との双方に配置した
第2光学系G2,G2と、ハーフミラーHMの反射光路の
反対側の光路に配置した第3光学系G3とから構成され
ている。両第2光学系G2,G2は同一に形成されてお
り、共に1枚の負レンズと1個の凹面鏡とからなる。ま
た、レチクルRと第1光学系G1との間にはレチクル側
視野絞りSRが配置されており、第1光学系G1とハーフ
ミラーHMとの間には平面鏡Mが配置されており、ハー
フミラーHMと第3光学系G3との間には可変開口絞り
ASが配置されており、第3光学系G3とウエハWとの
間にはウエハ側視野絞りSWが配置されている。
Embodiments of the present invention will be described with reference to the drawings. FIG. 3 shows a first embodiment of a catadioptric projection optical system according to the present invention. This projection optical system forms an image of an exposure area A of a pattern on a reticle R on a wafer W at a reduced magnification. The optical system projects all images of the pattern on the reticle R onto the wafer W by scanning the reticle R and the wafer W in synchronization with each other at a speed ratio corresponding to the reduction magnification. This optical system includes, in order from the reticle R side, a first optical system G 1 , a half mirror HM, and second optical systems G 2 and G 2 arranged on both a transmission optical path and a reflection optical path of the half mirror HM. and a third optical system G 3 Metropolitan disposed on the opposite side the optical path of the reflected light path of the half mirror HM. The two second optical systems G 2 and G 2 are formed identically, and each is composed of one negative lens and one concave mirror. A reticle-side field stop S R is disposed between the reticle R and the first optical system G 1, and a plane mirror M is disposed between the first optical system G 1 and the half mirror HM. A variable aperture stop AS is disposed between the half mirror HM and the third optical system G 3, and a wafer-side field stop SW is disposed between the third optical system G 3 and the wafer W. I have.

【0013】図5は本発明による反射屈折投影光学系の
第2実施例を示し、この第2実施例は、平面鏡Mからハ
ーフミラーHMに入射した光束の反射光路側にのみ第2
光学系G2を配置し、透過光路側には光吸収部材Bを配
置したものである。この光吸収部材Bは、本実施例では
ハーフミラーHMを透過した後の光路に配置されている
が、ハーフミラーの射出面に光吸収材料を塗布しても良
い。
FIG. 5 shows a second embodiment of the catadioptric projection optical system according to the present invention. This second embodiment is provided only on the reflection optical path side of the light beam incident on the half mirror HM from the plane mirror M.
Place the optical system G 2, the transmitted light path side is obtained by disposing the light-absorbing member B. In this embodiment, the light absorbing member B is disposed in the optical path after transmitting through the half mirror HM, but a light absorbing material may be applied to the emission surface of the half mirror.

【0014】上記両実施例の露光領域Aは、投影光学系
の有効領域のうち、走査方向と直交する直径によって2
分される一方の半円領域内にあり、本実施例の露光領域
Aは、図1に示すように、走査方向に短く、走査方向と
直交する方向に長い長方形スリット状としている。但
し、円弧を走査方向に平行移動して得られる円弧状スリ
ットとすることもできる。また上記両実施例では、一対
の直角3角プリズムの貼り合わせ面にハーフミラーHM
を形成しているが、ハーフミラーとしては、スプリット
面の方向に広がる平板状のものを用いることもできる。
The exposure area A of each of the above embodiments is defined by a diameter of the effective area of the projection optical system which is orthogonal to the scanning direction.
As shown in FIG. 1, the exposure area A in one of the divided semicircular areas has a rectangular slit shape that is short in the scanning direction and long in the direction perpendicular to the scanning direction. However, an arc-shaped slit obtained by translating the arc in the scanning direction may be used. Further, in both of the above embodiments, the half mirror HM is provided on the bonding surface of the pair of right-angled triangular prisms.
However, as the half mirror, a flat mirror that spreads in the direction of the split surface can also be used.

【0015】第1実施例と第2実施例の諸元をそれぞれ
表1と表2に示す。各表の[主要諸元]中、露光領域は
レチクルR上での値を示す。また[光学部材諸元]中、
第1欄NoはレチクルR側からの各光学面の番号、第2
欄rは各光学面の曲率半径、第3欄dは各光学面の間
隔、第4欄は各光学部材の硝材、第5欄は各光学部材又
は光学面の属する群番号を表す。曲率半径rは光線の進
行方向側に曲率中心があるときを正とし、光線の進行方
向の反対側に曲率中心があるときを負としている。但
し、光線が反射面によって反射するたびに、正負を反転
して表示している。各光学面の間隔dも、光線が反射面
によって反射するたびに、正負を反転して表示してい
る。
Tables 1 and 2 show the specifications of the first embodiment and the second embodiment, respectively. In [Main Specifications] of each table, the exposure area indicates a value on the reticle R. In [Optical member specifications],
The first column No is the number of each optical surface from the reticle R side,
Column r indicates the radius of curvature of each optical surface, third column d indicates the distance between the optical surfaces, column 4 indicates the glass material of each optical member, and column 5 indicates the group number to which each optical member or optical surface belongs. The radius of curvature r is positive when the center of curvature is on the side of the light beam traveling direction, and is negative when the center of curvature is on the side opposite to the traveling direction of the light beam. However, each time a light ray is reflected by the reflection surface, the sign is inverted and displayed. The distance d between the optical surfaces is also shown by inverting the sign each time a light ray is reflected by the reflection surface.

【0016】なお第1実施例では、ハーフミラーHMで
先ず反射し次に透過する光路と、先ず透過して次に反射
する光路との双方が用いられているが、このうち表1に
は、前者の光路に沿って曲率半径rと面間隔dとの正負
を表示している。後者の光路に沿って曲率半径rと面間
隔dを表示したときには、正負が入れ替わるだけであ
る。
In the first embodiment, both the optical path first reflected and then transmitted by the half mirror HM and the optical path first transmitted and then reflected are used. The positive and negative of the radius of curvature r and the surface distance d are displayed along the former optical path. When the curvature radius r and the surface distance d are displayed along the latter optical path, only the sign is switched.

【0017】[0017]

【表1】 [主要諸元] 露光波長 193.3nm ±5pm 像側開口数 0.6 露光領域 a=4mm b=6mm c=25mm βm=1.0000 [光学部材諸元] No r d 硝材 0 (レチクル) 52.464 1 -191.3364 20.000 クオーツ G1 2 -267.9167 1.597 3 416.5071 27.633 クオーツ G1 4 -271.1370 5.104 5 213.6204 20.000 クオーツ G1 6 649.0929 34.235 7 -355.9542 20.000 クオーツ G1 8 168.1397 24.328 9 -257.5430 20.000 CaF21 10 1278.9250 22.156 11 -153.5848 20.512 クオーツ G1 12 -741.0107 24.612 13 -276.5159 20.000 クオーツ G1 14 -212.8862 0.693 15 762.0099 40.317 クオーツ G1 16 -308.2859 0.500 17 -874.5016 22.304 クオーツ G1 18 -334.1368 10.126 19 -248.9104 20.000 クオーツ G1 20 -361.0763 0.500 21 -936.6808 20.000 クオーツ G1 22 -420.8196 120.000 23 ∞ -160.000 平面鏡 M 24 ∞ -110.000 クオーツ 25 ∞ 110.000 クオーツ HM(反射) 26 ∞ 38.672 27 -196.5742 20.000 クオーツ G2 28 -337.5700 0.500 29 -566.5796 -0.500 凹面鏡 G2 30 -337.5700 -20.000 クオーツ G2 31 -196.5742 -38.672 32 ∞ -110.000 クオーツ 33 ∞ -110.000 クオーツ HM(透過) 34 ∞ -10.000 35 (開口絞り) 9.935 36 -191.0256 -25.649 クオーツ G3 37 -923.9232 -8.514 38 1051.4400 -35.000 クオーツ G3 39 -212.1568 -34.703 40 -400.0000 -35.000 CaF23 41 474.2273 -0.500 42 -209.3909 -35.000 CaF23 43 3195.0126 -0.919 44 -123.9664 -26.860 CaF23 45 -1236.0228 -6.958 46 548.8242 -24.655 クオーツ G3 47 1164.8700 -0.500 48 -1996.7884 -44.782 クオーツ G3 49 863.3677 -0.500 50 -408.0838 -20.000 クオーツ G3 51 -3000.0000 -17.000 52 (ウエハ)[Table 1] [Main specifications] Exposure wavelength 193.3nm ± 5pm Image side numerical aperture 0.6 Exposure area a = 4 mm b = 6 mm c = 25 mm β m = 1.0000 [Optical member specifications] Nord Glass material 0 (reticle) 52.464 1 -191.3364 20.000 Quartz G 1 2 -267.9167 1.597 3 416.5071 27.633 Quartz G 1 4 -271.1370 5.104 5 213.6204 20.000 quartz G 1 6 649.0929 34.235 7 -355.9542 20.000 quartz G 1 8 168.1397 24.328 9 -257.5430 20.000 CaF 2 G 1 10 1278.9250 22.156 11 -153.5848 20.512 quartz G 1 12 -741.0107 24.612 13 -276.5159 20.000 Quartz G 1 14 -212.8862 0.693 15 762.0099 40.317 Quartz G 1 16 -308.2859 0.500 17 -874.5016 22.304 Quartz G 1 18 -334.1368 10.126 19 -248.9104 20.000 Quartz G 1 20 -361.0763 0.500 21 -936.6808 20.000 Quartz G 1 22- 120.000 23 ∞ -160.000 Flat mirror M 24 ∞ -110.000 Quartz 25 ∞ 110.000 Quartz HM (reflection) 26 ∞ 38.672 27 -196.5742 20.000 Quartz G 2 28 -337.5700 0.500 29 -566.5796 -0.500 Concave Mirror G 2 30 -337.5700 -20.000 quartz G 2 31 -196.5742 -38.672 32 mm -110.000 quartz 33 mm -110.000 quartz HM (transmission) 34 mm -10.000 35 (aperture stop) 9.935 36 -191.0256 -25.649 quartz G 3 37- 923.9232 -8.514 38 1051.4400 -35.000 Quartz G 3 39 -212.1568 -34.703 40 -400.0000 -35.000 CaF 2 G 3 41 474.2273 -0.500 42 -209.3909 -35.000 CaF 2 G 3 43 3195.0126 -0.919 44 -123.9664 -26.860 CaF 2 G 3 45 -1236.0228 -6.958 46 548.8242 -24.655 Quartz G 3 47 1164.8700 -0.500 48 -1996.7884 -44.782 Quartz G 3 49 863.3677 -0.500 50 -408.0838 -20.000 Quartz G 3 51 -3000.0000 -17.000 52 (wafer)

【0018】[0018]

【表2】 [主要諸元] 露光波長 193.3nm ±5pm 像側開口数 0.65 露光領域 a=3mm b=5mm c=23mm βm=1.0000 [光学部材諸元] No r d 0 (レチクル) 50.000 1 -175.3321 20.000 クオーツ G1 2 -264.8469 0.500 3 391.3145 25.076 クオーツ G1 4 -251.5778 2.746 5 230.8678 20.000 クオーツ G1 6 1051.2622 35.045 7 -297.6821 20.000 クオーツ G1 8 164.4810 24.873 9 -182.0039 21.198 CaF21 10 -2240.2794 19.815 11 -166.3163 21.114 クオーツ G1 12 -793.3420 25.882 13 -269.4889 20.013 クオーツ G1 14 -205.8559 2.869 15 770.1003 41.200 クオーツ G1 16 -297.2918 0.500 17 -651.6010 21.357 クオーツ G1 18 -310.0752 9.236 19 -242.1483 20.000 クオーツ G1 20 -364.5125 0.500 21 -1496.2990 20.142 クオーツ G1 22 -477.4456 120.000 23 ∞ -180.000 平面鏡 M 24 ∞ -115.000 クオーツ 25 ∞ 115.000 クオーツ HM(反射) 26 ∞ 42.202 27 -198.3038 20.000 クオーツ G2 28 -343.4520 0.500 29 -578.7272 -0.500 凹面鏡 G2 30 -343.4520 -20.000 クオーツ G2 31 -198.3038 -42.202 32 ∞ -115.000 クオーツ 33 ∞ -115.000 クオーツ HM(透過) 34 ∞ -10.000 35 (開口絞り) -5.000 36 -185.1517 -28.828 クオーツ G3 37 -937.6323 -9.903 38 1037.6213 -35.000 クオーツ G3 39 -202.0440 -18.592 40 -488.3867 -35.000 CaF23 41 455.1024 -0.500 42 -189.2867 -35.000 CaF23 43 3380.7853 -5.446 44 -116.0852 -27.956 CaF23 45 -791.6593 -7.717 46 580.0609 -20.000 クオーツ G3 47 4355.3792 -0.500 48 -631.5761 -39.351 クオーツ G3 49 1048.4735 -0.500 50 -463.6847 -20.000 クオーツ G3 51 -3000.0000 -17.000 52 (ウエハ)[Table 2] [Main specifications] Exposure wavelength 193.3nm ± 5pm Image side numerical aperture 0.65 Exposure area a = 3 mm b = 5 mm c = 23 mm β m = 1.0000 [Optical member specifications] Nor d 0 (reticle) 50.000 1 -175.3321 20.000 Quartz G 1 2 -264.8469 0.500 3 391.3145 25.076 Quartz G 1 4 -251.5778 2.746 5 230.8678 20.000 quartz G 1 6 1051.2622 35.045 7 -297.6821 20.000 quartz G 1 8 164.4810 24.873 9 -182.0039 21.198 CaF 2 G 1 10 -2240.2794 19.815 11 -166.3163 21.114 quartz G 1 12 -793.3420 25.882 13 -269.4889 20.013 Quartz G 1 14 -205.8559 2.869 15 770.1003 41.200 Quartz G 1 16 -297.2918 0.500 17 -651.6010 21.357 Quartz G 1 18 -310.0752 9.236 19 -242.1483 20.000 Quartz G 1 20 -364.5125 0.500 21 -1496.2990 20.142 Quartz G 1 2247 7.4 120.000 23 ∞ -180.000 Flat mirror M 24 115 -115.000 Quartz 25 ∞ 115.000 Quartz HM (reflection) 26 ∞ 42.202 27 -198.3038 20.000 Quartz G 2 28 -343.4520 0.500 29 -578.7272 -0.500 Concave mirror G 2 30 -343.4520 -20.000 quartz G 2 31 -198.3038 -42.202 32 ∞ -115.000 quartz 33 ∞ -115.000 quartz HM (transmission) 34 ∞ -10.000 35 (aperture stop) -5.000 36 -185.1517 -28.828 quartz G 3 37- 937.6323 -9.903 38 1037.6213 -35.000 Quartz G 3 39 -202.0440 -18.592 40 -488.3867 -35.000 CaF 2 G 3 41 455.1024 -0.500 42 -189.2867 -35.000 CaF 2 G 3 43 3380.7853 -5.446 44 -116.0852 -27.956 CaF 2 G 3 45 -791.6593 -7.717 46 580.0609 -20.000 Quartz G 3 47 4355.3792 -0.500 48 -631.5761 -39.351 Quartz G 3 49 1048.4735 -0.500 50 -463.6847 -20.000 Quartz G 3 51 -3000.0000 -17.000 52 (Wafer)

【0019】図4と図6にそれぞれ第1実施例と第2実
施例の横収差を示す。横収差図中、Yは像高を表す。各
収差図に示されるように、両実施例とも優れた結像性能
を有することが解る。
FIGS. 4 and 6 show lateral aberrations of the first embodiment and the second embodiment, respectively. In the lateral aberration diagram, Y represents the image height. As shown in the aberration diagrams, it can be seen that both examples have excellent imaging performance.

【0020】[0020]

【発明の効果】以上のように本発明によれば、紫外線波
長域で大きな開口数を達成し、光学系が実用的な大きさ
で、像側の作動距離も十分に確保され、光路分離のため
にハーフミラーを使用しても結像性能の劣化や、フレア
ー、ゴースト等の迷光の発生がなく、クオーターミクロ
ン単位の解像度を有する反射屈折投影光学系が得られ
た。
As described above, according to the present invention, a large numerical aperture is achieved in the ultraviolet wavelength range, the optical system is of a practical size, the working distance on the image side is sufficiently ensured, and the optical path separation is improved. Therefore, even if a half mirror is used, a catadioptric projection optical system having a resolution of a quarter-micron unit was obtained without deteriorating the imaging performance and generating stray light such as flare and ghost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の露光領域を示す平面図FIG. 1 is a plan view showing an exposure area of the present invention.

【図2】本発明による迷光防止の原理を示す説明図FIG. 2 is an explanatory view showing the principle of stray light prevention according to the present invention.

【図3】第1実施例を示す構成図FIG. 3 is a configuration diagram showing a first embodiment.

【図4】第1実施例の横収差図FIG. 4 is a lateral aberration diagram of the first embodiment.

【図5】第2実施例を示す構成図FIG. 5 is a configuration diagram showing a second embodiment.

【図6】第2実施例の横収差図FIG. 6 is a lateral aberration diagram of the second embodiment.

【符号の説明】[Explanation of symbols]

1…第1光学系 G2…第2光学系 G3…第3光学系 AS…開口絞り M…平面鏡 HM…ハーフミラー R…レチクル W…ウエハ SR…レチクル側視野絞り SW…ウエハ側視野
絞り A…露光領域 B…光吸収部材
G 1 : first optical system G 2 : second optical system G 3 : third optical system AS: aperture stop M: plane mirror HM: half mirror R: reticle W: wafer S R : reticle side field stop SW : wafer side Field stop A: Exposure area B: Light absorbing member

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】レンズと凹面鏡とを含み、第1面のパター
ンのうちの露光領域の像を縮小倍率にて第2面に結像さ
せ、前記第1面と第2面とを互いに前記縮小倍率に対応
した速度比にて同期して走査することにより、前記第1
面のパターンのすべての像を第2面に投影する反射屈折
投影光学系において、 前記第1面から光線が通る順に、第1光学系と、ハーフ
ミラーと、該ハーフミラーの透過光路と反射光路とのう
ちの少なくともいずれか一方の光路に配置した第2光学
系と、前記ハーフミラーの反射光路の反対側の光路に配
置した第3光学系とから構成され、 前記露光領域は、投影光学系の有効領域のうち、前記走
査方向と直交する直径によって2分される一方の半円領
域内にあり、 前記第2光学系は凹面鏡を有し、該凹面鏡の結像倍率を
βmとしたとき、 0.7<|βm|<1.3 なる条件式を満足することを特徴とする反射屈折投影光
学系。
An image of an exposure area of a pattern on a first surface is formed on a second surface at a reduction magnification, and the first surface and the second surface are mutually reduced. By scanning synchronously at a speed ratio corresponding to the magnification, the first
In a catadioptric projection optical system for projecting all images of a surface pattern onto a second surface, a first optical system, a half mirror, a transmission optical path and a reflection optical path of the half mirror in the order in which light rays pass from the first surface. A second optical system disposed on at least one of the optical paths, and a third optical system disposed on an optical path opposite to the reflected optical path of the half mirror, wherein the exposure area is a projection optical system. Of the effective area, one of which is divided into two semicircular areas by a diameter perpendicular to the scanning direction, wherein the second optical system has a concave mirror, and the imaging magnification of the concave mirror is β m 0.7 <| β m | <1.3. A catadioptric projection optical system, characterized by satisfying the following conditional expression: 0.7 <| β m | <1.3.
【請求項2】前記第1光学系の最後のレンズ面と前記ハ
ーフミラーとの間に平面鏡を配置したことを特徴とする
請求項1記載の反射屈折投影光学系。
2. A catadioptric projection optical system according to claim 1, wherein a plane mirror is arranged between the last lens surface of said first optical system and said half mirror.
【請求項3】前記ハーフミラーは、一対の直角3角プリ
ズムの貼り合わせ面に形成されていることを特徴とする
請求項1又は2記載の反射屈折投影光学系。
3. The catadioptric projection optical system according to claim 1, wherein the half mirror is formed on a bonding surface of a pair of right-angled triangular prisms.
【請求項4】前記第3光学系の最後のレンズ面と前記第
2面との間に視野絞りを有することを特徴とする請求項
1、2又は3記載の反射屈折投影光学系。
4. A catadioptric projection optical system according to claim 1, further comprising a field stop between the last lens surface of said third optical system and said second surface.
【請求項5】前記第1光学系の最初のレンズ面と前記第
1面との間に視野絞りを有することを特徴とする請求項
1、2、3又は4記載の反射屈折投影光学系。
5. The catadioptric projection optical system according to claim 1, further comprising a field stop between the first lens surface of said first optical system and said first surface.
【請求項6】前記第1光学系は正の屈折力を有し、 前記ハーフミラーの透過光路と反射光路との双方の光路
にそれぞれ前記第2光学系を配置したことを特徴とする
請求項1、2、3、4又は5記載の反射屈折投影光学
系。
6. The optical system according to claim 1, wherein said first optical system has a positive refracting power, and said second optical system is disposed in each of a transmission optical path and a reflection optical path of said half mirror. 6. The catadioptric projection optical system according to 1, 2, 3, 4 or 5.
【請求項7】前記第1光学系は正の屈折力を有し、 前記ハーフミラーの透過光路と反射光路とのうちのいず
れか一方の光路に前記第2光学系を配置し、いずれか他
方の光路に光吸収部材を配置したことを特徴とする請求
項1、2、3、4又は5記載の反射屈折投影光学系。
7. The first optical system has a positive refracting power, and the second optical system is arranged in one of a transmission optical path and a reflection optical path of the half mirror, and one of the other optical systems. 6. The catadioptric projection optical system according to claim 1, wherein a light absorbing member is disposed in the optical path.
【請求項8】前記第2光学系は、前記凹面鏡のほか少な
くとも1枚の負レンズを有し、 前記第3光学系は正の屈折力を有し、 前記ハーフミラーと前記第3光学系との間、又は前記第
3光学系の内部に、可変開口絞りを有することを特徴と
する請求項1〜7のいずれか1項記載の反射屈折投影光
学系。
8. The second optical system has at least one negative lens in addition to the concave mirror, the third optical system has a positive refractive power, and the half mirror and the third optical system The catadioptric projection optical system according to any one of claims 1 to 7, further comprising a variable aperture stop during or inside the third optical system.
【請求項9】投影露光に用いる光の波長が300nm以
下であることを特徴とする請求項1〜8のいずれか1項
記載の反射屈折投影光学系。
9. The catadioptric projection optical system according to claim 1, wherein the wavelength of light used for projection exposure is 300 nm or less.
JP9127925A 1997-04-30 1997-04-30 Reflection refraction type projecting optical system Pending JPH10301058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9127925A JPH10301058A (en) 1997-04-30 1997-04-30 Reflection refraction type projecting optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9127925A JPH10301058A (en) 1997-04-30 1997-04-30 Reflection refraction type projecting optical system

Publications (1)

Publication Number Publication Date
JPH10301058A true JPH10301058A (en) 1998-11-13

Family

ID=14972033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9127925A Pending JPH10301058A (en) 1997-04-30 1997-04-30 Reflection refraction type projecting optical system

Country Status (1)

Country Link
JP (1) JPH10301058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458566C (en) * 2002-12-02 2009-02-04 Asml控股股份有限公司 Catadioptric lithographic projection apparatus with a non-inverting beamsplitter system
JP2017199031A (en) * 2006-08-14 2017-11-02 カール・ツァイス・エスエムティー・ゲーエムベーハー Catadioptric projection objective device having pupil mirror and projection exposure device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458566C (en) * 2002-12-02 2009-02-04 Asml控股股份有限公司 Catadioptric lithographic projection apparatus with a non-inverting beamsplitter system
JP2017199031A (en) * 2006-08-14 2017-11-02 カール・ツァイス・エスエムティー・ゲーエムベーハー Catadioptric projection objective device having pupil mirror and projection exposure device and method
JP2018077534A (en) * 2006-08-14 2018-05-17 カール・ツァイス・エスエムティー・ゲーエムベーハー Catadioptric projection objective device having pupil mirror and projection exposure device and method

Similar Documents

Publication Publication Date Title
JP3395801B2 (en) Catadioptric projection optical system, scanning projection exposure apparatus, and scanning projection exposure method
JP3635684B2 (en) Catadioptric reduction projection optical system, catadioptric optical system, and projection exposure method and apparatus
JP3085481B2 (en) Catadioptric reduction projection optical system, and exposure apparatus having the optical system
US5805334A (en) Catadioptric projection systems
US5668672A (en) Catadioptric system and exposure apparatus having the same
US5537260A (en) Catadioptric optical reduction system with high numerical aperture
EP0964282B1 (en) Projection exposure apparatus with a catadioptric projection optical system
JP3235077B2 (en) Exposure apparatus, exposure method using the apparatus, and method for manufacturing semiconductor device using the apparatus
JPH103039A (en) Reflective/refractive optical system
US5805357A (en) Catadioptric system for photolithography
JPH1020195A (en) Cata-dioptric system
JPH1048526A (en) Objective lens of high resolving power and high intensity
US6424471B1 (en) Catadioptric objective with physical beam splitter
US6081382A (en) Catadioptric reduction projection optical system
US6069749A (en) Catadioptric reduction optical system
USRE38438E1 (en) Catadioptric reduction projection optical system and exposure apparatus having the same
JP3812051B2 (en) Catadioptric projection optical system
JPH10301058A (en) Reflection refraction type projecting optical system
JP2003233009A (en) Catadioptric projection optical system, catadioptric system, projection exposing device and projection exposing method
JP2003241099A (en) Cata-dioptric projection optical system, and projection exposing method and device
JP2000208396A (en) Visual field stop projection optical system and projection aligner
JPH10308345A (en) Catadioptric projection optical system
JP2003295062A (en) Catadioptic imaging optical system
JPH1184249A (en) Exposure device and exposure method using the same
JPH07218839A (en) Cata-dioptric system