JPH10272366A - Aromatizing catalyst for lower hydrocarbon, and production of aromatic compound using the catalyst - Google Patents
Aromatizing catalyst for lower hydrocarbon, and production of aromatic compound using the catalystInfo
- Publication number
- JPH10272366A JPH10272366A JP9084728A JP8472897A JPH10272366A JP H10272366 A JPH10272366 A JP H10272366A JP 9084728 A JP9084728 A JP 9084728A JP 8472897 A JP8472897 A JP 8472897A JP H10272366 A JPH10272366 A JP H10272366A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- metallosilicate
- hydrocarbon
- zinc
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、天然ガス等の低級
炭化水素含有ガスから化学工業、薬品類、プラスチック
類などの化学製品の原料として有用であるベンゼン類及
びナフタレン類を主成分とする芳香族炭化水素と高純度
の水素ガスとを同時に効率的に製造することができる触
媒と、該触媒の存在下に、低級炭化水素を高温接触反応
に付して芳香族炭化水素を主成分とする芳香族化合物及
び水素を製造する方法に関する。[0001] The present invention relates to a fragrance containing benzenes and naphthalenes as a main component which is useful as a raw material for chemical products such as chemical industry, chemicals and plastics from lower hydrocarbon-containing gases such as natural gas. A catalyst capable of simultaneously efficiently producing an aromatic hydrocarbon and high-purity hydrogen gas, and subjecting a lower hydrocarbon to a high-temperature catalytic reaction in the presence of the catalyst, the aromatic hydrocarbon being the main component The present invention relates to a method for producing an aromatic compound and hydrogen.
【0002】[0002]
【従来の技術】従来、ベンゼン、トルエン、キシレン等
の芳香族炭化水素は主にナフサから製造されている。ま
た、ナフタレン類の製造方法としては石油などの溶剤抽
出法、天然ガスやアセチレンなどのガスの非触媒的な熱
分解法などが採られている。しかし、これら従来法では
ベンゼンやナフタレン類は石炭やアセチレンなどの原料
に対して数パーセントしか得られず、利用価値の少ない
芳香族化合物、炭化水素、タール、非溶解性の炭素残留
物も多く得られるという問題点を有している。さらに石
炭からの溶剤抽出法は高価な有機溶剤を多量に必要とす
る難点もある。2. Description of the Related Art Conventionally, aromatic hydrocarbons such as benzene, toluene and xylene are mainly produced from naphtha. Further, as a method for producing naphthalenes, a solvent extraction method of petroleum or the like, a non-catalytic thermal decomposition method of a gas such as natural gas or acetylene, and the like are employed. However, in these conventional methods, only a few percent of benzene and naphthalene can be obtained from raw materials such as coal and acetylene, and many aromatic compounds, hydrocarbons, tars, and insoluble carbon residues with low utility value can be obtained. There is a problem that it can be. Further, the solvent extraction method from coal has a disadvantage that a large amount of expensive organic solvent is required.
【0003】また、メタン、アセチレンの熱分解による
ナフタレンの製造法では、数%のメタン、アセチレン転
化率を達成するだけで1000℃以上の反応温度が必要
であるにもかかわらず、得られるナフタレン類の量は変
換メタン、アセチレンの1%以下に過ぎず、実用上問題
があった。Further, in the method for producing naphthalene by thermal decomposition of methane and acetylene, the obtained naphthalenes can be obtained in spite of the fact that a reaction temperature of 1000 ° C. or more is required just to achieve a conversion of methane and acetylene of several percent. Is only 1% or less of converted methane and acetylene, and there is a problem in practical use.
【0004】ほかに、触媒を用いたナフタレン類の製造
法として、オルトキシレン等のアルキルベンゼン類を高
温で白金類担持触媒を用いた脱水素縮合化反応によりナ
フタレン類を製造する方法も知られているが、ナフタレ
ン類への変換効率は低く、また原料として用いるアルキ
ルベンゼン類が高価であることもあって実用上問題があ
った。In addition, as a method for producing naphthalenes using a catalyst, a method for producing naphthalenes by dehydrocondensation reaction of alkylbenzenes such as orthoxylene at a high temperature using a platinum-supported catalyst is also known. However, the conversion efficiency to naphthalenes is low, and the alkylbenzenes used as raw materials are expensive.
【0005】さらに、本発明において併産される水素ガ
スの製造方法としては、水成ガス(ウォーターガスシフ
ト)反応あるいは原油の熱分解法、製鉄廃ガスを用いる
水素製造法などがあげられるが、いずれの方法によって
も製造された水素ガス中に硫黄類、一酸化炭素等が多量
に含まれることから、これらを除去するための精製工程
に多大な負荷と設備を必要とする工業的問題があった。Further, as a method for producing hydrogen gas co-produced in the present invention, an aqueous gas (water gas shift) reaction, a thermal cracking method of crude oil, a hydrogen production method using ironmaking waste gas, and the like can be mentioned. Since the hydrogen gas produced by the above method also contains a large amount of sulfur, carbon monoxide, and the like, there was an industrial problem that required a large load and equipment in a purification process for removing these. .
【0006】一方、低級炭化水素、とりわけメタンから
ベンゼン等の芳香族化合物と水素の製造方法として、触
媒の存在下に、酸素あるいは酸化剤の非存在下でメタン
を反応させる方法が知られており、この際の触媒として
はZSM−5に担持されたモリブデンが有効とされてい
る(JOURNAL OF CATALYSIS 165,150〜161
(1997)及び該文献の引用文献)。しかしながら、
これらの触媒を使用した場合でも、炭素析出多いこと
や、メタンの転化率が低いという解決すべき問題を有し
ている。On the other hand, as a method for producing hydrogen from an aromatic compound such as benzene from a lower hydrocarbon, particularly methane, a method is known in which methane is reacted in the presence of a catalyst in the absence of oxygen or an oxidizing agent. Molybdenum supported on ZSM-5 is effective as a catalyst in this case (JOURNAL OF CATALYSIS 165, 150 to 161).
(1997) and references therein. However,
Even when these catalysts are used, there are problems to be solved such as a large amount of carbon deposition and a low conversion of methane.
【0007】[0007]
【発明が解決しようとする課題】本発明はかかる従来技
術の実状と問題点に鑑み、天然ガス等の低級炭化水素含
有ガスを用いて有用な化学原料であるベンゼン、ナフタ
レン等の芳香族化合物と水素ガスとを同時に製造する有
効な低級炭化水素変換用触媒を提供し、かつ該触媒を用
いた芳香族化合物の製造法を提供することを課題とす
る。SUMMARY OF THE INVENTION In view of the circumstances and problems of the prior art, the present invention relates to the use of aromatic compounds such as benzene and naphthalene, which are useful chemical raw materials, using lower hydrocarbon-containing gases such as natural gas. An object of the present invention is to provide an effective lower hydrocarbon conversion catalyst for simultaneously producing hydrogen gas and a method for producing an aromatic compound using the catalyst.
【0008】[0008]
【課題を解決するための手段】本発明者らは前記課題を
達成するために、鋭意検討を行った結果、本発明を完成
するに至った。本発明は、亜鉛、ガリウム及びコバルト
からなる金属並びにそれらの金属の化合物からなる群か
ら選ばれた少なくとも一種とメタロシリケートとからな
る低級炭化水素の芳香族化触媒に関する。Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, completed the present invention. The present invention relates to a catalyst for aromatizing lower hydrocarbons comprising a metallosilicate and at least one selected from the group consisting of metals consisting of zinc, gallium and cobalt and compounds of these metals.
【0009】また、本発明は、モリブデン及びその化合
物から選ばれた少なくとも一種と、亜鉛、ガリウム、コ
バルト、クロム、ランタン、ネオジム、サマリウム及び
イットリウムからなる金属並びにそれらの金属の化合物
からなる群から選ばれた少なくとも一種と、メタロシリ
ケートとからなる低級炭化水素の芳香族化触媒に関す
る。[0009] The present invention also relates to at least one selected from the group consisting of molybdenum and at least one compound selected from the group consisting of zinc, gallium, cobalt, chromium, lanthanum, neodymium, samarium and yttrium, and compounds of these metals. The present invention relates to a catalyst for aromatizing lower hydrocarbons comprising at least one of the above-mentioned compounds and a metallosilicate.
【0010】また、本発明は、モリブデン、タングステ
ン及びバナジウムから選ばれた少なくとも一種の金属を
含有するヘテロポリ酸とメタロシリケートとからなる低
級炭化水素の芳香族化触媒に関する。The present invention also relates to a catalyst for aromatizing lower hydrocarbons comprising a heteropolyacid containing at least one metal selected from molybdenum, tungsten and vanadium and a metallosilicate.
【0011】また、本発明は、亜鉛、ガリウム及びコバ
ルトからなる金属並びにそれらの金属の化合物からなる
群から選ばれた少なくとも一種とメタロシリケートとか
らなる触媒の存在下、低級炭化水素を高温で反応させる
事を特徴とする芳香族炭化水素を主成分とする芳香族化
合物及び水素の製造方法の関する。Further, the present invention provides a method for reacting a lower hydrocarbon at a high temperature in the presence of a metallosilicate and a catalyst comprising at least one selected from the group consisting of metals consisting of zinc, gallium and cobalt and compounds of these metals. The present invention also relates to a method for producing hydrogen and an aromatic compound containing an aromatic hydrocarbon as a main component.
【0012】また、本発明は、モリブデン及びその化合
物から選ばれた少なくとも一種と、亜鉛、ガリウム、コ
バルト、クロム、ランタン、ネオジム、サマリウム及び
イットリウムからなる金属並びにそれらの金属の化合物
からなる群から選ばれた少なくとも一種と、メタロシリ
ケートとからなる触媒の存在下、低級炭化水素を高温接
触反応させる事を特徴とする芳香族炭化水素を主成分と
する芳香族化合物及び水素の製造方法に関する。[0012] The present invention also relates to at least one selected from the group consisting of molybdenum and at least one compound selected from the group consisting of zinc, gallium, cobalt, chromium, lanthanum, neodymium, samarium and yttrium, and compounds of these metals. The present invention relates to a method for producing hydrogen and an aromatic compound containing an aromatic hydrocarbon as a main component, wherein a lower hydrocarbon is subjected to a high-temperature contact reaction in the presence of a catalyst comprising at least one of the metallosilicate and a metallosilicate.
【0013】また、本発明は、モリブデン、タングステ
ン及びバナジウムから選ばれた少なくとも一種の金属を
含有するヘテロポリ酸とメタロシリケートとからなる低
級炭化水素の芳香族化触媒の存在下、低級炭化水素を高
温で反応させる事を特徴とする芳香族炭化水素を主成分
とする芳香族化合物及び水素の製造方法に関する。[0013] Further, the present invention provides a method for converting a lower hydrocarbon to a high temperature in the presence of a lower hydrocarbon aromatization catalyst comprising a heteropolyacid containing at least one metal selected from molybdenum, tungsten and vanadium and a metallosilicate. The present invention relates to a method for producing hydrogen and an aromatic compound containing an aromatic hydrocarbon as a main component.
【0014】[0014]
【発明の実施の形態】本発明の芳香族化触媒に使用する
メタロシリケートとしては、例えばアルミノシリケート
の場合、シリカ及びアルミナからなる多孔質体であるモ
レキュラーシーブ5A(UTA)、フォジャサイト(N
aY)及びNaX、ZSM−5やリン酸を主成分とする
ALPO−5、VPI−5等の多孔質担体で6〜13Å
のミクロ細孔やチャンネルからなることを特徴とするゼ
オライト担体やシリカを主成分とし一部アルミナを成分
として含むメゾ細孔(10〜100Å)の筒状細孔(チ
ャンネル)で特徴つけられるFSM−16やMCM−4
1などのメゾ細孔多孔質担体などが例示できる。アルミ
ノシリケートの他に、シリカ及びチタニアから成るチタ
ノシリケート等も用いる事が出来る。BEST MODE FOR CARRYING OUT THE INVENTION As the metallosilicate used in the aromatization catalyst of the present invention, for example, in the case of aluminosilicate, a porous material composed of silica and alumina such as molecular sieve 5A (UTA) and faujasite (N
aY) and a porous carrier such as NaX, ZSM-5, or ALPO-5 or VPI-5 containing phosphoric acid as a main component.
FSM- characterized by cylindrical pores (channels) of mesopores (10 to 100 °) containing zeolite carrier or silica as a main component and partially alumina as a component, characterized by comprising micropores and channels 16 or MCM-4
And a mesoporous porous carrier such as 1. In addition to aluminosilicate, titanosilicate composed of silica and titania can be used.
【0015】本発明で用いるメタロシリケートは、表面
積が200〜1000m2 /gであり、そのミクロ及び
メゾ細孔は5〜100Åの範囲のものが好ましい。メタ
ロシリケートが例えばアルミノシリケートである場合に
は、そのシリカとアルミナの含有比としては通常入手し
得る多孔質担体のシリカ/アルミナ=1〜8000のも
のを用いることができるが、本発明の低級炭化水素の芳
香族化反応を、実用的な低級炭化水素の転化率及び芳香
族化合物への選択率で実施するためには、シリカ/アル
ミナ比は10〜100であることが好ましい。The metallosilicate used in the present invention preferably has a surface area of 200 to 1000 m 2 / g, and has micro and mesopores in the range of 5 to 100 °. When the metallosilicate is, for example, aluminosilicate, the silica / alumina content ratio of a generally available porous carrier, silica / alumina = 1 to 8000, can be used. The silica / alumina ratio is preferably 10 to 100 in order to carry out the aromatization reaction of hydrogen at a practical lower hydrocarbon conversion and selectivity to aromatic compounds.
【0016】本発明の触媒に用いられる亜鉛、ガリウム
及びコバルトからなる金属並びにそれらの化合物から選
ばれた少なくとも一種とメタロシリケートとからなる低
級炭化水素の芳香族化触媒は、亜鉛、ガリウム及びコバ
ルトを含む前駆体をメタロシリケートに担持する事によ
り得られる。The catalyst for aromatizing a lower hydrocarbon comprising a metallosilicate and at least one metal selected from the group consisting of metals consisting of zinc, gallium and cobalt and their compounds, which is used in the catalyst of the present invention, comprises zinc, gallium and cobalt. It is obtained by supporting a precursor containing metallosilicate.
【0017】本発明の触媒に用いられる亜鉛、ガリウム
及びコバルトを含む前駆体の例としては、亜鉛、ガリウ
ムおよびコバルトの塩化物、臭化物等のハロゲン化物、
硝酸塩、硫酸塩、リン酸塩等の鉱酸塩、炭酸塩、酢酸
塩、蓚酸塩等のカルボン酸塩が例示できる。亜鉛、ガリ
ウムおよびコバルトをメタロシリケートに担持する際
の、金属又はその化合物と担体の重量比はあらゆる範囲
の担持量に適用が可能であるが、一般的には0.001
〜50%、好ましくは0.01〜40%が良好な担持範
囲である。Examples of the precursor containing zinc, gallium and cobalt used in the catalyst of the present invention include halides such as chloride, bromide and the like of zinc, gallium and cobalt.
Examples thereof include mineral salts such as nitrates, sulfates and phosphates, and carboxylate salts such as carbonates, acetates and oxalates. When zinc, gallium and cobalt are supported on the metallosilicate, the weight ratio between the metal or its compound and the carrier can be applied to any range of the supporting amount.
~ 50%, preferably 0.01-40% is a good loading range.
【0018】亜鉛、ガリウム及びコバルトをメタロシリ
ケートに担持させる方法としては、前述した金属の前駆
体の水溶液あるいはアルコール等の有機溶媒の溶液から
メタロシリケート担体に含浸担持あるいはイオン変換方
法により担持させた後、不活性ガスあるいは酸素ガス中
で加熱処理する方法がある。この方法の例をより具体的
に説明すると、まず最初に例えば、メタロシリケート担
体に硝酸亜鉛の水溶液を含浸担持させ、さらに乾燥して
溶媒を適当量除いた後、窒素含有酸素気流中又は純酸素
気流中で250〜800℃、好ましくは350〜600
℃で加熱処理して亜鉛を担持したメタロシリケート触媒
を製造することができる。As a method of supporting zinc, gallium and cobalt on the metallosilicate, the metallosilicate carrier is impregnated or supported by an ion conversion method from an aqueous solution of the above-mentioned metal precursor or a solution of an organic solvent such as alcohol. And heat treatment in an inert gas or oxygen gas. To explain the example of this method more specifically, first, for example, a metallosilicate carrier is impregnated and supported with an aqueous solution of zinc nitrate, and further dried to remove an appropriate amount of the solvent, and then in a nitrogen-containing oxygen stream or pure oxygen. 250-800 ° C, preferably 350-600 in air stream
The metallosilicate catalyst supporting zinc can be produced by heat treatment at ℃.
【0019】本発明の触媒である(1)モリブデン及び
/又はその化合物、(2)亜鉛、ガリウム、コバルト、
クロム、ランタン、ネオジム、サマリウム、イットリウ
ム及びそれらの化合物からなる群から選ばれた少なくと
も一種類の金属及び/又はそれらの化合物(以下、第二
成分と略記する)、及び(3)メタロシリケートからな
る低級炭化水素の芳香族化触媒は、以下の各方法で製造
することができる。即ち、(1)メタロシリケートにま
ずモリブデンを担持させた後、第二成分を担持させる。
(2)メタロシリケートにまず第二成分を担持させた
後、モリブデンを担持させる。(3)メタロシリケート
にモリブデンと第二成分を同時に担持させる。これらの
方法の中では、(1)の方法が好ましい。The catalyst of the present invention (1) molybdenum and / or its compound, (2) zinc, gallium, cobalt,
At least one metal selected from the group consisting of chromium, lanthanum, neodymium, samarium, yttrium and their compounds and / or their compounds (hereinafter abbreviated as the second component), and (3) metallosilicate The catalyst for aromatizing lower hydrocarbons can be produced by the following methods. That is, (1) molybdenum is first supported on the metallosilicate, and then the second component is supported.
(2) The metallosilicate first supports the second component, and then supports molybdenum. (3) Molybdenum and the second component are simultaneously supported on the metallosilicate. Among these methods, the method (1) is preferable.
【0020】モリブデンを含む前駆体の例としては、パ
ラモリブデン酸アンモニウム、リンモリブデン酸、12
ケイモリブデン酸の他に、塩化物、臭化物等のハロゲン
化物、硝酸塩、硫酸塩、リン酸塩等の鉱酸塩、炭酸塩、
酢酸塩、蓚酸塩等のカルボン酸塩等が例示できる。ま
た、第二成分を含む前駆体の例としては、第二成分の塩
化物、臭化物等のハロゲン化物、硝酸塩、硫酸塩、リン
酸塩等の鉱酸塩、炭酸塩、酢酸塩、蓚酸塩等のカルボン
酸塩等が例示できる。Examples of the precursor containing molybdenum include ammonium paramolybdate, phosphomolybdic acid,
In addition to silicomolybdic acid, chlorides, halides such as bromide, nitrates, sulfates, mineral salts such as phosphates, carbonates,
Examples thereof include carboxylate such as acetate and oxalate. Examples of the precursor containing the second component include chlorides, halides such as bromide, nitrates, sulfates, mineral salts such as phosphates, carbonates, acetates, and oxalates of the second component. And the like.
【0021】モリブデンをメタロシリケート担体に担持
させる際の、金属と担体の重量比は0.001〜50
%、好ましくは0.01〜40%が良好な担持範囲であ
り、第二成分と担体の重量比は0.001〜50%、好
ましくは0.01〜40%が良好な担持範囲である。た
だし、モリブデンと担体の重量比と第二成分と担体の重
量比との合計は0.001〜50%、好ましくは0.0
1〜40%の担持範囲である。また、メタロシリケート
への金属の担持方法や、加熱処理方法は上述した方法と
同様に実施できる。When molybdenum is supported on the metallosilicate support, the weight ratio of the metal to the support is 0.001 to 50.
%, Preferably 0.01 to 40% is a good supporting range, and the weight ratio of the second component to the carrier is 0.001 to 50%, preferably 0.01 to 40% is a good supporting range. However, the sum of the weight ratio of molybdenum to the carrier and the weight ratio of the second component to the carrier is 0.001% to 50%, preferably 0.0% to 50%.
The loading range is 1 to 40%. Further, the method of supporting the metal on the metallosilicate and the method of heat treatment can be carried out in the same manner as the above-described method.
【0022】本発明で用いられるモリブデン、タングス
テン又はバナジウムから選ばれた少なくとも一種類の金
属を含有するヘテロポリ酸とメタロシリケートからなる
低級炭化水素の芳香族化触媒は、ヘテロポリ酸をメタロ
シリケートに担持することにより製造できる。ヘテロポ
リ酸の例としては、12−リンモリブデン酸、12−リ
ンタングステン酸、12−リンモリブデンタングステン
酸、12−リンモリブデンバナジン酸等が例示できる。
ヘテロポリ酸をメタロシリケートに担持させる際の金属
と担体の重量比(使用されるヘテロポリ酸中に含まれる
モリブデン、タングステン及び又はバナジウム金属と担
体の重量比)は、0.001〜50%、好ましくは0.
01〜40%の担持範囲である。また、メタロシリケー
トへのヘテロポリ酸の担持方法や、加熱処理方法は上述
した方法と同様に実施できる。The catalyst for aromatizing a lower hydrocarbon comprising a heteropolyacid containing at least one metal selected from molybdenum, tungsten or vanadium and a metallosilicate used in the present invention supports the heteropolyacid on the metallosilicate. Can be manufactured. Examples of the heteropolyacid include 12-phosphomolybdic acid, 12-phosphotungstic acid, 12-phosphomolybdenum tungstic acid, 12-phosphomolybdenumvanadic acid, and the like.
When the heteropolyacid is supported on the metallosilicate, the weight ratio of the metal and the carrier (molybdenum, tungsten and / or vanadium metal contained in the heteropolyacid used and the weight ratio of the metal and the carrier) is 0.001 to 50%, preferably 0.
The loading range is from 01 to 40%. Further, the method of supporting the heteropolyacid on the metallosilicate and the method of heat treatment can be performed in the same manner as the above-described method.
【0023】本発明に用いる触媒は粉末状又はペレット
状及びその他形状を問わず使用できる。本発明に用いる
低級炭化水素変換触媒は芳香族化合物を生成する誘導期
を短縮するため、水素ガスやヒドラジン、金属水素化合
物例えば、BH3 、NaH、AlH3 等による前処理を
含む触媒活性化過程を施してもよい。The catalyst used in the present invention can be used in any form of powder or pellet and other shapes. The lower hydrocarbon conversion catalyst used in the present invention has a catalyst activation process including a pretreatment with hydrogen gas, hydrazine, a metal hydride such as BH 3 , NaH, AlH 3, etc. in order to shorten the induction period for generating an aromatic compound. May be applied.
【0024】本発明で原料として用いられる低級炭化水
素は、重量%で少なくとも50%、好ましくは少なくと
も70%のメタンを含有することが好ましい。メタン含
有量がこの範囲であれば、その他に炭素数が2〜6の飽
和及び不飽和炭化水素が含まれていても差し支えない。
これらの例としては、エタン、エチレン、プロパン、プ
ロピレン、n−ブタン、イソブタン、n−ブテン及びイ
ソブテン等が例示できる。The lower hydrocarbon used as a raw material in the present invention preferably contains at least 50% by weight, preferably at least 70% by weight of methane. If the methane content is within this range, saturated and unsaturated hydrocarbons having 2 to 6 carbon atoms may be additionally contained.
Examples of these include ethane, ethylene, propane, propylene, n-butane, isobutane, n-butene and isobutene.
【0025】本発明の低級炭化水素の変換反応は、回分
式あるいは流通式の反応形式で実施されるが、固定床、
移動床又は流動化床等の流通式反応形式で実施すること
が好ましい。反応は、低級炭化水素原料を、気相中で酸
素の非存在下で300〜800℃、好ましくは450〜
775℃で触媒と接触させることによっておこなわれ
る。反応は、0.1〜10気圧、好ましくは1〜7気圧
で好適に実施される。重量時間空間速度(WHSV)は
0.1〜10であり、好ましくは0.5〜5.0であ
る。反応生成物から回収される未反応原料は、芳香族化
反応に再循環させることができる。The lower hydrocarbon conversion reaction of the present invention is carried out in a batch or flow-through reaction mode.
It is preferable to carry out the reaction in a flow-type reaction system such as a moving bed or a fluidized bed. The reaction is performed by lowering the lower hydrocarbon raw material in the gas phase in the absence of oxygen at 300 to 800 ° C, preferably 450 to 800 ° C.
This is done by contacting the catalyst at 775 ° C. The reaction is suitably carried out at 0.1 to 10 atm, preferably 1 to 7 atm. The weight hourly space velocity (WHSV) is 0.1 to 10, preferably 0.5 to 5.0. Unreacted raw materials recovered from the reaction product can be recycled to the aromatization reaction.
【0026】[0026]
【実施例】以下に本発明を実施例によりさらに詳細に説
明する。なお、メタン転化率、炭化水素選択率、炭化水
素の分布及び水素生成速度は以下のように定義した。 メタン転化率=(原料メタンモル数−未反応のメタンモ
ル数)/原料メタンモル数×100(%) 炭化水素選択率=生成した全炭化水素のメタン換算モル
数/(原料メタンモル数−未反応のメタンモル数)×10
0 (%) 炭化水素の分布=着目する炭化水素のメタン換算モル数
/生成した全炭化水素のメタン換算モル数×100
(%) 水素生成速度=触媒1gあたり、1秒間に生成した水素
のnmol数The present invention will be described in more detail with reference to the following examples. The methane conversion, hydrocarbon selectivity, hydrocarbon distribution and hydrogen generation rate were defined as follows. Methane conversion rate = (Mole number of raw material methane−Mole number of unreacted methane) / Mole number of raw material methane × 100 (%) Hydrocarbon selectivity = Mole number of methane converted to methane / (Mole number of raw material methane−Mole number of unreacted methane) ) × 10
0 (%) Distribution of hydrocarbon = Mole number of methane equivalent of hydrocarbon of interest / Mole number of methane equivalent of all generated hydrocarbons × 100
(%) Hydrogen generation rate = nmol number of hydrogen generated per second per gram of catalyst
【0027】実施例1 HZSM−5に亜鉛、ガリウム、コバルトを担持した触
媒の調製方法:0.21gの硝酸亜鉛を3mlの蒸留水
に溶解し、HZSM−5(シリカ/アルミナ比=23)
(表面積800m2 /g,細孔径=7Å)の粉末1.5
gを混入し、充分に攪拌しながら回転式減圧エバポレー
ターを用いて蒸発乾固して、硝酸亜鉛のHZSM−5担
持体を得た。これを石英製反応管(1.2φ長さ30c
mV字タイプ)に充填後、純酸素ガス(40ml/分、
1気圧)を流しながら、400℃で4時間焼成して3%
の亜鉛をHZSM−5に担持した触媒(以下、Zn(3
%)/HZSM−5と略記する)を得た。同様にして、
Co(2%)/HZSM−5触媒及びGa(2%)/H
ZSM−5触媒を調製した。Example 1 Preparation method of a catalyst in which zinc, gallium and cobalt are supported on HZSM-5: 0.21 g of zinc nitrate is dissolved in 3 ml of distilled water, and HZSM-5 (silica / alumina ratio = 23)
(Surface area 800 m 2 / g, pore diameter = 7 °) powder 1.5
g, and evaporated to dryness using a rotary vacuum evaporator with sufficient stirring to obtain an HZSM-5 carrier of zinc nitrate. This is placed in a quartz reaction tube (1.2φ length 30c).
mV type), then pure oxygen gas (40ml / min,
(1 atm), baking at 400 ° C for 4 hours, 3%
(Hereinafter, referred to as Zn (3)
%) / HZSM-5). Similarly,
Co (2%) / HZSM-5 catalyst and Ga (2%) / H
A ZSM-5 catalyst was prepared.
【0028】実施例2 実施例1で調製した担持HZSM−5触媒を用いて、メ
タンの芳香族化反応を行った。Co(2%)/HZSM
−5触媒(シリカ/アルミナ比=23)0.3gを固定
床流通式反応装置の石英製反応器(内径8mm)に充填
し、反応温度700℃、常圧でメタンガスを7.5ml
/minの流量で供給し、メタンの芳香族化反応を行っ
た。反応物中には未反応のメタンの他に、水素、一酸化
炭素、二酸化炭素、炭素数2〜5の炭化水素、ベンゼ
ン、トルエン、キシレン、メシチレン、ナフタレン、メ
チルナフタレン、ジメチルナフタレン等が存在してい
た。反応開始後、200分経過後の結果を、表1に示
す。同様にして、実施例1で調製したGa(2%)/H
ZSM−5触媒、Zn(3%)/HZSM−5触媒を用
いて、実施例2と同様の方法でメタンの芳香族化反応を
行った。反応開始後、200分経過後の反応成績を表1
に示す。Example 2 Using the supported HZSM-5 catalyst prepared in Example 1, an aromatization reaction of methane was carried out. Co (2%) / HZSM
0.3 g of -5 catalyst (silica / alumina ratio = 23) was charged into a quartz reactor (inner diameter: 8 mm) of a fixed bed flow type reactor, and 7.5 ml of methane gas at a reaction temperature of 700 ° C. and normal pressure.
/ Min, and the methane was subjected to aromatization reaction. In the reaction product, hydrogen, carbon monoxide, carbon dioxide, hydrocarbons having 2 to 5 carbon atoms, benzene, toluene, xylene, mesitylene, naphthalene, methylnaphthalene, dimethylnaphthalene, etc. are present in addition to unreacted methane. I was Table 1 shows the results 200 minutes after the start of the reaction. Similarly, Ga (2%) / H prepared in Example 1
Using a ZSM-5 catalyst and a Zn (3%) / HZSM-5 catalyst, a methane aromatization reaction was carried out in the same manner as in Example 2. Table 1 shows the reaction results 200 minutes after the start of the reaction.
Shown in
【0029】比較例1 実施例2の比較例として金属を担持しないHZSM−5
触媒を用いて、実施例2と同様の方法でメタンの芳香族
化反応を行った。反応開始後、200分経過後の結果
を、表1に示す。Comparative Example 1 As a comparative example of Example 2, HZSM-5 not supporting a metal was used.
Using a catalyst, a methane aromatization reaction was carried out in the same manner as in Example 2. Table 1 shows the results 200 minutes after the start of the reaction.
【0030】[0030]
【表1】 [Table 1]
【0031】注:以下の定義は表1〜4に共通。Co
(2%)はHZSM−5にコバルトを2%担持した触媒
を示す。 転化率:メタン転化率 HC選択率:炭化水素選択率 HC分布:炭化水素の分布 C6 H6 :ベンゼン C10H8 :ナフタレンNote: The following definitions are common to Tables 1-4. Co
(2%) indicates a catalyst in which 2% of cobalt is supported on HZSM-5. Conversion: methane conversion HC selectivity: hydrocarbon selectivity HC distribution: hydrocarbon distribution C 6 H 6 : benzene C 10 H 8 : naphthalene
【0032】実施例3 HZSM−5にモリブデンを担持した触媒の調製方法:
0.66gパラモリブデン酸アンモニウム塩を10ml
の蒸留水に溶解し、HZSM−5(シリカ/アルミナ比
=12)(表面積800m2 /g,細孔径=7Å)の粉
末12gを加え、充分に攪拌しながら回転式減圧エバポ
レーターを用いて蒸発乾固して、パラモリブデン酸アン
モニウムのHZSM−5担持体を得た。これを石英製反
応管(1.2φ長さ30cmV字タイプ)に充填後、純
酸素ガス流(40ml/分、1気圧)下、400℃で4
時間焼成して薄草色粉末としてMo(3%)/HZSM
−5を得た。Example 3 A method for preparing a catalyst in which molybdenum is supported on HZSM-5:
0.66 g 10 ml of ammonium paramolybdate
Of distilled water, and 12 g of powder of HZSM-5 (silica / alumina ratio = 12) (surface area: 800 m 2 / g, pore diameter = 7 °) was added, and the mixture was evaporated to dryness using a rotary vacuum evaporator with sufficient stirring. By solidification, an HZSM-5 carrier of ammonium paramolybdate was obtained. After filling this into a quartz reaction tube (1.2φ, length 30 cm, V-shaped type), it was heated at 400 ° C. under a pure oxygen gas flow (40 ml / min, 1 atm).
Mo (3%) / HZSM
-5 was obtained.
【0033】Mo(3%)/HZSM−5触媒に更にコ
バルト、ガリウム、亜鉛、クロムを担持した触媒の調製
方法:硝酸コバルト0.072gを3mlの蒸留水に溶
解し、さらに上記で調製したMo(3%)/HZSM−
5触媒1.5gを加えた後、同様に蒸発乾固、焼成する
事により、Mo(3%)/Co(1%)/HZSM−5
触媒を調製した。同様にして、Mo(3%)/Ga
(1.5%)/HZSM−5触媒、Mo(3%)/Zn
(1%)/HZSM−5触媒及びMo(3%)/Cr
(3%)/HZSM−5触媒を調製した。Method for preparing a catalyst in which cobalt, gallium, zinc and chromium are further supported on Mo (3%) / HZSM-5 catalyst: 0.072 g of cobalt nitrate is dissolved in 3 ml of distilled water, and the Mo prepared above is dissolved. (3%) / HZSM-
After adding 1.5 g of 5 catalyst, the mixture was similarly evaporated to dryness and calcined to obtain Mo (3%) / Co (1%) / HZSM-5.
A catalyst was prepared. Similarly, Mo (3%) / Ga
(1.5%) / HZSM-5 catalyst, Mo (3%) / Zn
(1%) / HZSM-5 catalyst and Mo (3%) / Cr
(3%) / HZSM-5 catalyst was prepared.
【0034】実施例4 実施例3で調製しMo(3%)/HZSM−5触媒に更
にコバルト、ガリウム、亜鉛、クロムを担持した触媒を
用いて実施例2と同様の方法でメタンの芳香族化反応を
行った。反応開始後、200分経過後の結果を表2に示
す。 比較例2 実施例4の比較例として6%のMoを担持したMo/H
ZSM−5触媒を用いて実施例2と同様の方法でメタン
の芳香族化反応を行った。反応開始後、200分経過後
の結果を表2に示す。Example 4 Using a catalyst prepared in Example 3 and further supporting cobalt, gallium, zinc and chromium on the Mo (3%) / HZSM-5 catalyst, the aromatic methane was produced in the same manner as in Example 2. The reaction was carried out. Table 2 shows the results 200 minutes after the start of the reaction. Comparative Example 2 As a comparative example of Example 4, Mo / H supporting 6% of Mo was used.
An aromatization reaction of methane was carried out in the same manner as in Example 2 using a ZSM-5 catalyst. Table 2 shows the results 200 minutes after the start of the reaction.
【0035】[0035]
【表2】 [Table 2]
【0036】実施例5 Mo(3%)/HZSM−5触媒に更にランタン、ネオ
ジム、サマリウム、イットリウムを担持した触媒の調製
方法:硝酸ランタン0.11gを2mlの蒸留水に溶解
し、さらに実施例3で調製したMo(3%)/HZSM
−5触媒1.2gを加えた後、同様に蒸発乾固、焼成す
る事により、Mo(3%)/La(3%)/HZSM−
5触媒を調製した。同様にして、Mo(3%)/Nd
(3%)/HZSM−5触媒、Mo(3%)/Sm(3
%)/HZSM−5触媒及びMo(3%)/Y(3%)
/HZSM−5触媒を調製した。Example 5 Preparation of a catalyst in which lanthanum, neodymium, samarium, and yttrium are further supported on a Mo (3%) / HZSM-5 catalyst: 0.11 g of lanthanum nitrate is dissolved in 2 ml of distilled water. Mo (3%) / HZSM prepared in Step 3.
After adding 1.2 g of -5 catalyst, the mixture was similarly evaporated to dryness and calcined to obtain Mo (3%) / La (3%) / HZSM-
Five catalysts were prepared. Similarly, Mo (3%) / Nd
(3%) / HZSM-5 catalyst, Mo (3%) / Sm (3
%) / HZSM-5 catalyst and Mo (3%) / Y (3%)
/ HZSM-5 catalyst was prepared.
【0037】実施例6 実施例5で調製しMo(3%)/HZSM−5触媒に更
にランタン、ネオジム、サマリウム、イットリウムを担
持した触媒を用いて実施例2と同様の方法でメタンの芳
香族化反応を行った。反応開始後、200分経過後の結
果を表3に示す。Example 6 Aromatic methane was prepared in the same manner as in Example 2 except that the catalyst prepared in Example 5 and further supporting lanthanum, neodymium, samarium, and yttrium on the Mo (3%) / HZSM-5 catalyst was used. The reaction was carried out. Table 3 shows the results 200 minutes after the start of the reaction.
【0038】[0038]
【表3】 [Table 3]
【0039】実施例7 HZSM−5にヘテロポリ酸を担持した触媒の調製及び
反応:12−リンモリブデンタングステン酸を原料とし
HZSM−5に担持して調製したPMoW(1.5%)
−HZSM−5触媒を用いて行ったメタンの芳香族化試
験結果を表4に示す。同様にして12−リンモリブデン
バナジウム酸を原料としたPMoV(3%)−HZSM
−5触媒を調製し、同様にメタンの芳香族化試験結果を
表4に示す。Example 7 Preparation and reaction of a catalyst in which heteropolyacid is supported on HZSM-5: PMoW (1.5%) prepared using 12-phosphomolybdenum tungstic acid as a raw material and supported on HZSM-5
Table 4 shows the results of the methane aromatization test performed using the -HZSM-5 catalyst. Similarly, PMoV (3%)-HZSM using 12-phosphomolybdenum vanadate as a raw material
-5 catalyst was prepared, and the results of the methane aromatization test are shown in Table 4 in the same manner.
【0040】[0040]
【表4】 [Table 4]
【0041】[0041]
【発明の効果】本発明の触媒は,芳香族化反応の触媒と
してきわめて優れた転化率、選択率を示す。また、本発
明の触媒を使用した芳香族化方法により、メタン等の低
級炭化水素から高付加価値のベンゼン、トルエン、キシ
レン及びナフタレン等の芳香族炭化水素及び水素を高活
性、高収率で製造することが可能である。The catalyst of the present invention exhibits extremely excellent conversion and selectivity as a catalyst for an aromatization reaction. Further, by the aromatization method using the catalyst of the present invention, high value-added aromatic hydrocarbons such as benzene, toluene, xylene and naphthalene and hydrogen are produced from lower hydrocarbons such as methane with high activity and high yield. It is possible to
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 15/24 C07C 15/24 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 15/24 C07C 15/24
Claims (6)
属並びにそれらの金属の化合物からなる群から選ばれた
少なくとも一種とメタロシリケートとからなる低級炭化
水素の芳香族化触媒。1. A catalyst for aromatizing lower hydrocarbons comprising a metallosilicate and at least one metal selected from the group consisting of metals consisting of zinc, gallium and cobalt and compounds of these metals.
少なくとも一種と、亜鉛、ガリウム、コバルト、クロ
ム、ランタン、ネオジム、サマリウム及びイットリウム
からなる金属並びにそれらの金属の化合物からなる群か
ら選ばれた少なくとも一種と、メタロシリケートとから
なる低級炭化水素の芳香族化触媒。2. At least one selected from molybdenum and a compound thereof, and at least one selected from the group consisting of metals consisting of zinc, gallium, cobalt, chromium, lanthanum, neodymium, samarium and yttrium, and compounds of these metals And a metallosilicate for the aromatization of lower hydrocarbons.
ムから選ばれた少なくとも一種の金属を含有するヘテロ
ポリ酸とメタロシリケートとからなる低級炭化水素の芳
香族化触媒。3. A catalyst for aromatizing lower hydrocarbons comprising a heteropolyacid containing at least one metal selected from molybdenum, tungsten and vanadium and a metallosilicate.
属並びにそれらの金属の化合物からなる群から選ばれた
少なくとも一種とメタロシリケートとからなる触媒の存
在下、低級炭化水素を高温で接触反応させる事を特徴と
する芳香族炭化水素を主成分とする芳香族化合物及び水
素の製造方法。4. A method comprising subjecting a lower hydrocarbon to a catalytic reaction at a high temperature in the presence of a catalyst comprising a metallosilicate with at least one selected from the group consisting of metals consisting of zinc, gallium and cobalt and compounds of these metals. A method for producing an aromatic compound mainly composed of an aromatic hydrocarbon and hydrogen.
少なくとも一種と、亜鉛、ガリウム、コバルト、クロ
ム、ランタン、ネオジム、サマリウム及びイットリウム
からなる金属並びにそれらの金属の化合物からなる群か
ら選ばれた少なくとも一種と、メタロシリケートとから
なる触媒の存在下、低級炭化水素を高温接触反応させる
事を特徴とする芳香族炭化水素を主成分とする芳香族化
合物及び水素の製造方法。5. At least one selected from molybdenum and its compounds, and at least one selected from the group consisting of metals consisting of zinc, gallium, cobalt, chromium, lanthanum, neodymium, samarium and yttrium, and compounds of these metals A method for producing an aromatic compound and hydrogen containing an aromatic hydrocarbon as a main component, wherein a lower hydrocarbon is contacted at a high temperature in the presence of a catalyst composed of an aromatic compound and a metallosilicate.
ムから選ばれた少なくとも一種の金属を含有するヘテロ
ポリ酸とメタロシリケートとからなる低級炭化水素の芳
香族化触媒の存在下、低級炭化水素を高温で接触反応さ
せる事を特徴とする芳香族炭化水素を主成分とする芳香
族化合物及び水素の製造方法。6. A lower hydrocarbon is contacted at a high temperature in the presence of a lower hydrocarbon aromatization catalyst comprising a heteropolyacid containing at least one metal selected from molybdenum, tungsten and vanadium and a metallosilicate. A method for producing an aromatic compound containing an aromatic hydrocarbon as a main component and hydrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08472897A JP3755955B2 (en) | 1997-03-19 | 1997-03-19 | Lower hydrocarbon aromatization catalyst and method for producing aromatic compound using the catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08472897A JP3755955B2 (en) | 1997-03-19 | 1997-03-19 | Lower hydrocarbon aromatization catalyst and method for producing aromatic compound using the catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10272366A true JPH10272366A (en) | 1998-10-13 |
JP3755955B2 JP3755955B2 (en) | 2006-03-15 |
Family
ID=13838759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08472897A Expired - Lifetime JP3755955B2 (en) | 1997-03-19 | 1997-03-19 | Lower hydrocarbon aromatization catalyst and method for producing aromatic compound using the catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3755955B2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001334151A (en) * | 2000-05-30 | 2001-12-04 | Masaru Ichikawa | Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material |
JP2001334152A (en) * | 2000-05-30 | 2001-12-04 | Masaru Ichikawa | Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material |
JP2006305408A (en) * | 2005-04-26 | 2006-11-09 | Tosoh Corp | Catalyst for aromatization reaction and method for producing aromatic hydrocarbon using the same |
CN1327961C (en) * | 2004-06-02 | 2007-07-25 | 华东师范大学 | Loaded catalyst, preparation and use thereof |
JP2008093663A (en) * | 2007-12-17 | 2008-04-24 | Masaru Ichikawa | Manufacturing method of aromatization catalyst of lower hydrocarbon |
WO2008114550A1 (en) | 2007-03-20 | 2008-09-25 | Meidensha Corporation | Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds |
DE112006002572T5 (en) | 2005-09-30 | 2009-01-02 | Masaru Sapporo Ichikawa | Process for the preparation of an aromatic compound |
WO2009004843A1 (en) | 2007-06-29 | 2009-01-08 | Meidensha Corporation | Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds |
WO2009020045A1 (en) | 2007-08-03 | 2009-02-12 | Mitsui Chemicals, Inc. | Process for production of aromatic hydrocarbons |
JP2009534382A (en) * | 2006-04-21 | 2009-09-24 | エクソンモービル・ケミカル・パテンツ・インク | Methane conversion manufacturing process |
JP2009538908A (en) * | 2006-05-31 | 2009-11-12 | エクソンモービル・ケミカル・パテンツ・インク | Identification of aromatic hydrocarbons produced from methane by isotope analysis |
JP2009274061A (en) * | 2008-04-18 | 2009-11-26 | Meidensha Corp | Catalyst and its manufacturing method |
JP2010137173A (en) * | 2008-12-12 | 2010-06-24 | Meidensha Corp | Lower hydrocarbon aromatizing catalyst and method of manufacturing the catalyst |
JP2010260051A (en) * | 2010-07-02 | 2010-11-18 | Masaru Ichikawa | Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material |
JP2010535623A (en) * | 2007-08-13 | 2010-11-25 | サウディ ベーシック インダストリーズ コーポレイション | Catalyst composition and process for converting aliphatic fuel promoters to aromatic compounds |
JP2010274261A (en) * | 2010-07-02 | 2010-12-09 | Masaru Ichikawa | Catalyst for aromatizing lower hydrocarbon and method for producing aromatic compound and hydrogen by using lower hydrocarbon as raw material |
US8148590B2 (en) | 2004-07-28 | 2012-04-03 | Meidensha Corporation | Process for producing aromatic hydrocarbon and hydrogen |
WO2014027670A1 (en) * | 2012-08-16 | 2014-02-20 | 三井化学株式会社 | Catalyst composition, and method for manufacturing aromatic hydrocarbon in which catalyst composition is used |
US8735310B2 (en) | 2007-06-07 | 2014-05-27 | Meidensha Corporation | Method of regenerating lower hydrocarbon aromatizing catalyst |
WO2014181241A1 (en) * | 2013-05-06 | 2014-11-13 | Saudi Basic Industries Corporation | Promoted molybdenum-based supported catalyst composition for high selectivity for converting by methane to an aromatic compound |
JP2017159198A (en) * | 2016-03-07 | 2017-09-14 | Jxtgエネルギー株式会社 | Dehydrogenation catalyst for lower hydrocarbon and aromatic compound production method |
CN109310999A (en) * | 2016-04-25 | 2019-02-05 | 埃克森美孚化学专利公司 | Catalytic aromatization |
JP2019081165A (en) * | 2017-10-31 | 2019-05-30 | 株式会社豊田中央研究所 | Catalyst for synthesizing hydrocarbons, and hydrocarbons manufacturing device and hydrocarbon fuel manufacturing method equipped with the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5577587B2 (en) | 2008-11-25 | 2014-08-27 | 株式会社明電舎 | Process for producing lower hydrocarbon aromatization catalyst and lower hydrocarbon aromatization catalyst |
WO2014191874A1 (en) * | 2013-05-28 | 2014-12-04 | Saudi Basic Industries Corporation | Promoted molybdenum catalyst composition for production of aromatics from methane |
US20160185938A1 (en) | 2013-06-27 | 2016-06-30 | Bridgestone Corporation | Antioxidant, rubber composition, and tire |
-
1997
- 1997-03-19 JP JP08472897A patent/JP3755955B2/en not_active Expired - Lifetime
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001334151A (en) * | 2000-05-30 | 2001-12-04 | Masaru Ichikawa | Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material |
JP2001334152A (en) * | 2000-05-30 | 2001-12-04 | Masaru Ichikawa | Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material |
CN1327961C (en) * | 2004-06-02 | 2007-07-25 | 华东师范大学 | Loaded catalyst, preparation and use thereof |
US8148590B2 (en) | 2004-07-28 | 2012-04-03 | Meidensha Corporation | Process for producing aromatic hydrocarbon and hydrogen |
JP2006305408A (en) * | 2005-04-26 | 2006-11-09 | Tosoh Corp | Catalyst for aromatization reaction and method for producing aromatic hydrocarbon using the same |
DE112006002572T5 (en) | 2005-09-30 | 2009-01-02 | Masaru Sapporo Ichikawa | Process for the preparation of an aromatic compound |
US8097763B2 (en) | 2005-09-30 | 2012-01-17 | Meidensha Corporation | Process for production of aromatic compound |
JP2009534382A (en) * | 2006-04-21 | 2009-09-24 | エクソンモービル・ケミカル・パテンツ・インク | Methane conversion manufacturing process |
JP2009538908A (en) * | 2006-05-31 | 2009-11-12 | エクソンモービル・ケミカル・パテンツ・インク | Identification of aromatic hydrocarbons produced from methane by isotope analysis |
WO2008114550A1 (en) | 2007-03-20 | 2008-09-25 | Meidensha Corporation | Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds |
US8278237B2 (en) | 2007-03-20 | 2012-10-02 | Meidensha Corporation | Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds |
US8735310B2 (en) | 2007-06-07 | 2014-05-27 | Meidensha Corporation | Method of regenerating lower hydrocarbon aromatizing catalyst |
WO2009004843A1 (en) | 2007-06-29 | 2009-01-08 | Meidensha Corporation | Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds |
US8558045B2 (en) | 2007-06-29 | 2013-10-15 | Meidensha Corporation | Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds |
WO2009020045A1 (en) | 2007-08-03 | 2009-02-12 | Mitsui Chemicals, Inc. | Process for production of aromatic hydrocarbons |
JP2010535623A (en) * | 2007-08-13 | 2010-11-25 | サウディ ベーシック インダストリーズ コーポレイション | Catalyst composition and process for converting aliphatic fuel promoters to aromatic compounds |
JP2008093663A (en) * | 2007-12-17 | 2008-04-24 | Masaru Ichikawa | Manufacturing method of aromatization catalyst of lower hydrocarbon |
JP2009274061A (en) * | 2008-04-18 | 2009-11-26 | Meidensha Corp | Catalyst and its manufacturing method |
US9052139B2 (en) | 2008-04-18 | 2015-06-09 | Meidensha Corporation | Catalyst and process for producing the same |
JP2010137173A (en) * | 2008-12-12 | 2010-06-24 | Meidensha Corp | Lower hydrocarbon aromatizing catalyst and method of manufacturing the catalyst |
JP2010274261A (en) * | 2010-07-02 | 2010-12-09 | Masaru Ichikawa | Catalyst for aromatizing lower hydrocarbon and method for producing aromatic compound and hydrogen by using lower hydrocarbon as raw material |
JP2010260051A (en) * | 2010-07-02 | 2010-11-18 | Masaru Ichikawa | Catalyst for converting lower hydrocarbon into aromatic compound and method for producing aromatic compound and hydrogen from lower hydrocarbon as raw material |
CN104540587A (en) * | 2012-08-16 | 2015-04-22 | 三井化学株式会社 | Catalyst composition, and method for manufacturing aromatic hydrocarbon in which catalyst composition is used |
WO2014027670A1 (en) * | 2012-08-16 | 2014-02-20 | 三井化学株式会社 | Catalyst composition, and method for manufacturing aromatic hydrocarbon in which catalyst composition is used |
JPWO2014027670A1 (en) * | 2012-08-16 | 2016-07-28 | 三井化学株式会社 | Catalyst composition and method for producing aromatic hydrocarbons using the catalyst composition |
CN104540587B (en) * | 2012-08-16 | 2017-03-08 | 三井化学株式会社 | Carbon monoxide-olefin polymeric and employ this carbon monoxide-olefin polymeric aromatic hydrocarbon manufacture method |
US10195595B2 (en) | 2012-08-16 | 2019-02-05 | Mitsui Chemicals, Inc. | Catalyst composition and process for producing aromatic hydrocarbon using the catalyst composition |
WO2014181241A1 (en) * | 2013-05-06 | 2014-11-13 | Saudi Basic Industries Corporation | Promoted molybdenum-based supported catalyst composition for high selectivity for converting by methane to an aromatic compound |
JP2017159198A (en) * | 2016-03-07 | 2017-09-14 | Jxtgエネルギー株式会社 | Dehydrogenation catalyst for lower hydrocarbon and aromatic compound production method |
CN109310999A (en) * | 2016-04-25 | 2019-02-05 | 埃克森美孚化学专利公司 | Catalytic aromatization |
EP3448558A1 (en) * | 2016-04-25 | 2019-03-06 | ExxonMobil Chemical Patents Inc. | Catalytic aromatization |
JP2019081165A (en) * | 2017-10-31 | 2019-05-30 | 株式会社豊田中央研究所 | Catalyst for synthesizing hydrocarbons, and hydrocarbons manufacturing device and hydrocarbon fuel manufacturing method equipped with the same |
Also Published As
Publication number | Publication date |
---|---|
JP3755955B2 (en) | 2006-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3745885B2 (en) | Method for producing aromatic compound using methane as raw material | |
JPH10272366A (en) | Aromatizing catalyst for lower hydrocarbon, and production of aromatic compound using the catalyst | |
US6239057B1 (en) | Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst | |
US4499314A (en) | Methanol conversion to hydrocarbons with zeolites and cocatalysts | |
US4205194A (en) | Process for the conversion of relatively low molecular weight hydrocarbons, to higher molecular weight hydrocarbons, catalyst-reagents for such use in such process, and the regeneration thereof | |
JP3985038B2 (en) | Process for producing aromatic hydrocarbons and hydrogen from lower hydrocarbons | |
CA2416983A1 (en) | Catalyst and process for aromatic hydrocarbons production from methane | |
AU2009235497B2 (en) | Method for the dehydroaromatisation of mixtures containing methane by regenerating the corresponding catalysts that are devoid of precious metal | |
US4695668A (en) | Molybdenum-tungsten-containing catalyst and methane conversion process using same | |
US20110275873A1 (en) | Method for producing aromatic hydrocarbon | |
JP3755968B2 (en) | Lower hydrocarbon aromatization catalyst and process for producing aromatic compounds using the catalyst | |
US4808563A (en) | Molybdenum-tungsten-containing catalyst for methane conversion process | |
Guan et al. | Development of catalysts for the production of aromatics from syngas | |
US4766264A (en) | Aromatization of paraffins | |
JP2001334151A (en) | Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material | |
EP0068542B1 (en) | A process for alkylating benzene or c1 to c5-alkyl-substituted benzenes | |
JP2001334152A (en) | Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material | |
US6034020A (en) | Zeolite-based catalyst material, the preparation thereof and the use thereof | |
JPS6317813B2 (en) | ||
CN100395314C (en) | Aromatization catalyst, preparation method, and application | |
EP0105591B1 (en) | Catalytic conversion of methanol into light olefins | |
JP5283666B2 (en) | Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen | |
JP4943671B2 (en) | Lower hydrocarbon aromatization catalyst and method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon using the same | |
JP5283665B2 (en) | Lower hydrocarbon aromatic compound catalyst, aromatic compound using lower hydrocarbon as raw material, and method for producing hydrogen | |
WO2011118279A1 (en) | Method of manufacture for aromatic compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050315 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20050719 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050912 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20050914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050930 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051216 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
S202 | Request for registration of non-exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R315201 |
|
S221 | Written request for registration of change of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100106 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110106 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120106 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130106 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |