JPH10251069A - Silicon nitride circuit board and semiconductor device - Google Patents
Silicon nitride circuit board and semiconductor deviceInfo
- Publication number
- JPH10251069A JPH10251069A JP9061004A JP6100497A JPH10251069A JP H10251069 A JPH10251069 A JP H10251069A JP 9061004 A JP9061004 A JP 9061004A JP 6100497 A JP6100497 A JP 6100497A JP H10251069 A JPH10251069 A JP H10251069A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- particle
- sintered body
- average
- circuit board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
Landscapes
- Ceramic Products (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、窒化珪素焼結体で
形成される回路基板及びこれを用いた半導体装置に関
し、特に、高熱伝導性と低誘電性とを備えた回路基板及
びこれを用いた半導体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit board formed of a silicon nitride sintered body and a semiconductor device using the same, and more particularly, to a circuit board having high thermal conductivity and low dielectric property and using the same. Semiconductor device.
【0002】[0002]
【従来の技術】電子回路は、主にICなどの素子と基板
と配線等とによって構成される。近年、電子回路の高速
化、小型化及び大出力化が進み、素子の発熱量が無視で
きない程大きな値となってきた。これに対応するため
に、低誘電率のガラスセラミックスや高熱伝導性の窒化
アルミニウム(AlN)からなる回路基板が開発されて
きている。回路基板として要求される特性は多岐にわた
るが、特に、信号遅延時間を小さくするために低誘電率
であること、素子から発生する熱を効率よく放散するた
めに高熱伝導性であること、及び、低電気抵抗の配線材
料を使用を可能とするために低温で焼結されることが重
要である。AlNなどの焼結体からなる回路基板は高熱
伝導性であるが、ガラスセラミックス製や従来のガラス
エポキシ系などに比べて比誘電率が高く、焼結温度が高
いことなどが問題となっている。2. Description of the Related Art An electronic circuit mainly includes an element such as an IC, a substrate, and wiring. In recent years, the speed, size, and output of electronic circuits have been increasing, and the amount of heat generated by elements has become so large that it cannot be ignored. In order to cope with this, circuit boards made of low dielectric constant glass ceramics or high thermal conductive aluminum nitride (AlN) have been developed. The characteristics required as a circuit board are various, but in particular, it has a low dielectric constant to reduce the signal delay time, and has a high thermal conductivity to efficiently dissipate the heat generated from the element, and It is important that the material be sintered at a low temperature in order to enable the use of a wiring material having a low electric resistance. A circuit board made of a sintered body such as AlN has high thermal conductivity, but has a high relative dielectric constant and a high sintering temperature as compared with those made of glass ceramic or conventional glass epoxy. .
【0003】[0003]
【発明が解決しようとする課題】高熱伝導かつ低誘電性
の基板を得るために、低誘電率のAlN基板を製造する
試みとして、樹脂またはガラスなどの低誘電率材料にA
lN粒を分散させて成形する方法が提案されている。し
かし、この方法によって得られる基板の熱伝導率は大き
く低下し、AlN焼結体本来の利点を損なっている。In order to obtain an AlN substrate having a low dielectric constant in order to obtain a substrate having a high thermal conductivity and a low dielectric constant, a low dielectric constant material such as resin or glass is used.
A method of dispersing and molding 1N particles has been proposed. However, the thermal conductivity of the substrate obtained by this method is greatly reduced, which impairs the inherent advantages of the AlN sintered body.
【0004】また、特開昭61−281088号公報や
特開平3−30392号公報では、多孔性AlN焼結体
と樹脂またはガラスとからなる回路基板が提案されてい
る。しかしながら、これらの提案に従って回路基板を製
造する場合、気孔率の大きいAlN焼結体を用いると誘
電率は低下するが、熱伝導率及び機械的強度が低くな
り、逆に気孔率の小さいAlN焼結体を用いると熱伝導
率及び機械的強度は高くなるが、誘電率が高くなってし
まう。従って、高熱伝導性及び低誘電性の両方を満足す
る回路基板を製造するのは難しい。AlN焼結体を熱伝
導の担体として重用することは、機械的強度の低さによ
る実用上の問題を生じ、誘電率の低下に限界がある。Japanese Patent Application Laid-Open Nos. 61-28088 and 3-30392 propose a circuit board made of a porous AlN sintered body and resin or glass. However, when manufacturing a circuit board in accordance with these proposals, using an AlN sintered body having a high porosity lowers the dielectric constant, but lowers the thermal conductivity and mechanical strength, and conversely, reduces the AlN sintered body having a low porosity. When the binder is used, the thermal conductivity and the mechanical strength are increased, but the dielectric constant is increased. Therefore, it is difficult to manufacture a circuit board that satisfies both high thermal conductivity and low dielectric property. The heavy use of an AlN sintered body as a carrier for heat conduction causes a practical problem due to low mechanical strength, and there is a limit to a decrease in dielectric constant.
【0005】近年になって、熱伝導率が100W/mK
以上の高熱伝導性の窒化珪素(Si3 N4 )焼結体が得
られるようにり、放熱性回路基板の素材として有望視さ
れている。例えば、特開平6−135771号公報に示
されるように、120W/mKの熱伝導率を持つSi3
N4 焼結体が得られている。Si3 N4 焼結体は、Al
Nに比べて誘電率が低く、回路基板として適しているも
のと考えられるが、現在のところ、応用面での開発が充
分でなく未着手の状態である。In recent years, the thermal conductivity has become 100 W / mK.
The silicon nitride (Si 3 N 4 ) sintered body having high thermal conductivity as described above can be obtained, and is considered to be promising as a material for a heat radiation circuit board. For example, as disclosed in Japanese Patent Application Laid-Open No. 6-135771, Si 3 having a thermal conductivity of 120 W / mK is used.
An N 4 sintered body has been obtained. The Si 3 N 4 sintered body is made of Al
Although the dielectric constant is lower than that of N, it is considered to be suitable as a circuit board. However, at the present time, development in application is not sufficient and it has not been started yet.
【0006】このように、高熱伝導性と低誘電性とを兼
ね備えた素材で形成された放熱性回路基板は実現されて
いない。As described above, a heat radiation circuit board formed of a material having both high thermal conductivity and low dielectric property has not been realized.
【0007】本発明は、窒化珪素焼結体を改良し、高熱
伝導性と低誘電性とを兼ね備えた窒化珪素焼結体で形成
され高速且つ信頼性の高い信号処理が可能な回路基板を
提供することを課題とする。The present invention provides a circuit board which is improved from a silicon nitride sintered body and is made of a silicon nitride sintered body having both high thermal conductivity and low dielectric constant and capable of high-speed and highly reliable signal processing. The task is to
【0008】又、高熱伝導性、低誘電性及び高機械強度
を兼ね備えた回路基板を用いた半導体装置を提供するこ
とを課題とする。It is another object of the present invention to provide a semiconductor device using a circuit board having high thermal conductivity, low dielectric property and high mechanical strength.
【0009】[0009]
【課題を解決するための手段】本発明の窒化珪素回路基
板は、窒化珪素粒子からなる粒子相と低誘電率材料から
なる粒子間相とを有する窒化珪素焼結体を用いて形成さ
れる窒化珪素回路基板であって、窒化珪素焼結体中の該
粒子相の容積比が50〜60%であり、該粒子相の窒化
珪素粒子の平均一次粒子径が1.0μm以上であり、該
窒化珪素粒子は互いにネック部を介して接続されてお
り、1つの窒化珪素粒子当りの該ネック部の断面積の総
計が平均で粒子表面積の30〜70%である。SUMMARY OF THE INVENTION A silicon nitride circuit board according to the present invention is formed by using a silicon nitride sintered body having a particle phase composed of silicon nitride particles and an interparticle phase composed of a low dielectric constant material. A silicon circuit substrate, wherein the volume ratio of the particle phase in the silicon nitride sintered body is 50 to 60%, and the average primary particle diameter of the silicon nitride particles in the particle phase is 1.0 μm or more; The silicon particles are connected to each other via a neck, and the total cross-sectional area of the neck per silicon nitride particle is 30 to 70% of the particle surface area on average.
【0010】上記窒化珪素粒子のネック部は、断面直径
が平均で0.5μm以上であり、1つの窒化珪素粒子当
りの該ネック部の数は平均6〜8であり、上記窒化珪素
焼結体の見かけの密度は2.10g・cm-3以下である。The neck portion of the silicon nitride particles has an average cross-sectional diameter of 0.5 μm or more, and the number of neck portions per silicon nitride particle is 6 to 8 on average. Has an apparent density of 2.10 g · cm −3 or less.
【0011】上記窒化珪素焼結体は、比誘電率が6.0
以下で、強度が100MPa以上であり、熱拡散率が
0.20cm2 /sec 以上である。The silicon nitride sintered body has a relative dielectric constant of 6.0.
Below, the strength is 100 MPa or more, and the thermal diffusivity is 0.20 cm 2 / sec or more.
【0012】本発明の半導体装置は、上記窒化珪素回路
基板と、該窒化珪素回路基板に搭載される半導体素子と
を有する。A semiconductor device according to the present invention includes the above-described silicon nitride circuit board, and a semiconductor element mounted on the silicon nitride circuit board.
【0013】[0013]
【発明の実施の形態】窒化珪素(Si3 N4 )それ自体
の誘電率は12GHzの周波域で約7.9であり、窒化
アルミニウム(AlN)の約8.8に比べて低く、窒化
珪素と樹脂等とを組み合わせれば、AlNと樹脂との系
よりも低誘電率化が可能であることが期待される。ま
た、窒化珪素はAlNよりも高強度でかつ、密度も小さ
いので高強度化および軽量化が可能と考えられる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The dielectric constant of silicon nitride (Si 3 N 4 ) itself is about 7.9 in a frequency range of 12 GHz, which is lower than about 8.8 of aluminum nitride (AlN). It is expected that a lower dielectric constant than that of a system of AlN and a resin can be achieved by combining the resin with a resin or the like. Further, since silicon nitride has higher strength and lower density than AlN, it is considered that high strength and light weight can be achieved.
【0014】上記に従って、窒化珪素焼結体の高熱伝導
性と低誘電性とを兼ね備える素材を造ることを目的とし
た場合、窒化珪素粒子を樹脂又はガラス等の低誘電性材
料に分散させて成形する方法が考えられる。しかし、こ
の方法によって得られる窒化珪素焼結体では熱伝導の担
体である窒化珪素粒子は点接触するだけなので、熱伝導
の効率が悪く目的とするような素材は得られない。従っ
て、熱伝導効率を上げるためには、窒化珪素粒子が面接
触した焼結体である必要がある。この様な焼結体を得る
方法として、多孔性窒化珪素焼結体を製造し、これに低
誘電性材料を含浸される方法が考えられる。In order to produce a material having both high thermal conductivity and low dielectric property of a silicon nitride sintered body according to the above, silicon nitride particles are dispersed in a low dielectric material such as resin or glass and molded. There is a way to do it. However, in the silicon nitride sintered body obtained by this method, since the silicon nitride particles, which are carriers for heat conduction, only make point contact, the efficiency of heat conduction is low, and a desired material cannot be obtained. Therefore, in order to increase the heat conduction efficiency, it is necessary that the sintered body has silicon nitride particles in surface contact. As a method for obtaining such a sintered body, a method in which a porous silicon nitride sintered body is manufactured and impregnated with a low dielectric material is considered.
【0015】通常の焼結体の製造においては、焼結温度
を低くするなど焼結条件を変えて焼結を途中で打ち切る
ことによって多孔性焼結体を得ることができる。このよ
うな方法では、焼結を抑えるほど気孔率は高くなる。し
かし、低誘電性材料の含浸に必要な気孔を確保するため
に焼結を抑制すると、窒化珪素粒子間の結合が不充分に
なり、熱伝導率も機械強度も不十分になる。In the production of a normal sintered body, a porous sintered body can be obtained by changing the sintering conditions such as lowering the sintering temperature and cutting off the sintering in the middle. In such a method, the porosity increases as the sintering is suppressed. However, if sintering is suppressed in order to secure pores necessary for impregnation with a low dielectric material, bonding between silicon nitride particles becomes insufficient, and both thermal conductivity and mechanical strength become insufficient.
【0016】本発明の窒化珪素回路基板は、窒化珪素粒
子を緻密化させずに高い気孔率を保ったまま粒子成長さ
せることによって気孔率が同じであっても通常の焼結で
得られる焼結体に比べて粒子間の結合が強固な多孔性窒
化珪素焼結体を形成し、これに低誘電性材料を含浸させ
ることによって得られる窒化珪素焼結体を用いて回路基
板を形成する。得られた回路基板は、強固な粒子間結合
を有する窒化珪素粒子相によって高い熱伝導性及び機械
強度を発揮し、粒子間相によって低誘電性を発揮する。
換言すれば、窒化珪素粒子相に特徴を有するものであ
る。The silicon nitride circuit substrate according to the present invention is characterized in that the silicon nitride particles are grown while maintaining a high porosity without densifying the silicon nitride particles. A circuit board is formed using a silicon nitride sintered body obtained by forming a porous silicon nitride sintered body having a stronger bond between particles than a body and impregnating the porous silicon nitride sintered body with a low dielectric material. The obtained circuit board exhibits high thermal conductivity and mechanical strength due to the silicon nitride particle phase having strong interparticle bonds, and exhibits low dielectric properties due to the interparticle phase.
In other words, it has characteristics in the silicon nitride particle phase.
【0017】本発明の窒化珪素回路基板は、回路基板を
構成する窒化珪素焼結体中の粒子相の容積比が50〜6
5%であり、窒化珪素粒子相における窒化珪素粒子の平
均一次粒子径が1.0μm以上であり、窒化珪素粒子は
互いにネック部を介して接続されており、1つの窒化珪
素粒子当りのネック部の断面積の総計が平均で粒子表面
積の30〜70%であることを特徴とする。粒子相の容
積比が49%以下では、回路基板の熱伝導性及び機械強
度が低く、66%以上では誘電率が高くなる。窒化珪素
粒子の粒子径が1.0μm未満であると、粒子成長及び
焼結が不十分なために焼結体の機械強度が低下する。1
つの窒化珪素粒子当りのネック部の断面積の総計が平均
で粒子表面積の29%以下であると熱伝導性が極度に低
下し、71%以上であると焼結体の気孔率、即ち粒子間
相の割合を確保できず、誘電率を低下させることができ
ない。In the silicon nitride circuit board of the present invention, the volume ratio of the particle phase in the silicon nitride sintered body forming the circuit board is 50 to 6%.
5%, the average primary particle diameter of the silicon nitride particles in the silicon nitride particle phase is 1.0 μm or more, and the silicon nitride particles are connected to each other via a neck portion. Is characterized by an average of 30 to 70% of the particle surface area on average. When the volume ratio of the particle phase is 49% or less, the thermal conductivity and mechanical strength of the circuit board are low, and when it is 66% or more, the dielectric constant is high. When the particle size of the silicon nitride particles is less than 1.0 μm, the mechanical strength of the sintered body is reduced due to insufficient particle growth and sintering. 1
If the total cross-sectional area of the neck portion per silicon nitride particle is 29% or less of the particle surface area on average, the thermal conductivity is extremely reduced, and if it is 71% or more, the porosity of the sintered body, that is, The ratio of the phases cannot be secured, and the dielectric constant cannot be reduced.
【0018】更に、窒化珪素粒子のネック部の断面直径
が平均で0.5μm以上であり、1つの窒化珪素粒子当
りの該ネック部の数が平均6〜8であると好ましい。つ
まり、ある程度以上の大きさを持つある程度以上の数の
ネック部によって窒化珪素粒子が結合されることによ
り、熱伝導性が向上する。Furthermore, it is preferable that the cross-sectional diameter of the neck portion of the silicon nitride particles is 0.5 μm or more on average, and the number of neck portions per silicon nitride particle is 6 to 8 on average. In other words, the thermal conductivity is improved by bonding the silicon nitride particles with a certain number or more of neck portions having a certain size or more.
【0019】上述の窒化珪素焼結体は、見かけの密度が
2.10g・cm-3以下となる。このように構成すること
によって、窒化珪素焼結体の比誘電率が6.0以下で、
強度が100MPa以上であり、熱拡散率が0.20cm
2 /sec 以上となるような窒化珪素回路基板が得られ
る。The above-described silicon nitride sintered body has an apparent density of 2.10 g · cm −3 or less. With this configuration, the relative permittivity of the silicon nitride sintered body is 6.0 or less,
Strength is 100MPa or more, thermal diffusivity is 0.20cm
A silicon nitride circuit substrate having a speed of 2 / sec or more is obtained.
【0020】本発明の窒化珪素回路基板を製造する製法
について以下に説明する。A method for manufacturing the silicon nitride circuit board of the present invention will be described below.
【0021】窒化珪素の代表的な製造方法のひとつに、
SiO2 粉と炭素粉を混合して窒素雰囲気中で焼成する
ことによりSiO2 を還元窒化する方法がある。この方
法では、窒素雰囲気中で炭素と共に加熱することによっ
て還元窒化が進行する。窒化珪素粉末の成形体を窒素雰
囲気中で加熱焼結する場合にも、少量の炭素が含まれる
と、窒化珪素粉末中に不可避不純物として含まれる酸化
珪素や焼結助剤として添加される酸化物が同様に還元窒
化されて窒化珪素及び他の窒化物が生成する。酸化珪素
及び他の酸化物が還元窒化されて消失すると、窒化珪素
は実質上緻密化しなくなる。この機構は明かではない
が、焼結途中でSiO2 系液相もしくはSiO2 と焼結
助剤との反応による液相が生成せず、液相焼結が進行し
なくなること、および、焼結途中での窒化珪素中へのS
iO2 の固溶がなくなることにより窒化珪素結晶中の格
子欠陥濃度が小さくなり、空孔を介しての拡散が起こり
難くなり、その結果として緻密化が進行しなくなるもの
と考えられる。このように、上述の条件下では緻密化は
起こらないが、窒化珪素結晶粒においては粒成長がおこ
り、粒子間の結合(ネック)が形成される。従って、緻
密化を伴わない焼結が進行する。結果として得られる焼
結体は多孔質体となるが、窒化珪素粒子が結合したネッ
トワークが形成されている。このネットワークは、熱を
効率よく伝導するに十分なものである。One of the typical methods for producing silicon nitride is as follows:
There is a method of reducing and nitriding SiO 2 by mixing SiO 2 powder and carbon powder and firing in a nitrogen atmosphere. In this method, reductive nitridation proceeds by heating together with carbon in a nitrogen atmosphere. Even when a silicon nitride powder compact is heated and sintered in a nitrogen atmosphere, if a small amount of carbon is contained, silicon oxide contained as inevitable impurities in the silicon nitride powder or oxide added as a sintering aid Is similarly reduced-nitrided to produce silicon nitride and other nitrides. As silicon oxide and other oxides are reduced and nitrided and disappear, the silicon nitride does not substantially densify. Although the mechanism is not clear, liquid phase sintering does not proceed due to the absence of a liquid phase due to the reaction of the SiO 2 -based liquid phase or SiO 2 with the sintering aid during sintering. S into silicon nitride on the way
It is considered that the concentration of lattice defects in the silicon nitride crystal is reduced due to the disappearance of the solid solution of iO 2 , and diffusion through holes is less likely to occur. As a result, densification does not proceed. As described above, under the above-described conditions, densification does not occur, but grain growth occurs in silicon nitride crystal grains, and a bond (neck) between the grains is formed. Therefore, sintering without densification proceeds. Although the resulting sintered body is a porous body, a network in which silicon nitride particles are bonded is formed. This network is sufficient to conduct heat efficiently.
【0022】本発明においては、上述の機構を利用し、
窒化珪素を主成分とし炭素を含む成形体を形成して、こ
の成形体を窒素雰囲気中で加熱することにより、緻密化
及び収縮を可能な限り抑制しながら焼結し、窒化珪素結
晶粒の成長に伴う結晶粒間の結合、すなわち粒子間ネッ
クの形成を進行させる。成形体中に含まれる炭素は、窒
素雰囲気中での焼結中に、窒化珪素原料粉中に不可避的
に含まれる酸化珪素不純物や焼結助剤として添加される
酸化物を還元窒化して窒化珪素や他の窒化物に変化させ
る。更に、熱拡散性に悪影響を及ぼす酸素不純物が焼結
途中に消失するので、窒化珪素格子中への酸素固溶が起
こらず、高純度な窒化珪素からなる焼結体を得ることが
できる。In the present invention, the above-mentioned mechanism is used,
By forming a compact containing silicon nitride as a main component and containing carbon, and heating the compact in a nitrogen atmosphere, sintering is performed while minimizing densification and shrinkage as much as possible, and growing silicon nitride crystal grains. , The formation of the neck between the grains is advanced. During the sintering in a nitrogen atmosphere, the carbon contained in the compact is reduced and nitrided by silicon oxide impurities inevitably contained in the silicon nitride raw material powder and oxides added as sintering aids. Change to silicon and other nitrides. Furthermore, since oxygen impurities which have an adverse effect on thermal diffusivity disappear during sintering, no oxygen solid solution occurs in the silicon nitride lattice, and a sintered body made of high-purity silicon nitride can be obtained.
【0023】本発明の製造方法で用いる窒化珪素粉は、
実質上如何なる入手可能な粉末を用いても差し支えない
が、不純物酸素量が0.2〜1.8重量%で、平均一次
粒子径が3.5μm以下、より好ましくは0.1〜2.
5μmのものが望ましい。緻密化を抑制するために添加
される炭素は、炭素粉そのものの添加、および/または
有機物を添加してこれを非酸化性雰囲気中で焼成して炭
化させる方法などによって導入できる。炭素粉末として
は、例えば、カーボンブラック、グラファイト、無定型
炭素などが挙げられるが、その添加形態は自由である。
有機物としては、アクリル系樹脂、パラフィン、セルロ
ース、蔗糖、澱粉などが、粉体および/または液体また
は溶液の形態で加えられる。The silicon nitride powder used in the production method of the present invention is
Although virtually any available powder can be used, the amount of impurity oxygen is 0.2-1.8% by weight and the average primary particle size is 3.5 μm or less, more preferably 0.1-2.
5 μm is desirable. The carbon added to suppress the densification can be introduced by adding carbon powder itself and / or adding an organic substance and firing the carbon in a non-oxidizing atmosphere to carbonize. Examples of the carbon powder include carbon black, graphite, amorphous carbon, and the like, but the form of addition thereof is arbitrary.
As the organic substance, acrylic resin, paraffin, cellulose, sucrose, starch and the like are added in the form of powder and / or liquid or solution.
【0024】酸化珪素不純物を還元窒化させるに適切な
炭素量は、下記の式(1)に示した反応式から計算され
る炭素量の0.65〜1.20倍である。The amount of carbon suitable for reducing and nitriding silicon oxide impurities is 0.65 to 1.20 times the amount of carbon calculated from the reaction formula shown in the following equation (1).
【0025】[0025]
【化1】 Embedded image
【0026】SiO2 は、窒化珪素粉に含まれた酸素量
を例えばガス分析法により測定し、得られた酸素量をS
iO2 に換算したものが使用できる。計算量の0.65
倍以下では、SiO2 不純物の還元窒化が充分に起こり
えず、窒化珪素への酸素の固溶や窒化珪素の緻密化がお
こる場合がある。一方、上記範囲を越えると、炭素が焼
結体に残存し、機械強度の低下や充分な電気絶縁性が得
られない場合が生じる。For SiO 2 , the amount of oxygen contained in the silicon nitride powder is measured by, for example, a gas analysis method, and the obtained amount of oxygen is
Those converted to iO 2 can be used. 0.65 of calculation amount
If the ratio is less than twice, reductive nitridation of the SiO 2 impurity cannot sufficiently occur, and oxygen may be dissolved in silicon nitride or densification of silicon nitride may occur. On the other hand, when the ratio exceeds the above range, carbon remains in the sintered body, which may cause a decrease in mechanical strength and a case where sufficient electric insulation cannot be obtained.
【0027】本発明では、窒化珪素と炭素が必須であ
り、基本的にはこの2種類で構成される。しかし、焼結
助剤として以下に記載した化合物を添加できる。焼結助
剤は窒化珪素の焼結程度の調節や粒成長を促すこと、そ
して焼結ムラや焼結体の色ムラを解消するために使用さ
れる。焼結助剤はアルカリ土類化合物、希土類化合物、
燐化合物、ホウ素化合物及びアルミニウム化合物から選
択される。In the present invention, silicon nitride and carbon are essential, and are basically composed of these two types. However, the compounds described below can be added as sintering aids. The sintering aid is used to control the degree of sintering of silicon nitride, promote grain growth, and eliminate sintering unevenness and color unevenness of the sintered body. Sintering aids are alkaline earth compounds, rare earth compounds,
It is selected from a phosphorus compound, a boron compound and an aluminum compound.
【0028】アルカリ土類、希土類の化合物は、粉体ま
たは液体として添加される。例えば、酸化物、炭化物、
フッ化物、酸フッ化物、炭酸塩、シュウ酸塩、硝酸塩、
アルコキシドなどが挙げられる。また、アルカリ土類化
合物及び希土類化合物粉を添加した後、希土類の硝酸塩
をアルコールに溶解した後添加するなど、種々の組合せ
が可能である。粉体で添加する場合は、その平均粒径が
1.0μm以下、より好ましくは0.6μm以下が望ま
しい。アルカリ土類元素はCa、Ba、Sr、Mgから
なり、特にCaを用いるのが望ましい。希土類元素はS
c、Yとランタン系列の元素から成り、特にY、Ce、
Laなどを用いるのが望ましい。アルカリ土類または希
土類の添加量は通常、酸化物に換算して0.2〜10重
量%、より好ましくは1.0〜6.0重量%である。The alkaline earth and rare earth compounds are added as a powder or a liquid. For example, oxides, carbides,
Fluoride, oxyfluoride, carbonate, oxalate, nitrate,
Alkoxide and the like. Various combinations are possible, such as adding the alkaline earth compound and the rare earth compound powder, dissolving the rare earth nitrate in the alcohol, and then adding. When added as a powder, the average particle size is desirably 1.0 μm or less, more preferably 0.6 μm or less. The alkaline earth element is composed of Ca, Ba, Sr and Mg, and it is particularly desirable to use Ca. Rare earth element is S
consisting of c, Y and lanthanum series elements, especially Y, Ce,
It is desirable to use La or the like. The addition amount of the alkaline earth or rare earth is usually 0.2 to 10% by weight, more preferably 1.0 to 6.0% by weight in terms of oxide.
【0029】燐化合物として、Ca(PO4 )2 および
これと同じ組成比のBaやSrの燐酸塩、YPO4 およ
びこれと同じ組成比のLa、Ce、Gd及びYbの燐酸
塩、Ca(H2 PO4 )2 、CaHPO4 およびこれら
と同じ組成比のBaやSrの燐酸塩、AlPO4 及びA
l(PO3 )3 などが挙げられる。ホウ化物としては、
LaB6 などの希土類ホウ化物、CaB6 などのアルカ
リ土類ホウ化物、WBなどの遷移金属のホウ化物などが
挙げられる。As phosphorus compounds, Ca (PO 4 ) 2 and phosphates of Ba and Sr having the same composition ratio, YPO 4 and phosphates of La, Ce, Gd and Yb having the same composition ratio, Ca (H 4 2 PO 4 ) 2 , CaHPO 4, and phosphates of Ba and Sr having the same composition ratio as these, AlPO 4 and A
l (PO 3 ) 3 and the like. As boride,
Rare earth borides such as LaB 6 , alkaline earth borides such as CaB 6, and transition metal borides such as WB are exemplified.
【0030】アルミニウム化合物としては、Al2 O3
や焼成途中でAl2 O3 になる化合物やAlN、AlF
3 などが挙げられ、これらのアルミニウム化合物の少量
添加は焼結性の向上に効果的である。As the aluminum compound, Al 2 O 3
Or AlN, AlF or a compound that becomes Al 2 O 3 during firing
3 and the like, and the addition of a small amount of these aluminum compounds is effective in improving sinterability.
【0031】上記のような燐化合物、ホウ化物、アルミ
ニウム化合物の添加量は、通常2重量%以下、より好ま
しくは0.8重量%以下である。The amount of the phosphorus compound, boride and aluminum compound as described above is usually 2% by weight or less, more preferably 0.8% by weight or less.
【0032】また、他の添加物として、主に着色化もし
くは黒色化のため遷移金属化合物を添加すことができ
る。遷移金属化合物としては、例えば、Ti、Nb、Z
r、Ta、W、MO、Cr、Fe、CO、Niの酸化
物、窒化物、炭化物、酸炭化物、酸窒化物などで添加す
ることができ、特に導電性を有することが黒色化に望ま
しい。かかる導電性を有する遷移金属化合物としては、
例えばWやMOのメタル、Zr、Ti、Nb、Taから
選ばれる元素の窒化物または炭化物を挙げることができ
る。これら遷移金属の添加量は、元素換算で2.5重量
%以下、より好ましくは1.0重量%以下である。Further, as another additive, a transition metal compound can be added mainly for coloring or blackening. Examples of the transition metal compound include Ti, Nb, and Z.
r, Ta, W, MO, Cr, Fe, CO, and Ni oxides, nitrides, carbides, oxycarbides, oxynitrides, and the like can be added, and it is particularly desirable to have electrical conductivity for blackening. As such a transition metal compound having conductivity,
For example, a nitride or carbide of an element selected from metals of W and MO, Zr, Ti, Nb, and Ta can be given. The addition amount of these transition metals is 2.5% by weight or less, more preferably 1.0% by weight or less in terms of element.
【0033】上述に従って、本発明に係る回路基板の製
造は、概ね以下のような手順に従って行われる。例え
ば、不純物酸素量が0.3〜2.0重量%で、陽イオン
不純物の量が元素換算で0.4重量%以下であり、α相
が主成分である平均粒子径0.1〜1.5μmの窒化珪
素粉に、平均粒径が0.04〜1.5μmの炭素粉およ
び他の添加物を加える。このような粉末に、有機バイン
ダーおよび有機溶媒を加えて、例えばボールミルなどで
ペースト化しつつ混合・解砕する。このペーストを、ド
クターブレード法でシート状に成形するか、もしくは有
機バインダーを除去した後プレス成形するなどによっ
て、所望の形状に整える。次に、通常は窒素やアルゴン
のような非酸化性雰囲気中で加熱してバインダーを除去
する。脱バインダーに要する最高温度は、上記の非酸化
性雰囲気では900℃以下、酸素を含む雰囲気中では5
50℃以下が適当である。昇温速度は、通常、10〜2
00℃/hで行われ、より好ましくは30〜100℃/
hである。As described above, the manufacture of the circuit board according to the present invention is generally performed according to the following procedure. For example, the amount of impurity oxygen is 0.3 to 2.0% by weight, the amount of cationic impurity is 0.4% by weight or less in terms of element, and the average particle diameter is 0.1 to 1 in which α phase is a main component. Carbon powder having an average particle size of 0.04 to 1.5 μm and other additives are added to the silicon nitride powder of 0.5 μm. An organic binder and an organic solvent are added to such powder, and the mixture is mixed and crushed while forming a paste by, for example, a ball mill. This paste is formed into a desired shape by forming it into a sheet by a doctor blade method or by press forming after removing the organic binder. Next, the binder is usually removed by heating in a non-oxidizing atmosphere such as nitrogen or argon. The maximum temperature required for debinding is 900 ° C. or less in the above non-oxidizing atmosphere, and 5 in an atmosphere containing oxygen.
50 ° C. or less is appropriate. The heating rate is usually 10 to 2
It is carried out at 00 ° C / h, more preferably at 30 to 100 ° C / h.
h.
【0034】前記バインダーとしては、例えば、アクリ
ル系、メタクリル系、ブチラール系、PVB系、パラフ
ィン系などが使用される。このようなバインダーを分散
させる溶媒として、例えば、1−ブタノール、エタノー
ルなどのアルコール、メチルイソブチル、トルエン、キ
シレンなどが使用される。バインダーの添加量は、使用
するAlN粉末の粒度によっても異なるが、概して2〜
45重量%、好ましくは4〜20重量%である。As the binder, for example, acrylic type, methacrylic type, butyral type, PVB type, paraffin type and the like are used. As a solvent in which such a binder is dispersed, for example, 1-butanol, alcohol such as ethanol, methyl isobutyl, toluene, xylene and the like are used. The amount of the binder to be added varies depending on the particle size of the AlN powder to be used.
It is 45% by weight, preferably 4 to 20% by weight.
【0035】脱バインダー後、例えば窒化珪素セラミッ
ク、BN、カーボンなどのような窒化珪素との反応性の
とぼしい素材で作成された焼成容器中に入れ、窒素、ア
ルゴンあるいは一部水素を含むような非酸化性雰囲気中
で1600〜2000℃で焼結される。焼結は通常、1
0気圧以下の加圧雰囲気下で行われるが、1650℃前
後では大気圧下でも行える。焼結時間は、通常、最高温
度での保持時間が0.5〜12時間であり、より好まし
くは2〜8時間である。非酸化性雰囲気として、窒素お
よび/またはアルゴン、及びこれらに水素、炭酸ガスな
どを一部混合した混合ガスが挙げられる。焼欠を行う焼
結炉には、カーボン、タングステン、モリブデンなどか
ら選ばれたヒーターを具備するものが挙げられる。雰囲
気中の酸素量は100ppm以内であれば許容される。
焼結スケジュールは、最高温度まで単調に昇温すること
ができ、あるいは、必要に応じて最高温度まで段階的に
昇温してもよい。昇温速度は、毎時50〜2000℃、
より好ましくは毎時200〜1000℃に設定される。
降温速度も同程度に設定することが可能であるが、焼結
体中の粒界相を結晶化させて、熱伝導率の上昇を計るた
めには、毎時100℃以下で行うことが望ましい。After the binder is removed, it is placed in a firing vessel made of a material which is unlikely to react with silicon nitride, such as silicon nitride ceramic, BN, carbon, etc. Sintered at 1600-2000 ° C in an oxidizing atmosphere. Sintering is usually 1
Although it is carried out under a pressurized atmosphere of 0 atm or less, it can be carried out under atmospheric pressure at about 1650 ° C. The sintering time is generally 0.5 to 12 hours, more preferably 2 to 8 hours, at the maximum temperature. Examples of the non-oxidizing atmosphere include nitrogen and / or argon and a mixed gas in which hydrogen, carbon dioxide, or the like is partially mixed. Examples of the sintering furnace for performing quenching include those provided with a heater selected from carbon, tungsten, molybdenum, and the like. The amount of oxygen in the atmosphere is acceptable if it is within 100 ppm.
The sintering schedule can be monotonically ramped to the maximum temperature, or it can be ramped to the maximum temperature as needed. The heating rate is 50 to 2000 ° C./hour,
More preferably, the temperature is set to 200 to 1000 ° C. per hour.
The rate of temperature decrease can be set to the same level. However, in order to crystallize the grain boundary phase in the sintered body and measure the increase in thermal conductivity, it is desirable to perform the heat treatment at 100 ° C. or less per hour.
【0036】本発明における多層回路基板は、例えば以
下のような方法で製造される。すなわち、まず、前述の
製造方法を参照して、窒化珪素と添加物からなる混合粉
体、バインダー及び溶媒を合わせて充分に混練して粉体
の解砕・分散を行い、併せて所定の粘度のスラリーを調
製する。得られたスラリーをドクターブレード法でシー
ト化した後、加熱乾燥して溶媒を除去しグリーンシート
とする。次に、導電ペーストを用いて、例えばスクリー
ン印刷によりグリーンシートの表面に所定の回路パター
ンを形成する。この時、多層回路を形成する場合には、
層間の電気的接続を得るために、あらかじめグリーンシ
ートに穴を開け、この穴に例えば圧入法で導電ペースト
を充填する。次に、導体回路が形成されたグリーンシー
トを非酸化性雰囲気中で加熱して導電ペースト中のバイ
ンダーを除去する。必要に応じて、さらに表面に回路パ
ターンを形成し、また、熱間加圧してグリーンシートの
積層を行う。グリーンシート中のバインダーを非酸化性
雰囲気中で加熱除去した後、グリーンシートを前述の条
件を参照して焼結する。焼結後は、必要に応じてトリミ
ングや薄膜や厚膜の回路形成や、外部電極を形成するこ
とができる。なお、本発明に係る窒化珪素焼結体は、内
部配線を含まないメタライズ基板として使用でき、更
に、焼結体単独で構造部材としても使用できるものであ
る。The multilayer circuit board according to the present invention is manufactured, for example, by the following method. That is, first, referring to the above-mentioned manufacturing method, the mixed powder composed of silicon nitride and the additive, the binder and the solvent are thoroughly kneaded together to disintegrate and disperse the powder, and also have a predetermined viscosity. To prepare a slurry. After the obtained slurry is formed into a sheet by a doctor blade method, it is dried by heating to remove the solvent to obtain a green sheet. Next, using a conductive paste, a predetermined circuit pattern is formed on the surface of the green sheet by, for example, screen printing. At this time, when forming a multilayer circuit,
In order to obtain electrical connection between the layers, a hole is made in the green sheet in advance, and the hole is filled with a conductive paste by, for example, a press-fitting method. Next, the green sheet on which the conductive circuit is formed is heated in a non-oxidizing atmosphere to remove the binder in the conductive paste. If necessary, a circuit pattern is further formed on the surface, and hot pressing is performed to laminate the green sheets. After the binder in the green sheet is removed by heating in a non-oxidizing atmosphere, the green sheet is sintered with reference to the above-described conditions. After sintering, trimming, thin-film or thick-film circuit formation, and external electrodes can be performed as necessary. The silicon nitride sintered body according to the present invention can be used as a metallized substrate that does not include internal wiring, and can be used alone as a structural member.
【0037】上述の導体には、WやMoなどの高融点金
属が使用される。導体ペースト用のバインダーとして
は、上記の他にエチルセルロースやニトロセルロースな
どのセルロース系バインダー等が使用でき、ジオクチル
フタレートなどの可塑剤やα-またはγ-テレピネオー
ル、MIBK(メチルイソブチルケトン)、MEK(メ
チルエチルケトン)やカルベノールなどの溶剤が適宜添
加される。バインダーの添加量は2〜7wt%が望まし
い。また、本発明の導体ペーストには、成分の気散や成
分の絶縁体層へのにじみ防止および導体層と絶縁体層と
の収縮率の適合等のため、窒化珪素もしくは添加物を含
んだ窒化珪素をフィラーとして30〜50容量%添加す
ることができる。For the above-mentioned conductor, a high melting point metal such as W or Mo is used. As the binder for the conductive paste, in addition to the above, a cellulose-based binder such as ethyl cellulose or nitrocellulose can be used. ) And carbenol are added as appropriate. The addition amount of the binder is desirably 2 to 7% by weight. Further, the conductive paste of the present invention contains silicon nitride or a nitride containing an additive in order to prevent the diffusion of the components and the bleeding of the components into the insulator layer, and to adjust the shrinkage ratio between the conductor layer and the insulator layer. Silicon can be added as a filler in an amount of 30 to 50% by volume.
【0038】図1は本発明の半導体装置の一例を示す。
この半導体装置の回路基板の絶縁層1は上述のように形
成された窒化珪素回路基板であり、導体ペーストを用い
て回路基板表面に導体層2が形成されビアホール3にビ
アが設けられている。回路基板上には半導体素子5が搭
載され、放冷フィンが取り付けられた封止キャップで覆
われている。回路基板の下面にはリードピン6が取り付
けられている。半導体素子5と導体層2とはボンディン
グワイヤ7により接続されている。FIG. 1 shows an example of the semiconductor device of the present invention.
The insulating layer 1 of the circuit board of this semiconductor device is a silicon nitride circuit board formed as described above. The conductor layer 2 is formed on the surface of the circuit board using a conductive paste, and the via holes 3 are provided with vias. The semiconductor element 5 is mounted on the circuit board, and is covered with a sealing cap to which cooling fins are attached. Lead pins 6 are attached to the lower surface of the circuit board. The semiconductor element 5 and the conductor layer 2 are connected by a bonding wire 7.
【0039】多孔質窒化珪素焼結体は、それ自体、熱拡
散率が高く低誘電率および低比重および耐熱性物質とし
て使用することができるが、気孔中に樹脂を含浸させる
ことで気密性の付与および強度を増加させることができ
る。樹脂としては特に限定されるものではないが、エポ
キシ系、シリコーン系、ポリイミド系、ポリアミド系、
アクリル系、メタクリル系などが適している。窒化珪素
−樹脂の複合体は、必要に応じて機械的、電気的、化学
的加工等の各種後加工を施すことが可能である。例え
ば、ドリルなどでの穴あけ加工などにも適している。The porous silicon nitride sintered body itself has a high thermal diffusivity and can be used as a low dielectric constant, a low specific gravity, and a heat-resistant substance. However, by impregnating the pores with a resin, airtightness can be obtained. Application and strength can be increased. Although not particularly limited as the resin, epoxy-based, silicone-based, polyimide-based, polyamide-based,
Acrylic, methacrylic and the like are suitable. The silicon nitride-resin composite can be subjected to various post-processing such as mechanical, electrical, and chemical processing as needed. For example, it is also suitable for drilling with a drill or the like.
【0040】本発明に係る半導体装置とは、上述に従っ
て形成される窒化珪素焼結体を基板やヒートシンクに用
いた半導体装置である。リード挿入型もしくは表面実装
型の装置があり、代表例としては、リードレス・チップ
・キャリア(LCC)、ヂュアル・インライン・パッケ
ージ(DIP)、クアド・フラット・パッケージ(QF
P)、何層も積層して立体的構造を持つピン・グリッド
・アレイ(PGA)、ボール・グリッド・アレイ(BG
A)、ハイブリッドパッケージ及びIGBT、GTRな
どを搭載したパワーモジュールと呼ばれる半導体装置な
どが挙げられる。The semiconductor device according to the present invention is a semiconductor device using the silicon nitride sintered body formed as described above for a substrate and a heat sink. There are lead insertion type or surface mount type devices, and typical examples are leadless chip carriers (LCC), dual in-line packages (DIP), and quad flat packages (QF).
P), a pin grid array (PGA), a ball grid array (BG)
A), a semiconductor device called a power module equipped with a hybrid package, an IGBT, a GTR, and the like.
【0041】[0041]
【実施例】以下、本発明の実施例を詳細に説明する。Embodiments of the present invention will be described below in detail.
【0042】(実施例1)不純物酸素量が1.3重量%
で陽イオン不純物が元素換算で0.15重量%でありα
相窒化珪素を96重量%含む平均粒子径0.55μmの
窒化珪素粉の割合が98.0重量%で、平均粒径0.1
μmで純度99.9重量%のカーボンブラックの割合が
2.0重量%である粉体に、N−ブタノールを加え、湿
式ボールミルにより解砕、混合した。更に、これをアク
リル系バインダーと共にアルコール系溶媒中に分散し、
粘度が約5000CPSのスリップを調製した。続い
て、前記スリップを用いて、ドクターブレード法により
約0.8mmの均一な厚さを有するグリーンシートを作製
した。続いて、前記グリーンシートを所望の寸法に裁断
した。必要に応じて外形加工を施した後、窒素雰囲気中
で最高温度600℃まで加熱して、バインダーを除去し
た。この脱バインダー体の見かけの密度は1.75g・
cm-3であった。脱バインダー後、窒化珪素セラミック製
容器中に入れ、カーボン製ヒーターを有する焼結炉で窒
素雰囲気中、1900℃で8時間、9.8気圧の圧力下
で焼結した。(Example 1) The amount of impurity oxygen was 1.3% by weight.
And the amount of cationic impurities is 0.15% by weight in terms of element and α
The proportion of silicon nitride powder having an average particle size of 0.55 μm containing 96% by weight of phase silicon nitride is 98.0% by weight, and the average particle size is 0.1%.
N-Butanol was added to a powder having a μm of 99.9% by weight of carbon black having a ratio of 2.0% by weight, and the mixture was crushed and mixed by a wet ball mill. Further, this is dispersed in an alcohol solvent together with an acrylic binder,
A slip having a viscosity of about 5000 CPS was prepared. Subsequently, using the slip, a green sheet having a uniform thickness of about 0.8 mm was produced by a doctor blade method. Subsequently, the green sheet was cut into a desired size. After performing external processing as needed, it was heated to a maximum temperature of 600 ° C. in a nitrogen atmosphere to remove the binder. The apparent density of the debinder is 1.75 g.
cm -3 . After removing the binder, it was placed in a silicon nitride ceramic container and sintered in a sintering furnace having a carbon heater in a nitrogen atmosphere at 1900 ° C. for 8 hours under a pressure of 9.8 atm.
【0043】上記と同じスリップから有機溶媒を除去し
て、これを0.3mmのメッシュを通して造粒粉とし、シ
ート状に成形する代わりに、50MPaの一軸加圧でプ
レス成形した。これを、上記と同じ方法で脱バインダー
及び焼結を行った。この場合の脱バインダー体の見かけ
密度は1.70g・cm-3であった。The organic solvent was removed from the same slip as above, and this was passed through a 0.3 mm mesh to form granulated powder. Instead of forming into a sheet, it was press-molded by uniaxial pressing at 50 MPa. This was subjected to binder removal and sintering in the same manner as described above. In this case, the apparent density of the debinder was 1.70 g · cm −3 .
【0044】上記2つの手順により得られた焼結体はい
ずれも白色を呈し、焼結体の密度はアルキメデス法で測
定したところ、どちらも2.01 g・cm-3と窒化珪素
の密度3.20g・cm-3と比べて殆ど緻密化していなか
った。プレス成形体から得た焼結体から直径10mm、厚
さ3mmの円板を切り出し、21±2℃の室温下でJIS
−R1611に従ってレーザーフラッシュ法で熱拡散率
を測定したところ、0.22cm2 sec -1であった。焼結
体の一片を粉砕した後、X線回折により構成相を評価し
たところ、窒化珪素以外の回析ピークは見られなかっ
た。SEMおよび画像解析装置により組織構造を分析し
たところ、窒化珪素結晶粒は、粒径が平均で約1.5μ
mまで成長しており、窒化珪素粒子間でネックが形成さ
れ、ネックの直径は平均で約1.0±0.2μmと見積
もられた。又、1つの窒化珪素粒子当りの該ネック部の
数が平均7で、1つの窒化珪素粒子当りのネック部の断
面積の総計が平均48であった。空孔率は約42%であ
った。Each of the sintered bodies obtained by the above two procedures has a white color, and the density of the sintered bodies is 2.01 g · cm −3 and the density of silicon nitride is 3 when measured by the Archimedes method. It was hardly densified compared to .20 g · cm -3 . A disk having a diameter of 10 mm and a thickness of 3 mm was cut out from the sintered body obtained from the press-formed body, and was subjected to JIS at room temperature of 21 ± 2 ° C.
The thermal diffusivity measured by the laser flash method according to -R1611 was 0.22 cm 2 sec -1 . After crushing one piece of the sintered body, the constituent phases were evaluated by X-ray diffraction. As a result, no diffraction peak other than silicon nitride was observed. Analysis of the microstructure by SEM and an image analyzer revealed that silicon nitride crystal grains had an average grain size of about 1.5 μm.
m, a neck was formed between the silicon nitride particles, and the diameter of the neck was estimated to be about 1.0 ± 0.2 μm on average. The number of necks per silicon nitride particle was 7 on average, and the total cross-sectional area of necks per silicon nitride particle was 48 on average. The porosity was about 42%.
【0045】次いで、この焼結体に2液性エポキシ樹脂
を減圧下で含浸させ、約100℃で1時間硬化させた。
この後、JIS−R1601に従って4点曲げ強度を測
定したところ、平均強度は255MPaであった。ま
た、JIS−C2141に従って誘電率(室温、10M
Hz)を測定したところ、緻密な窒化珪素焼結体の7.
9に対して5.4と充分に低誘電率化した。得られた窒
化珪素焼結体−エポキシ複合体から試料棒を切り出し、
加工して上記と同じくJIS R1601に準拠した3
点曲げ法で評価したところ、曲げ強度が257MPaで
あった。Next, this sintered body was impregnated with a two-component epoxy resin under reduced pressure and cured at about 100 ° C. for 1 hour.
Thereafter, when the four-point bending strength was measured according to JIS-R1601, the average strength was 255 MPa. Further, according to JIS-C2141, the dielectric constant (room temperature, 10M
Hz), the dense silicon nitride sintered body was measured.
The dielectric constant was sufficiently lowered to 5.4 compared to 9. A sample rod was cut out from the obtained silicon nitride sintered body-epoxy composite,
Processed and 3 according to JIS R1601 as above
When evaluated by the point bending method, the bending strength was 257 MPa.
【0046】(比較例1)炭素を加えずに窒化珪素粉の
みを用いたこと以外は実施例1と同じ操作を繰り返して
焼結体を得た。得られた焼結体は白色を呈し、密度は
2.81g・cm-3であった。焼結体から、直径10mm、
厚さ3mmの円板を切り出し、21±2℃の室温下でレー
ザーフラッシュ法で熱拡散率を測定したところ、0.2
7cm2 sec -1であった。焼結体の一片を粉砕した後、X
線回折により構成相を評価したところ、窒化珪素のみの
回析ピークが見られた。実施例1と同様に組織構造を分
析したところ、窒化珪素結晶粒は粒径が平均で約2.3
μmであり、窒化珪素粒子間でネックが形成され、ネッ
クの直径は平均で約1.9±0.4μmと見積もられ
た。又、1つの窒化珪素粒子当りの該ネック部の数が平
均6で、1つの窒化珪素粒子当りのネック部の断面積の
総計が平均で粒子表面積の65%であった。空孔率は約
17%であった。Comparative Example 1 A sintered body was obtained by repeating the same operation as in Example 1 except that only silicon nitride powder was used without adding carbon. The obtained sintered body had a white color and a density of 2.81 g · cm −3 . From sintered body, diameter 10mm,
A disk having a thickness of 3 mm was cut out, and its thermal diffusivity was measured at room temperature of 21 ± 2 ° C. by a laser flash method.
It was 7 cm 2 sec -1 . After crushing a piece of sintered body, X
When the constituent phases were evaluated by line diffraction, a diffraction peak of only silicon nitride was observed. When the microstructure was analyzed in the same manner as in Example 1, the silicon nitride crystal grains had an average grain size of about 2.3.
μm, a neck was formed between the silicon nitride particles, and the diameter of the neck was estimated to be about 1.9 ± 0.4 μm on average. The average number of the necks per silicon nitride particle was 6, and the total cross-sectional area of the neck per silicon nitride particle was 65% of the particle surface area on average. The porosity was about 17%.
【0047】次いで、この焼結体に実施例1と同様に2
液性エポキシ樹脂を含浸させ硬化させた後、3点曲げ強
度を測定したところ、平均強度は580MPaであっ
た。また、誘電率は7.2であった。Next, the sintered body was treated with 2 in the same manner as in Example 1.
After impregnating and curing the liquid epoxy resin, the three-point bending strength was measured, and the average strength was 580 MPa. The dielectric constant was 7.2.
【0048】(実施例2)不純物酸素量が0.8重量%
で陽イオン不純物が元素換算で0.11重量%でありα
相窒化珪素を97重量%含む平均粒子径0.88μmの
窒化珪素粉の割合が98.5重量%で、平均粒径が0.
1μmで純度99.9重量%のカーボンブラックの割合
が1.5重量%である粉体を実施例1と同じ方法で、但
し焼結温度及び時間を2000℃で10分として、焼結
体を得た。脱バインダー体の密度は1.74 g・cm-3
であった。得られた焼結体は白色を呈し、密度は1.8
8 g・cm-3であった。同様にレーザーフラッシュ法で
熱拡散率を測定したところ、0.20cm2 sec -1であっ
た。焼結体の一片を粉砕した後、X線回折により構成相
を評価したところ、窒化珪素以外の回析ピークは見られ
なかった。組織構造を分析したところ、窒化珪素結晶粒
は粒径が平均で約1.2μmであり、窒化珪素粒子間で
ネックが形成され、ネックの直径は平均で約0.6±
0.4μmと見積もられた。又、1つの窒化珪素粒子当
りの該ネック部の数が平均8で、1つの窒化珪素粒子当
りのネック部の断面積の総計が平均で粒子表面積の38
%であった。空孔率は約43であった。(Example 2) The amount of impurity oxygen was 0.8% by weight.
And the amount of cationic impurities is 0.11% by weight in terms of element and α
The proportion of silicon nitride powder having an average particle diameter of 0.88 μm containing 97% by weight of phase silicon nitride is 98.5% by weight, and the average particle diameter is 0.1%.
A powder having a carbon content of 1 μm and a purity of 99.9% by weight of carbon black of 1.5% by weight was prepared in the same manner as in Example 1 except that the sintering temperature and time were set at 2000 ° C. for 10 minutes and the sintered body was subjected to Obtained. The density of the debinder is 1.74 g · cm −3.
Met. The obtained sintered body has a white color and a density of 1.8.
It was 8 g · cm -3 . Similarly, when the thermal diffusivity was measured by the laser flash method, it was 0.20 cm 2 sec -1 . After crushing one piece of the sintered body, the constituent phases were evaluated by X-ray diffraction. As a result, no diffraction peak other than silicon nitride was observed. Analysis of the microstructure revealed that the silicon nitride crystal grains had an average grain size of about 1.2 μm, a neck was formed between the silicon nitride grains, and the neck diameter was about 0.6 ±
It was estimated to be 0.4 μm. The average number of the necks per silicon nitride particle is 8, and the total cross-sectional area of the necks per silicon nitride particle is 38 on the average of the particle surface area.
%Met. The porosity was about 43.
【0049】この焼結体に2液性エポキシ樹脂を減圧下
で含浸させ、約100℃で1時間硬化させた。3点曲げ
強度を測定したところ、平均強度は250MPaであっ
た。誘電率(室温、10MHz)を測定したところ、
5.3であった。The sintered body was impregnated with a two-component epoxy resin under reduced pressure and cured at about 100 ° C. for 1 hour. When the three-point bending strength was measured, the average strength was 250 MPa. When the dielectric constant (room temperature, 10 MHz) was measured,
5.3.
【0050】(実施例3)実施例1と同じ組成の窒化珪
素粉と炭素粉の混合物を実施例1と同じ方法で、但し焼
結温度及び時間を1900℃で12時間として焼結体を
得た。得られた焼結体は白色を呈し、密度は2.05g
・cm-3であった。同様に熱拡散率を測定したところ、
0.31cm2 sec -1であった。焼結体の一片を粉砕した
後、X線回折により構成相を評価したところ、窒化珪素
以外の回析ピークは見られなかった。組織構造を分析し
たところ、窒化珪素結晶粒は粒径が平均で約1.8μm
であり、窒化珪素粒子間でネックが形成され、ネックの
直径は平均で約1.0±0.5μmと見積もられた。
又、1つの窒化珪素粒子当りの該ネック部の数が平均7
で、1つの窒化珪素粒子当りのネック部の断面積の総計
が平均で粒子表面積の約63%であった。空孔率は約4
0%であった。Example 3 A mixture of silicon nitride powder and carbon powder having the same composition as in Example 1 was obtained in the same manner as in Example 1, except that the sintering temperature and time were set at 1900 ° C. for 12 hours to obtain a sintered body. Was. The obtained sintered body has a white color and a density of 2.05 g.
Cm- 3 . Similarly, when the thermal diffusivity was measured,
0.31 cm 2 sec -1 . After crushing one piece of the sintered body, the constituent phases were evaluated by X-ray diffraction. As a result, no diffraction peak other than silicon nitride was observed. Analysis of the microstructure revealed that the silicon nitride crystal grains had an average grain size of about 1.8 μm.
The neck was formed between the silicon nitride particles, and the diameter of the neck was estimated to be about 1.0 ± 0.5 μm on average.
Further, the number of the necks per silicon nitride particle is 7 on average.
The total cross-sectional area of the neck portion per silicon nitride particle was about 63% of the particle surface area on average. The porosity is about 4
It was 0%.
【0051】この焼結体を2液性エポキシ樹脂を減圧下
で含浸させ、約100℃で1時間硬化させた。3点曲げ
強度を測定したところ平均強度は261MPaであっ
た。誘電率(室温、10 MHz)を測定したところ、
5.5であった。The sintered body was impregnated with a two-part epoxy resin under reduced pressure and cured at about 100 ° C. for 1 hour. When the three-point bending strength was measured, the average strength was 261 MPa. When the dielectric constant (room temperature, 10 MHz) was measured,
5.5.
【0052】(実施例4)不純物酸素量が1.6重量%
で陽イオン不純物が元素換算で0.13重量%でありα
相窒化珪素を97重量%含む平均粒子径0.38μmの
窒化珪素粉窒化珪素粉の割合が95.3重量%で、実施
例1と同じ平均粒径が0.08μmで純度99.99%
のカーボンブラック粉の割合が1.7重量%であり、平
均粒径が0.1μmで純度99.9%のY2 O3 の割合
が2重量%、そして平均粒径が0.1μmで純度99.
9%のNd2 O3 の割合が1重量%である粉体を調製し
た。これを実施例1と同じ方法で、但し焼結条件は18
50℃で8時間として焼結体を得た。得られた焼結体は
白色を呈し、密度は2.01g・cm-3であった。同様に
熱拡散率を測定したところ、0.23cm2 sec -1であっ
た。焼結体の一片を粉砕した後、X線回折により構成相
を評価したところ、窒化珪素以外に窒化イットリウムお
よび未知相の回析ピークが見られた。X線回折により構
成相を評価したところ、窒化珪素以外の回析ピークは見
られなかった。 窒化珪素結晶粒は平均で約1.1μm
まで成長しており、窒化珪素粒子間でネックが形成さ
れ、ネックの直径は平均で約0.8±0.2μmと見積
もられた。又、1つの窒化珪素粒子当りの該ネック部の
数が平均6で、1つの窒化珪素粒子当りのネック部の断
面積の総計が平均で粒子表面積の49%であった。空孔
率は約41%であった。Example 4 The amount of impurity oxygen was 1.6% by weight.
And the amount of cationic impurities is 0.13% by weight in terms of element and α
95.3% by weight of silicon nitride powder having an average particle diameter of 0.38 μm containing phase silicon nitride of 97% by weight, the same average particle diameter as in Example 1 being 0.08 μm, and a purity of 99.99%
The purity of the proportion of carbon black powder is 1.7% by weight, an average particle size of 2 wt% ratio of 99.9% of Y 2 O 3 is at 0.1 [mu] m, and an average particle diameter in the 0.1 [mu] m 99.
A powder was prepared in which the proportion of 9% Nd 2 O 3 was 1% by weight. This was carried out in the same manner as in Example 1, except that the sintering conditions were 18
A sintered body was obtained at 50 ° C. for 8 hours. The obtained sintered body was white and had a density of 2.01 g · cm −3 . When the thermal diffusivity was measured similarly, it was 0.23 cm 2 sec -1 . After crushing one piece of the sintered body, the constituent phases were evaluated by X-ray diffraction, and diffraction peaks of yttrium nitride and an unknown phase other than silicon nitride were found. When the constituent phases were evaluated by X-ray diffraction, no diffraction peak other than silicon nitride was observed. Silicon nitride crystal grains are about 1.1 μm on average
The neck was formed between the silicon nitride particles, and the diameter of the neck was estimated to be about 0.8 ± 0.2 μm on average. The average number of the necks per silicon nitride particle was 6, and the total cross-sectional area of the necks per silicon nitride particle was 49% of the particle surface area on average. The porosity was about 41%.
【0053】この焼結体に2液性エポキシ樹脂を減圧下
で含浸させ、約100℃で1時間硬化させた。3点曲げ
強度を測定したところ、平均強度は248MPaであっ
た。誘電率(室温、10 MHz)を測定したところ、
5.4であった。The sintered body was impregnated with a two-component epoxy resin under reduced pressure and cured at about 100 ° C. for 1 hour. When the three-point bending strength was measured, the average strength was 248 MPa. When the dielectric constant (room temperature, 10 MHz) was measured,
It was 5.4.
【0054】(実施例5)不純物酸素量が0.43重量
%で平均一次粒子径が0.8μmでありα相を98.4
重量%含む窒化珪素粉100重量部に対して、平均粒径
が0.1μmで純度99.9重量%のグラファイト粉を
1.6重量部加え、ボールミルを用いて解砕・混合して
原料粉を調製した。続いて、実施例1と同じ方法で脱バ
インダー体を得た。脱バインダー体の炭素量をガス分析
装置で測定したところ1.7wt%に増加していたが、バ
インダーの一部が炭素として残留したためと考えられ
た。実施例1と同様に、但し1900℃で16時間、
8.8気圧の窒素雰囲気中で加熱し、焼結体を得た。得
られた焼結体は白色を呈し、密度は2.03g・cm-3で
あった。同様にレーザーフラッシュ法で熱拡散率を測定
したところ、0.29cm2sec -1であった。焼結体の一
片を粉砕した後、X線回折により構成相を評価したとこ
ろ、窒化珪素とグラファイトの回析ピークが見られた。
窒化珪素結晶粒は平均で約1.9μmまで成長してお
り、窒化珪素粒子間でネックが形成され、ネックの直径
は平均で約1.2±0.4μmと見積もられた。又、1
つの窒化珪素粒子当りの該ネック部の数が平均7で、1
つの窒化珪素粒子当りのネック部の断面積の総計が平均
で粒子表面積の65%であった。空孔率は約40%であ
った。Example 5 The content of impurity oxygen was 0.43% by weight, the average primary particle diameter was 0.8 μm, and the α phase was 98.4.
1.6 parts by weight of graphite powder having an average particle diameter of 0.1 μm and a purity of 99.9% by weight are added to 100 parts by weight of silicon nitride powder containing 100% by weight, and the mixture is crushed and mixed using a ball mill to obtain raw material powder. Was prepared. Subsequently, a binder-free product was obtained in the same manner as in Example 1. When the carbon content of the debinder was measured by a gas analyzer, it was found to have increased to 1.7% by weight, but it was considered that a part of the binder remained as carbon. As in Example 1, but at 1900 ° C. for 16 hours,
Heating was performed in a nitrogen atmosphere at 8.8 atm to obtain a sintered body. The obtained sintered body was white and had a density of 2.03 g · cm −3 . Similarly, when the thermal diffusivity was measured by the laser flash method, it was 0.29 cm 2 sec -1 . After crushing one piece of the sintered body, the constituent phases were evaluated by X-ray diffraction, and diffraction peaks of silicon nitride and graphite were observed.
The silicon nitride crystal grains grew to an average of about 1.9 μm, a neck was formed between the silicon nitride particles, and the diameter of the neck was estimated to be about 1.2 ± 0.4 μm on average. Also, 1
The average number of the necks per silicon nitride particle is 7 and 1
The total cross-sectional area of the neck per silicon nitride particle was 65% of the particle surface area on average. The porosity was about 40%.
【0055】この焼結体を2液性エポキシ樹脂を減圧下
で含浸させ、約100℃で1時間硬化させた。3点曲げ
強度を測定したところ、平均強度は258MPaであっ
た。誘電率(室温、10 MHz)を測定したところ、
5.4であった。The sintered body was impregnated with a two-part epoxy resin under reduced pressure and cured at about 100 ° C. for 1 hour. When the three-point bending strength was measured, the average strength was 258 MPa. When the dielectric constant (room temperature, 10 MHz) was measured,
It was 5.4.
【0056】(実施例6)不純物酸素量が1.1重量%
で平均一次粒子径が0.6μmのα相を98重量%含む
窒化珪素粉98.0重量部に対して、平均粒径が0.1
μmで純度99.9重量%の炭素粉を2.0重量部加
え、ボールミルを用いて解砕・混合して原料粉を調製し
た。続いて、実施例1と同じ方法で、但し、バインダー
としてパラフィンを添加して脱バインダー体を得た。脱
バインダー体のグリーン密度は1.78 g・cm-3であ
った。また、脱バインダー体の炭素量をガス分析装置で
測定したところ2.15wt%と増加していた。実施例1
と同様に、但し、1800℃で16時間焼結した。焼結
体の密度をアルキメデス法で測定したところ、2.01
g・cm-3であった。同様に熱拡散率を測定したところ、
0.31cm2 sec -1であった。焼結体の一片を粉砕し
た後、X線回折により構成相を評価したところ、窒化珪
素と以外の回析ピークは見られなかった。(Example 6) The amount of impurity oxygen was 1.1% by weight.
And an average particle diameter of 0.1 with respect to 98.0 parts by weight of silicon nitride powder containing 98% by weight of an α phase having an average primary particle diameter of 0.6 μm.
2.0 parts by weight of a carbon powder having a purity of 99.9% by weight in μm was added, and the mixture was crushed and mixed using a ball mill to prepare a raw material powder. Subsequently, a debinder was obtained in the same manner as in Example 1, except that paraffin was added as a binder. The green density of the debinder was 1.78 g · cm −3 . The carbon content of the debinder was measured with a gas analyzer and found to be 2.15% by weight. Example 1
Same as above, except that sintering was performed at 1800 ° C. for 16 hours. When the density of the sintered body was measured by the Archimedes method, it was 2.01
g · cm −3 . Similarly, when the thermal diffusivity was measured,
0.31 cm 2 sec -1 . After crushing one piece of the sintered body, the constituent phases were evaluated by X-ray diffraction. As a result, no diffraction peak other than that of silicon nitride was observed.
【0057】(比較例2)実施例1と同じ窒化珪素粉の
みで炭素を用いずに実施例1と同じ方法で、但し焼結温
度及び時間を1650℃で16時間として焼結体を得
た。得られた焼結体は白色を呈し、密度は1.95gcm
-3であった。同様に熱拡散率を測定したところ、0.2
0cm2 sec -1であった。焼結体の一片を粉砕した後、X
線回折により構成相を評価したところ、窒化珪素以外の
回析ピークは見られなかった。実施例1と同様に組織構
造を分析したところ、窒化珪素結晶粒は粒径が平均で約
0.8μmであり、窒化珪素粒子間でネックの形成は観
察されなかった。(Comparative Example 2) A sintered body was obtained in the same manner as in Example 1 except that only the same silicon nitride powder as in Example 1 was used without using carbon, except that the sintering temperature and time were set at 1650 ° C. for 16 hours. . The obtained sintered body has a white color and a density of 1.95 gcm.
Was -3 . When the thermal diffusivity was measured in the same manner, 0.2
It was 0 cm 2 sec -1 . After crushing a piece of sintered body, X
When the constituent phases were evaluated by line diffraction, no diffraction peak other than silicon nitride was observed. When the microstructure was analyzed in the same manner as in Example 1, the silicon nitride crystal grains had an average grain size of about 0.8 μm, and no neck formation was observed between the silicon nitride grains.
【0058】次いで、この焼結体に実施例1と同様に2
液性エポキシ樹脂を含浸させ硬化させた後、3点曲げ強
度を測定したところ、平均強度は120MPaであっ
た。また、誘電率は5.1であった。Then, the sintered body was treated with 2 in the same manner as in Example 1.
After impregnating and curing the liquid epoxy resin, the three-point bending strength was measured, and the average strength was 120 MPa. The dielectric constant was 5.1.
【0059】(実施例7)不純物酸素量が1.20重量
%で平均一次粒子径が0.6μmのα相を98.5重量
%含む窒化珪素粉98重量部に対して、平均粒径が0.
1μmで純度99.9重量%のグラファイト炭素粉を
2.0重量部加え、ボールミルを用いて解砕、混合して
原料粉を調製した。続いて、実施例1と同じ方法で、但
し、バインダーとしてパラフィンを用いて脱バインダー
体を得た。脱バインダー体のグリーン密度は1.78g
・cm-3であった。また、脱バインダー体の炭素量をガス
分析装置で測定したところ、2.1wt%と増加してい
た。実施例1と同様に、但し1900℃で10時間焼結
した。焼結体の密度はアルキメデス法で測定したところ
2.03g・cm-3であった。同様に熱拡散率を測定した
ところ、0.33cm2 sec-1であった。焼結体の一片を
粉砕した後、X線回折により構成相を評価したところ、
窒化珪素と以外の回析ピークは見られなかった。組織構
造を分析したところ、窒化珪素結晶粒は粒径が平均で約
1.8μmであり、窒化珪素粒子間でネックが形成さ
れ、ネックの直径は平均で約1.1±0.5μmと見積
もられた。又、1つの窒化珪素粒子当りの該ネック部の
数が平均7で、1つの窒化珪素粒子当りのネック部の断
面積の総計が平均で粒子表面積の64%であった。空孔
率は約40%であった。Example 7 The average particle diameter was 98 parts by weight of silicon nitride powder containing 98.5% by weight of α phase having an impurity oxygen amount of 1.20% by weight and an average primary particle diameter of 0.6 μm. 0.
2.0 parts by weight of 1 μm graphite carbon powder having a purity of 99.9% by weight was added, and the mixture was crushed and mixed using a ball mill to prepare a raw material powder. Subsequently, a debindered body was obtained in the same manner as in Example 1, except that paraffin was used as the binder. The green density of the debinder is 1.78 g.
Cm- 3 . The carbon content of the debinder was measured by a gas analyzer and found to be 2.1 wt%. As in Example 1, except that sintering was performed at 1900 ° C. for 10 hours. The density of the sintered body was 2.03 g · cm -3 as measured by the Archimedes method. When the thermal diffusivity was measured similarly, it was 0.33 cm 2 sec -1 . After crushing one piece of the sintered body, the constituent phases were evaluated by X-ray diffraction.
No diffraction peak other than that of silicon nitride was observed. Analysis of the microstructure revealed that the silicon nitride crystal grains had an average grain size of about 1.8 μm, a neck was formed between the silicon nitride grains, and the neck diameter was estimated to be about 1.1 ± 0.5 μm on average. I got it. The average number of the necks per silicon nitride particle was 7, and the total cross-sectional area of the necks per silicon nitride particle was 64% of the particle surface area on average. The porosity was about 40%.
【0060】次いで、この焼結体を2液性エポキシ樹脂
を減圧下で含浸させ、約100℃で1時間硬化させた。
これを、JIS−R1601に従って4点曲げ強度を測
定したところ、平均強度は249MPaであった。ま
た、JIS−C2141に従って誘電率(室温、10M
Hz)を測定したところ、5.3であった。Next, the sintered body was impregnated with a two-component epoxy resin under reduced pressure and cured at about 100 ° C. for 1 hour.
When the four-point bending strength was measured according to JIS-R1601, the average strength was 249 MPa. Further, according to JIS-C2141, the dielectric constant (room temperature, 10M
Hz) was 5.3.
【0061】(実施例8)実施例1で用いた窒化珪素粉
97.5重量部に対して、平均粒径が0.1μmで純度
99.9重量%のYF3 を1重量部、平均粒径が0.2
μmで純度99.9重量%のカーボンブラックを1.5
重量部加えた粉体に、1−ブタノールを加え、湿式ボー
ルミルにより解砕、混合した。更にアクリル系バインダ
ーと共にアルコール系溶媒中に分散し、粘度が約500
0cpsのスリップを調製した。続いて、前記スリップ
をドクターブレード法により約0.3mmの均一な厚さを
有するグリーンシートを作製した。続いて、前期グリー
ンシートを所望の寸法に裁断し、各グリーンシートに層
間の電気的接続を得るためのビアホールを形成した。前
記ビアホールに平均粒径0.8μmのW粒子70wt%と
絶縁体層に用いたのと同じ窒化珪素粉30wt%からなる
導体ペーストを圧入して充填した。ビアホールが形成さ
れたグリーンシート上にWペーストをスクリーン印刷し
て、導体回路となる所望のパターンを形成した。Example 8 1 part by weight of YF 3 having an average particle diameter of 0.1 μm and a purity of 99.9% by weight was added to 97.5 parts by weight of the silicon nitride powder used in Example 1, 0.2 diameter
1.5 μm carbon black having a purity of 99.9% by weight
1-Butanol was added to the powder by weight, and the mixture was crushed and mixed by a wet ball mill. Further, it is dispersed in an alcoholic solvent together with an acrylic binder and has a viscosity of about 500
A 0 cps slip was prepared. Subsequently, a green sheet having a uniform thickness of about 0.3 mm was prepared from the slip by a doctor blade method. Subsequently, the green sheets were cut into desired dimensions, and via holes for forming electrical connection between layers were formed in each green sheet. A conductive paste composed of 70 wt% of W particles having an average particle size of 0.8 μm and 30 wt% of the same silicon nitride powder as used for the insulator layer was filled into the via hole by press-fitting. A W paste was screen-printed on the green sheet in which the via hole was formed to form a desired pattern to be a conductor circuit.
【0062】このような方法で得た各グリーンシートを
所望数積層し、熱間プレスにより一体化した。その後、
外形加工を施し、窒素雰囲気中で最高温度700℃まで
加熱して、バインダーを除去した。脱バインダー後の積
層物をグラファイト容器中に入れ、成形体とグラファイ
トの間にはh−BN(六方晶窒化ホウ素)を介在させ
て、カーボン製ヒータを有する焼結炉で窒素雰囲気中、
1900℃で8時間、9.8気圧の雰囲気加圧下で焼結
した。A desired number of the green sheets obtained by such a method were laminated and integrated by hot pressing. afterwards,
The external processing was performed and the binder was removed by heating to a maximum temperature of 700 ° C. in a nitrogen atmosphere. The laminate after debinding is placed in a graphite container, and h-BN (hexagonal boron nitride) is interposed between the molded body and the graphite, in a sintering furnace having a carbon heater, in a nitrogen atmosphere.
Sintering was performed at 1900 ° C. for 8 hours under an atmospheric pressure of 9.8 atm.
【0063】次いで、この内部配線を含む回路基板の気
孔部分に2液性エポキシ樹脂を減圧下で含浸させ、約1
00℃で1時間硬化させた。得られたパッケージは外観
上および内部においても膨れ、断線などがなく、良好な
回路パターンが形成されていた。また、導体部分の比抵
抗は3.2Ωcmと充分に低抵抗であった。Next, the pores of the circuit board including the internal wiring are impregnated with a two-component epoxy resin under reduced pressure to about 1 μm.
Cured at 00 ° C for 1 hour. The obtained package was swollen in appearance and inside, without disconnection, etc., and a good circuit pattern was formed. The specific resistance of the conductor was 3.2 Ωcm, which was sufficiently low.
【0064】[0064]
【発明の効果】以上述べた如く、本発明の窒化珪素−樹
脂系複合体からなる回路基板は、従来の回路基板に比べ
て低誘電率であり、高熱伝導性及び高強度を兼ね備え、
かつ軽量であり、近年の高速、大出力の電気回路基板と
して優れた特性を有する。また、本発明からなる複合体
は、軽量、高強度かつ高熱伝導性であることから、構造
材として用途に幅広く応用できるものである。As described above, the circuit board made of the silicon nitride-resin composite of the present invention has a lower dielectric constant, higher thermal conductivity and higher strength than conventional circuit boards.
It is lightweight and has excellent characteristics as a recent high-speed, large-output electric circuit board. In addition, the composite according to the present invention is lightweight, high-strength, and high-thermal-conductivity, and thus can be widely used as a structural material.
【図1】本発明の多層回路基板を用いた半導体装置の一
例を示した概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of a semiconductor device using a multilayer circuit board of the present invention.
1 絶縁層 2 導体層 3 ビアホール 4 放冷フィン 5 半導体装置 6 リードピン 7 ボンデイングワイア DESCRIPTION OF SYMBOLS 1 Insulating layer 2 Conductive layer 3 Via hole 4 Cooling fin 5 Semiconductor device 6 Lead pin 7 Bonding wire
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 文雄 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Fumio Ueno 1 Toshiba, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Inside Toshiba R & D Center
Claims (4)
材料からなる粒子間相とを有する窒化珪素焼結体を用い
て形成される窒化珪素回路基板であって、窒化珪素焼結
体中の該粒子相の容積比が50〜65%であり、該粒子
相の窒化珪素粒子の平均一次粒子径が1.0μm以上で
あり、該窒化珪素粒子は互いにネック部を介して接続さ
れており、1つの窒化珪素粒子当りの該ネック部の断面
積の総計が平均で粒子表面積の30〜70%であること
を特徴とする窒化珪素回路基板。1. A silicon nitride circuit board formed by using a silicon nitride sintered body having a particle phase composed of silicon nitride particles and an interparticle phase composed of a low dielectric constant material, wherein The volume ratio of the particle phase is 50 to 65%, the average primary particle diameter of the silicon nitride particles in the particle phase is 1.0 μm or more, and the silicon nitride particles are connected to each other via a neck portion. 1. A silicon nitride circuit board, wherein the total cross-sectional area of the neck portion per silicon nitride particle is 30 to 70% of the particle surface area on average.
径が平均で0.5μm以上であり、1つの窒化珪素粒子
当りの該ネック部の数は平均6〜8であり、上記窒化珪
素焼結体の見かけの密度は2.10g・cm-3以下である
請求項1記載の窒化珪素回路基板。2. The neck portion of the silicon nitride particles has an average cross-sectional diameter of 0.5 μm or more, and the number of neck portions per silicon nitride particle is 6 to 8 on average. 2. The silicon nitride circuit board according to claim 1, wherein the apparent density of the aggregate is 2.10 g · cm −3 or less.
0以下で、強度が100MPa以上であり、熱拡散率が
0.20cm2 /sec 以上である請求項1記載の窒化珪素
回路基板。3. The silicon nitride sintered body has a relative dielectric constant of 6.
The silicon nitride circuit board according to claim 1, wherein the strength is not more than 0, the strength is not less than 100 MPa, and the thermal diffusivity is not less than 0.20 cm 2 / sec.
窒化珪素回路基板に搭載される半導体素子とを有する半
導体装置。4. A semiconductor device comprising: the silicon nitride circuit board according to claim 1; and a semiconductor element mounted on the silicon nitride circuit board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9061004A JPH10251069A (en) | 1997-03-14 | 1997-03-14 | Silicon nitride circuit board and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9061004A JPH10251069A (en) | 1997-03-14 | 1997-03-14 | Silicon nitride circuit board and semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10251069A true JPH10251069A (en) | 1998-09-22 |
Family
ID=13158781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9061004A Pending JPH10251069A (en) | 1997-03-14 | 1997-03-14 | Silicon nitride circuit board and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10251069A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003034580A (en) * | 2001-07-24 | 2003-02-07 | Sumitomo Electric Ind Ltd | Silicon nitride-based composite sintered body and method for producing the same |
JP2009029665A (en) * | 2007-07-27 | 2009-02-12 | Kyocera Corp | Circuit board and its manufacturing method |
JP2018528152A (en) * | 2015-08-17 | 2018-09-27 | 韓国科学技術院Korea Advanced Institute Of Science And Technology | High thermal conductivity silicon nitride sintered body and manufacturing method thereof |
WO2021200719A1 (en) * | 2020-03-31 | 2021-10-07 | デンカ株式会社 | Boron nitride sintered body, composite body, and manufacturing methods therefor, and heat dissipation member |
WO2021200973A1 (en) * | 2020-03-31 | 2021-10-07 | デンカ株式会社 | Method for producing composite body |
-
1997
- 1997-03-14 JP JP9061004A patent/JPH10251069A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003034580A (en) * | 2001-07-24 | 2003-02-07 | Sumitomo Electric Ind Ltd | Silicon nitride-based composite sintered body and method for producing the same |
JP2009029665A (en) * | 2007-07-27 | 2009-02-12 | Kyocera Corp | Circuit board and its manufacturing method |
JP2018528152A (en) * | 2015-08-17 | 2018-09-27 | 韓国科学技術院Korea Advanced Institute Of Science And Technology | High thermal conductivity silicon nitride sintered body and manufacturing method thereof |
WO2021200719A1 (en) * | 2020-03-31 | 2021-10-07 | デンカ株式会社 | Boron nitride sintered body, composite body, and manufacturing methods therefor, and heat dissipation member |
WO2021200973A1 (en) * | 2020-03-31 | 2021-10-07 | デンカ株式会社 | Method for producing composite body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4812144B2 (en) | Aluminum nitride sintered body and manufacturing method thereof | |
JP4649027B2 (en) | Ceramic circuit board | |
KR101751531B1 (en) | Method for producing silicon nitride substrate | |
JP2008063187A (en) | Silicon nitride sintered compact, ceramic substrate for heat dissipation and insulation, circuit board for heat dissipation and insulation and module for heat dissipation and insulation | |
EP3439442A1 (en) | Ceramic substrate and production method for same | |
CN111196728A (en) | High-strength, high-toughness and high-thermal-conductivity silicon nitride ceramic material and preparation method thereof | |
WO2010109960A1 (en) | Aluminum nitride substrate, aluminum nitride circuit board, semiconductor device, and method for manufacturing aluminum nitride substrate | |
JP2937850B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JPH10251069A (en) | Silicon nitride circuit board and semiconductor device | |
JP2010215465A (en) | Aluminum nitride substrate, method for producing the same, and circuit board and semiconductor device | |
JP2899893B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP4434384B2 (en) | Aluminum nitride sintered body and semiconductor device using the same | |
JPH0881267A (en) | Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production | |
JPH08109069A (en) | Aluminum nitride sintered compact | |
JPH0891960A (en) | Base material for circuit board | |
JP2742600B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP5073135B2 (en) | Aluminum nitride sintered body, production method and use thereof | |
JP3683067B2 (en) | Aluminum nitride sintered body | |
JP2002029851A (en) | Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact | |
WO2001094273A1 (en) | Method for manufacturing aluminum nitride sintered body in which via hole is made | |
JP3038320B2 (en) | Method for producing aluminum nitride sintered body for circuit board | |
JP4535575B2 (en) | Silicon nitride multilayer wiring board | |
JP4328414B2 (en) | Substrate manufacturing method | |
JP4516057B2 (en) | Silicon nitride wiring board and method for manufacturing the same | |
JPH0888453A (en) | Ceramic circuit board and its manufacture |