JPH10260077A - Acoustic characteristic measuring device - Google Patents
Acoustic characteristic measuring deviceInfo
- Publication number
- JPH10260077A JPH10260077A JP9081848A JP8184897A JPH10260077A JP H10260077 A JPH10260077 A JP H10260077A JP 9081848 A JP9081848 A JP 9081848A JP 8184897 A JP8184897 A JP 8184897A JP H10260077 A JPH10260077 A JP H10260077A
- Authority
- JP
- Japan
- Prior art keywords
- sound
- measuring
- speakers
- signal
- microphones
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、残響室等の測定
室内において、吸音材等の吸音特性やスピーカ、空調機
器等の機器類の音圧特性等の音響特性を測定する装置に
関し、簡易な構成で高精度の音響特性測定を行えるよう
にしたものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring sound characteristics such as sound absorbing properties of sound absorbing material and sound pressure characteristics of equipment such as speakers and air conditioners in a measuring room such as a reverberation room. With this configuration, high-accuracy acoustic characteristic measurement can be performed.
【0002】[0002]
【従来の技術】吸音材等の吸音特性(吸音率等)やスピ
ーカ、空調機器等の機器類の音圧特性(ノイズパワー等
のパワーレベル等)の測定は通常残響室を用いて行われ
る。従来の吸音率測定装置のシステム構成を図2に示
す。残響室10(平面図で示す。)内には、測定対象の
試料12(吸音材等)が配置されている。試料12の周
囲には複数のスピーカ14,16,18が配置され、ま
た適宜の箇所に複数のマイク20,22,24が配置さ
れている。2. Description of the Related Art The measurement of sound absorption characteristics (such as sound absorption coefficient) of a sound absorbing material or the like and sound pressure characteristics (power level such as noise power) of equipment such as a speaker and an air conditioner is usually performed using a reverberation room. FIG. 2 shows a system configuration of a conventional sound absorption coefficient measuring device. In a reverberation room 10 (shown in a plan view), a sample 12 to be measured (a sound absorbing material or the like) is arranged. A plurality of speakers 14, 16, 18 are arranged around the sample 12, and a plurality of microphones 20, 22, 24 are arranged at appropriate places.
【0003】吸音率測定には残響時間の計測が必要とな
るが、この残響時間の計測構成は次のようになってい
る。音源波形発生回路26からは、例えばインパルス、
短音(フィルタードインパルス)、あるいはバンドノイ
ズ等の測定用音源信号27が出力され、スイッチSW
1,SW2,SW3の接点1およびパワーアンプ28,
30,32を介してスピーカ14,16,18から発声
される。マイク20,22,24は残響室10内に放射
された音を収音する。その収音信号はヘッドアンプ3
4,36,38を介して自乗平均化装置40で自乗平均
され、自乗積分解析装置42で残響波形の空間集合平均
が求められ、あるいはレベルレコーダ43等に残響波形
が記録されて、残響時間が計測され、これに基づき吸音
特性が求められる。[0003] The measurement of the reverberation time is required for the measurement of the sound absorption coefficient. The measurement configuration of the reverberation time is as follows. From the sound source waveform generation circuit 26, for example, an impulse,
A sound source signal 27 for measuring short sound (filtered impulse) or band noise is output, and the switch SW
1, SW2, SW3 contact 1 and power amplifier 28,
The loudspeakers 14, 16, 18 utter voices via the speakers 30, 32. The microphones 20, 22, and 24 collect the sound radiated into the reverberation room 10. The picked up signal is head amplifier 3
4, 36, 38, a root mean squarer 40 obtains a root mean square, a root mean square analyzer 42 obtains a spatial set average of the reverberation waveform, or a reverberation waveform is recorded in a level recorder 43 or the like. The sound absorption characteristics are determined based on the measured values.
【0004】従来のスピーカ等のパワーレベル測定装置
のシステム構成を図3に示す(吸音力補正を行う部分は
省略する。)。残響室10内には、測定対象のスピーカ
44が配置されている。また、残響室10内の適宜の箇
所には複数のマイク46,48,50が配置されてい
る。パワーレベル測定には音圧レベルの計測が必要とな
るが、この音圧レベルの計測構成は次のようになってい
る。音源波形発生回路52からは測定用音源信号53が
出力され、パワーアンプ54を介してスピーカ44から
発声される。マイク46,48,50は残響室10内に
放射された音を収音する。その収音信号はヘッドアンプ
56,58,60およびバンドパスフィルタ62を介し
て自乗平均化装置64で自乗平均され、レベルメータ6
6に各帯域ごとの出力(音圧レベル)が表示される。こ
の求められた音圧レベルを別途計測される吸音力(前記
吸音率測定と同様の方法で計測される)で補正すればパ
ワーレベルが求められる。FIG. 3 shows a system configuration of a conventional power level measuring device such as a speaker (a portion for performing sound absorption correction is omitted). A speaker 44 to be measured is arranged in the reverberation room 10. In addition, a plurality of microphones 46, 48, and 50 are arranged at appropriate locations in the reverberation room 10. The measurement of the sound pressure level is required for the measurement of the power level. The measurement configuration of the sound pressure level is as follows. A sound source signal 53 for measurement is output from a sound source waveform generating circuit 52 and is uttered from a speaker 44 via a power amplifier 54. The microphones 46, 48, and 50 collect the sound radiated into the reverberation room 10. The picked-up signal is root-mean-squared by a root-mean-squaring device 64 via head amplifiers 56, 58, 60 and a band-pass filter 62.
6 shows the output (sound pressure level) for each band. The power level can be obtained by correcting the obtained sound pressure level with a separately measured sound absorption power (measured by the same method as the sound absorption coefficient measurement).
【0005】ところで、吸音率等の吸音特性の測定では
残響減衰過程での音場拡散が、またパワーレベル等の音
圧特性測定では定常状態での音場拡散が測定精度に影響
を与える。このため、種々の測定基準(ISO等)で
は、残響室自体の形や大きさに種々の条件を設けている
ほか、図4(a)のように残響室10内に回転拡散板6
8を設置したり(主に、減衰過程の拡散改善に寄与す
る。)、図4(b)のように残響室10内に固定式の拡
散板70,72,74を設置する(主に、定常状態の拡
散改善に寄与する。)ことを促している。In the measurement of sound absorption characteristics such as sound absorption coefficient, sound field diffusion in the reverberation decay process affects sound accuracy, and in sound pressure characteristics such as power level, sound field diffusion in a steady state affects measurement accuracy. For this reason, in various measurement standards (such as ISO), various conditions are set for the shape and size of the reverberation chamber itself, and the rotating diffuser 6 is provided in the reverberation chamber 10 as shown in FIG.
8 (mainly contributes to the improvement of the diffusion in the attenuation process), and fixed diffusers 70, 72 and 74 are installed in the reverberation chamber 10 as shown in FIG. It contributes to the improvement of steady-state diffusion.)
【0006】[0006]
【発明が解決しようとする課題】前記図4のように拡散
板を用いる場合には、装置が大がかりとなり設置コスト
が高くなる欠点があった。特に、低音域まで拡散改善効
果を得ようにすると、寸法、重量とも巨大化する嫌いが
あった。また、拡散改善効果が僅少で、特に固定式拡散
板の場合は最適配置を決める方策がなく、非常に多くの
カット・アンド・トライを強いられていた。また、拡散
板は被測定材料(吸音材料、試作中の機械やスピーカ
等)の設置スペースを圧迫する傾向があった。When a diffusion plate is used as shown in FIG. 4, there is a disadvantage that the apparatus becomes large and the installation cost increases. In particular, when trying to obtain a diffusion improvement effect even in the low frequency range, there was a tendency that both the size and the weight were increased. In addition, the effect of improving the diffusion is small. Especially in the case of a fixed diffusion plate, there is no method for deciding the optimum arrangement, and a very large number of cuts and tries have been forced. Further, the diffusion plate tends to press down the installation space of the material to be measured (sound absorbing material, machine under test, speaker, etc.).
【0007】この発明は、前記従来の技術における欠点
を解決して、簡易な装置で音場拡散を実現して高精度の
音響特性測定を行えるようにした音響特性測定装置を提
供しようとするものである。SUMMARY OF THE INVENTION The present invention aims to provide an acoustic characteristic measuring device which solves the drawbacks of the conventional technique and realizes a sound field diffusion with a simple device so that highly accurate acoustic characteristic measurement can be performed. It is.
【0008】[0008]
【課題を解決するための手段】この発明は、基本的に、
測定室内に配置した複数のマイクと、前記測定室内に配
置した複数のスピーカと、前記複数のマイクからの収音
信号を前記複数のスピーカに供給する複数系統の信号経
路を有し前記複数のスピーカで発声された音が前記複数
のマイクに音響帰還される音響帰還経路を構成する電気
音響帰還ループと、前記複数のマイクから前記複数のス
ピーカに至る各々独立な複数の信号経路の当該複数のマ
イクと当該複数のスピーカの接続関係を時間的に切り換
えて音響帰還の空間平均化を図る信号経路切換手段と、
前記複数系統の信号経路中に配されてそれぞれの電気的
伝達特性を時間的に変化させて音響帰還信号の周波数領
域での平均化を図る電気的伝達特性変化手段とを配備す
ることにより、前記測定室内の音場拡散特性を改善しつ
つ音響特性測定を行うようにしたものである。SUMMARY OF THE INVENTION The present invention basically provides
A plurality of microphones arranged in the measurement room; a plurality of speakers arranged in the measurement room; and a plurality of signal paths for supplying sound pickup signals from the plurality of microphones to the plurality of speakers. And an electroacoustic feedback loop constituting an acoustic feedback path through which the sound uttered by the microphone is acoustically returned to the plurality of microphones, and the plurality of microphones on a plurality of independent signal paths from the plurality of microphones to the plurality of speakers. Signal path switching means for temporally switching the connection relationship between the plurality of speakers to spatially average acoustic feedback,
By disposing electric transfer characteristic changing means arranged in the signal paths of the plurality of systems to change each electric transfer characteristic over time to average in a frequency domain of the acoustic feedback signal, The acoustic characteristic is measured while improving the sound field diffusion characteristic in the measurement room.
【0009】尚、請求項2〜4は、音響特性測定として
吸音率や吸音力等の吸音特性を求めるために、残響特性
を計測するための構成であり、請求項5,6は音響特性
として発音源のパワーレベル等の音圧特性を求めるため
に、音圧レベルを計測するための構成である。[0009] Claims 2 to 4 are configurations for measuring reverberation characteristics in order to obtain sound absorption characteristics such as sound absorption coefficient and sound absorption power as acoustic characteristics measurement. Claims 5 and 6 are claims as acoustic characteristics. This is a configuration for measuring a sound pressure level in order to obtain a sound pressure characteristic such as a power level of a sound source.
【0010】この発明によれば、複数のスピーカと複数
のマイク間で電気音響帰還ループが構成され、信号切換
手段による信号経路の切換制御により音響帰還の空間平
均化が図られ、かつ電気的伝達特性変化手段により音響
帰還信号の周波数領域での平均化が図られる。したがっ
て、測定室内の音場が十分に拡散された状態で音響特性
の測定が行われるので、高精度の音響特性測定を行うこ
とができる。また、拡散板を用いることなく音場を拡散
でき、簡易な構成で実現することができる。According to the present invention, an electro-acoustic feedback loop is formed between a plurality of speakers and a plurality of microphones, and spatial averaging of acoustic feedback is achieved by switching control of a signal path by signal switching means, and electrical transmission is performed. Averaging in the frequency domain of the acoustic feedback signal is achieved by the characteristic changing means. Therefore, the acoustic characteristics are measured in a state where the sound field in the measurement room is sufficiently diffused, so that the acoustic characteristics can be measured with high accuracy. Further, the sound field can be diffused without using a diffusion plate, and can be realized with a simple configuration.
【0011】音響特性測定として吸音率、吸音力等の吸
音特性の測定を行うときは、試料、測定用スピーカおよ
び測定用マイクを残響室内に配置して、測定用スピーカ
から測定用音源を発声し、測定用音源の発声が終了した
後に測定用マイクで収音された信号の減衰過程を計測す
ることにより、残響時間を計測し、これに基づき試料の
吸音率や吸音力等の吸音特性を求めることができる。こ
の場合、吸音特性測定用のスピーカやマイクを電気音響
帰還ループを構成するスピーカやマイクと兼用すること
ができ、これにより構成をより簡素化することができ
る。When measuring sound absorption characteristics such as sound absorption coefficient and sound absorption force as acoustic characteristics measurement, a sample, a measurement speaker and a measurement microphone are arranged in a reverberation room, and a measurement sound source is uttered from the measurement speaker. The reverberation time is measured by measuring the decay process of the signal picked up by the measuring microphone after the sound of the measuring sound source is finished, and the sound absorption characteristics such as the sound absorption coefficient and the sound absorbing power of the sample are determined based on the reverberation time. be able to. In this case, the speaker or microphone for measuring the sound absorption characteristics can be used also as the speaker or microphone constituting the electroacoustic feedback loop, and the configuration can be further simplified.
【0012】また、音圧特性測定を行うときは、測定対
象の発音源(試作中の機械やスピーカ等)および測定用
マイクを残響室内に配置して、発音源から測定対象の音
を発声させ、このとき測定用マイクで収音される信号を
解析して周波数帯域ごとの出力レベルを測定することに
より、音圧レベル特性を求めることができる。また、前
記吸音特性の測定と同様の手法で測定室の残響時間を別
途計測し、これに基づき測定室の吸音力を求めて、前記
求められた音圧レベルを吸音力で補正することにより、
発音源から発声された音の音圧特性を測定することがで
きる。この場合、音圧特性測定用マイクは電気音響帰還
ループを構成するマイクと兼用されるだけでなく、吸音
力補正用の残響時間測定のためのマイクとしても兼用さ
れることになりこれにより、構成をさらに簡素化するこ
とができる。When measuring sound pressure characteristics, a sound source to be measured (e.g., a machine or a speaker under test) and a measurement microphone are arranged in a reverberation chamber, and the sound to be measured is uttered from the sound source. At this time, the sound pressure level characteristic can be obtained by analyzing the signal collected by the measurement microphone and measuring the output level for each frequency band. Further, by separately measuring the reverberation time of the measurement room in the same manner as the measurement of the sound absorption characteristics, to determine the sound absorption of the measurement room based on this, by correcting the determined sound pressure level with the sound absorption,
The sound pressure characteristic of the sound uttered from the sound source can be measured. In this case, the microphone for measuring sound pressure characteristics is used not only as a microphone constituting the electroacoustic feedback loop but also as a microphone for measuring reverberation time for sound absorption correction. Can be further simplified.
【0013】ところで、信号経路切換手段による信号経
路の切換速度は次のように定めることができる。いま、
吸音特性測定の場合を考えると、切換速度の下限は、通
常測定に使われる残響波形の観測範囲(−5dBから−3
5dB)を考えると、残響時間のほぼ半分、すなわちT60
/2の間に十分な拡散状態が得られる切換回数Nという
条件で決まってくる。十分な拡散が得られる切換回数N
とは最低で20回程度であり、T60=5秒とすると、切
換速度の下限値f1 (Hz)は、 f1 =20/(5/2) =8Hz となる。実際には、約10点での空間平均(自乗音圧領
域での平均)を行うのでこれよりもずっと低くてよく、
10-1/2(n点での平均化により変動はn-1/2になるた
め)程度すなわち、 f1 =3Hz 程度で吸音特性測定の減衰過程で十分な拡散状態が得ら
れる。By the way, the switching speed of the signal path by the signal path switching means can be determined as follows. Now
Considering the case of sound absorption characteristic measurement, the lower limit of the switching speed is determined by the reverberation waveform observation range (-5 dB to -3 dB) used for normal measurement.
5 dB), almost half of the reverberation time, ie, T 60
/ 2, it is determined on the condition that the number of switching times N can obtain a sufficient diffusion state. Number of switching N to obtain sufficient diffusion
Is about 20 times at the minimum, and when T 60 = 5 seconds, the lower limit value f 1 (Hz) of the switching speed is f 1 = 20 / (5/2) = 8 Hz. In practice, spatial averaging at about 10 points (average in the squared sound pressure area) is performed, so it may be much lower than this.
A sufficient diffusion state can be obtained in the attenuation process of the sound absorption characteristic measurement at about 10 −1/2 (since the fluctuation becomes n −1/2 by averaging at n points), that is, at about f 1 = 3 Hz.
【0014】一方、切換速度の上限値f2 (Hz)は、測
定帯域の周波数fcar と同等にならないつまりfcar と
f2 との間でビート等の干渉が起らない範囲という条件
で、例えばfcar /3程度が上限と考えられる。ISO
等では、観測帯域に十分な数のモードが確保されるこ
と、および125Hz以上の帯域で測定することを前提と
して、残響室容積を150〜200m3 と規定してい
る。つまり、1/1oct.の場合、125Hz帯域が一般的
ということになる。したがって、 fcar =100Hz が妥当であり、 f2 =fcar /3 すなわち、上限値f2 はほぼ30(Hz)となる。以上か
ら、信号切換手段による信号経路の切換速度は3Hz〜3
0Hzが妥当であると考えられる。On the other hand, the upper limit value f 2 (Hz) of the switching speed is not equal to the frequency f car of the measurement band, that is, the condition that the interference such as a beat does not occur between f car and f 2 is provided. For example, about f car / 3 is considered to be the upper limit. ISO
And the like, the reverberation chamber volume is defined as 150 to 200 m 3 on the assumption that a sufficient number of modes are secured in the observation band and measurement is performed in a band of 125 Hz or more. That is, in the case of 1/1 oct., A 125 Hz band is generally used. Therefore, f car = 100 Hz is appropriate, and f 2 = f car / 3, that is, the upper limit f 2 is approximately 30 (Hz). From the above, the switching speed of the signal path by the signal switching means is 3 Hz to 3 Hz.
0 Hz is considered reasonable.
【0015】尚、ホール等における音楽ユースの音場支
援の目的で複数系統の電気音響帰還ループを設けてこれ
らを時間的に切換える場合には、再生される音は人が観
賞するための音であるため上記のような切換速度では聴
感的に異和感を生じ使用できない(2Hz以下であること
が望ましい)が、音響特性の測定では、聴感に関係した
このような制約はないから、3Hz〜30Hzという切換周
期であっても使用することができる。When a plurality of electro-acoustic feedback loops are provided and the time is switched over for the purpose of supporting a sound field for music use in a hall or the like, the reproduced sound is a sound for human viewing. For this reason, the switching speed as described above causes a sense of incongruity and cannot be used (preferably 2 Hz or less). However, in the measurement of acoustic characteristics, since there is no such a restriction related to the perception, there is no such limitation. Even a switching cycle of 30 Hz can be used.
【0016】尚、電気音響帰還ループを構成する各信号
経路内に測定帯域に合致する帯域のみ通過させるバンド
パスフィルタを挿入すれば、切換速度を30Hzより高く
しても、ビート干渉等により発生する側帯波のスペクト
ラム成分をループ上からカットすることができる。した
がって、その場合は切換速度の上限は30Hzよりも高く
なる。If a band-pass filter that passes only a band matching the measurement band is inserted in each signal path constituting the electro-acoustic feedback loop, even if the switching speed is higher than 30 Hz, the signal is generated due to beat interference or the like. The spectrum component of the sideband can be cut from the loop. Therefore, in that case, the upper limit of the switching speed is higher than 30 Hz.
【0017】また、音圧特性の測定における切換速度も
吸音特性測定時の切換速度と同等に設定することができ
るが、音圧特性の測定は発音源が定常的に発声されてい
る音を計測するので、短時間に素早く切換えるという要
求はなく、出力レベルを計測する実効値回路の時定数を
十分大きくとれば切換速度の下限値は3Hzよりも低くす
ることができる。The switching speed in the measurement of the sound pressure characteristic can be set to be equal to the switching speed in the measurement of the sound absorption characteristic. However, the measurement of the sound pressure characteristic measures the sound whose sound source is uttered steadily. Therefore, there is no requirement for quick switching in a short time, and if the time constant of the effective value circuit for measuring the output level is made sufficiently large, the lower limit of the switching speed can be made lower than 3 Hz.
【0018】[0018]
(実施の形態1)この発明による吸音率測定の実施の形
態を図1に示す。前記図2と共通する部分には同一の符
号を用いる。この実施の形態では、電気音響帰還ループ
を構成するスピーカおよびマイクを測定用スピーカおよ
びマイクに兼用している。吸音率測定装置76は残響室
法吸音率を求めるための装置で、残響室10(平面図で
示す。)内には、測定対象の試料12(吸音材等)が配
置されている。試料12の周囲には複数のスピーカ1
4,16,18が配置され、また適宜の箇所に複数のマ
イク20,22,24が配置されている。(Embodiment 1) An embodiment of sound absorption coefficient measurement according to the present invention is shown in FIG. The same parts as those in FIG. 2 are denoted by the same reference numerals. In this embodiment, the speaker and the microphone constituting the electroacoustic feedback loop are also used as the measurement speaker and the microphone. The sound absorption coefficient measuring device 76 is a device for obtaining a sound absorption coefficient by a reverberation room method, and a sample 12 (a sound absorbing material or the like) to be measured is disposed in the reverberation room 10 (shown in a plan view). A plurality of speakers 1 are provided around the sample 12.
4, 16, 18 are arranged, and a plurality of microphones 20, 22, 24 are arranged at appropriate places.
【0019】音源波形発生回路26からはバンドノイ
ズ、フィルタードインパルス等の測定用音源信号27が
各系統で無相関に出力され、スイッチSW1,SW2,
SW3の接点1およびパワーアンプ28,30,32を
介してスピーカ14,16,18から発声される。マイ
ク20,22,24は残響室10内に放射された音を収
音する。その収音信号はヘッドアンプ34,36,38
を介して自乗平均化装置40で自乗平均され、自乗積分
解析装置42でM.R.Schroederのインパル
スレスポンス二乗積分法に基づいて残響波形の空間集合
平均が求められ、レベルレコーダ43等に残響波形が記
録されて(定常バンドノイズ法を用いる場合は、測定帯
域ごとに残響波形が記録されて)、これに基づき吸音特
性が求められる。A sound source signal 27 for measurement, such as band noise and filtered impulse, is output from the sound source waveform generating circuit 26 in a non-correlated manner in each system.
The speaker 14, 16, 18 produces a sound via the contact 1 of the switch SW 3 and the power amplifiers 28, 30, 32. The microphones 20, 22, and 24 collect the sound radiated into the reverberation room 10. The picked-up signals are output to the head amplifiers 34, 36, 38
Is averaged by a root-mean-square unit 40 through a square-meaning unit 40, R. The spatial set average of the reverberation waveform is calculated based on Schroeder's impulse response square integration method, and the reverberation waveform is recorded in the level recorder 43 or the like (when the steady band noise method is used, the reverberation waveform is recorded for each measurement band). T), sound absorption characteristics are required based on this.
【0020】尚、自乗平均化装置40への入力信号とし
ては、閉ループ上の場合であればどこから取り出しても
構わず、図1の構成のほかに例えばスイッチSW1,S
W2,SW3の各接点2から取り出す構成とすることが
できる。The input signal to the root-mean-square unit 40 may be taken from any place as long as it is on a closed loop. In addition to the configuration shown in FIG.
It can be configured to take out from each contact 2 of W2 and SW3.
【0021】ヘッドアンプ34,36,38の出力はA
FC(Active Field Control)機能部78に入力され
る。AFC機能部78は信号経路切換回路80と時変型
FIRフィルタ82,84,86とイコライザ88,9
0,92で構成されている。信号切換回路80は、3系
統の信号経路94,96,98を相互に時間的に順次繰
り返し切り換えるものである。The outputs of the head amplifiers 34, 36 and 38 are A
It is input to an FC (Active Field Control) function unit 78. The AFC function unit 78 includes a signal path switching circuit 80, time-varying FIR filters 82, 84, 86, and equalizers 88, 9
0,92. The signal switching circuit 80 repeatedly switches the three signal paths 94, 96, and 98 sequentially and temporally.
【0022】信号経路切換回路80による信号経路9
4,96,98の切換動作の一例を図5に示す。信号経
路切換回路80は一種のレベルマトリクスを構成し、3
系統の入力信号は、交互に入れ替わりながら一定周期で
3系統の出力1〜3に均等に順次配分される。3系統の
ゲインの総和は各時点において一定に保たれるように、
ゲイン変化は例えばサインカーブや三角波、あるいは上
記条件を満たす互いに独立なランダム信号等に従って連
続的に変化する。これによれば、3個のマイク20,2
2,24をそれらの設置位置間で相互に順次繰り返し位
置を入れ換えていくのと同等の効果が得られ、空間平均
化により伝達特性が平坦化される。なお、切換周期は例
えば1/30秒〜1/3秒(3Hz〜30Hz)程度に設定
する。Signal path 9 by signal path switching circuit 80
An example of the switching operation of 4, 96, 98 is shown in FIG. The signal path switching circuit 80 forms a kind of level matrix,
The input signals of the systems are equally distributed to the outputs 1 to 3 of the three systems at a constant cycle while being alternately replaced. To keep the sum of the gains of the three systems constant at each time point,
The gain changes continuously according to, for example, a sine curve or a triangular wave, or independent random signals satisfying the above conditions. According to this, three microphones 20, 2
The same effect is obtained as when the positions 2, 24 are repeatedly and alternately switched between their installation positions, and the transfer characteristics are flattened by spatial averaging. The switching cycle is set to, for example, about 1/30 sec to 1/3 sec (3 Hz to 30 Hz).
【0023】信号経路切換回路80の出力1〜3から出
力される3系統の出力信号は、時変型FIRフィルタ8
2,84,86に入力されて、反射音信号がそれぞれ生
成される。時変型FIRフィルタ82,84,86の反
射音パラメータは、相互に異なるパラメータに設定さ
れ、かつ個別に図6に示すように時間軸上で、さらに必
要に応じてレベル軸上で連続的かつランダムに変動され
る。これにより、時変型FIRフィルタ82,84,8
6が固定型である場合に生じる周波数特性の乱れを低減
して周波数特性が大幅に平均化される。なお、パラメー
タの時間軸の変動は、変動による側帯波のスペクトルが
計測帯域を超えない範囲で(例えば0.25msec〜
5msecの変動幅で)時変型FIRフィルタ82,8
4,86の出力タップを無相関に動かすことで実現され
る。The output signals of the three systems output from the outputs 1 to 3 of the signal path switching circuit 80 are supplied to the time-varying FIR filter 8.
2, 84 and 86 to generate reflected sound signals. The reflected sound parameters of the time-varying FIR filters 82, 84, 86 are set to mutually different parameters, and individually and continuously and randomly on the time axis as shown in FIG. Is changed to Thereby, the time-varying FIR filters 82, 84, 8
Disturbance of the frequency characteristics that occurs when 6 is a fixed type is reduced, and the frequency characteristics are greatly averaged. In addition, the fluctuation of the time axis of the parameter is within a range where the spectrum of the sideband wave due to the fluctuation does not exceed the measurement band (for example, 0.25 msec to
Time-varying FIR filters 82 and 8 (with a fluctuation range of 5 msec)
This is realized by moving the 4,86 output taps uncorrelated.
【0024】時変型FIRフィルタ82,84,86か
ら出力される信号は、イコライザ88,90,92に入
力されて、使用する部屋やスピーカ14,16,18の
設置場所等に起因する周波数特性上の固有のうねりを大
まかに平坦化する。イコライザ88,90,92の特性
は例えばハウリングポイントに対して各系のループゲイ
ン上のピークが−12dBになるように各周波数帯域毎に
自動または手動で調整されるまた、イコライザ88,9
0,92を測定帯域に合致する帯域のみ通過させるバン
ドパスフィルタとして用いれば、信号切換回路80の切
換周期を前述した30Hzよりも高くした場合でも、ビー
ト干渉等により発生する側帯波のスペクトル成分はルー
プ上からカットされ、測定結果への悪影響を合理的に回
避できる。また、同様の目的のバンドパスフィルタとし
ては後述する図9のバンドパスフィルタ62の位置に入
れることも可能である。Signals output from the time-varying FIR filters 82, 84, 86 are input to equalizers 88, 90, 92, and are subjected to frequency characteristics due to the room to be used and the installation locations of the speakers 14, 16, 18 and the like. To roughly flatten the inherent swell of. The characteristics of the equalizers 88, 90, and 92 are automatically or manually adjusted for each frequency band so that the peak on the loop gain of each system becomes -12 dB with respect to the howling point.
If 0, 92 is used as a band-pass filter that passes only the band that matches the measurement band, even if the switching cycle of the signal switching circuit 80 is set higher than the above-described 30 Hz, the spectral component of the sideband generated due to beat interference or the like is reduced. It is cut off from the loop, so that adverse effects on the measurement result can be rationally avoided. Further, as a band-pass filter for the same purpose, it is also possible to insert a band-pass filter 62 in FIG. 9 described later.
【0025】イコライザ88,90,92から出力され
る信号は、スイッチSW1,SW2,SW3の接点2に
供給される。以上により、スピーカ14,16,18か
ら発声された音がマイク20,22,24に音響帰還さ
れて、さらに信号経路94,96,98を通って再びス
ピーカ14,16,18に至る3系統の独立した電気音
響帰還ループ100(すなわち独立な複数の信号経路)
が構成される。The signals output from the equalizers 88, 90 and 92 are supplied to the contacts 2 of the switches SW1, SW2 and SW3. As described above, the sound uttered from the speakers 14, 16, 18 is acoustically returned to the microphones 20, 22, 24, and further passes through the signal paths 94, 96, 98 to reach the speakers 14, 16, 18 again. Independent electroacoustic feedback loop 100 (ie, independent signal paths)
Is configured.
【0026】図1の吸音率測定装置76による吸音率の
測定方法について説明する。はじめにスイッチSW1,
SW2,SW3を接点1側に接続した状態で音源波形発
生回路26から測定用音源信号27が出力される。定常
バンドノイズ法では、測定用信号27として、各系統
(3系統)で無相関なバンドノイズが用いられる。この
バンドノイズの出力を開始後、音場が定常状態に達して
からスイッチSW1,SW2,SW3を接点2側に倒し
て音源を断とする。また、インパルス自乗積分法(Schr
oeder 法)の場合は、音源波形発生回路26から測定用
信号27として短音(filtered impulse)を出力し、す
ぐにスイッチSW1,SW2,SW3を接点2側に倒
す。The method of measuring the sound absorption coefficient by the sound absorption coefficient measuring device 76 of FIG. 1 will be described. First, the switches SW1,
A sound source signal 27 for measurement is output from the sound source waveform generating circuit 26 with SW2 and SW3 connected to the contact 1 side. In the stationary band noise method, uncorrelated band noise in each system (three systems) is used as the measurement signal 27. After the output of the band noise is started, when the sound field reaches a steady state, the switches SW1, SW2, and SW3 are turned to the contact 2 side to turn off the sound source. The impulse square integration method (Schr
In the case of the oeder method, a short tone (filtered impulse) is output from the sound source waveform generation circuit 26 as the measurement signal 27, and the switches SW1, SW2, and SW3 are immediately turned to the contact 2 side.
【0027】スイッチSW1,SW2,SW3を接点2
側に倒すことによって電気音響帰還ループ100が形成
されて、残響室10は残響減衰過程に入る。この残響減
衰過程で信号経路切換回路80による切換動作により、
音響帰還の空間平均化が図られる。また、時変型FIR
フィルタ82,84,86のパラメータが時々刻々変化
し、測定系の境界条件が微妙に変化することにより、各
系統(3系統)の信号経路94,96,98のループゲ
インが周波数領域で平均化(平坦化)される。この平均
化効果により、音場拡散が改善されると同時に、電気音
響帰還ループ100のループゲインを安定に上昇させる
ことができる。結果として、観測される残響時間は、1
倍から数倍の範囲で延長されることになる。そして、音
場が拡散改善された結果、残響減衰波形はdB軸上におい
て滑らかな直線減衰に近づき、拡散不足による残響減衰
波形の変動や湾曲に起因する誤差がほとんど除去され
る。Switches SW1, SW2 and SW3 are connected to contact 2
By turning it to the side, an electroacoustic feedback loop 100 is formed, and the reverberation chamber 10 enters a reverberation attenuation process. In this reverberation decay process, the switching operation by the signal path switching circuit 80 causes
Spatial averaging of acoustic feedback is achieved. In addition, time-varying FIR
The parameters of the filters 82, 84, and 86 change every moment, and the boundary conditions of the measurement system slightly change, so that the loop gains of the signal paths 94, 96, and 98 of each system (three systems) are averaged in the frequency domain. (Flattened). By this averaging effect, the sound field diffusion is improved, and at the same time, the loop gain of the electroacoustic feedback loop 100 can be stably increased. As a result, the observed reverberation time is 1
It will be extended from double to several times. Then, as a result of the diffusion improvement of the sound field, the reverberation decay waveform approaches a smooth linear attenuation on the dB axis, and errors due to fluctuation and curvature of the reverberation decay waveform due to insufficient diffusion are almost eliminated.
【0028】残響減衰過程において、自乗平均化装置4
0は、各系統からの入力Pi(t)に対し、In the reverberation decay process, the root mean squarer 4
0 corresponds to the input Pi (t) from each system.
【0029】[0029]
【数1】 但し、nは平均化を行う点数を出力する。そして、定常
バンドノイズ法の場合は、自乗平均化装置40の出力を
レベルレコーダ43に供給して残響波形を記録する。ま
た、インパルス自乗積分法の場合は、自乗平均化装置4
0の出力を自乗積分解析装置42に供給して残響波形の
空間集合平均を得る。以上の手順を、残響室10内に試
料12を配置した場合と、配置しない場合について行っ
て、両測定での残響時間の差を求めることにより、試料
12の吸音率を求めることができる。(Equation 1) Here, n outputs a score for averaging. Then, in the case of the stationary band noise method, the output of the root mean squarer 40 is supplied to the level recorder 43 to record a reverberation waveform. In the case of the impulse square integration method, the square averaging device 4
The output of 0 is supplied to the square integration analyzer 42 to obtain the spatial set average of the reverberation waveform. The above procedure is performed for the case where the sample 12 is arranged in the reverberation room 10 and for the case where the sample 12 is not arranged. By calculating the difference between the reverberation times in both measurements, the sound absorption coefficient of the sample 12 can be obtained.
【0030】図7は、図1の吸音率測定装置76によっ
て測定した残響減衰波形を示すものである。これは、ス
イッチSW1,SW2,SW3の接点2の信号を自乗平
均化装置40に入力した場合のものである。使用した残
響室10の広さは273m3である。(a0 )は信号切
換回路80の切換動作および時変形FIRフィルタ8
2,84,86の時変動作をオフしかつスイッチSW
1,SW2,SW3を接点1側に倒したまま(ループ1
00は開放)にした時の波形、(a)は信号切換回路8
0の切換動作および時変型FIRフィルタ82,84,
86の時変動作をオンしかつスイッチSW1,SW2,
SW3を接点1側に倒したまま(ループ100は開放)
にした時の波形、(b)は信号切換回路80の切換動作
および時変型FIRフィルタ82,84,86の時変動
作をオンしかつスイッチSW1,SW2,SW3を音源
波形の断とともに接点1から接点2に切り換えた時(ル
ープ100は閉)の波形である。これによれば、信号切
換回路80の切換動作および時変型FIRフィルタ8
2,84,86の時変動作をオンしかつループ100を
形成した状態で残響減衰させることにより、(b)のよ
うに残響減衰波形が滑らかな直線減衰に近づき、拡散不
足による残響減衰波形の変動や湾曲に起因する誤差がほ
とんど除去されることがわかる。FIG. 7 shows a reverberation decay waveform measured by the sound absorption coefficient measuring device 76 of FIG. This is a case where the signal at the contact 2 of the switches SW1, SW2, and SW3 is input to the root mean square device 40. The size of the reverberation room 10 used is 273 m 3 . (A 0 ) shows the switching operation of the signal switching circuit 80 and the time-variant FIR filter 8.
2, 84 and 86 are turned off and the switch SW
With SW1, SW2 and SW3 tilted to the contact 1 side (Loop 1
00 is open), (a) is a signal switching circuit 8
0 switching operation and time-varying FIR filters 82, 84,
86, and switches SW1, SW2,
Keep SW3 down to contact 1 (loop 100 is open)
(B), the switching operation of the signal switching circuit 80 and the time-varying operations of the time-varying FIR filters 82, 84, 86 are turned on, and the switches SW1, SW2, and SW3 are turned off from the contact 1 together with the disconnection of the sound source waveform. This is a waveform when switching to the contact 2 (the loop 100 is closed). According to this, the switching operation of the signal switching circuit 80 and the time-varying FIR filter 8
By turning on the time-varying operations of 2, 84, and 86 and attenuating the reverberation while the loop 100 is formed, the reverberation attenuation waveform approaches a smooth linear attenuation as shown in FIG. It can be seen that errors due to fluctuations and curvatures are almost completely eliminated.
【0031】尚、スイッチSW1,SW2,SW3に代
えて、図8の吸音率測定装置76’に示すように加算器
102,104,106を用いることによりスイッチ切
換えを不要にすることもできる。By using adders 102, 104 and 106 instead of the switches SW1, SW2 and SW3, as shown in a sound absorption coefficient measuring device 76 'in FIG. 8, the switching can be made unnecessary.
【0032】(実施の形態2)この発明によるスピーカ
のパワーレベル測定の実施の形態を図9に示す。パワー
レベルの測定には、測定室内での音圧レベル測定に加
え、測定された音圧レベルに対し別途吸音力による補正
が必要であるが、吸音力測定は上述した吸音率測定と同
様の残響時間測定に基づき求められる。以下、音圧レベ
ルの測定についてのみ記す。また、前記図3と共通する
部分には同一の符号を用いる。この実施の形態では、電
気音響帰還ループを構成するマイクを測定用マイクに兼
用している。パワーレベル測定装置108において、残
響室10内には、測定対象のスピーカ44が配置されて
いる。また、残響室10内の適宜の箇所には複数のマイ
ク46,48,50が配置されている。音源波形発生回
路52からはピンクノイズまたはウォーブルトーン等の
測定用音源信号53が出力され、パワーアンプ54を介
してスピーカ44から発声される。マイク46,48,
50は残響室10内に放射された音を収音する。その収
音信号はヘッドアンプ56,58,60および系統ごと
にバンドパスフィルタ62を介して自乗平均化装置64
で自乗平均され、レベルメータ66に各帯域ごとの出力
(音圧レベル)が表示される。(Embodiment 2) FIG. 9 shows an embodiment of the power level measurement of a speaker according to the present invention. To measure the power level, in addition to the measurement of the sound pressure level in the measurement room, it is necessary to separately correct the measured sound pressure level with sound absorption power. Determined based on time measurements. Hereinafter, only the measurement of the sound pressure level will be described. In addition, the same reference numerals are used for the portions common to FIG. In this embodiment, the microphone constituting the electroacoustic feedback loop is also used as the measurement microphone. In the power level measuring device 108, a speaker 44 to be measured is arranged in the reverberation room 10. In addition, a plurality of microphones 46, 48, and 50 are arranged at appropriate locations in the reverberation room 10. A sound source signal 53 for measurement such as a pink noise or a wobble tone is output from a sound source waveform generating circuit 52, and is output from a speaker 44 via a power amplifier 54. Microphones 46, 48,
50 collects the sound radiated into the reverberation room 10. The picked-up signal is passed through head amplifiers 56, 58, 60 and a band-pass filter 62 for each system, and is used as a root mean squarer 64.
The output (sound pressure level) of each band is displayed on the level meter 66.
【0033】ヘッドアンプ56,58,60の出力はA
FC機能部110に入力される。AFC機能部110の
構成および機能は前記図1のAFC機能部78と同じで
ある。AFC機能部110の3系統の出力は信号経路1
12,114,116からパワーアンプ118,12
0,122を介して残響室10内に配置されたスピーカ
124,126,128に供給され、これにより3系統
の独立した電気音響帰還ループ130(すなわち独立な
複数の信号経路)が構成される。The outputs of the head amplifiers 56, 58 and 60 are A
It is input to the FC function unit 110. The configuration and functions of the AFC function unit 110 are the same as those of the AFC function unit 78 in FIG. The outputs of the three systems of the AFC function unit 110 are signal path 1
12, 114, 116 to power amplifiers 118, 12
The signals are supplied to the speakers 124, 126, and 128 disposed in the reverberation room 10 via 0 and 122, thereby forming three independent electroacoustic feedback loops 130 (that is, a plurality of independent signal paths).
【0034】図8のパワーレベル測定装置108による
スピーカ44のパワーレベルの測定方法について説明す
る。音源波形発生回路52から測定用音源信号53を出
力し、スピーカ44から発声させる。音場が定常状態に
達した後、マイク46,48,50の収音信号をバンド
パスフィルタ62経由で自乗平均化装置64に供給し、
その結果をレベルメータ66に表示させる。これによ
り、各帯域ごとの出力(音圧レベル)が求められる。こ
の出力を吸音力補正してパワーレベルが求められる。A method of measuring the power level of the speaker 44 by the power level measuring device 108 shown in FIG. 8 will be described. The measurement sound source signal 53 is output from the sound source waveform generation circuit 52, and is output from the speaker 44. After the sound field reaches a steady state, the picked-up signals of the microphones 46, 48, 50 are supplied to a root-mean-squaring device 64 via a band-pass filter 62,
The result is displayed on the level meter 66. Thereby, the output (sound pressure level) for each band is obtained. The power level is determined by correcting the sound absorption of this output.
【0035】尚、前記各実施の形態では電気音響帰還ル
ープの系統数を3としたが、2または4以上の系統数に
することもできる。Although the number of systems of the electroacoustic feedback loop is three in each of the above embodiments, the number of systems may be two or four or more.
【図1】 この発明による吸音率測定装置の実施の形態
を示す図で、残響室内の配置を示す平面図およびシステ
ム構成を示すブロック図である。FIG. 1 is a diagram showing an embodiment of a sound absorption coefficient measuring apparatus according to the present invention, which is a plan view showing an arrangement in a reverberation room and a block diagram showing a system configuration.
【図2】 従来の吸音率測定装置を示す図で、残響室内
の配置を示す平面図およびシステム構成を示すブロック
図である。FIG. 2 is a diagram showing a conventional sound absorption coefficient measuring apparatus, and is a plan view showing an arrangement in a reverberation chamber and a block diagram showing a system configuration.
【図3】 従来のスピーカのパワーレベル測定装置を示
す図で、残響室内の配置を示す平面図およびシステム構
成を示すブロック図である。FIG. 3 is a diagram showing a conventional power level measuring device for a speaker, and is a plan view showing an arrangement in a reverberation room and a block diagram showing a system configuration.
【図4】 従来用いられていた拡散板の配置状態を示す
残響室の側面図である。FIG. 4 is a side view of a reverberation room showing an arrangement state of a diffusion plate used conventionally.
【図5】 図1の信号経路切換回路80の入出力の切換
動作を示す線図である。FIG. 5 is a diagram showing an input / output switching operation of the signal path switching circuit 80 of FIG. 1;
【図6】 図1の時変型FIRフィルタ82,84,8
6のパラメータの時変動作を示す図である。FIG. 6 is a time-varying FIR filter 82, 84, 8 of FIG.
FIG. 9 is a diagram showing a time-varying operation of a parameter No. 6;
【図7】 図1の吸音率測定装置による拡散改善の測定
例を示す残響減衰波形図である。FIG. 7 is a reverberation decay waveform diagram showing a measurement example of diffusion improvement by the sound absorption coefficient measuring device of FIG. 1;
【図8】 図1の吸音率測定装置のスイッチSW1,S
W2,SW3を加算器に置き換えた構成を示す図であ
る。FIG. 8 shows switches SW1, S of the sound absorption coefficient measuring apparatus of FIG.
FIG. 14 is a diagram illustrating a configuration in which W2 and SW3 are replaced with adders.
【図9】 この発明によるスピーカのパワーレベル測定
装置の実施の形態を示す図で、残響室内の配置を示す平
面図およびシステム構成を示すブロック図である。FIG. 9 is a diagram showing an embodiment of a speaker power level measuring apparatus according to the present invention, which is a plan view showing an arrangement in a reverberation room and a block diagram showing a system configuration.
10 残響室(測定室) 12 吸音率測定対象の試料 14,16,18,124,126,128 スピーカ 20,22,24,46,48,50 マイク 26 音源波形発生回路(測定用音源信号注入手段) 27,53 測定用音源信号 42 自乗積分解析装置(測定手段) 43 レベルレコーダ(測定手段) 44 パワーレベル測定対象スピーカ(発音源) 52 音源波形発生回路(測定用音源信号供給手段) 66 レベルメータ(測定手段) 76,76’ 吸音率測定装置(音響特性測定装置) 80 信号経路切換回路(信号経路切換手段) 82,84,86 時変型FIRフィルタ(電気的伝達
特性変化手段) 94,96,98,112,114,116 信号経路 100,130 電気音響帰還ループ 108 パワーレベル測定装置(音響特性測定装置)Reference Signs List 10 reverberation room (measurement room) 12 sample to be measured for sound absorption coefficient 14, 16, 18, 124, 126, 128 speaker 20, 22, 24, 46, 48, 50 microphone 26 sound source waveform generating circuit (source for injection of sound source signal for measurement) 27, 53 Sound source signal for measurement 42 Square integration analyzer (measuring means) 43 Level recorder (measuring means) 44 Speaker for power level measurement (sound source) 52 Sound source waveform generating circuit (measuring sound source signal supplying means) 66 Level meter (Measuring means) 76, 76 'Sound absorption coefficient measuring device (acoustic characteristic measuring device) 80 Signal path switching circuit (signal path switching means) 82, 84, 86 Time-varying FIR filter (electrical transfer characteristic changing means) 94, 96, 98, 112, 114, 116 Signal path 100, 130 Electroacoustic feedback loop 108 Power level measurement device (acoustic characteristic measurement Device)
Claims (6)
に供給する複数系統の信号経路を有し前記複数のスピー
カで発声された音が前記複数のマイクに音響帰還される
音響帰還経路を構成する電気音響帰還ループと、 前記複数のマイクから前記複数のスピーカに至る各々独
立な複数の信号経路の当該複数のマイクと当該複数のス
ピーカの接続関係を時間的に切り換えて音響帰還の空間
平均化を図る信号経路切換手段と、 前記複数系統の信号経路中に配されてそれぞれの電気的
伝達特性を時間的に変化させて音響帰還信号の周波数領
域での平均化を図る電気的伝達特性変化手段と、 前記マイクからの収音信号を解析して音響測定する測定
手段とを有し、 前記測定室内の音場拡散特性を改善しつつ、音響特性を
測定することを特徴とする音響特性測定装置。A plurality of microphones arranged in a measurement room; a plurality of speakers arranged in the measurement room; and a plurality of signal paths for supplying picked-up signals from the plurality of microphones to the plurality of speakers. And an electroacoustic feedback loop forming an acoustic feedback path in which sounds uttered by the plurality of speakers are acoustically returned to the plurality of microphones; and a plurality of independent signal paths from the plurality of microphones to the plurality of speakers. Signal path switching means for temporally switching the connection relationship between the plurality of microphones and the plurality of speakers to spatially average acoustic feedback; and electrical transmission characteristics arranged in the plurality of signal paths. Electrical transfer characteristic changing means for temporally changing the acoustic feedback signal to average in the frequency domain, and measuring means for analyzing the sound pickup signal from the microphone and measuring the sound. A, while improving the sound field diffusion characteristics of the measuring chamber, the acoustics measuring apparatus characterized by measuring the acoustic characteristics.
室内に配置した複数のマイクと、 前記測定室内に配置した複数のスピーカと、 前記複数のマイクからの収音信号を前記複数のスピーカ
に供給する複数系統の信号経路を有し前記複数のスピー
カで発声された音が前記複数のマイクに音響帰還される
音響帰還経路を構成する電気音響帰還ループと、 前記複数のマイクから前記複数のスピーカに至る各々独
立な複数の信号経路の当該複数のマイクと当該複数のス
ピーカの接続関係を1秒間に3乃至30回の速さで時間
的に切り換えて音響帰還の空間平均化を図る信号経路切
換手段と、 前記複数系統の信号経路中に配されてそれぞれの電気的
伝達特性を時間的に変化させて音響帰還信号の周波数領
域での平均化を図る電気的伝達特性変化手段と、 前記電気音響帰還ループを構成するスピーカを兼用して
または専用に設けられて前記測定室内で測定用音源を発
声する測定用スピーカと、 前記電気音響帰還ループを構成するマイクを兼用してま
たは専用に設けられて前記測定室内の音を収音する測定
用マイクと、 前記測定用音源の発声が終了後の前記測定用マイクから
の収音信号の減衰過程を計測を測定手段とを有し、 前記測定室内の音場拡散特性を改善しつつ、音響特性を
測定することを特徴とする音響特性測定装置。2. A plurality of microphones arranged in a measurement room in which a sample whose sound absorption characteristics are to be measured is arranged; a plurality of speakers arranged in the measurement room; and a plurality of speakers collecting sound signals from the plurality of microphones. An electro-acoustic feedback loop having a plurality of signal paths for supplying a sound uttered by the plurality of speakers and constituting an acoustic feedback path acoustically fed back to the plurality of microphones; and A signal path for spatially averaging acoustic feedback by temporally switching the connection relationship between the plurality of microphones and the plurality of speakers in a plurality of independent signal paths to the speaker at a rate of 3 to 30 times per second. Switching means; and electric transmission characteristic changing means arranged in the signal paths of the plurality of systems to change respective electric transmission characteristics with time so as to average an acoustic feedback signal in a frequency domain. And a speaker for measuring the sound source for measurement in the measurement chamber, which is provided also or exclusively for the speaker constituting the electro-acoustic feedback loop, and also serves as a microphone for constituting the electro-acoustic feedback loop or A measuring microphone provided exclusively for collecting sound in the measuring chamber, and measuring means for measuring an attenuation process of a collected signal from the measuring microphone after utterance of the measuring sound source is completed. An acoustic characteristic measuring apparatus for measuring an acoustic characteristic while improving a sound field diffusion characteristic in the measurement room.
室内に配置した複数のマイクと、 前記測定室内に配置した複数のスピーカと、 前記複数のマイクからの収音信号を前記複数のスピーカ
に供給する複数系統の信号経路を有し前記複数のスピー
カで発声された音が前記複数のマイクに音響帰還される
音響帰還経路を構成する電気音響帰還ループと、 前記複数のマイクから前記複数のスピーカに至る各々独
立な複数の信号経路の当該複数のマイクと当該複数のス
ピーカの接続関係を時間的に切り換えて音響帰還の空間
平均化を図る信号経路切換手段と、 前記複数系統の信号経路中に配されてそれぞれの電気的
伝達特性を時間的に変化させて音響帰還信号の周波数領
域での平均化を図る電気的伝達特性変化手段と、 前記電気音響帰還ループを構成するスピーカを兼用して
または専用に設けられて前記測定室内で測定用音源を発
声する測定用スピーカと、 前記測定用音源の発声が終了後の前記マイクからの収音
信号の減衰過程を計測を測定手段とを有し、 前記測定室内の音場拡散特性を改善しつつ、音響特性を
測定することを特徴とする音響特性測定装置。3. A plurality of microphones arranged in a measurement room in which a sample whose sound absorption characteristic is to be measured is arranged; a plurality of speakers arranged in the measurement room; and a plurality of speakers collecting sound signals from the plurality of microphones. An electro-acoustic feedback loop having a plurality of signal paths for supplying a sound uttered by the plurality of speakers and constituting an acoustic feedback path acoustically fed back to the plurality of microphones; and Signal path switching means for temporally switching a connection relationship between the plurality of microphones and the plurality of speakers in a plurality of independent signal paths to the speaker to spatially average acoustic feedback; and Means for changing the respective electric transfer characteristics with time to average the acoustic feedback signal in the frequency domain, and said electro-acoustic feedback loop A measuring speaker, which is also provided as a dedicated speaker or is provided exclusively, and utters a measuring sound source in the measuring chamber; and measures an attenuation process of a sound pickup signal from the microphone after the utterance of the measuring sound source is completed. And measuring means for measuring acoustic characteristics while improving a sound field diffusion characteristic in the measurement room.
室内に配置した複数のマイクと、 前記測定室内に配置した複数のスピーカと、 前記複数のマイクからの収音信号を前記複数のスピーカ
に供給する複数系統の信号経路を有し前記複数のスピー
カで発声された音が前記複数のマイクに音響帰還される
音響帰還経路を構成する電気音響帰還ループと、 前記複数のマイクから前記複数のスピーカに至る各々独
立な複数の信号経路の当該複数のマイクと当該複数のス
ピーカの接続関係を時間的に切り換えて音響帰還の空間
平均化を図る信号経路切換手段と、 前記複数系統の信号経路中に配されてそれぞれの電気的
伝達特性を時間的に変化させて音響帰還信号の周波数領
域での平均化を図る電気的伝達特性変化手段と、 前記信号経路のいずれかの箇所に測定用音源信号を注入
して前記スピーカから発声させる測定用音源信号注入手
段と、 前記電気音響帰還ループを構成するマイクを兼用してま
たは専用に設けられて前記測定室内の音を収音する測定
用マイクと、 前記測定用音源の発声が終了後の前記測定用マイクから
の収音信号の減衰過程を計測を測定手段とを有し、 前記測定室内の音場拡散特性を改善しつつ、音響特性を
測定することを特徴とする音響特性測定装置。4. A plurality of microphones arranged in a measurement room in which a sample whose sound absorption characteristics are to be measured is arranged; a plurality of speakers arranged in the measurement room; and a plurality of speakers collecting sound signals from the plurality of microphones. An electro-acoustic feedback loop having a plurality of signal paths for supplying a sound uttered by the plurality of speakers and constituting an acoustic feedback path acoustically fed back to the plurality of microphones; and Signal path switching means for temporally switching a connection relationship between the plurality of microphones and the plurality of speakers in a plurality of independent signal paths to the speaker to spatially average acoustic feedback; and An electric transfer characteristic changing means arranged to change the respective electric transfer characteristics with time to average the acoustic feedback signal in the frequency domain; and any one of the signal paths. A sound source signal injecting means for injecting a sound source signal for measurement into a location and uttering the sound from the speaker; and a microphone which constitutes the electroacoustic feedback loop or is provided exclusively and collects the sound in the measuring chamber. A measuring microphone to measure, and measuring means for measuring an attenuation process of a picked-up signal from the measuring microphone after the utterance of the measuring sound source is completed, while improving a sound field diffusion characteristic in the measuring room. And an acoustic characteristic measuring apparatus for measuring acoustic characteristics.
定室内に配置した複数のマイクと、 前記測定室内に配置した複数のスピーカと、 前記複数のマイクからの収音信号を前記複数のスピーカ
に供給する複数系統の信号経路を有し前記複数のスピー
カで発声された音が前記複数のマイクに音響帰還される
音響帰還経路を構成する電気音響帰還ループと、 前記複数のマイクから前記複数のスピーカに至る各々独
立な複数の信号経路の当該複数のマイクと当該複数のス
ピーカの接続関係を時間的に切り換えて音響帰還の空間
平均化を図る信号経路切換手段と、 前記複数系統の信号経路中に配されてそれぞれの電気的
伝達特性を時間的に変化させて音響帰還信号の周波数領
域での平均化を図る電気的伝達特性変化手段と、 前記発音源から測定対象の音が発声されている際に前記
マイクからの収音信号を解析して周波数帯域ごとの出力
レベルを測定する測定手段とを有し、 前記測定室内の音場拡散特性を改善しつつ、音響特性を
測定することを特徴とする音響特性測定装置。5. A plurality of microphones arranged in a measurement room in which a sound source to be measured for sound pressure characteristics is arranged; a plurality of speakers arranged in the measurement room; and a plurality of sound pickup signals from the plurality of microphones. An electroacoustic feedback loop having a plurality of signal paths for supplying to the speakers, and forming an acoustic feedback path in which sounds uttered by the plurality of speakers are acoustically returned to the plurality of microphones; and Signal path switching means for temporally switching a connection relationship between the plurality of microphones and the plurality of speakers in a plurality of independent signal paths to a plurality of speakers to spatially average sound feedback; and An electric transfer characteristic changing means arranged in a path to change respective electric transfer characteristics with time to average an acoustic feedback signal in a frequency domain; and Measuring means for analyzing the collected signal from the microphone when the sound is being uttered and measuring the output level for each frequency band, while improving the sound field diffusion characteristics in the measurement room, An acoustic characteristic measuring device for measuring characteristics.
測定室内に配置した複数のマイクと、 前記測定室内に前記測定対象スピーカと別に配置した複
数のスピーカと、 前記複数のマイクからの収音信号を前記複数のスピーカ
に供給する複数系統の信号経路を有し前記複数のスピー
カで発声された音が前記複数のマイクに音響帰還される
音響帰還経路を構成する電気音響帰還ループと、 前記測定対象スピーカに測定用音源信号を供給して発声
させる測定用音源信号供給手段と、 前記複数のマイクから前記複数のスピーカに至る各々独
立な複数の信号経路の当該複数のマイクと当該複数のス
ピーカの接続関係を時間的に切り換えて音響帰還の空間
平均化を図る信号経路切換手段と、 前記複数系統の信号経路中に配されてそれぞれの電気的
伝達特性を時間的に変化させて音響帰還信号の周波数領
域での平均化を図る電気的伝達特性変化手段と、 前記測定用音源信号を前記測定対象スピーカに供給して
いる際に前記マイクからの収音信号を解析して周波数帯
域ごとの出力レベルを測定する測定手段とを有し、 前記測定室内の音場拡散特性を改善しつつ、音響特性を
測定することを特徴とする音響特性測定装置。6. A plurality of microphones arranged in a measurement room in which speakers for which sound pressure characteristics are to be measured are arranged; a plurality of speakers arranged in the measurement room separately from the speakers to be measured; An electroacoustic feedback loop having a plurality of signal paths for supplying a sound signal to the plurality of speakers and forming an acoustic feedback path in which sound uttered by the plurality of speakers is acoustically returned to the plurality of microphones; A measurement sound source signal supply unit that supplies a measurement sound source signal to the speaker to be measured and utters the sound, a plurality of microphones and a plurality of speakers in a plurality of independent signal paths from the plurality of microphones to the plurality of speakers. Signal path switching means for temporally switching the connection relationship between the signal paths to spatially equalize acoustic feedback; and electric transmissions respectively arranged in the plurality of signal paths. Electrical transfer characteristic changing means for averaging the acoustic feedback signal in the frequency domain by changing the characteristic over time, and acquiring from the microphone when the measurement sound source signal is supplied to the speaker to be measured. A measuring means for analyzing a sound signal to measure an output level for each frequency band, and measuring an acoustic characteristic while improving a sound field diffusion characteristic in the measuring room.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08184897A JP3329224B2 (en) | 1997-03-15 | 1997-03-15 | Acoustic characteristics measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08184897A JP3329224B2 (en) | 1997-03-15 | 1997-03-15 | Acoustic characteristics measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10260077A true JPH10260077A (en) | 1998-09-29 |
JP3329224B2 JP3329224B2 (en) | 2002-09-30 |
Family
ID=13757907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08184897A Expired - Fee Related JP3329224B2 (en) | 1997-03-15 | 1997-03-15 | Acoustic characteristics measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3329224B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009236664A (en) * | 2008-03-27 | 2009-10-15 | Oita Univ | Measuring method of acoustic impedance and acoustic absorption coefficient |
RU2606172C2 (en) * | 2015-05-18 | 2017-01-10 | Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации | Method of determining acoustic frequency characteristics of sound-absorbing structures |
DE102013000380B4 (en) | 2012-02-23 | 2022-11-17 | Elmos Semiconductor Se | Method for acoustic measurement of the properties of a transmission path of a measurement system between loudspeaker and microphone |
WO2024069687A1 (en) * | 2022-09-26 | 2024-04-04 | 三菱電機株式会社 | Human detection device, human detection system, human detection method, and human detection program |
-
1997
- 1997-03-15 JP JP08184897A patent/JP3329224B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009236664A (en) * | 2008-03-27 | 2009-10-15 | Oita Univ | Measuring method of acoustic impedance and acoustic absorption coefficient |
DE102013000380B4 (en) | 2012-02-23 | 2022-11-17 | Elmos Semiconductor Se | Method for acoustic measurement of the properties of a transmission path of a measurement system between loudspeaker and microphone |
DE102013022403B3 (en) | 2012-02-23 | 2023-07-27 | Elmos Semiconductor Se | Sensor system for acoustic measurement of the properties of a transmission path of a measurement system between loudspeaker and microphone |
RU2606172C2 (en) * | 2015-05-18 | 2017-01-10 | Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации | Method of determining acoustic frequency characteristics of sound-absorbing structures |
WO2024069687A1 (en) * | 2022-09-26 | 2024-04-04 | 三菱電機株式会社 | Human detection device, human detection system, human detection method, and human detection program |
Also Published As
Publication number | Publication date |
---|---|
JP3329224B2 (en) | 2002-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10051393B2 (en) | Automatic audio system equalizing | |
JP4965707B2 (en) | Sound identification method and apparatus | |
US9008331B2 (en) | Equalization system to improve the quality of bass sounds within a listening area | |
Fazenda et al. | Perceptual thresholds for the effects of room modes as a function of modal decay | |
US20070036364A1 (en) | Sound field compensating apparatus and sound field compensating method | |
JP2003255955A (en) | Method and system for sound field control | |
US20040086131A1 (en) | System for auralizing a loudspeaker in a monitoring room for any type of input signals | |
EP1578170B1 (en) | Test apparatus, test method, and computer program | |
JP3329224B2 (en) | Acoustic characteristics measurement device | |
US20050053246A1 (en) | Automatic sound field correction apparatus and computer program therefor | |
JP5035386B2 (en) | Measuring method, measuring device, program | |
JP2008124627A (en) | Sound output device and sound quality correcting method | |
JPH09215085A (en) | Sound reproducing device and listening frequency characteristic correcting method | |
JPH02193500A (en) | Correcting method for acoustic frequency characteristic | |
JPH06335474A (en) | Audiometric apparatus and hearing aid device | |
US20100202624A1 (en) | Equipment, method and use of the equipment in an audio system | |
US11887577B2 (en) | System and method for evaluating an acoustic characteristic of an electronic device | |
JPH0572024A (en) | Automatic measuring apparatus for acoustic space | |
JPS61159896A (en) | Speaker device | |
JPH09327086A (en) | Method for correcting sound place of speaker, speaker system and acoustic system | |
RU2297712C2 (en) | Method for tuning sound-reproducing channel | |
CN117528373A (en) | Hearing aid and control method thereof | |
Genuit et al. | A New Method for Determining the Subjective Effects of Sounds and Vibration Using an Objective Procedure | |
Stephenson | Perceptual Thresholds for the Effects of Room Modes as a Function of Modal | |
JPH08125473A (en) | Automatic correction system for frequency characteristic in-cabin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130719 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |