[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10251097A - Apparatus for production of fluorite single crystal and its production - Google Patents

Apparatus for production of fluorite single crystal and its production

Info

Publication number
JPH10251097A
JPH10251097A JP9055265A JP5526597A JPH10251097A JP H10251097 A JPH10251097 A JP H10251097A JP 9055265 A JP9055265 A JP 9055265A JP 5526597 A JP5526597 A JP 5526597A JP H10251097 A JPH10251097 A JP H10251097A
Authority
JP
Japan
Prior art keywords
heat
fluorite
single crystal
temperature gradient
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9055265A
Other languages
Japanese (ja)
Other versions
JP3725280B2 (en
Inventor
Ikuo Kitamura
郁夫 北村
Tsutomu Mizugaki
勉 水垣
Shuichi Takano
修一 高野
Hidemi Nishikawa
秀美 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO KOKEN KOGYO KK
Nikon Corp
Original Assignee
OYO KOKEN KOGYO KK
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO KOKEN KOGYO KK, Nikon Corp filed Critical OYO KOKEN KOGYO KK
Priority to JP5526597A priority Critical patent/JP3725280B2/en
Publication of JPH10251097A publication Critical patent/JPH10251097A/en
Application granted granted Critical
Publication of JP3725280B2 publication Critical patent/JP3725280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for producing a fluorite single crystal capable of producing the fluorite single crystal having a large diameter and high quality usable as an optical material for a stepper at a good yield and a process for producing the same. SOLUTION: This apparatus for producing the fluorite single crystal has a crucible 25 which houses fluorite raw materials, a mechanism 24 which perpendicularly lowers this crucible 25 in a crystal growth furnace K, heating mechanisms 21, 21' which heat up the inside of this crystal growth furnace K and a heat shielding plate (partition section) for forming a temp. gradient (temp. inclination) around the m.p. of the fluorite raw materials in the crystal growth furnace K. The apparatus described above is provided with the heat radiating mechanism or cooling mechanism for the heat shielding plate (partition section).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般光学機器や光
リソグラフィー用の光学系に用いて好適な蛍石単結晶の
製造装置と製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for producing a fluorite single crystal suitable for use in general optical instruments and optical systems for photolithography.

【0002】[0002]

【従来の技術】近年、LSIの高集積化が進行し、光リ
ソグラフィーによる微細加工において露光装置(ステッ
パー)に使用する光源が短波長化している。短波長のK
rFやArFなどの光源になると、石英ガラスや蛍石が
光学材料として適している。従来の蛍石の用途は、顕微
鏡やカメラ用、テレビカメラ用のレンズで、しかもサイ
ズが直径200mm 以下のもので殆どが満足されていたが、
ステッパー用の蛍石としては、大口径(直径250mm 以
上)かつ高品質な蛍石単結晶が要求される。
2. Description of the Related Art In recent years, high integration of LSIs has been progressing, and a light source used in an exposure apparatus (stepper) in fine processing by optical lithography has been shortened in wavelength. Short wavelength K
For a light source such as rF or ArF, quartz glass or fluorite is suitable as an optical material. Conventional applications of fluorite are lenses for microscopes, cameras, and TV cameras, and most of them are 200 mm or less in diameter.
As a fluorite for a stepper, a large-diameter (250 mm or more in diameter) and high-quality fluorite single crystal is required.

【0003】かかる蛍石単結晶を製造する方法である垂
直ブリッジマン法による結晶成長炉(蛍石単結晶の製造
装置)の一例を図2(概略構成図)に示す。図2に示す
ような結晶成長炉を用いて蛍石単結晶を製造する場合、
溶融温度域から固化する温度域にわたる(蛍石原料の融
点前後にわたる)温度勾配を利用し、ルツボを引き下げ
ながら結晶を成長させる。
FIG. 2 (schematic diagram) shows an example of a crystal growth furnace (fluorite single crystal manufacturing apparatus) by the vertical Bridgman method which is a method for manufacturing such a fluorite single crystal. When producing a fluorite single crystal using a crystal growth furnace as shown in FIG.
Utilizing a temperature gradient from the melting temperature range to the solidifying temperature range (around the melting point of the fluorite raw material), the crystal is grown while the crucible is lowered.

【0004】結晶化を行う際に理想的といわれる結晶成
長炉内の温度勾配を図3に示す。一般に、固液界面付近
の温度傾斜を大きくするために、結晶成長炉を仕切る熱
遮断板が配置される。大きな結晶を成長させる場合、熱
容量の大きなルツボが熱遮断板近くを通過すると、温度
勾配が変化するが、熱遮断板に依存する温度勾配は変え
ようがない。
FIG. 3 shows a temperature gradient in a crystal growth furnace which is considered to be ideal when performing crystallization. Generally, in order to increase the temperature gradient near the solid-liquid interface, a heat shut-off plate that partitions the crystal growth furnace is provided. When growing a large crystal, the temperature gradient changes when a crucible having a large heat capacity passes near the heat shield plate, but the temperature gradient depending on the heat shield plate cannot be changed.

【0005】そのため、図2に示すような従来の結晶成
長炉を用いて完全な結晶を得ようとする場合には、でき
る限り温度勾配が変わらないように、ヒーターの出力を
変化させたり、成長速度をできるだけ遅くするといった
方法が採られる。
[0005] Therefore, when a complete crystal is to be obtained using a conventional crystal growth furnace as shown in FIG. 2, the output of the heater is changed or the growth rate is changed so that the temperature gradient is not changed as much as possible. A method of reducing the speed as much as possible is adopted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、大口径
の蛍石単結晶を製造する場合には、熱容量が大きなルツ
ボが結晶成長炉内を移動することになり、ルツボの引き
下げの過程で固液界面の位置が変化するため、融液内部
や固化した結晶の温度分布が変化してしまい、その結
果、不均質な結晶が形成されるという問題点があった。
However, when producing a large-diameter fluorite single crystal, a crucible having a large heat capacity moves in the crystal growth furnace, and a solid-liquid interface is formed in the process of lowering the crucible. Is changed, the temperature distribution inside the melt and the solidified crystal changes, and as a result, there is a problem that a heterogeneous crystal is formed.

【0007】さらに、結晶成長炉内の温度勾配までも変
化して、その結果、多結晶になる、不純物が除去できな
いという問題点が発生していた。本発明は、かかる問題
点に鑑みてなされたものであり、ステッパー用の光学材
料として使用可能な大口径かつ高品質な蛍石単結晶を収
率よく製造することができる蛍石単結晶の製造装置及び
製造方法を提供することを目的とする。
Furthermore, the temperature gradient in the crystal growth furnace also changes, resulting in a problem that the crystal becomes polycrystalline and impurities cannot be removed. The present invention has been made in view of the above problems, and is intended to produce a fluorite single crystal capable of producing a large-diameter and high-quality fluorite single crystal that can be used as an optical material for a stepper with high yield. An object is to provide an apparatus and a manufacturing method.

【0008】[0008]

【課題を解決するための手段】そのため、本発明は第一
に「少なくとも、蛍石原料を収納するルツボと、該ルツ
ボを結晶成長炉の中で垂直に降下させる機構と、前記結
晶成長炉の中を昇温させる加熱機構と、前記蛍石原料の
融点前後にわたる温度勾配(温度傾斜)を前記結晶成長
炉の中に形成するための熱遮断板(仕切り部)と、を備
えた蛍石単結晶の製造装置において、前記熱遮断板(仕
切り部)の放熱機構または冷却機構を設けたことを特徴
とする蛍石単結晶の製造装置(請求項1)」を提供す
る。
Therefore, the present invention firstly provides a "crucible for storing at least a fluorite raw material, a mechanism for vertically lowering the crucible in a crystal growth furnace, A fluorite unit comprising: a heating mechanism for raising the temperature of the inside; and a heat blocking plate (partition portion) for forming a temperature gradient (temperature gradient) extending around the melting point of the fluorite raw material in the crystal growth furnace. In a crystal manufacturing apparatus, there is provided a fluorite single crystal manufacturing apparatus (claim 1), wherein a heat radiating mechanism or a cooling mechanism for the heat shielding plate (partition portion) is provided.

【0009】また、本発明は第二に「前記放熱機構は、
前記熱遮断板(仕切り部)に設けたヒートシンクもしく
は開口であり、前記冷却機構は前記熱遮断板(仕切り
部)に隣接または近接して設けた冷媒循環パイプである
ことを特徴とする請求項1記載の製造装置(請求項
2)」を提供する。また、本発明は第三に「前記放熱機
構による放熱量または前記冷却機構による冷却量を制御
する機構をさらに設けたことを特徴とする請求項1また
は2記載の製造装置(請求項3)」を提供する。
[0009] The present invention also provides a second aspect of the invention wherein the heat radiating mechanism is
2. The heat sink or the opening provided in the heat insulation plate (partition), and the cooling mechanism is a refrigerant circulation pipe provided adjacent to or close to the heat insulation plate (partition). Manufacturing apparatus (claim 2). " The third aspect of the present invention is "a manufacturing apparatus according to claim 1 or 2, wherein a mechanism for controlling a heat release amount by the heat release mechanism or a cooling amount by the cooling mechanism is further provided." I will provide a.

【0010】また、本発明は第四に「前記放熱量を制御
する機構は、前記熱遮断板(仕切り部)からの熱放出を
抑制または防止する保温部材と、該保温部材の前記熱遮
断板(仕切り部)に対する接触の有無、接触の面積、ま
たは距離を制御する機構と、を有することを特徴とする
請求項3記載の製造装置(請求項4)」を提供する。ま
た、本発明は第五に「蛍石原料を収納したルツボを、蛍
石原料の融点前後にわたる温度勾配(温度傾斜)を有す
る結晶成長炉の中で垂直に降下させることにより、蛍石
原料を融解させて融液を形成するとともに、一端から前
記融液を順次固化させて蛍石単結晶を成長させる、請求
項1〜4記載の製造装置を用いて行う垂直ブリッジマン
法による蛍石単結晶の製造方法において、前記放熱機
構、前記冷却機構、前記放熱量を制御する機構、または
前記冷却量を制御する機構を用いて、前記ルツボの降下
中における前記温度勾配の変動及び/または固液界面の
位置変動を抑制するか、或いは前記ルツボの降下中にお
ける前記温度勾配及び/または固液界面の位置を調整す
ることを特徴とする蛍石単結晶の製造方法(請求項
5)」を提供する。
[0010] The present invention is a fourth aspect of the present invention wherein the mechanism for controlling the amount of heat release includes a heat insulation member for suppressing or preventing heat release from the heat insulation plate (partition portion), and the heat insulation plate of the heat insulation member. A mechanism for controlling the presence or absence of contact with the (partition part), the area of the contact, or the distance, to provide a manufacturing apparatus according to claim 3 (claim 4). Fifth, the present invention provides a method in which a crucible containing a fluorite raw material is vertically lowered in a crystal growth furnace having a temperature gradient (temperature gradient) around the melting point of the fluorite raw material, whereby the fluorite raw material is reduced. The fluorite single crystal according to the vertical Bridgman method performed by using the manufacturing apparatus according to claim 1, wherein the melt is formed by melting, and the melt is sequentially solidified from one end to grow a fluorite single crystal. The manufacturing method of the above, using the heat dissipation mechanism, the cooling mechanism, the mechanism for controlling the heat dissipation amount, or the mechanism for controlling the cooling amount, the fluctuation of the temperature gradient and / or the solid-liquid interface during the descent of the crucible A method for producing a fluorite single crystal, characterized in that the position variation of the single crystal is suppressed or the position of the temperature gradient and / or the solid-liquid interface during the lowering of the crucible is adjusted. .

【0011】また、本発明は第六に「蛍石単結晶の結晶
成長中における温度勾配及び/または固液界面の位置が
最適または最適範囲となるように、前記調整を行うこと
を特徴とする請求項5記載の製造方法(請求項6)」を
提供する。
The sixth aspect of the present invention is characterized in that the above-mentioned adjustment is performed such that the temperature gradient and / or the position of the solid-liquid interface during the crystal growth of the fluorite single crystal is optimal or in the optimal range. A manufacturing method according to claim 5 (claim 6) "is provided.

【0012】[0012]

【発明の実施の形態】本発明(請求項1)の垂直ブリッ
ジマン法にかかる蛍石単結晶の製造装置は、蛍石原料の
融点前後にわたる温度勾配(温度傾斜)を結晶成長炉の
中に形成するための熱遮断板(仕切り部)に、放熱機構
または冷却機構を設けているので、ルツボの降下中にお
ける温度勾配の変動及び/または固液界面の位置変動を
抑制できる。
BEST MODE FOR CARRYING OUT THE INVENTION The apparatus for producing a fluorite single crystal according to the vertical Bridgman method of the present invention (claim 1) provides a temperature gradient (temperature gradient) around the melting point of a fluorite raw material in a crystal growth furnace. Since a heat-dissipating mechanism or a cooling mechanism is provided in the heat-shielding plate (partition portion) to be formed, fluctuations in the temperature gradient and / or fluctuations in the position of the solid-liquid interface during the lowering of the crucible can be suppressed.

【0013】従って、本発明(請求項1)の製造装置に
よれば、ステッパー用の光学材料として使用可能な大口
径かつ高品質な蛍石単結晶を収率よく製造できる。本発
明にかかる放熱機構としては、例えば、熱遮断板(仕切
り部)に設けたヒートシンクもしくは開口部が、また冷
却機構としては、例えば、熱遮断板(仕切り部)に隣接
または近接して設けた冷媒循環パイプがそれぞれ使用で
きる(請求項2)。
Therefore, according to the manufacturing apparatus of the present invention (claim 1), a large-diameter and high-quality fluorite single crystal usable as an optical material for a stepper can be manufactured with a high yield. As the heat radiation mechanism according to the present invention, for example, a heat sink or an opening provided on a heat shielding plate (partition) is provided, and as the cooling mechanism, for example, a heat shielding plate (partition) is provided adjacent to or close to the heat shielding plate (partition). Refrigerant circulation pipes can be used respectively (claim 2).

【0014】本発明の製造装置には、放熱機構による放
熱量または冷却機構による冷却量を制御する機構をさら
に設けることが好ましい(請求項3)。かかる構成にす
ることにより、ルツボの降下中における温度勾配の変動
及び/または固液界面の位置変動を抑制できるだけでな
く、ルツボの降下中における温度勾配及び/または固液
界面の位置を調整することができる。
It is preferable that the manufacturing apparatus of the present invention further includes a mechanism for controlling the amount of heat radiation by the heat radiation mechanism or the amount of cooling by the cooling mechanism. With this configuration, it is possible not only to suppress the fluctuation of the temperature gradient and / or the position of the solid-liquid interface during the lowering of the crucible, but also to adjust the temperature gradient and / or the position of the solid-liquid interface during the lowering of the crucible. Can be.

【0015】そのため、本発明(請求項3)の製造装置
は、蛍石単結晶の結晶成長中における温度勾配及び/ま
たは固液界面の位置が最適または最適範囲となるように
調整を行うことができる。従って、本発明(請求項3)
の製造装置によれば、ステッパー用の光学材料として使
用可能なより高品質で大口径の蛍石単結晶をさらに収率
よく製造できる。
Therefore, the manufacturing apparatus according to the present invention (claim 3) can adjust the temperature gradient and / or the position of the solid-liquid interface during the crystal growth of the fluorite single crystal so as to be an optimum or an optimum range. it can. Therefore, the present invention (claim 3)
According to the manufacturing apparatus of (1), a higher-quality, larger-diameter fluorite single crystal usable as an optical material for a stepper can be manufactured with higher yield.

【0016】本発明にかかる放熱量を制御する機構とし
ては、例えば、熱遮断板(仕切り部)からの熱放出を抑
制または防止する保温部材と、該保温部材の熱遮断板
(仕切り部)に対する接触の有無、接触の面積または距
離を制御する機構と、を有するものが使用できる(請求
項4)。本発明(請求項5)にかかる請求項1〜4記載
の製造装置を用いて行う垂直ブリッジマン法による蛍石
単結晶の製造方法は、ルツボの降下中における温度勾配
の変動及び/または固液界面の位置変動を抑制できるだ
けでなく、ルツボの降下中における温度勾配及び/また
は固液界面の位置を調整することができる。
The mechanism for controlling the amount of heat radiation according to the present invention includes, for example, a heat insulating member for suppressing or preventing heat release from the heat insulating plate (partition), and a heat insulating member for the heat insulating plate (partition). A mechanism having a mechanism for controlling the presence / absence of contact and the area or distance of contact can be used (claim 4). The method for producing a fluorite single crystal by the vertical Bridgman method performed by using the production apparatus according to claims 1 to 4 of the present invention (claim 5) includes a method of changing a temperature gradient during a descent of a crucible and / or a solid-liquid process. Not only can the fluctuation of the interface position be suppressed, but also the temperature gradient and / or the position of the solid-liquid interface during the descent of the crucible can be adjusted.

【0017】そのため、本発明(請求項5)の製造方法
によれば、蛍石単結晶の結晶成長中における温度勾配及
び/または固液界面の位置がより最適となるように調整
を行うことができる。そこで、蛍石単結晶の結晶成長中
における温度勾配及び/または固液界面の位置が最適ま
たは最適範囲となるように、前記調整を行うことが好ま
しい(請求項6)。
Therefore, according to the manufacturing method of the present invention (claim 5), the temperature gradient and / or the position of the solid-liquid interface during the crystal growth of the fluorite single crystal can be adjusted to be more optimal. it can. Therefore, it is preferable that the above adjustment is performed so that the temperature gradient and / or the position of the solid-liquid interface during the crystal growth of the fluorite single crystal is optimal or in the optimal range (claim 6).

【0018】従って、本発明(請求項5、6)の製造方
法によれば、ステッパー用の光学材料として使用可能な
より高品質(または極めて高品質)で大口径の蛍石単結
晶をより収率よく(または極めて収率よく)製造でき
る。以下、本発明を実施例により更に詳細に説明する
が、本発明はこの例に限定されるものではない。
Therefore, according to the manufacturing method of the present invention (claims 5 and 6), a higher quality (or extremely high quality) large-diameter fluorite single crystal usable as an optical material for a stepper can be collected. It can be manufactured efficiently (or in extremely good yield). Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0019】[0019]

【実施例】本発明者らは、ルツボ内径300mm の結晶成長
炉を製作して成長炉内の温度分布を測定したところ、図
4の温度分布41のように理想に近い温度傾斜(勾配)
を示した。このような温度傾斜(勾配)の形成は、例え
ば、上部ヒータ21による上部加熱温度域と下部ヒータ
21’による下部加熱温度域との二つの温度域の熱の流
れを抑制するために、熱遮断板23を設けることにより
可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors fabricated a crystal growth furnace having a crucible inner diameter of 300 mm and measured the temperature distribution inside the growth furnace. As shown in FIG.
showed that. Such a temperature gradient (gradient) is formed, for example, by suppressing heat flow in two temperature ranges, an upper heating temperature range by the upper heater 21 and a lower heating temperature range by the lower heater 21 ′. This is made possible by providing the plate 23.

【0020】しかし、このように熱遮断板23を設ける
ことにより、理想に近い温度傾斜(勾配)を形成して
も、実際に前記ルツボ内径300mm の結晶成長炉を用いて
蛍石を製造すると、ルツボの引き下げ速度を0.5mm/H と
非常に小さくした場合でも、多結晶の蛍石となってしま
った。そこで、ルツボの温度を測定してみると、図4の
温度カーブ42、43のように炉内の温度分布41とは
大きく異なっていた。
However, by providing the heat blocking plate 23 in this manner, even if a temperature gradient (gradient) near ideal is formed, if fluorite is actually manufactured using the crystal growth furnace having the crucible inner diameter of 300 mm, Even when the crucible was pulled down at a very low speed of 0.5 mm / H, it became polycrystalline fluorite. Then, when the temperature of the crucible was measured, it was significantly different from the temperature distribution 41 in the furnace as shown by the temperature curves 42 and 43 in FIG.

【0021】従って、本実施例では、温度勾配を強くす
ると共に固化熱を外周へ逃がすべく、熱遮断板のある仕
切り部に放熱効果(放熱機構)をもたせることにした。
さらに、本実施例においては、例えば、放熱効果を結晶
成長中に制御するために、放熱効果を有する熱遮断板
(カーボンプレート)11の外側に保温部材(カーボン
フェルト)を設け、また該保温部材を炉の外部から開閉
できる可動部(回転軸13、駆動部14、伝導部材1
5)を、保温部材12の熱遮断板11に対する接触の有
無、接触の面積または距離を制御する機構として設け
た。
Therefore, in the present embodiment, the partition having the heat shield plate has a heat radiation effect (heat radiation mechanism) in order to increase the temperature gradient and release the heat of solidification to the outer periphery.
Further, in this embodiment, for example, in order to control the heat radiation effect during the crystal growth, a heat retaining member (carbon felt) is provided outside the heat shielding plate (carbon plate) 11 having the heat radiation effect, and the heat retaining member is provided. Movable parts (rotary shaft 13, drive unit 14, conductive member 1) that can be opened and closed from outside the furnace
5) is provided as a mechanism for controlling the presence / absence of contact of the heat retaining member 12 with the heat shield plate 11 and the area or distance of the contact.

【0022】図1に本実施例にかかる蛍石単結晶の製造
装置(概略構成)を示す。保温部材12を分割して各々
の回転軸13に固定し、その回転軸13を回転させるた
めの伝導部材15を設け、伝導部材15を炉外部より回
転させることにより保温部材12を開閉可能とした。回
転軸13を回転させる駆動部14は真空炉外に設置し
た。また、分割した残りの各回転軸を同時に回動させる
ためにチェーンのような伝達部材を設けた。
FIG. 1 shows an apparatus (schematic configuration) for producing a fluorite single crystal according to the present embodiment. The heat retaining member 12 is divided and fixed to each of the rotating shafts 13, a conductive member 15 for rotating the rotating shaft 13 is provided, and the heat retaining member 12 can be opened and closed by rotating the conductive member 15 from outside the furnace. . The driving unit 14 for rotating the rotating shaft 13 was installed outside the vacuum furnace. In addition, a transmission member such as a chain is provided to simultaneously rotate the remaining divided rotation shafts.

【0023】また、駆動部は、ルツボ25の引き下げを
開始してから、結晶成長炉内の温度勾配が大きく変化し
ないような、実験で予め求められた条件により自動的に
制御した。熱遮断板のある仕切り部に放熱効果をもたせ
るためには、例えば、熱遮断板(または仕切り部)にヒ
ートシンクもしくは開口部を設ければよく、またさらに
冷却効果を持たせるためには、冷却用のパイプを設けれ
ばよい。
Further, the drive unit was automatically controlled under conditions previously determined by experiments so that the temperature gradient in the crystal growth furnace did not change significantly after the lowering of the crucible 25 was started. In order to provide a heat-dissipating effect to a partition having a heat-shielding plate, for example, a heat-sink or an opening may be provided in the heat-shielding plate (or the partition). It is sufficient to provide a pipe.

【0024】本実施例の蛍石単結晶・製造装置は、前記
構成を採用したので、放熱効果を制御することにより結
晶成長中の温度傾斜(勾配)を制御できるだけでなく、
温度傾斜が不要な溶融過程における必要電力を低減する
ことも可能となった。即ち、温度傾斜が不要な溶融過程
においては、熱遮断板(または仕切り部)に対して保持
部材を閉じた状態にして、熱遮断板(または仕切り部)
からの放熱を抑制し、また結晶成長中は、ルツボの引き
下げに合わせて保温部材を開くことにより、放熱効果を
有する熱遮断板(または仕切り部)から固化熱を逃がす
(放熱させる)ところに特徴がある。
Since the fluorite single crystal manufacturing apparatus of this embodiment employs the above-described configuration, not only can the temperature gradient (gradient) during crystal growth be controlled by controlling the heat radiation effect,
It has also become possible to reduce the required power in the melting process that does not require a temperature gradient. That is, in the melting process where the temperature gradient is unnecessary, the holding member is closed with respect to the heat shielding plate (or the partition), and the heat shielding plate (or the partition) is closed.
The feature is that during the crystal growth, the solidification heat is released (dissipated) from the heat blocking plate (or partition) that has a heat radiation effect by opening the heat retaining member during crystal growth by opening the heat retaining member. There is.

【0025】また、保温材を移動させることに特徴があ
り、本実施例では、一例として回転機構を使用したが、
保温材の開閉に直動機構を適用しても構わない。本実施
例の蛍石単結晶・製造装置(ルツボ内径φ300mm )を用
いて蛍石を結晶成長させた。溶融中は保温部材を放熱効
果を有する熱遮断板(または仕切り部)の近くに配置し
て放熱させないようにした。そして、引き下げが開始さ
れ、直胴部分が熱遮断板(または仕切り部)に近づくに
つれて、引き下げと連動させて保温部材が開くようにす
ることで、放熱効果が大きくなるようにした。
The present invention is characterized in that the heat insulating material is moved. In this embodiment, a rotating mechanism is used as an example.
A linear motion mechanism may be used for opening and closing the heat insulating material. Fluorite was crystal-grown using the fluorite single crystal manufacturing apparatus (crucible inner diameter φ300 mm) of the present example. During the melting, the heat retaining member was arranged near a heat shielding plate (or a partition) having a heat radiation effect to prevent heat radiation. Then, as the lowering is started and the heat retaining member is opened in conjunction with the lowering as the straight body portion approaches the heat shielding plate (or the partition portion), the heat radiation effect is increased.

【0026】また、直胴部分が熱遮断板(または仕切り
部)の横を通過中は保温部材の動きを停止させた。こう
することで、温度傾斜を引き下げ中も一定に保つことが
でき、さらに固液界面の(結晶成長炉に対する)位置も
一定にすることができた。成長させた蛍石のインゴット
は、全体に渡り単結晶であり、φ270mm のレンズ素材が
採取できた。
Further, the movement of the heat retaining member was stopped while the straight body portion passed beside the heat shield plate (or the partition portion). By doing so, the temperature gradient could be kept constant during the lowering, and the position of the solid-liquid interface (with respect to the crystal growth furnace) could be kept constant. The grown fluorite ingot was a single crystal throughout, and a φ270 mm lens material could be collected.

【0027】本実施例の蛍石単結晶・製造装置(ルツボ
内径φ300mm )を用いて蛍石を結晶成長させることによ
り、従来は多結晶になることが多かった大口径蛍石が非
常に安定して単結晶となった。
By growing the fluorite crystal using the fluorite single crystal manufacturing apparatus (crucible inner diameter φ300 mm) of the present embodiment, the large-diameter fluorite, which has often been polycrystalline in the past, is very stable. It became a single crystal.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
ステッパー用の光学材料として使用可能な大口径かつ高
品質な蛍石単結晶を収率よく製造できる。即ち、本発明
によれば、直径が250mm を越えるような大口径の蛍石単
結晶が安定して得られるようになり、短波長光源用ステ
ッパーの光学材料として提供することが可能となった。
As described above, according to the present invention,
A large-diameter and high-quality fluorite single crystal that can be used as an optical material for a stepper can be produced with high yield. That is, according to the present invention, a large-diameter fluorite single crystal having a diameter exceeding 250 mm can be stably obtained, and can be provided as an optical material of a stepper for a short wavelength light source.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、実施例の蛍石単結晶の製造装置を示す概略
構成図である。
FIG. 1 is a schematic configuration diagram illustrating an apparatus for manufacturing a fluorite single crystal according to an embodiment.

【図2】は、従来の結晶成長炉を示す概略構成図であ
る。
FIG. 2 is a schematic configuration diagram showing a conventional crystal growth furnace.

【図3】は、結晶化を行う際に理想的といわれる結晶成
長炉内の温度勾配を示す温度分布図である。
FIG. 3 is a temperature distribution diagram showing a temperature gradient in a crystal growth furnace which is considered to be ideal when performing crystallization.

【図4】は、従来の結晶成長炉における、炉内温度勾配
とルツボの温度カーブを示す温度分布図である。
FIG. 4 is a temperature distribution diagram showing a furnace temperature gradient and a crucible temperature curve in a conventional crystal growth furnace.

【符号の説明】[Explanation of symbols]

11 放熱効果を持たせた熱遮断板 12 保温部材 13 回転軸 14 駆動部 15 伝導部材 21 上部ヒーター 21’下部ヒーター 22 断熱材 23 熱遮断板 24 引き下げ棒 25 ルツボ 26 液相 27 固相 31 理想的な温度勾配 41 炉内温度分布曲線 42 ルツボ下部の温度カーブ 43 ルツボ上部の温度カーブ K 結晶成長炉 以上 REFERENCE SIGNS LIST 11 heat shield plate having heat dissipation effect 12 heat retaining member 13 rotating shaft 14 drive unit 15 conductive member 21 upper heater 21 ′ lower heater 22 heat insulating material 23 heat shield plate 24 pulldown rod 25 crucible 26 liquid phase 27 solid phase 31 ideal Temperature gradient 41 Furnace temperature distribution curve 42 Temperature curve below crucible 43 Temperature curve above crucible K Crystal growth furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高野 修一 東京都福生市大字熊川1642番地26 応用光 研工業株式会社内 (72)発明者 西川 秀美 東京都福生市大字熊川1642番地26 応用光 研工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shuichi Takano 1642-26 Kumagawa, Oaza, Fussa-shi, Tokyo Inside (72) Inventor Hidemi Nishikawa 1642-26 Kumakawa, Oaza, Fussa-shi, Tokyo Inside the corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、蛍石原料を収納するルツボ
と、該ルツボを結晶成長炉の中で垂直に降下させる機構
と、前記結晶成長炉の中を昇温させる加熱機構と、前記
蛍石原料の融点前後にわたる温度勾配(温度傾斜)を前
記結晶成長炉の中に形成するための熱遮断板(仕切り
部)と、を備えた蛍石単結晶の製造装置において、 前記熱遮断板(仕切り部)の放熱機構または冷却機構を
設けたことを特徴とする蛍石単結晶の製造装置。
1. A crucible containing at least a fluorite raw material, a mechanism for vertically lowering the crucible in a crystal growth furnace, a heating mechanism for raising the temperature in the crystal growth furnace, and a fluorite raw material A heat blocking plate (partition portion) for forming a temperature gradient (temperature gradient) in the crystal growth furnace around the melting point of the fluorite single crystal, wherein the heat blocking plate (partition portion) ) A fluorite single crystal manufacturing apparatus characterized by comprising a heat dissipation mechanism or a cooling mechanism.
【請求項2】 前記放熱機構は、前記熱遮断板(仕切り
部)に設けたヒートシンクもしくは開口であり、前記冷
却機構は前記熱遮断板(仕切り部)に隣接または近接し
て設けた冷媒循環パイプであることを特徴とする請求項
1記載の製造装置。
2. The heat radiating mechanism is a heat sink or an opening provided on the heat shielding plate (partition), and the cooling mechanism is a refrigerant circulation pipe provided adjacent to or close to the heat shielding plate (partition). The manufacturing apparatus according to claim 1, wherein
【請求項3】 前記放熱機構による放熱量または前記冷
却機構による冷却量を制御する機構をさらに設けたこと
を特徴とする請求項1または2記載の製造装置。
3. The manufacturing apparatus according to claim 1, further comprising a mechanism for controlling a heat radiation amount by the heat radiation mechanism or a cooling amount by the cooling mechanism.
【請求項4】 前記放熱量を制御する機構は、前記熱遮
断板(仕切り部)からの熱放出を抑制または防止する保
温部材と、該保温部材の前記熱遮断板(仕切り部)に対
する接触の有無、接触の面積、または距離を制御する機
構と、を有することを特徴とする請求項3記載の製造装
置。
4. A mechanism for controlling the amount of heat radiation, comprising: a heat insulating member for suppressing or preventing heat release from the heat insulating plate (partition); and a contact member for contacting the heat insulating member with the heat insulating plate (partition). The manufacturing apparatus according to claim 3, further comprising a mechanism for controlling presence / absence, a contact area, or a distance.
【請求項5】 蛍石原料を収納したルツボを、蛍石原料
の融点前後にわたる温度勾配(温度傾斜)を有する結晶
成長炉の中で垂直に降下させることにより、蛍石原料を
融解させて融液を形成するとともに、一端から前記融液
を順次固化させて蛍石単結晶を成長させる、請求項1〜
4記載の製造装置を用いて行う垂直ブリッジマン法によ
る蛍石単結晶の製造方法において、 前記放熱機構、前記冷却機構、前記放熱量を制御する機
構、または前記冷却量を制御する機構を用いて、前記ル
ツボの降下中における前記温度勾配の変動及び/または
固液界面の位置変動を抑制するか、或いは前記ルツボの
降下中における前記温度勾配及び/または固液界面の位
置を調整することを特徴とする蛍石単結晶の製造方法。
5. The fluorite raw material is melted by vertically lowering a crucible containing a fluorite raw material in a crystal growth furnace having a temperature gradient (temperature gradient) around the melting point of the fluorite raw material. A liquid is formed, and the melt is sequentially solidified from one end to grow a fluorite single crystal.
5. A method for producing a fluorite single crystal by the vertical Bridgman method performed by using the production apparatus according to 4, wherein the heat dissipation mechanism, the cooling mechanism, the mechanism for controlling the heat dissipation amount, or the mechanism for controlling the cooling amount are used. Suppressing the fluctuation of the temperature gradient and / or the position fluctuation of the solid-liquid interface during the lowering of the crucible, or adjusting the position of the temperature gradient and / or the position of the solid-liquid interface during the lowering of the crucible. For producing a fluorite single crystal.
【請求項6】 蛍石単結晶の結晶成長中における温度勾
配及び/または固液界面の位置が最適または最適範囲と
なるように、前記調整を行うことを特徴とする請求項5
記載の製造方法。
6. The adjustment is performed so that the temperature gradient and / or the position of the solid-liquid interface during the crystal growth of the fluorite single crystal is optimal or optimal.
The manufacturing method as described.
JP5526597A 1997-03-10 1997-03-10 Fluorite single crystal manufacturing apparatus and manufacturing method Expired - Lifetime JP3725280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5526597A JP3725280B2 (en) 1997-03-10 1997-03-10 Fluorite single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5526597A JP3725280B2 (en) 1997-03-10 1997-03-10 Fluorite single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JPH10251097A true JPH10251097A (en) 1998-09-22
JP3725280B2 JP3725280B2 (en) 2005-12-07

Family

ID=12993781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5526597A Expired - Lifetime JP3725280B2 (en) 1997-03-10 1997-03-10 Fluorite single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP3725280B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309461B1 (en) 1999-06-07 2001-10-30 Sandia Corporation Crystal growth and annealing method and apparatus
EP1475464A1 (en) * 2003-05-06 2004-11-10 Corning Incorporated Method for producing an optical fluoride crystal
JP2006117524A (en) * 2004-10-19 2006-05-11 Siltron Inc High quality single crystal and its growing method
JP2006327837A (en) * 2005-05-23 2006-12-07 Nikon Corp Fluorite single crystal manufacturing apparatus and method for manufacturing fluorite single crystal using the same
US20230203713A1 (en) * 2020-04-27 2023-06-29 Ebner Industrieofenbau Gmbh Apparatus for heating multiple crucibles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309461B1 (en) 1999-06-07 2001-10-30 Sandia Corporation Crystal growth and annealing method and apparatus
EP1475464A1 (en) * 2003-05-06 2004-11-10 Corning Incorporated Method for producing an optical fluoride crystal
JP2006117524A (en) * 2004-10-19 2006-05-11 Siltron Inc High quality single crystal and its growing method
JP2006327837A (en) * 2005-05-23 2006-12-07 Nikon Corp Fluorite single crystal manufacturing apparatus and method for manufacturing fluorite single crystal using the same
JP4569872B2 (en) * 2005-05-23 2010-10-27 株式会社ニコン Fluorite single crystal production apparatus and fluorite single crystal production method using the same
US20230203713A1 (en) * 2020-04-27 2023-06-29 Ebner Industrieofenbau Gmbh Apparatus for heating multiple crucibles

Also Published As

Publication number Publication date
JP3725280B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
US5492079A (en) Process for producing rods or blocks of semiconductor material and an apparatus for carrying out the process
US11326272B2 (en) Mono-crystalline silicon growth apparatus
US20040099205A1 (en) Method of growing oriented calcium fluoride single crystals
US7291225B2 (en) Heat shield and crystal growth equipment
JPH10251097A (en) Apparatus for production of fluorite single crystal and its production
JP3988217B2 (en) Large-diameter fluorite manufacturing apparatus and manufacturing method
JP3006148B2 (en) Fluorite production equipment with excellent excimer resistance
US5785758A (en) Single crystal growing apparatus
US6736893B2 (en) Process for growing calcium fluoride monocrystals
JP3006147B2 (en) Large diameter fluorite single crystal manufacturing equipment
JP2008508187A (en) Method for growing a single crystal from a melt
CN103717790A (en) Crucible for manufacturing compound crystal, apparatus for manufacturing compound crystal, and method for manufacturing compound crystal using crucible
JP2004010461A (en) Apparatus for manufacturing crystal and method for manufacturing crystal
JPH11292696A (en) Fluorite production unit
JP2006219352A (en) Apparatus and method for manufacturing single crystal
CN110904510A (en) Single crystal furnace for InSb crystal growth
US20210332496A1 (en) Mono-crystalline silicon growth apparatus
JPH10203899A (en) Fluorite little in alkaline earth metal impurities and its production
JPH10324592A (en) Apparatus for pulling up single crystal
JP2005089204A (en) Apparatus and method for producing crystal
KR100304291B1 (en) Silicon crystal and its manufacturing apparatus, manufacturing method
JP2004339053A (en) Method for producing optical fluoride crystal
JPH06206789A (en) Production of semiconductor single crystal
JP3542444B2 (en) Crystal manufacturing apparatus and method
JP4608894B2 (en) Fluoride single crystal manufacturing apparatus and manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170930

Year of fee payment: 12

EXPY Cancellation because of completion of term