[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10274304A - Frictional continuously variable transmission - Google Patents

Frictional continuously variable transmission

Info

Publication number
JPH10274304A
JPH10274304A JP8120097A JP8120097A JPH10274304A JP H10274304 A JPH10274304 A JP H10274304A JP 8120097 A JP8120097 A JP 8120097A JP 8120097 A JP8120097 A JP 8120097A JP H10274304 A JPH10274304 A JP H10274304A
Authority
JP
Japan
Prior art keywords
cone
cones
input
output shaft
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8120097A
Other languages
Japanese (ja)
Other versions
JP3676902B2 (en
Inventor
Tomoaki Makino
智昭 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP08120097A priority Critical patent/JP3676902B2/en
Priority to US09/050,462 priority patent/US6004239A/en
Publication of JPH10274304A publication Critical patent/JPH10274304A/en
Application granted granted Critical
Publication of JP3676902B2 publication Critical patent/JP3676902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Friction Gearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a traction drive style continuously variable transmission provided with a suitable structure for the purpose of transmitting continuously an output axis driving a high speed rotating body such as an impeller of a centrifugal blower or the like. SOLUTION: This frictional continuously variable transmission is provided with an input axis 11 being touched internally by plural cones 27 kept autorotatable and revoluvable, an output axis 15 touched externally by the plural of cones 27, a pressing spring 19 applying elastic pressing contact force between input/output axes 11, 15 and plural of cones 27, a speed change ring 26 slidably brought into press contact with each cones 27 and transmits the rotating power between the input/output axes 11, 15 via a rotation of the cones 27 and transmits the number of revolutions of the rotating power transmitted by the slide moving of a speed change ring 26, in this case it is provided with a cone support axis 30 bering the each cones 27.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は摩擦式無段変速機に
関し、例えば遠心送風機、遠心圧縮機、ラジアルタービ
ン等に増速機として使用される摩擦式無段変速機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction type continuously variable transmission, and more particularly to a friction type continuously variable transmission used as a speed increasing device in a centrifugal blower, a centrifugal compressor, a radial turbine, and the like.

【0002】[0002]

【従来の技術】大きな変速比をとれる装置としては3K
形遊星歯車装置が一般的に知られているが、これをトラ
クションドライブに応用した3K形トラクションドライ
ブ式無段変速機を図13に示す。図13はこの無段変速
機を減速機として使用する場合を示しているが、増速機
として使用する場合には入出力軸6,7が入れ替わるこ
とになる。
2. Description of the Related Art A device capable of obtaining a large gear ratio is 3K.
FIG. 13 shows a 3K-type traction drive type continuously variable transmission in which a planetary gear train is generally known, and is applied to a traction drive. FIG. 13 shows a case where the continuously variable transmission is used as a speed reducer. However, when the continuously variable transmission is used as a speed increase gear, the input / output shafts 6 and 7 are exchanged.

【0003】この種の無段変速機では、遊星コーン1
が、入力円板2、カムディスク3及び変速リング4の3
つのトラクション部材とそれぞれ1箇所ずつの計3箇所
で接触している。遊星コーン1は、前述した3つの接触
部で受ける法線力で力学的に釣り合った構造となってい
る。この場合、変速リング4が入出力軸方向に移動する
ことにより変速が行われるが、この変速リング4の軸方
向移動にかかわらず、前述したように3つの接触部での
法線力の釣り合いを保持できるのは、入力円板2と遊星
コーン1との接触部が2次曲率を有する面で形成されて
おり、このため、変速リング4の軸方向移動に伴い入力
円板2と遊星コーン1間の接触部に作用する法線力の向
きが変化するためである。そのため、コーン保持器5は
単に遊星コーン1を周方向に等間隔に保持するだけの機
能を有し、他の部材への支持はされていない。
In this type of continuously variable transmission, a planetary cone 1
Are the input disk 2, the cam disk 3 and the transmission ring 4
One traction member is in contact with each of the three traction members. The planetary cone 1 has a structure dynamically balanced by the normal forces received at the three contact portions described above. In this case, gear shifting is performed by moving the transmission ring 4 in the input / output axial direction. Regardless of the axial movement of the transmission ring 4, the normal force at the three contact portions is balanced as described above. What can be held is that the contact portion between the input disk 2 and the planetary cone 1 is formed by a surface having a secondary curvature, so that the input disk 2 and the planetary cone 1 This is because the direction of the normal force acting on the contact portion between them changes. Therefore, the cone holder 5 has a function of merely holding the planetary cones 1 at equal intervals in the circumferential direction, and is not supported by other members.

【0004】[0004]

【発明が解決しようとする課題】ところで、遊星コーン
1と入力円板2とにおける接触部を2次曲率を有する接
触面で構成することによりスピンの影響が大きくなって
しまう。また、図13に示す無段変速機を増速機として
使用する場合、出力軸を高速回転させたとき、入力円板
2が高回転することになり、出力軸系の慣性モーメント
が大きく、また、接触部における周速とスピンが大きい
ことから大きな動力損失が生じることになり、この種の
無段変速機は高速回転する遠心送風機の使用には適さな
い。
However, if the contact portion between the planetary cone 1 and the input disk 2 is constituted by a contact surface having a secondary curvature, the influence of spin increases. When the continuously variable transmission shown in FIG. 13 is used as a gearbox, when the output shaft is rotated at a high speed, the input disk 2 rotates at a high speed, and the moment of inertia of the output shaft system is large. Since the peripheral speed and spin at the contact portion are large, a large power loss occurs, and this type of continuously variable transmission is not suitable for use of a high-speed rotating centrifugal blower.

【0005】そこで、本発明は上記問題点に鑑みて提案
されたもので、その目的とするところは、遠心送風機等
の羽根車のような高速回転体を駆動する出力軸を無段変
速させる用途に好適な構造を具備したトラクションドラ
イブ式無段変速機を提供することにある。
Accordingly, the present invention has been proposed in view of the above problems, and has as its object to continuously change the speed of an output shaft for driving a high-speed rotating body such as an impeller such as a centrifugal blower. SUMMARY OF THE INVENTION It is an object of the present invention to provide a traction drive type continuously variable transmission having a structure suitable for the present invention.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の技術的手段として、本発明は以下の特徴を有する。 回転自在に保持された複数のコーンが内接する入力軸
と、前記複数のコーンが外接する出力軸と、前記入出力
軸と複数のコーンとの間に弾性圧接力を付与する加圧手
段とを備え、前記コーンの回転を介して前記入出力軸間
で回転動力を伝達しながらその回転数を無段で変速する
摩擦式無段変速機であって、前記各コーンを軸受支持し
たコーン支持軸と、前記コーン支持軸を円周等間隔に一
体的に配設したホルダ本体とからなるコーンホルダを具
備する。 回転自在に保持された複数のコーンが内接する入力軸
と、前記複数のコーンが外接する出力軸と、前記入出力
軸と複数のコーンとの間に弾性圧接力を付与する加圧手
段とを備え、前記コーンの回転を介して前記入出力軸間
で回転動力を伝達しながらその回転数を無段で変速する
摩擦式無段変速機であって、前記各コーンを軸受支持し
たコーン支持軸と、前記コーン支持軸を円周等間隔に挿
入固定したホルダ本体とからなるコーンホルダを具備す
る。
The present invention has the following features as technical means for achieving the above object. An input shaft in which a plurality of cones rotatably held are inscribed, an output shaft in which the plurality of cones are circumscribed, and pressurizing means for applying elastic pressure between the input / output shaft and the plurality of cones. A friction-type continuously variable transmission that continuously changes the rotation speed while transmitting rotational power between the input and output shafts through rotation of the cone, and a cone supporting shaft that supports and supports each cone. And a holder body comprising the cone support shaft and a holder body integrally disposed at equal circumferential intervals. An input shaft in which a plurality of cones rotatably held are inscribed, an output shaft in which the plurality of cones are circumscribed, and pressurizing means for applying elastic pressure between the input / output shaft and the plurality of cones. A friction-type continuously variable transmission that continuously changes the rotation speed while transmitting rotational power between the input and output shafts through rotation of the cone, and a cone supporting shaft that supports and supports each cone. And a holder body having the cone support shafts inserted and fixed at equal circumferential intervals.

【0007】尚、前記ホルダ本体を入力軸に軸受支持す
ることが望ましい。 回転自在に保持された複数のコーンが内接する入力軸
と、前記複数のコーンが外接する出力軸と、前記入出力
軸と複数のコーンとの間に弾性圧接力を付与する加圧手
段とを備え、前記コーンの回転を介して前記入出力軸間
で回転動力を伝達しながらその回転数を無段で変速する
摩擦式無段変速機であって、前記各コーンの軸方向移動
を規制する位置規制部を、前記出力軸と各コーンとの間
又は各コーンとコーンホルダとの間に配設する。
It is desirable that the holder main body be supported by a bearing on an input shaft. An input shaft in which a plurality of cones rotatably held are inscribed, an output shaft in which the plurality of cones are circumscribed, and pressurizing means for applying elastic pressure between the input / output shaft and the plurality of cones. A frictionless continuously variable transmission that continuously changes the rotation speed while transmitting rotational power between the input and output shafts through rotation of the cone, and restricts axial movement of each cone. A position restricting portion is provided between the output shaft and each cone or between each cone and the cone holder.

【0008】[0008]

【発明の実施の形態】本発明の実施形態を図1乃至図1
2に示して以下に詳述する。尚、以下の実施形態は、遠
心送風機の羽根車等の高速回転体を駆動する出力軸を無
段変速する3K形トラクションドライブ式無段変速機に
適用したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 to FIG.
2 and described in detail below. The following embodiment is applied to a 3K traction drive type continuously variable transmission in which an output shaft for driving a high-speed rotating body such as an impeller of a centrifugal blower is continuously variable.

【0009】このトラクションドライブ式無段変速機
は、図1に示すような全体構造を有する。まず、入力軸
11をハウジング本体12に軸受13,14により回転
自在に軸支し、かつ、出力軸15をフロントハウジング
16に軸受17,18により回転自在に軸支し、ハウジ
ング本体12とフロントハウジング16とを結合一体化
することにより、入力軸11と出力軸15とをそれぞれ
の軸線が同一直線上となるように配置する。尚、入力軸
11を軸支する軸受13,14には、ハウジング本体1
2との間に加圧手段である加圧用ばね19を介設し、こ
の加圧用ばね19により軸受13,14を介して入力軸
11を押圧しその弾性力を出力軸方向へ向けて作用させ
るようにしている。
This traction drive type continuously variable transmission has an overall structure as shown in FIG. First, the input shaft 11 is rotatably supported on the housing body 12 by bearings 13 and 14, and the output shaft 15 is rotatably supported on the front housing 16 by bearings 17 and 18. The input shaft 11 and the output shaft 15 are arranged so that their axes are on the same straight line by combining and integrating the input shaft 11 and the output shaft 16. The bearings 13 and 14 that support the input shaft 11 are provided with the housing body 1.
A pressurizing spring 19, which is a pressurizing means, is interposed between the input shaft 11 and the input shaft 11 and presses the input shaft 11 via the bearings 13 and 14 so that the elastic force is applied to the output shaft. Like that.

【0010】入力軸11の内側軸端は一体的に拡径した
中空形状を有し、その先端内径面にコーン27(後述)
の入力側接触部33が内接する入力軸トラクション部2
0を有する。また、出力軸15の内側軸端は一体的に縮
径した円錐形状を有し、その先端外径面にコーン27の
出力側接触部34,35が外接する出力軸トラクション
部21を有する。また、出力軸15の外側軸端には羽根
車22が軸支固定されている。尚、出力軸15には、コ
ーン27の軸方向位置を規制するための円環部材23が
外挿されている。
The inner shaft end of the input shaft 11 has a hollow shape whose diameter is increased integrally, and a cone 27 (described later) is formed on the inner diameter surface of the tip.
Of the input shaft traction part 2 in which the input side contact part 33 of
Has zero. Further, the inner shaft end of the output shaft 15 has a conical shape whose diameter is integrally reduced, and has an output shaft traction portion 21 with which the output side contact portions 34 and 35 of the cone 27 circumscribe the outer surface of the tip. An impeller 22 is fixedly supported at the outer shaft end of the output shaft 15. Note that an annular member 23 for regulating the axial position of the cone 27 is externally inserted into the output shaft 15.

【0011】一方、ハウジング本体12に入出力軸1
1,15と平行して例えばボールネジ24を架設し、そ
のボールネジ24に螺合したボールブッシュ25を介し
て変速リング26が取り付けられ、その変速リング26
の内径面をコーン27の変速側接触部36に圧接させ、
また、ボールネジ24の回転により入出力軸方向の移動
を可能としている。
On the other hand, the input / output shaft 1
For example, a ball screw 24 is installed in parallel with the gears 1 and 15, and a speed change ring 26 is attached via a ball bush 25 screwed to the ball screw 24.
Is pressed against the shift-side contact portion 36 of the cone 27,
The rotation of the ball screw 24 enables movement in the input / output axis direction.

【0012】入力軸トラクション部20、出力軸トラク
ション部21及び変速リング26の三者相互間に複数の
コーン27が介在する。ここで、高速回転する出力軸1
5の慣性モーメント低減及び周速度低減のため、出力軸
トラクション部21の回転半径を小さくし、また、出力
軸トラクション部21の円錐面での母線と出力軸15の
軸線とコーン27の自転軸が一点で交差する構造とし、
コーン27と出力軸15間の接触部においてスピンが発
生しないようにしている。このような構造のためにコー
ン27の自転軸と入出力軸11,15との角度がかなり
小さくなっている。その結果、コーン27は軸方向に長
い形状になり、法線力及び接線力(トラクション)が作
用する接触部間の距離も長くなり、コーン27をスキュ
ーさせようとするモーメントが大きくなり、このモーメ
ントを支える支持構造としなければ回転不能等の不具合
が生じる。
A plurality of cones 27 are interposed between the input shaft traction unit 20, the output shaft traction unit 21, and the transmission ring 26. Here, the output shaft 1 that rotates at high speed
In order to reduce the moment of inertia and the peripheral speed of 5, the rotation radius of the output shaft traction portion 21 is reduced, and the generating line on the conical surface of the output shaft traction portion 21, the axis of the output shaft 15, and the rotation axis of the cone 27 are rotated. With a structure that intersects at one point,
Spin is prevented from occurring at the contact portion between the cone 27 and the output shaft 15. Due to such a structure, the angle between the rotation axis of the cone 27 and the input / output axes 11 and 15 is considerably small. As a result, the cone 27 has a shape that is long in the axial direction, the distance between the contact portions where the normal force and the tangential force (traction) act is also long, and the moment for causing the cone 27 to skew increases. If the supporting structure is not used, troubles such as rotation failure will occur.

【0013】そこで、これら複数のコーン27は、コー
ンホルダ28により自転及び公転可能な状態で円周等間
隔に保持される。図3に示すようにコーンホルダ28は
ホルダ本体29とコーン支持軸30との一体物からな
り、ホルダ本体29が軸受31を介して入力軸11に同
軸的に回転自在に内挿され、このホルダ本体29に円周
等間隔に一体的に立設された複数本のコーン支持軸30
に軸受32を介してコーン27が回転自在に軸支され
る。このようなコーン27の支持構造とすることで、コ
ーン27の入出力軸11,15に対するスキューを防止
し、スキューによる回転不能、伝達効率の低下を回避す
る。
The plurality of cones 27 are held at equal circumferential intervals by the cone holder 28 so that they can rotate and revolve. As shown in FIG. 3, the cone holder 28 is made of an integral body of a holder main body 29 and a cone support shaft 30, and the holder main body 29 is rotatably inserted coaxially with the input shaft 11 via a bearing 31. A plurality of cone support shafts 30 which are integrally erected on the main body 29 at equal circumferential intervals.
The cone 27 is rotatably supported via a bearing 32. With such a support structure for the cone 27, the skew of the cone 27 with respect to the input / output shafts 11 and 15 is prevented, and rotation due to skew and reduction in transmission efficiency are avoided.

【0014】尚、前述したホルダ本体29及びコーン2
7の軸受31,32には、例えば保持器付き針状ころを
それぞれ使用することが可能で、ホルダ本体29及びコ
ーン27を軸受31,32の転走面とする。また、図1
の実施形態では、ホルダ本体29の軸受31にサイズの
異なる2個の保持器付き針状ころを使用しているが、こ
れ以外の構造として、図2に示す実施形態のようにホル
ダ本体29の軸受31として、同一サイズの2個の保持
器付き針状ころを使用することも可能である。更に、ホ
ルダ本体29及びコーン27の軸受には、前述した保持
器付き針状ころ以外の転がり軸受或いはすべり軸受を使
用することも可能である。
The holder body 29 and the cone 2 described above are used.
For example, needle rollers with retainers can be used for the bearings 31 and 32 of the seventh embodiment, respectively, and the holder body 29 and the cone 27 are used as the rolling surfaces of the bearings 31 and 32. FIG.
In the embodiment of the present invention, two needle rollers with retainers having different sizes are used for the bearings 31 of the holder body 29. However, as another structure, as in the embodiment shown in FIG. It is also possible to use two needle rollers with the same size as the bearing 31 with a cage. Further, as the bearings of the holder body 29 and the cone 27, it is also possible to use a rolling bearing or a sliding bearing other than the above-described needle roller with cage.

【0015】前述の各コーン27は、一つの入力側接触
部33で入力軸トラクション部20と摩擦接触し、ま
た、二つの出力側接触部34,35で出力軸トラクショ
ン部21と摩擦接触し、更に、先端へ向けて縮径した変
速側接触部36で変速リング26と摩擦接触する。出力
軸トラクション部21と接するコーン27の出力側接触
部34,35は同一母線を持つ円錐面で、その出力側接
触部34,35における母線は、入力軸トラクション部
20と接するコーン27の入力側接触部33における母
線と共に、両者とも出力軸15及び入力軸11に対して
僅かな角度だけ傾けて設定される。このような入出力軸
トラクション部20,21とコーン27との接触部形状
及び加圧用ばね19によって生じる軸方向力により、入
出力軸トラクション部20,21及び変速リング26と
コーン27との接触部33〜36に動力伝達に必要な法
線力を発生させている。
Each of the cones 27 makes frictional contact with the input shaft traction portion 20 at one input side contact portion 33, and makes frictional contact with the output shaft traction portion 21 at two output side contact portions 34 and 35. Further, the transmission side frictional contact is made with the transmission ring 26 at the transmission side contact portion 36 whose diameter is reduced toward the front end. The output side contact portions 34 and 35 of the cone 27 contacting the output shaft traction portion 21 are conical surfaces having the same generatrix, and the generatrix of the output side contact portions 34 and 35 is the input side of the cone 27 contacting the input shaft traction portion 20. Both are set at a slight angle with respect to the output shaft 15 and the input shaft 11 together with the generatrix at the contact portion 33. Due to the shape of the contact portion between the input / output shaft traction portions 20 and 21 and the cone 27 and the axial force generated by the pressure spring 19, the contact portion between the input and output shaft traction portions 20 and 21 and the transmission ring 26 and the cone 27 is provided. Normal forces required for power transmission are generated at 33 to 36.

【0016】このトラクションドライブ式無段変速機で
は、入力軸11から入力軸トラクション部20を介して
コーン27の入力側接触部33に動力が伝達され、その
動力はコーン27の自転運動と公転運動として分配さ
れ、コーン27の出力側接触部34,35から出力軸ト
ラクション部21を介して出力軸15に伝達される。こ
の時、変速リング26がコーン27の変速側接触部36
と接する位置によってコーン27の自転と公転の比が決
定され、この比によって全体の変速比が決定され、更
に、この変速リング26をボールネジ24により入出力
軸方向に移動させることで変速比を無段で変えることが
できる。これにより、羽根車22を高速回転で駆動する
出力軸15を無段変速し、入力軸11の回転数が変動し
ても出力軸15が一定回転できるようにしている。
In this traction drive type continuously variable transmission, power is transmitted from the input shaft 11 to the input side contact portion 33 of the cone 27 via the input shaft traction portion 20, and the power is transmitted by the rotation motion and the revolving motion of the cone 27. And transmitted from the output side contact portions 34 and 35 of the cone 27 to the output shaft 15 via the output shaft traction portion 21. At this time, the transmission ring 26 is connected to the transmission side contact portion 36 of the cone 27.
The ratio between the rotation of the cone 27 and the revolution thereof is determined by the position where the cone 27 contacts, and the overall speed ratio is determined by the ratio. Further, the speed ratio is reduced by moving the speed change ring 26 in the input / output axis direction by the ball screw 24. Can be changed in steps. As a result, the output shaft 15 that drives the impeller 22 at high speed is continuously variable, so that the output shaft 15 can rotate at a constant speed even when the rotation speed of the input shaft 11 fluctuates.

【0017】ここで、動力伝達が行われる各接触部等へ
の潤滑油の供給方式として油浴潤滑方式が最も簡易な潤
滑方式である。しかし、本発明のようなトラクションド
ライブ式無段変速機の場合、油浴潤滑方式では、コーン
27の公転運動による油の攪拌抵抗が大きく、また、こ
の攪拌抵抗による動力損失が高回転になるほど顕著にな
る。また、コーン27の自転及び公転による遠心力のた
めに潤滑油の多くは径方向外側に跳ね飛ばされ、最も高
周速となる出力軸トラクション部21には十分な潤滑油
が供給されないのでこの油浴潤滑方式は不適である。ま
た、油浴潤滑方式の代わりに径方向外側から潤滑油を吹
きかける方式もあるが、この方式も出力軸トラクション
部21の潤滑油不足を引き起こすために不適である。
Here, an oil bath lubrication system is the simplest lubrication system as a system for supplying lubricating oil to each contact portion or the like where power is transmitted. However, in the case of the traction drive type continuously variable transmission as in the present invention, in the oil bath lubrication system, the resistance of oil agitation due to the revolving motion of the cone 27 is large, and the power loss due to the agitation resistance increases as the rotation speed increases. become. Further, most of the lubricating oil is bounced radially outward due to centrifugal force due to the rotation and revolution of the cone 27, and sufficient lubricating oil is not supplied to the output shaft traction portion 21 having the highest peripheral speed. The bath lubrication system is not suitable. In addition, instead of the oil bath lubrication system, there is a system in which lubricating oil is sprayed from the outside in the radial direction. However, this system is also unsuitable because it causes the output shaft traction unit 21 to run out of lubricating oil.

【0018】そこで、図4及び図5に示すようにコーン
ホルダ28の内部に油路37〜40を設ける。まず、ホ
ルダ本体29の軸方向に設けられた油路37を通して潤
滑油を出力軸トラクション部21とコーン27との接触
部に向けて圧送する。このようにして供給された潤滑油
は、出力軸15の回転及びコーン27の自転・公転によ
る遠心力により径方向外側に万遍なく飛散するので、他
の接触部(入力軸トラクション部20とコーン27間、
変速リング26とコーン27間)にも十分な潤滑油が供
給される。
Therefore, oil passages 37 to 40 are provided inside the cone holder 28 as shown in FIGS. First, lubricating oil is pumped through an oil passage 37 provided in the axial direction of the holder body 29 toward a contact portion between the output shaft traction portion 21 and the cone 27. The lubricating oil supplied in this manner is scattered uniformly radially outward by the rotation of the output shaft 15 and the centrifugal force caused by the rotation and revolution of the cone 27, so that the other contact portions (the input shaft traction portion 20 and the cone 27,
Sufficient lubricating oil is also supplied to the transmission ring 26 and the cone 27).

【0019】また、油路37,39を介してコーン支持
軸30の内部に設けられた油路40を通して軸受32に
潤滑油を強制的に供給することにより軸受32の潤滑油
不足による損傷を防止する。更に、油路37を介してホ
ルダ本体29の径方向に設けられた油路38,39を通
して軸受31に潤滑油を供給することにより潤滑油不足
により焼付け等を防止する。
Further, by forcibly supplying the lubricating oil to the bearing 32 through the oil passage 40 provided inside the cone support shaft 30 via the oil passages 37 and 39, damage to the bearing 32 due to insufficient lubricating oil is prevented. I do. Furthermore, by supplying lubricating oil to the bearing 31 through oil passages 38 and 39 provided in the radial direction of the holder main body 29 via the oil passage 37, seizure or the like due to insufficient lubricating oil is prevented.

【0020】尚、前述したコーンホルダ28への潤滑油
の供給は、図4に示すようにハウジング本体12内に油
路41を設け、入力軸11の軸受13,14の外輪間に
第1スペーサ42を、その内輪間に第2スペーサ43を
介在させる。入力軸11の回転に伴い、第1スペーサ4
2は静止し、第2スペーサ43は入力軸11と共に回転
するが、第1スペーサ42の内径を第2スペーサ43の
外径よりも、スペーサ間のシール性を大きく悪化させな
い程度に若干大きくしてスペーサ間の摺動抵抗を低減す
る。これらの第1及び第2スペーサ42,43にはその
半径方向に貫通する穴44,45が設けられ、ハウジン
グ本体12の油路41を通った潤滑油はこの第1及び第
2スペーサ42,43の穴44,45を介して入力軸1
1の内部に流入してコーンホルダ28へ供給される。
The lubricating oil is supplied to the cone holder 28 by providing an oil passage 41 in the housing body 12 as shown in FIG. The second spacer 43 is interposed between the inner races. As the input shaft 11 rotates, the first spacer 4
2 is stationary, and the second spacer 43 rotates together with the input shaft 11, but the inner diameter of the first spacer 42 is slightly larger than the outer diameter of the second spacer 43 so as not to greatly deteriorate the sealing property between the spacers. Reduce the sliding resistance between spacers. The first and second spacers 42 and 43 are provided with holes 44 and 45 penetrating in the radial direction, and the lubricating oil that has passed through the oil passage 41 of the housing body 12 is used for the first and second spacers 42 and 43. Input shaft 1 through holes 44 and 45 of
1 and supplied to the cone holder 28.

【0021】ところで、以上で説明したコーン27は、
高速回転時に作用する遠心力とジャイロモーメントと、
4つの接触部から受ける法線力が力学的に釣り合う形状
となっている。しかし、ホルダ本体29に対するコーン
支持軸30の位置関係の製作精度が悪ければ、コーン2
7の力学的釣り合いが成立せず、コーン支持軸30及び
軸受32に過大な荷重が作用する。また、入力軸トラク
ション部20又は出力軸トラクション部21が複数のコ
ーン27から受ける力のバランスが崩れ、入力軸11の
軸受13,14又は出力軸15の軸受17,18に径方
向の過大な偏荷重が作用する。その結果、入力軸11の
軸受13,14又は出力軸15の軸受17,18の寿命
低下又は早期損傷が引き起こされる。また、コーンホル
ダ28の製作精度が悪く、コーン27が入出力軸11,
15に対してスキューしてしまう場合、動力の伝達効率
が大きく低下して延いては回転不能になる。
By the way, the cone 27 described above is
Centrifugal force and gyro moment acting at high speed rotation,
The shape is such that normal forces received from the four contact portions are balanced mechanically. However, if the manufacturing accuracy of the positional relationship of the cone support shaft 30 with respect to the holder body 29 is poor, the cone 2
7 is not established, and an excessive load acts on the cone support shaft 30 and the bearing 32. In addition, the balance of the forces received by the input shaft traction unit 20 or the output shaft traction unit 21 from the plurality of cones 27 is lost, and the bearings 13 and 14 of the input shaft 11 or the bearings 17 and 18 of the output shaft 15 are excessively radially biased. Load acts. As a result, the life of the bearings 13 and 14 of the input shaft 11 or the bearings 17 and 18 of the output shaft 15 is shortened or early damage is caused. Further, the manufacturing accuracy of the cone holder 28 is low, and the cone 27 is
In the case of skew with respect to 15, the power transmission efficiency is greatly reduced, so that it becomes impossible to rotate.

【0022】そこで、前述した実施形態のようにコーン
ホルダ28をホルダ本体29とコーン支持軸30との一
体物で構成し(図3参照)、ホルダ本体29に対してコ
ーン支持軸30の位置関係を良好な製作精度となるよう
にしていた。
Therefore, as in the above-described embodiment, the cone holder 28 is formed of an integral body of the holder body 29 and the cone support shaft 30 (see FIG. 3), and the positional relationship of the cone support shaft 30 with respect to the holder body 29. Had good manufacturing accuracy.

【0023】しかしながら、ホルダ本体29とコーン支
持軸30とを一体的に成形した場合、各コーン支持軸3
0間の大きな空間を旋削・フライス加工等で削り出さな
くてはならない。そのため、廃棄しなければならない無
駄な材料が多く、また、加工に要する時間もかかること
になり、製作コストが増加する虞がある。
However, when the holder body 29 and the cone support shaft 30 are integrally formed, each of the cone support shafts 3
A large space between 0 must be cut out by turning or milling. For this reason, there are many wasteful materials that need to be discarded, and it takes a long time for processing, which may increase the manufacturing cost.

【0024】それゆえに、例えば、図6及び図7(a)
(b)に示すようにホルダ本体29’とコーン支持軸3
0’とが別体のものでコーンホルダ28’を製作するこ
とで製作コストの低減が図れる。即ち、ホルダ本体2
9’は、コーン個数が3個の場合、各コーン支持軸3
0’に対して直角な平面が三角錐面を形成するような加
工により製作され、コーン支持軸30’が挿入される嵌
入穴29a’を有する。また、コーン支持軸30’はホ
ルダ本体30’への嵌入部30a’とコーン支持部30
b’との間に、コーン支持軸30’のホルダ本体29’
への挿入長さを規制するための鍔部30c’を形成した
ものである。
Therefore, for example, FIG. 6 and FIG.
As shown in (b), the holder body 29 'and the cone support shaft 3
The manufacturing cost can be reduced by manufacturing the cone holder 28 'in a state where the cone holder 28' is separate from 0 '. That is, the holder body 2
9 ′ indicates that each cone support shaft 3
It is manufactured by processing such that a plane perpendicular to 0 'forms a triangular pyramid surface, and has a fitting hole 29a' into which the cone support shaft 30 'is inserted. Further, the cone support shaft 30 ′ has a fitting portion 30 a ′ into the holder main body 30 ′ and a cone support portion 30 ′.
b ′, the holder body 29 ′ of the cone support shaft 30 ′
A flange 30c 'is formed to regulate the length of insertion into the flange 30c'.

【0025】このようにホルダ本体29’とコーン支持
軸30’とを別体としたコーンホルダ28’は、コーン
支持軸30’をホルダ本体29’に圧入・焼嵌め等で組
み立てることにより製作される。この時、コーン支持軸
30’に設けた鍔部30c’の側面とホルダ本体29’
の三角錐面とが平面同士で衝合することにより組み立て
後のコーン支持軸30’の強度が向上する。また、コー
ン支持軸30’は最後の工程まで仕上げず、コーン支持
部30b’の取りしろを幾分残しておく。そして、組み
立て後にコーン支持部30b’を仕上げ加工(研削加
工)することにより必要な精度を出すことができる。
The cone holder 28 'in which the holder body 29' and the cone support shaft 30 'are separated from each other is manufactured by assembling the cone support shaft 30' into the holder body 29 'by press-fitting, shrink-fitting or the like. You. At this time, the side surface of the flange portion 30c 'provided on the cone support shaft 30' and the holder body 29 '
When the triangular pyramid surfaces of the cone support shaft 30 'are assembled, the strength of the cone support shaft 30' after assembly is improved. Also, the cone support shaft 30 'is not finished until the last step, leaving a margin for the cone support portion 30b'. Then, necessary accuracy can be obtained by finishing (grinding) the cone support portion 30b 'after assembly.

【0026】尚、図8に示すようにホルダ本体29とコ
ーン支持軸30とを一体的に成形したコーンホルダ28
の場合と同様(図5参照)、ホルダ本体29’及びコー
ン支持軸30’に油路37’〜40’を形成すれば、接
触部への十分な潤滑油の供給が良好かつ容易になる。ま
た、コーンホルダ28’への潤滑油の供給は、図4に示
すようにハウジング12に油路41を形成し、第1及び
第2スペーサ42,43を設けた前述の実施形態での構
造と同一にすればよい。
As shown in FIG. 8, a cone holder 28 in which a holder body 29 and a cone support shaft 30 are integrally formed.
Similarly to the case (see FIG. 5), if the oil passages 37 'to 40' are formed in the holder main body 29 'and the cone support shaft 30', it becomes possible to supply a sufficient lubricating oil to the contact portion easily and easily. Further, the supply of the lubricating oil to the cone holder 28 'is performed in the same manner as in the above-described embodiment in which the oil passage 41 is formed in the housing 12 and the first and second spacers 42 and 43 are provided as shown in FIG. What is necessary is just to make it the same.

【0027】ところで、入力軸トラクション部20と出
力軸トラクション部21の同軸度が完全であれば、円周
等間隔に配置された複数のコーン27はすべて軸方向に
も同じ位置に規制されることになる。しかし、実際上、
各部品の製作精度、組み立て精度、各軸受の径方向のが
たつき等により、運転中において各コーン27間に軸方
向のばらつきが生じる虞がある。
If the input shaft traction portion 20 and the output shaft traction portion 21 have perfect coaxiality, the plurality of cones 27 arranged at equal circumferential intervals are all restricted to the same position in the axial direction. become. But in practice,
Due to the manufacturing accuracy of each part, the assembling accuracy, the rattling in the radial direction of each bearing, and the like, there is a possibility that an axial variation may occur between the cones 27 during operation.

【0028】このばらつきが大きいと、入出力軸11,
15の回転に伴い入出力軸トラクション部20,21や
各軸受に偏荷重が発生し、回転むら、効率低下、軸受寿
命の低下などが引き起こされる可能性が高い。そのた
め、コーン27の軸方向位置規制が必要となってくる。
尚、この位置規制部を設ける場合、コーン27と軸方向
位置規制部とがすべり接触することになり、この接触に
よる動力損失をなるべく小さくすることも必要である。
If this variation is large, the input / output shafts 11,
With the rotation of No. 15, an eccentric load is generated in the input / output shaft traction units 20 and 21 and each bearing, and there is a high possibility that uneven rotation, a reduction in efficiency, a reduction in bearing life, and the like are caused. Therefore, the axial position of the cone 27 must be regulated.
When the position restricting portion is provided, the cone 27 and the axial position restricting portion come into sliding contact with each other, and it is necessary to minimize the power loss due to this contact.

【0029】そこで、図9(a)に示すように出力軸1
5に、コーン27の軸方向位置を規制するための鍔部2
3’を軸方向位置規制部の一つとして一体的に成形す
る。また、他の軸方向位置規制部として、同図(b)に
示すように一つの円環部材23を出力軸15に外挿して
その出力軸15とコーン27との間に配置することも可
能である(図1、図2及び図4参照)。更に、同図
(c)に示すように複数(図では2個)の円環部材23
a,23bを出力軸15に外挿することも可能で、ま
た、同図(d)に示すように円環部材23と出力軸15
との間に、皿ばね、ばね座金や波形座金などの弾性部材
46を介在させるようにしてもよい。
Therefore, as shown in FIG.
5, a flange 2 for regulating the axial position of the cone 27;
3 'is integrally formed as one of the axial position regulating portions. Further, as another axial position regulating portion, one annular member 23 can be extrapolated to the output shaft 15 and disposed between the output shaft 15 and the cone 27 as shown in FIG. (See FIGS. 1, 2 and 4). Further, as shown in FIG. 3C, a plurality of (two in the figure) annular members 23
a and 23b can be extrapolated to the output shaft 15 and, as shown in FIG.
An elastic member 46 such as a disc spring, a spring washer, or a corrugated washer may be interposed therebetween.

【0030】これにより、複数のコーン27のうちどれ
かが出力軸側に移動しようとしても、鍔部23’又は円
環部材23により規制されるため、すべてのコーン27
は同じ軸方向位置に保持される。また、複数のコーン2
7のうちどれかが入力軸側に移動しようとする場合で
も、変速リング26の内径による規制のために残りのコ
ーン27が出力軸側に移動しようとし、出力軸15とコ
ーン27間に設けた鍔部23’又は円環部材23との干
渉によりコーン27は同じ軸方向位置に保持される。
As a result, even if any of the plurality of cones 27 attempts to move to the output shaft side, all the cones 27 are restricted by the flange 23 ′ or the annular member 23.
Are held in the same axial position. In addition, a plurality of cones 2
7 moves to the input shaft side, the remaining cone 27 moves to the output shaft side due to the restriction by the inner diameter of the transmission ring 26, and is provided between the output shaft 15 and the cone 27. The cone 27 is held at the same axial position by interference with the flange portion 23 'or the annular member 23.

【0031】また、円環部材23に摺動性の優れた材料
(銅系合金、含油軸受材料、樹脂材料など)で成形する
ことにより、コーン27と円環部材23とのすべり接触
による動力損失を下げることができる。更に、複数の円
環部材23a,23bで構成した場合、コーン27と出
力軸15とのすべり速度差又はコーン27とコーンホル
ダ28とのすべり速度差を円環部材23a,23b間の
すべりにより分散させることができて動力損失を低減で
きる。また、円環部材23と出力軸15との間に弾性部
材46を介在させた場合、コーン27と円環部材23と
の間に作用する力を常にほぼ一定にすることができるの
で、コーン27と円環部材23との過大な干渉による効
率低下が招来することはない。
Further, by forming the annular member 23 with a material having excellent slidability (copper alloy, oil-impregnated bearing material, resin material, etc.), power loss due to sliding contact between the cone 27 and the annular member 23 is obtained. Can be lowered. Further, in the case where the ring members 23a and 23b are formed, the slip speed difference between the cone 27 and the output shaft 15 or the slip speed difference between the cone 27 and the cone holder 28 is dispersed by the slip between the ring members 23a and 23b. Power loss can be reduced. Further, when the elastic member 46 is interposed between the ring member 23 and the output shaft 15, the force acting between the cone 27 and the ring member 23 can always be made substantially constant. The efficiency does not decrease due to excessive interference with the ring member 23.

【0032】尚、図10(a)〜(d)及び図11に示
すように鍔部23’又は円環部材23においてコーン2
7或いは出力軸15と当接する接触面mや、複数の円環
部材23a,23bの場合には円環部材同士の接触面m
を、軸方向力を支持する動圧が発生する所定形状とする
ことも可能で、このようにすれば、すべり接触による動
力損失を低減できる。
As shown in FIGS. 10 (a) to 10 (d) and FIG. 11, the cone 2 is formed on the flange 23 'or the annular member 23.
7 or the contact surface m contacting the output shaft 15 or, in the case of a plurality of annular members 23a and 23b, the contact surface m between the annular members.
Can be formed into a predetermined shape that generates a dynamic pressure that supports the axial force. In this case, power loss due to sliding contact can be reduced.

【0033】また、以上では、出力軸15にコーン27
の軸方向位置規制部を設けた場合について説明したが、
コーンホルダ28のコーン支持軸30にもコーン27の
軸方向位置規制部を設けることも可能で、例えば、図1
2(a)に示すようにコーン支持軸30の基端部に鍔部
47’を一体的に成形したり、同図(b)に示すように
円環部材47をコーン支持軸30の基端部に外挿した
り、同図(c)に示すように円環部材47とコーン支持
軸30との間に、皿ばね、ばね座金や波形座金などの弾
性部材48を介在させたりすることも可能である。
In the above, the cone 27 is attached to the output shaft 15.
Although the case where the axial position regulating portion of was provided was described,
It is also possible to provide the cone support shaft 30 of the cone holder 28 with an axial position restricting portion of the cone 27, for example, as shown in FIG.
2 (a), a flange 47 'is integrally formed at the base end of the cone support shaft 30, or the annular member 47 is connected to the base end of the cone support shaft 30 as shown in FIG. 2 (b). The elastic member 48 such as a disc spring, a spring washer, or a corrugated washer can be interposed between the annular member 47 and the cone support shaft 30 as shown in FIG. It is.

【0034】[0034]

【発明の効果】本発明によれば、遠心送風機等の羽根車
のような高速回転体を駆動する出力軸を無段変速させる
用途に好適な構造を具備した実用的価値が大きい無段変
速機を実現でき、以下の効果を奏する。 各コーンを軸受支持したコーン支持軸と、前記コーン
支持軸を円周等間隔に一体的に配設したホルダ本体とか
らなるコーンホルダを具備したことにより、コーンの入
出力軸に対するスキューを防止し、スキューによる回転
不能、伝達効率の低下を防止できて、信頼性の高い高性
能の無段変速機を実現できる。 各コーンを軸受支持したコーン支持軸と、前記コーン
支持軸を円周等間隔に挿入固定したホルダ本体とからな
るコーンホルダを具備したことにより、ホルダ本体とコ
ーン支持軸とを一体物で製作する場合と比較して、廃棄
しなければならない無駄な材料が発生することなく、ま
た、加工に要する時間も少なくて済み、製作コストの低
減が図れる。 各コーンの軸方向移動を規制する位置規制部を、前記
出力軸と各コーンとの間又は各コーンとコーンホルダと
の間に配設したことにより、すべてのコーンを同じ軸方
向位置に確実に保持でき、入出力トラクション部や各軸
受に偏荷重が作用することによる効率低下や軸受寿命の
低下を未然に防止することができ、信頼性の高い高性能
の無段変速機を実現できる。
According to the present invention, a continuously variable transmission having a large practical value and having a structure suitable for use in continuously variable transmission of an output shaft for driving a high-speed rotating body such as an impeller of a centrifugal blower or the like. And the following effects can be obtained. The skew of the cone with respect to the input / output shaft is prevented by providing a cone holder composed of a cone support shaft that supports each cone as a bearing and a holder body in which the cone support shafts are integrally disposed at equal circumferential intervals. In addition, it is possible to prevent rotation failure and reduction in transmission efficiency due to skew, thereby realizing a highly reliable and high-performance continuously variable transmission. By providing a cone holder consisting of a cone support shaft that supports each cone as a bearing and a holder body in which the cone support shafts are inserted and fixed at equal circumferential intervals, the holder body and the cone support shaft are manufactured as a single unit. Compared to the case, no wasteful material to be discarded is generated, and the time required for processing is reduced, so that the manufacturing cost can be reduced. By disposing the position restricting portion for restricting the axial movement of each cone between the output shaft and each cone or between each cone and the cone holder, all the cones are surely at the same axial position. Thus, it is possible to prevent a decrease in efficiency and a decrease in the life of the bearing due to an eccentric load acting on the input / output traction portion and each bearing, thereby realizing a highly reliable and high-performance continuously variable transmission.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態におけるトラクションドライ
ブ式無段変速機の全体構造を示す断面図
FIG. 1 is a cross-sectional view showing the overall structure of a traction drive type continuously variable transmission according to an embodiment of the present invention.

【図2】本発明の他の実施形態を示す断面図FIG. 2 is a cross-sectional view showing another embodiment of the present invention.

【図3】(a)は複数のコーンを支持するコーンホルダ
を示す側面図 (b)は(a)の正面図
FIG. 3A is a side view showing a cone holder that supports a plurality of cones. FIG. 3B is a front view of FIG.

【図4】コーンホルダに油路を形成した場合の断面図FIG. 4 is a cross-sectional view when an oil passage is formed in a cone holder.

【図5】(a)はコーンホルダに油路を形成した場合の
側面図 (b)は(a)のA−A線に沿う断面図
5A is a side view when an oil passage is formed in a cone holder. FIG. 5B is a cross-sectional view taken along line AA in FIG.

【図6】ホルダ本体とコーン支持軸とを別体としたコー
ンホルダを示す一部断面を含む正面図
FIG. 6 is a front view including a partial cross section showing a cone holder in which a holder main body and a cone support shaft are separate bodies.

【図7】(a)は図6のホルダ本体を示す一部断面を含
む正面図 (b)は(a)の側面図 (c)は図6のコーン支持軸を示す正面図
7A is a front view including a partial cross section showing the holder main body of FIG. 6; FIG. 7B is a side view of FIG. 6A; FIG. 7C is a front view showing the cone support shaft of FIG.

【図8】図6のコーンホルダに油路を形成した場合の断
面図
FIG. 8 is a sectional view when an oil passage is formed in the cone holder of FIG. 6;

【図9】(a)は鍔部を形成した出力軸を示す部分正面
図 (b)は一つの円環部材を設けた出力軸を示す部分正面
図 (c)は二つの円環部材を設けた出力軸を示す部分正面
図 (d)は円環部材に弾性部材を付加した出力軸を示す部
分正面図
9 (a) is a partial front view showing an output shaft having a flange formed thereon, (b) is a partial front view showing an output shaft provided with one annular member, and (c) is provided with two annular members (D) is a partial front view showing an output shaft in which an elastic member is added to a ring member.

【図10】(a)は接触面を軸方向力を支持する動圧が
発生する形状とした鍔部又は円環部材を示す斜視図 (b)は(a)の接触面の断面形状を示す断面図 (c)は接触面を軸方向力を支持する動圧が発生する他
の形状とした鍔部又は円環部材を示す斜視図 (d)は(c)の接触面の断面形状を示す断面図
10A is a perspective view showing a flange or an annular member in which a contact surface is shaped to generate a dynamic pressure for supporting an axial force, and FIG. 10B is a cross-sectional shape of the contact surface in FIG. Sectional view (c) is a perspective view showing a flange or an annular member having a contact surface having another shape that generates a dynamic pressure for supporting an axial force. (D) shows a sectional shape of the contact surface in (c). Sectional view

【図11】接触面を軸方向力を支持する動圧が発生する
他の形状とした鍔部又は円環部材を示す側面図
FIG. 11 is a side view showing a flange or an annular member having a contact surface having another shape which generates a dynamic pressure for supporting an axial force;

【図12】(a)は鍔部を形成したコーン支持軸を示す
部分正面図 (b)は一つの円環部材を設けたコーン支持軸を示す部
分正面図 (c)は円環部材に弾性部材を付加したコーン支持軸を
示す部分正面図
12A is a partial front view showing a cone support shaft having a flange formed thereon, FIG. 12B is a partial front view showing a cone support shaft provided with one annular member, and FIG. Partial front view showing cone support shaft with added members

【図13】従来の摩擦式無段変速機を示す正面図FIG. 13 is a front view showing a conventional friction type continuously variable transmission.

【符号の説明】[Explanation of symbols]

11 入力軸 15 出力軸 19 加圧手段(加圧用ばね) 23 位置規制部(円環部材) 26 変速リング 27 コーン 28,28’ コーンホルダ 29,29’ ホルダ本体 30,30’ コーン支持軸 Reference Signs List 11 input shaft 15 output shaft 19 pressurizing means (pressurizing spring) 23 position regulating part (annular member) 26 transmission ring 27 cone 28, 28 'cone holder 29, 29' holder main body 30, 30 'cone support shaft

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転自在に保持された複数のコーンが内
接する入力軸と、前記複数のコーンが外接する出力軸
と、前記入出力軸と複数のコーンとの間に弾性圧接力を
付与する加圧手段とを備え、前記コーンの回転を介して
前記入出力軸間で回転動力を伝達しながらその回転数を
無段で変速する摩擦式無段変速機であって、前記各コー
ンを軸受支持したコーン支持軸と、前記コーン支持軸を
円周等間隔に一体的に配設したホルダ本体とからなるコ
ーンホルダを具備したことを特徴とする摩擦式無段変速
機。
1. An input shaft in which a plurality of cones rotatably held are inscribed, an output shaft in which the plurality of cones are circumscribed, and an elastic pressure contact force is applied between the input / output shaft and the plurality of cones. A friction-type continuously variable transmission that includes a pressurizing means and continuously changes the rotation speed while transmitting rotational power between the input and output shafts via rotation of the cone, wherein each of the cones is a bearing. A friction-type continuously variable transmission, comprising: a cone holder comprising a supported cone support shaft and a holder main body in which the cone support shafts are integrally disposed at equal circumferential intervals.
【請求項2】 回転自在に保持された複数のコーンが内
接する入力軸と、前記複数のコーンが外接する出力軸
と、前記入出力軸と複数のコーンとの間に弾性圧接力を
付与する加圧手段とを備え、前記コーンの回転を介して
前記入出力軸間で回転動力を伝達しながらその回転数を
無段で変速する摩擦式無段変速機であって、前記各コー
ンを軸受支持したコーン支持軸と、前記コーン支持軸を
円周等間隔に挿入固定したホルダ本体とからなるコーン
ホルダを具備したことを特徴とする摩擦式無段変速機。
2. An input shaft in which a plurality of cones rotatably held are inscribed, an output shaft in which the plurality of cones are circumscribed, and an elastic pressure contact force is applied between the input / output shaft and the plurality of cones. A friction-type continuously variable transmission that includes a pressurizing means and continuously changes the rotation speed while transmitting rotational power between the input and output shafts via rotation of the cone, wherein each of the cones is a bearing. A friction type continuously variable transmission, comprising: a cone holder including a cone support shaft that is supported, and a holder body in which the cone support shaft is inserted and fixed at equal circumferential intervals.
【請求項3】 前記ホルダ本体を入力軸に軸受支持した
ことを特徴とする請求項1又は2記載の摩擦式無段変速
機。
3. The friction type continuously variable transmission according to claim 1, wherein the holder main body is supported by a bearing on an input shaft.
【請求項4】 回転自在に保持された複数のコーンが内
接する入力軸と、前記複数のコーンが外接する出力軸
と、前記入出力軸と複数のコーンとの間に弾性圧接力を
付与する加圧手段とを備え、前記コーンの回転を介して
前記入出力軸間で回転動力を伝達しながらその回転数を
無段で変速する摩擦式無段変速機であって、前記各コー
ンの軸方向移動を規制する位置規制部を、前記出力軸と
各コーンとの間又は各コーンとコーンホルダとの間に配
設したことを特徴とする摩擦式無段変速機。
4. An input shaft in which a plurality of cones rotatably held are inscribed, an output shaft in which the plurality of cones are circumscribed, and an elastic pressure contact force is applied between the input / output shaft and the plurality of cones. A friction-type continuously variable transmission that includes a pressurizing means and continuously changes the rotation speed while transmitting rotational power between the input and output shafts via rotation of the cones. A friction-type continuously variable transmission, wherein a position restricting portion for restricting directional movement is disposed between the output shaft and each cone or between each cone and the cone holder.
JP08120097A 1997-03-31 1997-03-31 Friction type continuously variable transmission Expired - Fee Related JP3676902B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08120097A JP3676902B2 (en) 1997-03-31 1997-03-31 Friction type continuously variable transmission
US09/050,462 US6004239A (en) 1997-03-31 1998-03-31 Friction type continuously variable speed changing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08120097A JP3676902B2 (en) 1997-03-31 1997-03-31 Friction type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH10274304A true JPH10274304A (en) 1998-10-13
JP3676902B2 JP3676902B2 (en) 2005-07-27

Family

ID=13739842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08120097A Expired - Fee Related JP3676902B2 (en) 1997-03-31 1997-03-31 Friction type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3676902B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155334A (en) * 2017-03-17 2018-10-04 株式会社リコー Drive transmission device and image formation device
CN115289185A (en) * 2022-07-19 2022-11-04 深圳市赫牌实业有限公司 Coaxial friction transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155334A (en) * 2017-03-17 2018-10-04 株式会社リコー Drive transmission device and image formation device
CN115289185A (en) * 2022-07-19 2022-11-04 深圳市赫牌实业有限公司 Coaxial friction transmission

Also Published As

Publication number Publication date
JP3676902B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
US6004239A (en) Friction type continuously variable speed changing mechanism
JP4215508B2 (en) Planetary wheel and its use
JPH0579855B2 (en)
JP2603559Y2 (en) Toroidal type continuously variable transmission
JP3932027B2 (en) Toroidal continuously variable transmission
JPH10274304A (en) Frictional continuously variable transmission
JP2000220711A (en) Half toroidal type continuously variable transmission
JP2000130529A (en) Friction type multistage roller transmission
JP3676903B2 (en) Friction type continuously variable transmission and its cone
JPH10274303A (en) Frictional continuously variable transmission
JPH07174146A (en) Thrust roller bearing
JPH11210773A (en) Bearing of double cavity type toroidal continuously variable transmission
JP7274079B2 (en) Roller type differential reducer
JPH10196754A (en) Toroidal type continuously variable transmission
WO2022186332A1 (en) Friction transmission device
JP4207330B2 (en) Toroidal continuously variable transmission
JP4247733B2 (en) Toroidal continuously variable transmission
JP2001099253A (en) Toroidal type continuously variable transmission
JPH10141462A (en) Troidal type continuously variable transmission
JP4345289B2 (en) Toroidal continuously variable transmission
JPH10274305A (en) Frictional continuously variable transmission
JP3728479B2 (en) Toroidal continuously variable transmission
JP2023038485A (en) Toroidal continuously variable transmission
JPH04210149A (en) Traction type transmission
JPH032039Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050112

A521 Written amendment

Effective date: 20050310

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050401

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees