JPH10265260A - Production of calcined ferrite powder and production of ferite magnet using the powder - Google Patents
Production of calcined ferrite powder and production of ferite magnet using the powderInfo
- Publication number
- JPH10265260A JPH10265260A JP9069572A JP6957297A JPH10265260A JP H10265260 A JPH10265260 A JP H10265260A JP 9069572 A JP9069572 A JP 9069572A JP 6957297 A JP6957297 A JP 6957297A JP H10265260 A JPH10265260 A JP H10265260A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- particle diameter
- calcined
- ferrite
- calcination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
- Magnetic Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は従来より高磁気特性
が得られるフェライト焼結磁石用仮焼粉の製造方法およ
びそれを用いたフェライト磁石の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a calcined powder for a ferrite sintered magnet capable of obtaining higher magnetic properties than before and a method for producing a ferrite magnet using the same.
【0002】[0002]
【従来の技術】一般にストロンチウムフェライト磁石は
磁気特性が高く、また経済性、耐環境性に優れているた
め、電装用モーター等に広く利用されている。しかし、
更なる小型化・高性能化の要求が高まっている。高磁気
特性のフェライト焼結磁石を得るためには焼結体におい
て、フェライト結晶粒径を単磁区粒径に近づけること
(固有保磁力iHc向上)、フェライト結晶粒が磁気
異方性方向に揃っていること(残留磁束密度Br向
上)、高密度であること(Br向上)が重要である。
〜を達成するには焼結前の微粉砕粒子の大きさを単
磁区粒子径以下にして、かつ磁場中成形時の成形体配向
度を向上させ、さらに適正な温度で焼結することが必要
である。このような高性能フェライト磁石を量産するに
は一般に仮焼段階で比較的大きな仮焼体を製造し、これ
を機械的粉砕手法で粉砕し、単磁区粒子径程度まで原料
を細かくしなければならない。この微粉原料を磁場中で
成形し、焼成して製品となる。一般にBrを向上させる
にはフェライト結晶をある程度成長させることが有効で
あるが、これは即iHcの低下につながる。このように
相反した両磁気特性を同時に向上させるため、添加物、
粒度分布等の最適化検討がなされてきた。しかしながら
Br,iHc共に優れたフェライト磁石を製造するのは
非常に難しい。これは主に粉砕粒子径に分布があり、結
果として磁石組織中に単磁区粒子径より大きく外れた結
晶粒子が多く存在するためである。例えば粉砕粒子中に
細かすぎる超微粒子が存在すると、異常粒成長を促進し
てiHcの低下につながる。また、粗大粒子が存在する
とやはりiHcが低いものとなる。2. Description of the Related Art In general, strontium ferrite magnets are widely used in electric motors and the like because of their high magnetic properties, economical efficiency and environmental resistance. But,
Demands for further miniaturization and higher performance are increasing. In order to obtain a ferrite sintered magnet having high magnetic properties, the ferrite crystal grain size of the sintered body should be close to a single domain grain size (improved intrinsic coercive force iHc), and the ferrite crystal grains should be aligned in the direction of magnetic anisotropy. (Improvement of residual magnetic flux density Br) and high density (improvement of Br) are important.
In order to achieve the above, it is necessary to reduce the size of the finely pulverized particles before sintering to a particle diameter of a single magnetic domain or less, improve the degree of orientation of the compact during compaction in a magnetic field, and further sinter at an appropriate temperature. It is. In order to mass-produce such high-performance ferrite magnets, it is generally necessary to produce a relatively large calcined body at the calcining stage, pulverize it by a mechanical pulverization method, and reduce the raw material to a single magnetic domain particle size. . This fine powder raw material is formed in a magnetic field and fired to obtain a product. Generally, it is effective to grow ferrite crystals to some extent to improve Br, but this immediately leads to a decrease in iHc. In order to simultaneously improve both contradictory magnetic properties, additives,
Optimization studies on particle size distribution and the like have been made. However, it is very difficult to produce a ferrite magnet excellent in both Br and iHc. This is mainly because there is a distribution in the pulverized particle diameter, and as a result, there are many crystal particles in the magnet structure that are larger than the single magnetic domain particle diameter. For example, the presence of ultrafine particles in the pulverized particles promotes abnormal grain growth and leads to a decrease in iHc. Also, the presence of coarse particles also results in a low iHc.
【0003】[0003]
【発明が解決しようする課題】本発明は従来の粉砕によ
る粒径制御に頼りすぎることなく、小粒子径でかつ狭い
粒子径分布を持った高性能フェライト磁石用仮焼粗粉の
製造方法およびそれを用いた高性能フェライト磁石の製
造方法を提供することを課題とする。SUMMARY OF THE INVENTION The present invention relates to a method for producing a calcined coarse powder for a high-performance ferrite magnet having a small particle size and a narrow particle size distribution without relying too much on conventional particle size control by pulverization. It is an object of the present invention to provide a method for manufacturing a high-performance ferrite magnet using the same.
【0004】[0004]
【課題を解決するための手段】本発明者等はフェライト
原料を造粒し、これを流動させながら仮焼することによ
り、一次粒子径が従来より微細でかつ粒子径分布が狭い
高性能フェライト焼結磁石用仮焼粗粉が得られることを
見出した。またこの粗粉に微粉砕、混練等を行うことに
より従来より高性能のフェライト磁石が得られることを
見出した。すなわち本発明はMO・nFe2O3(M:B
a、Sr、Pbの内の1種類以上、n=5〜6)の基本
組成を有し、20〜100μmに造粒したものを流動状
態で仮焼することにより得られるフェライト仮焼粉の製
造方法であって、その仮焼粉を適宜粗粉砕して平均粒子
径0.5〜1μmのフェライト仮焼粗粉とする製造方法
である。また、本発明はMO・nFe2O3(M:Ba、
Sr、Pbの内の1種類以上、n=5〜6)の基本組成
を有し、平均粒子径で0.5〜1μmの上記仮焼粗粉を
平均粒子径0.3〜0.8μmに湿式微粉砕後、濃縮、
混練、磁場中湿式成形、焼結する高性能フェライト磁石
の製造方法である。Means for Solving the Problems The present inventors granulate a ferrite raw material and calcine it while flowing it to obtain a high-performance ferrite powder having a finer primary particle diameter and a narrower particle diameter distribution than before. It has been found that calcined coarse powder for a magnet can be obtained. Further, they have found that a finer ferrite magnet with higher performance than before can be obtained by finely pulverizing and kneading the coarse powder. That is, the present invention relates to MO.nFe 2 O 3 (M: B
Manufacture of calcined ferrite powder having a basic composition of at least one of a, Sr, and Pb (n = 5 to 6) and obtained by calcining a granulated material of 20 to 100 μm in a fluidized state. In this method, the calcined powder is roughly pulverized as appropriate to obtain a calcined ferrite powder having an average particle size of 0.5 to 1 μm. Further, the present invention relates to MO.nFe 2 O 3 (M: Ba,
One or more of Sr and Pb, n = 5 to 6), and the calcined coarse powder having an average particle diameter of 0.5 to 1 μm is reduced to an average particle diameter of 0.3 to 0.8 μm. After wet pulverization, concentration,
This is a method for producing a high-performance ferrite magnet that is kneaded, wet-formed in a magnetic field, and sintered.
【0005】本発明にかかる上記仮焼粗粉は次の様な製
造方法により得られる。仮焼後にMO・nFe2O
3(M:Ba、Sr、Pbの内の1種類以上、n=5〜
6)の基本組成を有するよう混合したFe2O3とSrC
O3とから成る混合物スラリーに、濃度0.1〜10重
量%のPVA水溶液をその混合原料粉に対して0.1〜
1重量%添加した後、スプレードライヤー等の造粒手段
によって篩分粒子径20〜100μmに造粒する。20
μm未満であると仮焼加熱下での流動状態を維持するの
が困難であり、100μmを越えると流動層加熱時の伝
熱性が低下する。次に、この造粒したものを一般に流動
層と呼ばれる装置を用いて仮焼する。すなわち流動層と
は多孔板上の粉体粒子層に下部より空気を送り込み、こ
れを流動化(気流から受ける抗力によって各粒子がラン
ダムな運動をしている状態に)させる装置である。そし
て流動化状態にある粒子をフェライト化可能な温度10
00〜1200℃に加熱保持して仮焼を行う。この仮焼
が1000℃未満であるとフェライト化反応が不十分で
あり、1200℃を越えると粒成長が進行し後工程での
粉砕効率が低下するのでいずれも好ましくない。流動層
内の粒子は激しく運動しているため流動層内の温度はほ
ぼ均一に保持されており、伝熱能力が高い。このため仮
焼に要する温度は従来の仮焼法より低く抑えることがで
きる。この様にして得た仮焼粉を振動ミル等の装置を用
いて、平均粒子径0.5〜1μmに粗粉砕する。この粗
粉砕粉の平均粒子径が0.5μm未満であるとこのもの
を湿式微粉砕した場合過粉砕となり0.5μm未満の超
微粉が多量に発生し、その粒子径分布が広くなり得られ
る磁気特性も劣化する。また、粗粉砕粉の平均粒子径が
1μmを越えると湿式微粉砕後も1μm程度の大粒子が
残存しフェライト焼結磁石の配向度を低下させる要因と
なる。The above calcined coarse powder according to the present invention is obtained by the following production method. MO ・ nFe 2 O after calcination
3 (M: one or more of Ba, Sr, Pb, n = 5
Fe 2 O 3 were mixed so as to have a basic composition of 6) and SrC
The mixture slurry consisting O 3 Prefecture, 0.1 a PVA aqueous solution having a concentration of 0.1 to 10% by weight relative to the mixed raw material powder
After adding 1% by weight, the mixture is granulated to a sieving particle diameter of 20 to 100 μm by a granulation means such as a spray drier. 20
If it is less than μm, it is difficult to maintain a fluidized state under calcination heating, and if it exceeds 100 μm, the heat conductivity during fluidized bed heating decreases. Next, the granulated product is calcined using an apparatus generally called a fluidized bed. That is, the fluidized bed is a device that sends air from below into a powder particle layer on a perforated plate and fluidizes it (in a state where each particle is moving randomly due to a drag received from an airflow). The temperature at which the particles in the fluidized state can be turned into ferrite is 10
Calcination is performed by heating and holding at 00 to 1200 ° C. If the calcination is less than 1000 ° C., the ferrite-forming reaction is insufficient. If the calcination exceeds 1200 ° C., the grain growth proceeds, and the pulverization efficiency in the subsequent step is undesirably reduced. Since the particles in the fluidized bed are moving violently, the temperature in the fluidized bed is maintained almost uniformly, and the heat transfer capacity is high. For this reason, the temperature required for calcination can be suppressed lower than the conventional calcination method. The calcined powder thus obtained is coarsely pulverized to a mean particle size of 0.5 to 1 μm using a device such as a vibration mill. When the average particle size of the coarsely ground powder is less than 0.5 μm, when the coarsely ground powder is wet-milled, it is over-milled, and a large amount of ultrafine powder having a particle size of less than 0.5 μm is generated, and the particle size distribution is widened, resulting in magnetic properties. The characteristics also deteriorate. On the other hand, if the average particle diameter of the coarsely pulverized powder exceeds 1 μm, large particles of about 1 μm remain even after wet pulverization, which causes a decrease in the degree of orientation of the sintered ferrite magnet.
【0006】次に、上記本発明による仮焼粗粉をボール
ミル、アトライター等の装置で湿式微粉砕する。微粉砕
粉の平均粒子径は0.3〜0.8μmとするのが望まし
い。0.3μm未満であると粒子同士の物理的・磁気的
凝集が強くなり、磁場成形時の配向度が顕著に低下する
とともに粗大粒子が生成し易くなるので保持力の低下が
生じ易い。また、0.8μmを越えると保磁力がやはり
低下し高い磁気特性を実現することが困難である。Then, the calcined coarse powder according to the present invention is finely wet-pulverized by an apparatus such as a ball mill or an attritor. The average particle diameter of the finely pulverized powder is desirably 0.3 to 0.8 μm. When it is less than 0.3 μm, physical and magnetic aggregation of the particles becomes strong, the degree of orientation during magnetic field forming is remarkably reduced, and coarse particles are easily generated, so that the holding power is apt to be reduced. On the other hand, if the thickness exceeds 0.8 μm, the coercive force also decreases, and it is difficult to realize high magnetic properties.
【0007】次に得られたフェライト微粉砕粉のスラリ
ーを乾燥し解砕した後、重量比で固形分濃度75〜88
重量%の高濃度スラリーを作製し、ニーダー等の機械的
剪断力を加える装置で混練する。混練の際、その微細な
微粉砕スラリー中での分散性を向上させる目的の分散剤
を使用することが望ましく、混練時にその固形分に対し
て0.5〜5.0重量%の分散剤を添加することでスラ
リー中におけるフェライト粒子の分散性が向上し、磁気
特性が向上する。Next, the obtained slurry of the finely ground ferrite powder is dried and pulverized, and then the solid content concentration is 75 to 88 by weight.
A high-concentration slurry by weight is prepared and kneaded with a device such as a kneader that applies mechanical shearing force. At the time of kneading, it is desirable to use a dispersant for the purpose of improving the dispersibility in the finely pulverized slurry. At the time of kneading, a dispersant of 0.5 to 5.0% by weight based on the solid content is used. The addition improves the dispersibility of the ferrite particles in the slurry and improves the magnetic properties.
【0008】本発明によれば、造粒した仮焼前フェライ
ト原料を気流中で流動化させながら仮焼することによ
り、従来より低温の仮焼条件でフェライト相が得られ、
かつ1次粒子径が平均粒子径で0.5〜1μmから成る
仮焼体が得られる。さらにこれを適宜粗粉砕することに
より、従来より小粒子径でかつ粒子径分布の狭いフェラ
イト仮焼粉を得ることができ、これに比較的短時間の微
粉砕を施すことにより、高い磁気特性を有したフェライ
ト磁石を得ることができる。ここで、本発明における平
均粒子径とは空気透過法(フィッシャーサブシーブサイ
ザー)により測定した粉末粒度である。According to the present invention, the granulated ferrite raw material before calcining is calcined while being fluidized in an air stream, so that a ferrite phase can be obtained at a calcining condition lower than before,
A calcined body having a primary particle diameter of 0.5 to 1 μm in average particle diameter is obtained. Furthermore, by coarsely pulverizing the powder, a calcined ferrite powder having a smaller particle size and a narrower particle size distribution than before can be obtained. A ferrite magnet having the same can be obtained. Here, the average particle diameter in the present invention is a powder particle diameter measured by an air permeation method (Fisher sub-sieve sizer).
【0009】[0009]
【発明の実施の態様】以下、本発明を実施例により説明
する。 (実施例1)仮焼後にSrO・nFe2O3、n=5〜6
の基本組成を有するようにSrCO3とFe2O3とを混
合した原料に、5重量%PVA水溶液をその混合原料粉
に対して0.5重量%添加混合した後、スプレードライ
ヤーにて篩分粒径50μmに造粒した。なお、この造粒
物の粒径は走査電子顕微鏡により確認してもよい。次い
で、この造粒したものを流動化させながら表1に示すよ
うに900〜1300℃で仮焼した。それぞれの仮焼粉
を振動ミルで6時間粉砕しフェライト粗粉とした。それ
ぞれの粗粉に対し、SrCO3を0.5重量%、CaC
O3を0.8重量%、SiO2を0.3重量%添加し、更
に水を加えて固形分濃度40重量%のスラリーとした
後、平均粒子径が0.82〜0.85μmにアトライタ
ーにより湿式微粉砕した。このスラリーを磁場強度8k
Oeの磁場中で400kgf/cm2の圧力にて圧縮成
形した後、1100〜1200℃で2時間焼結して得ら
れたそれぞれのフェライト磁石の磁気特性(Br,iH
c)を表1に示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to examples. (Example 1) after calcination in SrO · nFe 2 O 3, n = 5~6
0.5% by weight of a 5% by weight aqueous PVA solution was added to a raw material obtained by mixing SrCO 3 and Fe 2 O 3 so as to have a basic composition of It was granulated to a particle size of 50 μm. The particle size of the granulated product may be confirmed by a scanning electron microscope. Next, the granulated product was calcined at 900 to 1300 ° C. as shown in Table 1 while fluidizing. Each calcined powder was ground with a vibration mill for 6 hours to obtain a ferrite coarse powder. 0.5 wt% of SrCO 3 and CaC
After adding 0.8% by weight of O 3 and 0.3% by weight of SiO 2 and further adding water to form a slurry having a solid content of 40% by weight, the slurry was adjusted to an average particle diameter of 0.82 to 0.85 μm. It was wet-milled with a lighter. This slurry is applied with a magnetic field strength of 8k.
The magnetic properties (Br, iHH) of each ferrite magnet obtained by compression-molding under a pressure of 400 kgf / cm 2 in a magnetic field of Oe and then sintering at 1100 to 1200 ° C. for 2 hours.
c) is shown in Table 1.
【0010】[0010]
【表1】 M:マク゛ネトフ゜ランハ゛イト相(SrO・nFe2O3)[Table 1] M: Macnetophranite phase (SrO.nFe2O3)
【0011】表1より仮焼温度が高くなる程粗粉の1次
粒子径が大きくなるため、仮焼温度が1200℃より高
い場合では本発明の特長が生かせない。また、仮焼温度
が低いとヘマタイトが生成するため1次粒子径は小さい
が得られている磁気特性は低い。すなわち仮焼温度が1
000〜1200℃の時、優れた磁気特性が得られるこ
とが分かる。According to Table 1, the higher the calcining temperature, the larger the primary particle diameter of the coarse powder. Therefore, if the calcining temperature is higher than 1200 ° C., the features of the present invention cannot be utilized. When the calcination temperature is low, hematite is formed, so that the primary particle size is small, but the obtained magnetic properties are low. That is, if the calcination temperature is 1
It can be seen that excellent magnetic properties can be obtained at 000 to 1200 ° C.
【0012】(実施例2)実施例1のフェライト粗粉に
対して、SrCO3を0.5重量%、CaCO3を0.8
重量%、SiO2を0.3重量%添加し、更に水を加え
て固形分濃度40重量%のスラリーとした後、平均粒子
径が0.72〜0.84μmにアトライターにより湿式
微粉砕した。この微粉砕スラリーを加熱して乾燥後、水
と分散剤とを添加して固形分濃度84重量%のスラリー
としてニーダーにて混練を1時間行った。混練後、水を
添加して希釈し、固形分濃度75重量%のスラリーとし
た。このスラリーを磁場強度8kOeの磁場中で400
kgf/cm2の圧力にて圧縮成形し、1100〜12
00℃で2時間焼結して得られたフェライト磁石の磁気
特性を表2に示す。[0012] For the ferrite coarse powder (Example 2) Example 1, SrCO 3 0.5% by weight, the CaCO 3 0.8
% By weight, SiO 2 was added in an amount of 0.3% by weight, and water was further added to form a slurry having a solid concentration of 40% by weight. Then, the slurry was wet-milled to an average particle diameter of 0.72 to 0.84 μm using an attritor. . After heating and drying this finely pulverized slurry, water and a dispersant were added, and the mixture was kneaded with a kneader for 1 hour as a slurry having a solid content concentration of 84% by weight. After kneading, water was added for dilution to obtain a slurry having a solid content of 75% by weight. This slurry is placed in a magnetic field with a magnetic field strength of 8 kOe for 400
compression molding at a pressure of kgf / cm 2 ,
Table 2 shows the magnetic properties of the ferrite magnet obtained by sintering at 00 ° C. for 2 hours.
【0013】[0013]
【表2】 [Table 2]
【0014】表2より、従来粗粉を用いた場合と比較し
て本発明の粗粉を用いたものは高い磁気特性を示してい
ることが分かる。From Table 2, it can be seen that as compared with the case where the conventional coarse powder was used, the one using the coarse powder of the present invention exhibited higher magnetic properties.
【0015】次に、実施例2の微粉砕スラリーを乾燥し
て得られた微粉砕粉の粒子径分布を図1に示す。図1に
は表2の従来粗粉をその実施例2の微粉砕粉と同様にし
て微粉砕して得られた従来の微粉の粒子径分布を併記し
ている。図1より本発明による微粉砕粉は従来の微粉砕
粉に比べて粒子径のピークが小さいとともに狭い粒子径
分布となっており、高磁気特性を得られる好適なもので
あることがわかる。Next, the particle size distribution of the finely pulverized powder obtained by drying the finely pulverized slurry of Example 2 is shown in FIG. FIG. 1 also shows the particle size distribution of the conventional fine powder obtained by pulverizing the conventional coarse powder of Table 2 in the same manner as the finely pulverized powder of Example 2. From FIG. 1, it can be seen that the finely pulverized powder according to the present invention has a smaller particle size peak and a narrower particle diameter distribution than the conventional finely pulverized powder, and is suitable for obtaining high magnetic properties.
【0016】[0016]
【発明の効果】本発明によれば、高性能フェライト磁石
の製造方法において造粒した混合原料を流動化して仮焼
を行うことにより、従来より小粒子径でかつほぼ均一な
狭い粒子径分布のフェライト粗粉およびこれを微粉砕し
た場合ほぼ均一な狭い粒子径分布の微粉砕粉を得ること
ができ、これを用いて製造したフェライト焼結磁石の磁
気特性を従来に比べて改善することができる。According to the present invention, the mixed raw material granulated in the method for producing a high-performance ferrite magnet is fluidized and calcined to obtain a narrower particle diameter distribution with a smaller particle diameter and a substantially uniform particle diameter than the conventional one. Ferrite coarse powder and finely pulverized ferrite powder can obtain almost uniform finely pulverized powder with a narrow particle size distribution, and can improve the magnetic properties of ferrite sintered magnets manufactured using this powder as compared to conventional products. .
【図1】流動仮焼法による粉砕粒子径分布の改善効果を
示す図である。FIG. 1 is a diagram showing the effect of improving the particle size distribution of pulverized particles by a fluid calcining method.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 足立 吉郎 東京都小金井市中町2−24−16 東京農工 大学生物システム応用科学研究科内 (72)発明者 堀尾 正靱 東京都小金井市中町2−24−16 東京農工 大学生物システム応用科学研究科内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yoshiro Adachi 2-24-16 Nakamachi, Koganei-shi, Tokyo Graduate School of Biosystems and Applied Sciences, Tokyo University of Agriculture and Technology (72) Inventor Masatoshi Horio 2-24 Nakamachi, Koganei-shi, Tokyo −16 Tokyo University of Agriculture and Technology Graduate School of Biological Sciences
Claims (2)
Sr、Pbの内の1種類以上、n=5〜6)の基本組成
を有するように混合された原料を20〜100μmに造
粒したものを、流動層中で流動化させながら1000〜
1200℃で仮焼することを特徴とするフェライト仮焼
粉の製造方法。1. After calcination, MO.nFe 2 O 3 (M: Ba,
One or more of Sr and Pb, n = 5 to 6) The raw materials mixed so as to have a basic composition of 20 to 100 μm are granulated to 1000 to 100 μm while being fluidized in a fluidized bed.
A method for producing a calcined ferrite powder, wherein the calcined powder is calcined at 1200 ° C.
られた平均粒子径0.5〜1μmのフェライト仮焼粗粉
を平均粒子径0.3〜0.8μmに湿式粉砕後、濃縮、
混練、磁場中湿式成形、焼結することを特徴とするフェ
ライト磁石の製造方法。2. A coarsely pulverized ferrite calcined powder having an average particle diameter of 0.5 to 1 μm obtained by coarsely pulverizing the calcined powder according to claim 1 to wet pulverization to an average particle diameter of 0.3 to 0.8 μm. After, concentration,
A method for producing a ferrite magnet, comprising kneading, wet forming in a magnetic field, and sintering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9069572A JPH10265260A (en) | 1997-03-24 | 1997-03-24 | Production of calcined ferrite powder and production of ferite magnet using the powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9069572A JPH10265260A (en) | 1997-03-24 | 1997-03-24 | Production of calcined ferrite powder and production of ferite magnet using the powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10265260A true JPH10265260A (en) | 1998-10-06 |
Family
ID=13406646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9069572A Pending JPH10265260A (en) | 1997-03-24 | 1997-03-24 | Production of calcined ferrite powder and production of ferite magnet using the powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10265260A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007123511A (en) * | 2005-10-27 | 2007-05-17 | Tdk Corp | Ferrite sintered magnet |
JP2008251778A (en) * | 2007-03-30 | 2008-10-16 | Tdk Corp | Manufacturing method of metal sintered magnet |
WO2013183776A1 (en) * | 2012-06-07 | 2013-12-12 | Tdk株式会社 | METHOD FOR MANUFACTURING Sr FERRITE PARTICLE FOR SINTERED MAGNET, METHOD FOR USING Sr FERRITE PARTICLE, Sr FERRITE SINTERED MAGNET AND METHOD FOR MANUFACTURING SAME, AND MOTOR AND GENERATOR |
WO2014017637A2 (en) * | 2012-07-27 | 2014-01-30 | Tdk株式会社 | MANUFACTURING METHOD FOR Sr FERRITE PARTICLES FOR SINTERED MAGNET, AND MANUFACTURING METHOD FOR Sr FERRITE SINTERED MAGNET |
-
1997
- 1997-03-24 JP JP9069572A patent/JPH10265260A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007123511A (en) * | 2005-10-27 | 2007-05-17 | Tdk Corp | Ferrite sintered magnet |
JP4730534B2 (en) * | 2005-10-27 | 2011-07-20 | Tdk株式会社 | Ferrite sintered magnet |
JP2008251778A (en) * | 2007-03-30 | 2008-10-16 | Tdk Corp | Manufacturing method of metal sintered magnet |
WO2013183776A1 (en) * | 2012-06-07 | 2013-12-12 | Tdk株式会社 | METHOD FOR MANUFACTURING Sr FERRITE PARTICLE FOR SINTERED MAGNET, METHOD FOR USING Sr FERRITE PARTICLE, Sr FERRITE SINTERED MAGNET AND METHOD FOR MANUFACTURING SAME, AND MOTOR AND GENERATOR |
JPWO2013183776A1 (en) * | 2012-06-07 | 2016-02-01 | Tdk株式会社 | Method for producing Sr ferrite particles for sintered magnet, method for using Sr ferrite particles, Sr ferrite sintered magnet and method for producing the same, motor and generator |
US9530548B2 (en) | 2012-06-07 | 2016-12-27 | Tdk Corporation | Method for manufacturing Sr ferrite particle for sintered magnet, method for using Sr ferrite particle, Sr ferrite sintered magnet and method for manufacturing same, and motor and generator |
WO2014017637A2 (en) * | 2012-07-27 | 2014-01-30 | Tdk株式会社 | MANUFACTURING METHOD FOR Sr FERRITE PARTICLES FOR SINTERED MAGNET, AND MANUFACTURING METHOD FOR Sr FERRITE SINTERED MAGNET |
WO2014017637A3 (en) * | 2012-07-27 | 2014-03-20 | Tdk株式会社 | MANUFACTURING METHOD FOR Sr FERRITE PARTICLES FOR SINTERED MAGNET, AND MANUFACTURING METHOD FOR Sr FERRITE SINTERED MAGNET |
CN104379537A (en) * | 2012-07-27 | 2015-02-25 | Tdk株式会社 | Manufacturing method for Sr ferrite particles for sintered magnet, and manufacturing method for Sr ferrite sintered magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3364426B1 (en) | Ferrite magnetic material and ferrite sintered magnet | |
JP2922864B2 (en) | Ferrite magnet and manufacturing method thereof | |
Shashanka et al. | Magnetic parameters of SrFe12O19 sintered from a mixture of nanocrystalline and micron-sized powders | |
JP4821792B2 (en) | Manufacturing method of sintered ferrite magnet | |
JPS5841646B2 (en) | Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder | |
JP2003521431A (en) | Manufacturing method of ferrite magnet | |
JP3506174B2 (en) | Method for producing ferrite magnet and powder thereof | |
JPH10265260A (en) | Production of calcined ferrite powder and production of ferite magnet using the powder | |
JPH11251127A (en) | High-performance ferrite magnet and its manufacture | |
JP4753054B2 (en) | Manufacturing method of sintered ferrite magnet | |
Idayanti et al. | Investigation of grain exchange interaction effects on the magnetic properties of strontium hexaferrite magnets | |
JPH0927430A (en) | Manufacture of ferrite magnet | |
JPH0766027A (en) | Manufacture of strontium ferrite magnet | |
JP2002141212A (en) | Rotating machine | |
JP2001274010A (en) | Polar anisotropic cylindrical ferrite magnet and magnetic field granular material | |
JP2007123511A (en) | Ferrite sintered magnet | |
JP2545603B2 (en) | Method for manufacturing anisotropic sintered magnet | |
JPH11307331A (en) | Ferrite magnet | |
JP2000173812A (en) | Manufacture of anisotropic ferrite magnet | |
JP2005072186A (en) | Ferrite magnet powder, method for manufacturing ferrite magnet, and method of forming hexagonal system w type ferrite phase | |
JPH0831627A (en) | Hexagonal ba ferrite sintered magnet, manufacture thereof, and polar anisotropic ring magnet | |
JP4400710B2 (en) | Ferrite magnet manufacturing method | |
JP2005286157A (en) | Magnetic powder for oxide magnet, and manufacturing method of oxide sintered magnet | |
JPH09275006A (en) | High-performance ferrite magnet and its manufacture | |
JPS5841647B2 (en) | Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder |