[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10259253A - Metal-coated particle and conductive material - Google Patents

Metal-coated particle and conductive material

Info

Publication number
JPH10259253A
JPH10259253A JP6774697A JP6774697A JPH10259253A JP H10259253 A JPH10259253 A JP H10259253A JP 6774697 A JP6774697 A JP 6774697A JP 6774697 A JP6774697 A JP 6774697A JP H10259253 A JPH10259253 A JP H10259253A
Authority
JP
Japan
Prior art keywords
fine particles
metal
synthetic resin
acid
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6774697A
Other languages
Japanese (ja)
Other versions
JP3294146B2 (en
Inventor
Toshio Sakurai
俊男 櫻井
Kosaku Yamada
功作 山田
Tetsuya Kimura
哲也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP6774697A priority Critical patent/JP3294146B2/en
Publication of JPH10259253A publication Critical patent/JPH10259253A/en
Application granted granted Critical
Publication of JP3294146B2 publication Critical patent/JP3294146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject particle highly improved in the adhesivity of the surface of a synthetic resin to a metal coating layer and capable of expressing excellent electric conductivity by using the copolymer of a specific monomer mixture for synthetic resin particles and covering the surfaces of the synthetic resin particles with metal coating films. SOLUTION: The particles comprise (A) synthetic resin particles comprising the copolymer of a monomer mixture comprising (i) a carboxyl group-containing monomer and (ii) a multi-functional monomer and (B) metal coating films formed on the surfaces of the component A. The monomer mixture for the component A preferably comprises 1-30wt.% of the component (i) and 5-99wt.% of the component (ii). The component A preferably has a particle diameter distribution having a variation coefficient of <=20%. The component B preferably comprises coating films each having a thickness of >=0.02μm. The particles comprising the components A and B preferably have an average particle diameter of 1-500μm. When mixed and kneaded with a thermoplastic resin, a rubber, a coating, etc., the particles are thereby expected to give excellent electric conductivity without causing the peeling of the metal coating films.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属被覆微粒子及
び異方導電性膜、導電性塗料、導電性インキ、導電性接
着剤、電気接点粒子等の導電性材料に関する。
The present invention relates to conductive materials such as metal-coated fine particles and anisotropic conductive films, conductive paints, conductive inks, conductive adhesives, and electrical contact particles.

【0002】[0002]

【従来の技術】従来、導電性ペースト、導電性接着剤等
の導電性材料としては、金、銀、ニッケル等の金属粉末
を樹脂ペースト、硬化性樹脂液に混合したものが利用さ
れていた。しかし、金属粉末は、粒子径が不均一なた
め、多量に混合することが必要であり、また、保存中に
金属粉末が沈澱するなど、電気伝導性が安定しない等の
欠点があった。
2. Description of the Related Art Conventionally, as a conductive material such as a conductive paste and a conductive adhesive, a mixture of a metal powder such as gold, silver and nickel in a resin paste or a curable resin liquid has been used. However, since the metal powder has a non-uniform particle diameter, it is necessary to mix a large amount of the metal powder. Further, the metal powder has a drawback such that the metal powder precipitates during storage and the electric conductivity is not stable.

【0003】近年、金属粉末の代わりに、粒子径や直径
が比較的均一なガラスビーズ、シリカビーズ、ガラス繊
維チップ、合成樹脂微粒子等の材料の表面に、金、銀、
ニッケル等の被膜を施して、導電性を付与した微粒子が
開発され、利用されている。
In recent years, instead of metal powder, gold, silver, or the like has been deposited on the surface of materials such as glass beads, silica beads, glass fiber chips, and synthetic resin fine particles having relatively uniform particle diameters and diameters.
Fine particles provided with a coating such as nickel and imparted with conductivity have been developed and used.

【0004】これら微粒子のうち、特に粒子径が均一な
金属被覆合成樹脂微粒子は、可塑性の合成樹脂膜や合成
樹脂接着剤中に混合分散されて、圧着方向にのみ導通す
る異方導電性材料の製造に利用されている。しかし、か
かる微粒子は、樹脂と金属との密着性が悪く、そのた
め、合成樹脂微粒子を多孔質化させたり、エッチングに
より合成樹脂表面に凹凸を発生させて、アンカー効果を
もたせる等の必要があった。
Among these fine particles, particularly metal-coated synthetic resin fine particles having a uniform particle diameter are mixed and dispersed in a plastic synthetic resin film or a synthetic resin adhesive, and are made of an anisotropic conductive material which conducts only in the pressure bonding direction. Used in manufacturing. However, such fine particles have poor adhesion between the resin and the metal, and therefore, it is necessary to make the synthetic resin fine particles porous or to generate irregularities on the synthetic resin surface by etching to have an anchor effect. .

【0005】[0005]

【発明が解決しようとする課題】このようにして製造さ
れた金属被覆層は、可塑性樹脂と混練して異方導電性材
料を製造する際に、剪断応力や振動により剥離すること
があった。また、かかる金属被覆層は、導通処理の際に
加えられる圧力により剥離することもあった。
The metal coating layer manufactured in this manner sometimes peels off due to shear stress or vibration when kneading with a plastic resin to produce an anisotropic conductive material. In addition, the metal coating layer may be peeled off by the pressure applied during the conduction treatment.

【0006】更に、前述したように合成樹脂微粒子を多
孔質化したり、酸化分解や加水分解を起こすエッチング
処理をすると、合成樹脂微粒子の強度が著しく低下し、
あるいは粒子径が小さくなって、圧着処理の際、粒子自
体が破壊されたり、圧縮変形したまま回復しない等の問
題が生じる。結果として、かかる金属被覆が合成樹脂微
粒子から剥離するなどして、導通に不良をきたすことが
多かった。
Further, as described above, when the synthetic resin fine particles are made porous or subjected to an etching treatment that causes oxidative decomposition or hydrolysis, the strength of the synthetic resin fine particles is significantly reduced,
Alternatively, the particle diameter becomes small, and there arises a problem that the particles themselves are destroyed during the compression treatment, or the particles are not recovered while being compressed and deformed. As a result, the metal coating often peels off from the fine synthetic resin particles, resulting in poor conduction.

【0007】本発明の目的は、合成樹脂表面と金属被覆
層との密着性が一段と向上した、高密着性の金属被覆微
粒子を得ることにある。
An object of the present invention is to obtain highly adhesive metal-coated fine particles in which the adhesion between the surface of the synthetic resin and the metal coating layer is further improved.

【0008】[0008]

【課題を解決するための手段】本発明は、合成樹脂微粒
子と、その表面に形成された金属層とを具える金属被覆
微粒子に関する。本発明では、この合成樹脂微粒子の少
なくとも表面部は、実質的に、カルボキシル基含有モノ
マーと多官能モノマーとを含有するモノマー混合物を重
合させた共重合体からなる。
The present invention relates to metal-coated fine particles comprising synthetic resin fine particles and a metal layer formed on the surface thereof. In the present invention, at least the surface portion of the synthetic resin fine particles is substantially composed of a copolymer obtained by polymerizing a monomer mixture containing a carboxyl group-containing monomer and a polyfunctional monomer.

【0009】本発明者等は、合成樹脂微粒子に、極性の
高いカルボキシル基を含有させることにより、合成樹脂
表面と金属被覆層との密着性が著しく向上することを見
出した。本発明にかかる合成樹脂微粒子は、表面を化学
処理しなくても、金属被覆層と十分な密着性を有する。
また、かかる合成樹脂微粒子は、温和な条件下に化学メ
ッキ処理を施しても優れた密着性を示す。
The present inventors have found that the inclusion of a highly polar carboxyl group in the fine synthetic resin particles significantly improves the adhesion between the synthetic resin surface and the metal coating layer. The synthetic resin fine particles according to the present invention have sufficient adhesiveness to the metal coating layer even if the surface is not chemically treated.
Further, such synthetic resin fine particles show excellent adhesion even when subjected to chemical plating under mild conditions.

【0010】本発明の金属被覆微粒子は、金属層の剥離
が防止され、被覆処理後の洗浄工程における耐超音波
性、可塑性樹脂との混練安定性、圧着処理による導通安
定性に優れる。また、本発明にかかる合成樹脂微粒子
は、化学メッキ処理による損傷が少ないため、圧縮回復
性をメッキ処理前と同等又はそれに近い状態に維持する
ことができる。このため、本発明の金属被覆微粒子は、
圧着処理による破壊や、永久潰れ変形が起こらず、完全
な導通を半永久的に維持することができる。
The metal-coated fine particles of the present invention prevent peeling of the metal layer, and are excellent in ultrasonic resistance in a washing step after the coating treatment, stability of kneading with a plastic resin, and conduction stability by pressure treatment. In addition, since the synthetic resin fine particles according to the present invention have less damage due to the chemical plating, the compression recovery can be maintained at a level similar to or close to that before the plating. Therefore, the metal-coated fine particles of the present invention,
There is no breakage due to the crimping process or permanent crushing deformation, and perfect conduction can be maintained semipermanently.

【0011】[0011]

【発明の実施の形態】本発明にかかる合成樹脂微粒子
は、カルボキシル基含有モノマーと多官能モノマーとを
含むモノマー混合物の共重合体である。この合成樹脂微
粒子は、水系懸濁重合により製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The fine synthetic resin particles according to the present invention are a copolymer of a monomer mixture containing a carboxyl group-containing monomer and a polyfunctional monomer. These synthetic resin fine particles can be produced by aqueous suspension polymerization.

【0012】カルボキシ基含有モノマーには、アクリル
酸、メタアクリル酸、イタコン酸、マレイン酸、フマル
酸、クロトン酸、アクリル酸ダイマー、メタアクリル酸
ダイマー、モノ((メタ)アクリロイルオキシエチル)
マレエート、モノ((メタ)アクリロイルオキシプロピ
ル)マレエート、モノ((メタ)アクリロイルオキシブ
チル)マレエート等の(メタ)アクリロイルオキシアル
キルマレイン酸モノエステルや、モノ((メタ)アクリ
ロイルオキシエチル)フタレート、モノ((メタ)アク
リロイルオキシプロピル)フタレート、モノ((メタ)
アクリロイルオキシブチル)フタレート等の(メタ)ア
クリロイルオキシアルキルフタル酸モノエステルが含ま
れ、ビニル安息香酸等のカルボン酸モノマーの他に、無
水マレイン酸、無水イタコン酸等の酸無水物モノマーも
含まれる。
Carboxy group-containing monomers include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, acrylic acid dimer, methacrylic acid dimer, and mono ((meth) acryloyloxyethyl)
Monoesters of (meth) acryloyloxyalkylmaleic acid such as maleate, mono ((meth) acryloyloxypropyl) maleate and mono ((meth) acryloyloxybutyl) maleate, and mono ((meth) acryloyloxyethyl) phthalate, mono ( (Meth) acryloyloxypropyl) phthalate, mono ((meth)
(Meth) acryloyloxyalkyl phthalic acid monoesters such as (acryloyloxybutyl) phthalate are included. In addition to carboxylic acid monomers such as vinylbenzoic acid, acid anhydride monomers such as maleic anhydride and itaconic anhydride are also included.

【0013】本発明では、これらカルボキシ基含有モノ
マーのうち一種以上を、全モノマー混合物中、1〜30
重量%、好ましくは3〜15重量%用いる。含有量が1
重量%より少ないと、金属被膜の密着性が向上しない。
一方、含有量が30重量%を超えると、化学メッキ処理
においてアルカリ膨潤を起こして好ましくない。
In the present invention, one or more of these carboxy group-containing monomers may be contained in an amount of 1 to 30 in the total monomer mixture.
%, Preferably 3 to 15% by weight. Content is 1
When the amount is less than the weight percentage, the adhesion of the metal film is not improved.
On the other hand, if the content exceeds 30% by weight, alkali swelling occurs in the chemical plating treatment, which is not preferable.

【0014】多官能モノマーには、エチレンジ(メタ)
アクリレート、プロピレンジ(メタ)アクリレート、ブ
チレンジ(メタ)アクリレート、ヘキシレンジ(メタ)
アクリレート、トリメチロールエタンジ(メタ)アクリ
レート、トリメチロールエタントリ(メタ)アクリレー
ト、トリメチロールプロパンジ(メタ)アクリレート、
トリメチロールプロパントリ(メタ)アクリレート、ペ
ンタエリスリトールジ(メタ)アクリレート、ペンタエ
リスリトールトリ(メタ)アクリレート、ペンタエリス
リトールテトラ(メタ)アクリレート、ジペンタエリス
リトールジ(メタ)アクリレート、ジペンタエリスリト
ールトリ(メタ)アクリレート、ジペンタエリスリトー
ルテトラ(メタ)アクリレート、ジペンタエリスリトー
ルペンタ(メタ)アクリレート、ジペンタエリスリトー
ルヘキサ(メタ)アクリレート、ジビニルベンゼン、ジ
(メタ)アリルエーテル、ジ(メタ)アリルフタレー
ト、トリ(メタ)アリルイソシアヌレート、ジトリメチ
ロールプロパンテトラ(メタ)アクリレート、トリペン
タエリストールオクタ(メタ)アクリレート、テトラペ
ンタエリスリトールデカ(メタ)アクリレート等が含ま
れる。本発明では、これら多官能モノマーのうち一種以
上を、全モノマー混合物中、5〜99重量%、好ましく
は10〜97重量%用いる。
The polyfunctional monomer includes ethylene di (meth)
Acrylate, propylene di (meth) acrylate, butylene di (meth) acrylate, hexylene di (meth)
Acrylate, trimethylolethanedi (meth) acrylate, trimethylolethanetri (meth) acrylate, trimethylolpropanedi (meth) acrylate,
Trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate Dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, divinylbenzene, di (meth) allyl ether, di (meth) allyl phthalate, tri (meth) allyl Isocyanurate, ditrimethylolpropanetetra (meth) acrylate, tripentaerythol octa (meth) acrylate, tetrapentaerythritol Ca (meth) acrylate and the like. In the present invention, one or more of these polyfunctional monomers are used in an amount of 5 to 99% by weight, preferably 10 to 97% by weight in the total monomer mixture.

【0015】尚、これら多官能モノマーは、純品として
市販される場合は少なく、ほとんどの場合、不純物若し
くは類似のモノマーが含まれている。しかし、かかる市
販品でも、表示成分として50%以上であれば、本発明
において使用することができる。これら多官能モノマー
のうち、(メタ)アクリル酸エステル系モノマーは、非
重合性の不純物がほとんどなく、最も好ましい。
Incidentally, these polyfunctional monomers are rarely marketed as pure products, and most of them contain impurities or similar monomers. However, even such a commercial product can be used in the present invention as long as it is 50% or more as a display component. Among these polyfunctional monomers, (meth) acrylate monomers are most preferable because they have almost no non-polymerizable impurities.

【0016】本発明では、上記二種の必須モノマーの他
に、一種以上の単官能モノマーを併用してもよい。単官
能モノマーには、(メタ)アクリル酸メチル、(メタ)
アクリル酸エチル、(メタ)アクリル酸プロピル、(メ
タ)アクリル酸n−ブチル、(メタ)アクリル酸−t−
ブチル、(メタ)アクリル酸イソブチル、(メタ)アク
リル酸アミル、(メタ)アクリル酸ヘキシル、(メタ)
アクリル酸シクロヘキシル、(メタ)アクリル酸オクチ
ル、(メタ)アクリル酸2−エチルヘキシル、(メタ)
アクリル酸ステアリル、(メタ)アクリル酸ベンジル、
(メタ)アクリル酸シクロヘキシルメチル、(メタ)ア
クリル酸トリフロロエチル、(メタ)アクリル酸ペンタ
フロロプロピル、スチレン、α−メチルスチレン、ビニ
ルトルエン、酢酸ビニル、塩化ビニル、酢酸プロピル、
(メタ)アクリロニトリル、マレイン酸ジメチル、フマ
ル酸ジメチル、イタコン酸ジメチル等が含まれる。
In the present invention, one or more monofunctional monomers may be used in addition to the above two essential monomers. Monofunctional monomers include (meth) methyl acrylate, (meth)
Ethyl acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, -t- (meth) acrylate
Butyl, isobutyl (meth) acrylate, amyl (meth) acrylate, hexyl (meth) acrylate, (meth)
Cyclohexyl acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth)
Stearyl acrylate, benzyl (meth) acrylate,
Cyclohexylmethyl (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, styrene, α-methylstyrene, vinyltoluene, vinyl acetate, vinyl chloride, propyl acetate,
(Meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, dimethyl itaconate and the like are included.

【0017】多くの単官能モノマーを含有させると、得
られる合成樹脂微粒子の圧縮回復性が低下する。このた
め、含有させる単官能モノマーの量は、モノマー混合物
中、70重量%以下が好ましい。より一層高い圧縮回復
性を得るには、40重量%以下の単官能モノマーが好ま
しい。
When a large amount of monofunctional monomer is contained, the compression recovery of the resulting synthetic resin fine particles is reduced. Therefore, the amount of the monofunctional monomer to be contained is preferably 70% by weight or less in the monomer mixture. In order to obtain even higher compression recovery, a monofunctional monomer of 40% by weight or less is preferable.

【0018】モノマー混合物は、公知の油溶性ラジカル
開始剤を用いて重合することができる。油溶性ラジカル
開始剤には、過酸化ベンゾイル、過酸化ラウロイル、t
−ブチルパーベンゾエート、t−ブチルオクタノエー
ト、t−ブチルパーオキシイソブチレート、t−ブチル
パーオキシイソプロピルカーボネート、アゾビスイソブ
チロニトリル、アゾビスバレロニトリル等が含まれる。
これらの油溶性ラジカル開始剤は、モノマー混合物10
0重量部に対し、0.1〜5重量部用いる。
The monomer mixture can be polymerized using a known oil-soluble radical initiator. Oil-soluble radical initiators include benzoyl peroxide, lauroyl peroxide, t
-Butyl perbenzoate, t-butyl octanoate, t-butyl peroxyisobutyrate, t-butyl peroxyisopropyl carbonate, azobisisobutyronitrile, azobisvaleronitrile and the like.
These oil-soluble radical initiators comprise the monomer mixture 10
0.1 to 5 parts by weight is used with respect to 0 parts by weight.

【0019】また、モノマー混合物中には、連鎖移動剤
を添加してもよい。連鎖移動剤としては、1−メルカプ
トオクタン、3−メルカプトオクタン、1−メルカプト
デカン、3−メルカプトデカン、1−メルカプトドデカ
ン、3−メルカプドデカン、ジブチルアミン、ジオクチ
ルアミン、N−メチルアニリン、N−エチルアニリン等
がある。
A chain transfer agent may be added to the monomer mixture. As the chain transfer agent, 1-mercaptooctane, 3-mercaptooctane, 1-mercaptodecane, 3-mercaptodecane, 1-mercaptododecane, 3-mercapdodecane, dibutylamine, dioctylamine, N-methylaniline, N- Ethyl aniline and the like.

【0020】一般に、多官能モノマー成分が多い重合体
は、重合後三次元高分子となる。特に懸濁重合において
は、かかる重合体は、1分子が1微粒子になると考えら
れている。このため、一般には、粒径を調節すれば、分
子量を調節する必要がなく、連鎖移動剤は用いられな
い。しかし、金属被覆処理後、或いは電気部品に組みこ
まれた後に、金属被覆微粒子に耐熱性が要求される場
合、重合末端を連鎖移動剤と反応させて、重合反応を停
止させるのが好ましい。連鎖移動剤は、モノマー混合物
100重量部に対し、10重量部以下、好ましくは0.
05〜3重量部添加することができる。
Generally, a polymer having a large amount of a polyfunctional monomer component becomes a three-dimensional polymer after polymerization. Particularly in suspension polymerization, it is considered that one molecule of such a polymer becomes one fine particle. Therefore, generally, if the particle size is adjusted, there is no need to adjust the molecular weight, and no chain transfer agent is used. However, when heat resistance is required for the metal-coated fine particles after the metal coating treatment or after being incorporated into an electric component, it is preferable to terminate the polymerization reaction by reacting the polymerization end with a chain transfer agent. The chain transfer agent is used in an amount of 10 parts by weight or less, preferably 0.1 part by weight, based on 100 parts by weight of the monomer mixture.
05 to 3 parts by weight can be added.

【0021】連鎖移動剤を用いない場合は、熱分解開始
温度は200℃前後である。これに対し、連鎖移動剤を
0.1重量部添加すると、熱分解開始温度は260℃以
上に上昇する。しかし、連鎖移動剤を10重量部以上添
加すると、重合体が短い分岐高分子の架橋体となり、強
度が低下するばかりでなく、粒子中に残存して、金属メ
ッキの密着性を低下させる。
When no chain transfer agent is used, the thermal decomposition onset temperature is around 200 ° C. On the other hand, when 0.1 part by weight of the chain transfer agent is added, the thermal decomposition starting temperature rises to 260 ° C. or higher. However, when the chain transfer agent is added in an amount of 10 parts by weight or more, the polymer becomes a crosslinked product of a short branched polymer, which not only reduces the strength but also remains in the particles and lowers the adhesion of metal plating.

【0022】水系懸濁重合を行うための懸濁安定剤とし
ては、ゼラチン、澱粉、ヒドロキシエチルセルロース、
ヒドロキシメチルセルロース、カルボキシメチルセルロ
ース、ポリビニルピロリドン、完全又は部分ケン化ポリ
ビニルアルコール、ポリビニルアルキルエーテル、スチ
レン/マレイン酸塩交互共重合体、イソブチレン/マレ
イン酸塩交互共重合体、ポリ(メタ)アクリル酸塩、ポ
リ(メタ)アクリルアミド等の水溶性高分子の他に、硫
酸バリウム、硫酸カルシウム、炭酸バリウム、炭酸カル
シウム、燐酸カルシウム、炭酸マグネシウム等の難水溶
性無機塩等があり、本発明では、これらの懸濁安定剤を
単独又は2種以上混合して用いることができる。
Suspension stabilizers for performing aqueous suspension polymerization include gelatin, starch, hydroxyethyl cellulose,
Hydroxymethylcellulose, carboxymethylcellulose, polyvinylpyrrolidone, fully or partially saponified polyvinyl alcohol, polyvinylalkyl ether, styrene / maleate alternating copolymer, isobutylene / maleate alternating copolymer, poly (meth) acrylate, poly In addition to water-soluble polymers such as (meth) acrylamide, there are poorly water-soluble inorganic salts such as barium sulfate, calcium sulfate, barium carbonate, calcium carbonate, calcium phosphate, magnesium carbonate and the like. The stabilizers can be used alone or in combination of two or more.

【0023】重合方法としては、公知の方法を用いるこ
とができる。所定量の懸濁安定剤を溶解又は分散させた
水溶液を、コンデンサー及び攪拌機付加熱缶に仕込む。
重合開始剤等の助剤をモノマー混合物に添加して溶解す
る。この溶解液を加熱缶内に仕込み、激しく攪拌して、
微粒子に分散させる。次いで、これら微粒子を加熱して
重合させた後、洗浄、乾燥して、合成樹脂微粒子を得
る。
As the polymerization method, a known method can be used. An aqueous solution in which a predetermined amount of a suspension stabilizer is dissolved or dispersed is charged into a condenser and a heating canister with a stirrer.
An auxiliary agent such as a polymerization initiator is added to the monomer mixture and dissolved. This solution is charged in a heating can and stirred vigorously.
Disperse in fine particles. Next, after heating and polymerizing these fine particles, they are washed and dried to obtain synthetic resin fine particles.

【0024】得られた合成樹脂微粒子は、そのまま金属
被覆することができる。しかし、異方導電性膜や異方導
電性接着剤に応用する場合は、均一な粒径分布の合成樹
脂微粒子が好ましい。かかる微粒子は、粒子径分布の変
動係数、即ち、平均粒子径に対する標準偏差の割合が、
20%以下、好ましくは10%以下である。
The obtained synthetic resin fine particles can be directly coated with metal. However, when applied to an anisotropic conductive film or an anisotropic conductive adhesive, synthetic resin fine particles having a uniform particle size distribution are preferable. Such fine particles, the coefficient of variation of the particle size distribution, that is, the ratio of the standard deviation to the average particle size,
It is at most 20%, preferably at most 10%.

【0025】また、母材である合成樹脂微粒子の粒径分
布が均一であれば、化学メッキ工程において、凝集塊が
発生し難く、一次粒子のみの分散性のよい金属被覆粒子
が得られる傾向にある。
If the particle size distribution of the synthetic resin fine particles as the base material is uniform, agglomerates are less likely to be generated in the chemical plating step, and metal-coated particles of only primary particles having good dispersibility tend to be obtained. is there.

【0026】したがって、上記の如く均一な粒子が必要
な場合は、篩別法、風力法、水ひ法等の公知の手段によ
り分級する。分級は、金属被覆工程の後でもよいが、母
材、即ち合成樹脂微粒子の段階の方が、粒子の比重がば
らつかず好ましい。
Therefore, when uniform particles are required as described above, the particles are classified by a known means such as a sieving method, a wind method, and a water method. Although the classification may be performed after the metal coating step, the stage of the base material, that is, the synthetic resin fine particles is preferable because the specific gravity of the particles does not vary.

【0027】以上のようにして製造した合成樹脂微粒子
には、公知の方法を利用して金属膜が被覆される。その
際、かかる合成樹脂微粒子は、母材にカルボキシル基が
含まれるため、強アルカリによるエッチング処理は好ま
しくない。そのため、本発明の金属被覆微粒子では、母
材を痛めない温和な方法を用いるのが好ましい。増感処
理及び活性化処理の少なくとも一方を行うのが好まし
い。
The synthetic resin fine particles manufactured as described above are coated with a metal film by using a known method. At that time, since the synthetic resin fine particles contain a carboxyl group in the base material, etching treatment with a strong alkali is not preferable. Therefore, in the metal-coated fine particles of the present invention, it is preferable to use a gentle method that does not damage the base material. It is preferable to perform at least one of the sensitization treatment and the activation treatment.

【0028】本発明では、物理的な金属蒸着法、或いは
化学的な無電解メッキ法を用いて金属膜を被覆すること
ができる。金属としては導電性があればよく、蒸着法に
おいては、金、銀、銅、アルミニウム、クロム等が用い
られ、無電解メッキ法では、金、銀、銅、ニッケル等が
用いられる。これらの金属膜は2層以上被覆してもよ
い。
In the present invention, the metal film can be coated by using a physical metal deposition method or a chemical electroless plating method. As long as the metal has conductivity, gold, silver, copper, aluminum, chromium or the like is used in the vapor deposition method, and gold, silver, copper, nickel or the like is used in the electroless plating method. These metal films may cover two or more layers.

【0029】例えば、無電解メッキ法においては、硝酸
銀、シアン化銀、シアン化金カリウム、硫酸ニッケル等
の金属塩溶液に、アンモニア水等のアルカリを加え、こ
れに本発明にかかる合成樹脂微粒子を、充分に表面を濡
らせながら添加し、分散させる。その後、ホルマリン、
ブドウ糖、酒石酸、次亜リン酸ナトリウム、水素化ホウ
素等の水溶液を、徐々に添加して、金属イオンを還元
し、金属膜を合成樹脂表面に析出させる。
For example, in the electroless plating method, an alkali such as aqueous ammonia is added to a solution of a metal salt such as silver nitrate, silver cyanide, potassium potassium cyanide or nickel sulfate, and the synthetic resin fine particles according to the present invention are added thereto. Add and disperse while sufficiently wetting the surface. Then formalin,
An aqueous solution of glucose, tartaric acid, sodium hypophosphite, borohydride or the like is gradually added to reduce metal ions and deposit a metal film on the surface of the synthetic resin.

【0030】金属被膜の厚みは、0.02μm以上必要
である。導電性材料として充分な伝導度を得るためであ
る。しかし、厚みが5μmを超えると、圧縮による合成
樹脂粒子の変形に追随できず、金属被膜が表面から剥離
するため好ましくない。
The thickness of the metal film must be 0.02 μm or more. This is for obtaining sufficient conductivity as a conductive material. However, when the thickness exceeds 5 μm, it is not preferable because it cannot follow the deformation of the synthetic resin particles due to the compression and the metal coating peels off from the surface.

【0031】[0031]

【発明の効果】本発明の金属被覆微粒子は、金属被膜と
合成樹脂微粒子との密着性がよく、熱可塑性樹脂、ゴ
ム、塗料、接着剤等との混練において、又圧縮により粒
子が変形する際にも、金属被膜の剥離がなく、優れた伝
導性が得られる。また、本発明にかかる合成樹脂微粒子
は、エッチング等の苛酷な処理が施されないため、本来
有する強度、圧縮回復性をほぼ維持している。このた
め、本発明の金属被覆微粒子は、安定した伝導性を発揮
することができる。
The metal-coated fine particles of the present invention have good adhesion between the metal coating and the synthetic resin fine particles, and are suitable for kneading with thermoplastic resins, rubbers, paints, adhesives, etc., and when the particles are deformed by compression. In addition, excellent conductivity is obtained without peeling of the metal film. Further, since the synthetic resin fine particles according to the present invention are not subjected to severe processing such as etching, they substantially maintain the strength and the compressive recovery originally possessed. For this reason, the metal-coated fine particles of the present invention can exhibit stable conductivity.

【0032】本発明では、合成樹脂微粒子と金属被覆微
粒子について、20℃における初期10%圧縮弾性率、
破断強度、圧縮回復率、粒径分布、金属被膜剥離度、電
気抵抗値、金属層の厚みを以下のようにして測定した。
In the present invention, the initial 10% compression modulus at 20 ° C.
The breaking strength, the compression recovery, the particle size distribution, the metal film peeling degree, the electric resistance value, and the thickness of the metal layer were measured as follows.

【0033】<20℃における破断強度と初期10%圧
縮弾性率>微粒子の硬さ指標には、平松の式〔日鉱誌8
1、1024(1965)〕を用いた。平松の式では、
引張強度が示されているが、本発明では、微粒子の破壊
強度S0 が以下の式で示される。 S0 =2.8Q/πd2 〔kgf/mm2 〕 (式中、Qは、粒子が圧砕した場合の、破断応力〔kg
f〕であり、dは、粒子の直径〔mm〕である。)
<Breaking Strength at 20 ° C. and Initial 10% Compression Modulus> The hardness index of the fine particles is represented by Hiramatsu's formula [Nikko 8
1, 1024 (1965)]. In the Hiramatsu ceremony,
Tensile strength are shown, in the present invention, the breaking strength S 0 of the fine particles is represented by the following formula. S 0 = 2.8 Q / πd 2 [kgf / mm 2 ] (where Q is the breaking stress [kg when the particles are crushed]
f], and d is the diameter [mm] of the particles. )

【0034】図1は、微粒子を圧縮試験機にかけ、この
微粒子に加わる圧縮応力と圧縮変形との関係を調べたグ
ラフである。破断強度Qは、粒子が圧砕した場合の破断
応力である。図1に示すように、微粒子は、圧力をかけ
ていくと変形し、最終的には破壊する。かかる微粒子の
破断強度Qを測定し、その値を上記式に代入すれば、微
粒子の破壊強度S0 が求められる。
FIG. 1 is a graph showing the relationship between the compressive stress applied to the fine particles and the compressive deformation by applying the fine particles to a compression tester. The breaking strength Q is the breaking stress when the particles are crushed. As shown in FIG. 1, the fine particles are deformed when pressure is applied, and eventually break down. Measuring the breaking strength Q of such particles, by substituting the values into the above formulas, the breaking strength S 0 of the fine particles is obtained.

【0035】しかし、かかる破壊強度S0 は、本発明に
かかる微粒子の硬さ指標として適切でない。微粒子の破
断強度Qは、正常な状態の微粒子の硬さを正確に反映し
ないからである。そのため、本発明では、微粒子の初期
10%圧縮弾性率(以下「G値」という。)を硬さ指標
に用いた。このG値は、微粒子が20℃において直径の
10%変形した時に示す圧縮応力を基に計算する。
However, such a breaking strength S 0 is not appropriate as an index of hardness of the fine particles according to the present invention. This is because the breaking strength Q of the fine particles does not accurately reflect the hardness of the fine particles in a normal state. Therefore, in the present invention, the initial 10% compression modulus (hereinafter referred to as “G value”) of the fine particles is used as the hardness index. This G value is calculated on the basis of the compressive stress shown when the fine particles are deformed by 10% of the diameter at 20 ° C.

【0036】図1には、微粒子が10%(d/10で示
す。)変形した時の圧縮応力Pを示す。本発明では、こ
の圧縮応力Pを検出し、次式に代入して、変形率100
%時の応力に相当する圧縮弾性率に換算する。 G=28P/πd2 〔kgf/mm2 〕 (式中、Pは、粒子が10%変形した時の圧縮応力〔k
gf〕で、dは、粒子の直径〔mm〕である。)
FIG. 1 shows the compressive stress P when the fine particles are deformed by 10% (indicated by d / 10). In the present invention, this compressive stress P is detected and substituted into the following equation to obtain a deformation rate 100
It is converted to the compression modulus corresponding to the stress at%. G = 28P / πd 2 [kgf / mm 2 ] (where P is the compressive stress [k when the particles are deformed by 10%]
gf], and d is the diameter [mm] of the particles. )

【0037】島津微小圧縮試験機〔(株)島津製作所製
MCTM−200〕により、試料台上に散布した試料粒
子1個について、粒子の中心方向へ荷重をかけ、図1に
示すような、荷重−圧縮変位を測定した。直径が最も平
均的と観察される異なる5個の粒子について、この操作
を繰り返し、それらを平均した。なお、測定温度は20
℃、圧縮速度は0.675g/secのモードを用い
た。粒子が圧砕した時の荷重を、粒子の破断強度とし
た。
A load was applied to one sample particle scattered on the sample table in the direction of the center of the particle by a Shimadzu micro compression tester [MCTM-200 manufactured by Shimadzu Corporation], and the load was changed as shown in FIG. -The compression displacement was measured. This operation was repeated for five different particles whose diameter was observed to be the most average, and they were averaged. The measurement temperature was 20
C. and a compression rate of 0.675 g / sec. The load when the particles were crushed was defined as the breaking strength of the particles.

【0038】また、得られた荷重−圧縮変位の結果か
ら、粒子径の初期10%変位時の荷重を求めた。この荷
重を、圧縮応力Pとし、上記式に代入して、20℃にお
けるG値を算出した。
From the obtained load-compression displacement, the load at the time of the initial 10% displacement of the particle diameter was determined. The G value at 20 ° C. was calculated by substituting this load as the compressive stress P into the above equation.

【0039】<圧縮回復率>圧縮回復率は、前記島津微
小圧縮試験機MCTM−200を用いて測定した。図2
は、変位−荷重曲線を示す。縦軸は荷重、横軸は変位で
ある。試料台に散布した試料粒子1個について、粒子の
中心方向に1grfまで荷重をかけた後、荷重を0gr
fまで除荷する。この間のデータを変位−荷重曲線に記
録し、原点から1grfまでの変位(L1 )に対する、
0grfに除荷した際の回復変位(L 2)の測定値の割合
を百分率で表わす。この際の圧縮速度は、0.029g
/secのモードを用いた。
<Compression recovery rate>
It measured using the small compression tester MCTM-200. FIG.
Indicates a displacement-load curve. The vertical axis is load, and the horizontal axis is displacement
is there. For one sample particle sprayed on the sample stage,
After applying a load up to 1 grf in the center direction, the load is reduced to 0 gr
Unload to f. The data during this time is recorded in the displacement-load curve.
The displacement from the origin to 1 grf (L1),
Recovery displacement when unloaded to 0 grf (L Two) Percentage of measured values
Is expressed as a percentage. The compression speed at this time is 0.029 g
/ Sec mode was used.

【0040】<平均粒子径及び粒子径分布の測定>平均
粒子径の測定は、コールターエレクトロニクス社製のコ
ールターカウンターZM/C−256型測定装置を用
い、約3万個を測定して平均化した。使用に際しては、
同社製標準粒子を用いて較正した。但し、平均粒子径が
30μmを超える粒子については、光学顕微鏡により測
定した。
<Measurement of Average Particle Size and Particle Size Distribution> The average particle size was measured and averaged using a Coulter Counter ZM / C-256 type measuring device manufactured by Coulter Electronics Co., Ltd. . When using,
Calibration was performed using the company's standard particles. However, particles having an average particle diameter exceeding 30 μm were measured with an optical microscope.

【0041】<金属被膜剥離度>試験管に約5mgの金
属被覆微粒子を入れ、ドライ状態で超音波水層(科学共
栄社製、100V、70W、42kHz)で30分処理
した後、その一部を透過型光学顕微鏡600倍で観察す
る。5視野以上で1000微粒子以上観察し、金属被膜
が50%以上剥離した微粒子を数え、全観察数に対する
割合を測定した。バラツキがあるため、◎<0.5%,
0.5≦○<3%、3≦△<10%、10%≦×と記号
で表記する。
<Degree of Peeling of Metal Coating> About 5 mg of metal-coated fine particles were placed in a test tube, and treated in an ultrasonic water layer (manufactured by Kagaku Kyoeisha, 100 V, 70 W, 42 kHz) for 30 minutes in a dry state. Observation is performed with a transmission optical microscope at a magnification of 600 times. More than 1,000 fine particles were observed in 5 visual fields or more, and the fine particles from which the metal coating was peeled by 50% or more were counted, and the ratio to the total number of observations was measured. Due to variation, ◎ <0.5%,
It is represented by a symbol of 0.5 ≦ O <3%, 3 ≦ Δ <10%, and 10% ≦ X.

【0042】<電気抵抗値>内径10mmのポリエチレ
ン製円筒に、1.5gの金属被覆微粒子を入れ、円筒に
密接するステンレス電極棒を挿入し、5kgの荷重をか
けた状態で電極間の体積固有抵抗値を測定した。
<Electrical Resistance Value> 1.5 g of metal-coated fine particles were placed in a polyethylene cylinder having an inner diameter of 10 mm, a stainless steel electrode rod closely inserted into the cylinder was inserted, and a volume of 5 kg was applied between the electrodes under a load of 5 kg. The resistance was measured.

【0043】<金属層の厚み>メッキにおいては、金属
は100%合成樹脂微粒子にほぼ均一に付着するので、
仕込み金属の重量、金属の比重、合成樹脂微粒子の重
量、その平均粒径、比重から厚みを計算した。蒸着法に
おいては、電子顕微鏡で測定した。
<Thickness of Metal Layer> In plating, metal adheres almost uniformly to 100% synthetic resin fine particles.
The thickness was calculated from the weight of the charged metal, the specific gravity of the metal, the weight of the synthetic resin fine particles, the average particle size, and the specific gravity. In the vapor deposition method, measurement was performed with an electron microscope.

【0044】[0044]

【実施例】【Example】

<実施例1>ポリビニルアルコール〔日本合成化学
(株)製GH−17、ケン化度87%〕の5%水溶液
8,500gを激しく攪拌し、その中に、カルボキシル
基含有モノマーとしてメタアクリル酸(和光純薬製)6
0g(4重量%)と、多官能モノマーとしてペンタエリ
スリトールテトラアクリレート(新中村化学製)1,4
40g(96重量%)と、開始剤としての過酸化ベンゾ
イル20gとモノメトキシハイドロキノン1gとの混合
物を、空気下に添加し、微粒子に分散させた。その後、
窒素下に80℃に上昇させ、8時間重合した。得られた
重合体微粒子を充分水洗した後、分級操作を施し、平均
粒子径5.0μm、標準偏差0.24μmの合成樹脂微
粒子(変動係数4.80%)を得た。
<Example 1> 8,500 g of a 5% aqueous solution of polyvinyl alcohol [GH-17, manufactured by Nippon Synthetic Chemical Co., Ltd., saponification degree 87%] was vigorously stirred, and methacrylic acid (as a carboxyl group-containing monomer) was added thereto. Wako Pure Chemical Industries) 6
0 g (4% by weight) and pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
A mixture of 40 g (96% by weight), 20 g of benzoyl peroxide as an initiator and 1 g of monomethoxyhydroquinone was added under air and dispersed in fine particles. afterwards,
The temperature was raised to 80 ° C. under nitrogen, and the polymerization was carried out for 8 hours. After sufficiently washing the obtained polymer fine particles with water, a classification operation was performed to obtain synthetic resin fine particles having an average particle diameter of 5.0 μm and a standard deviation of 0.24 μm (variation coefficient: 4.80%).

【0045】この粒子10gを、5%エタノール水溶液
100ml中に入れて、10分間超音波(42kHz,
出力70W)処理した。次いで、0.1重量%塩化第1
スズ水溶液中で増感処理し、次に塩酸酸性0.05重量
%塩化パラジウム水溶液中で活性化処理した。その後濾
過し、この微粒子を、5.3重量%の硝酸銀、5重量%
の28%アンモニア水を含む水溶液300mlに分散さ
せ、攪拌しながら、7重量%のホルマリン水溶液100
mlを15分かけて添加して、銀メッキした。その後、
得られた微粒子を水洗し、乾燥した。
10 g of the particles are put in 100 ml of a 5% aqueous ethanol solution, and ultrasonic waves (42 kHz,
Output 70W). Then, 0.1% by weight of first chloride
It was sensitized in a tin aqueous solution, and then activated in a 0.05% by weight aqueous solution of palladium chloride acidified with hydrochloric acid. Thereafter, the mixture is filtered, and the fine particles are separated into 5.3% by weight of silver nitrate and 5% by weight.
Is dispersed in 300 ml of an aqueous solution containing 28% aqueous ammonia, and a 7% by weight aqueous formalin solution 100 is stirred.
ml was added over 15 minutes and silver plated. afterwards,
The obtained fine particles were washed with water and dried.

【0046】得られた粒子について、メッキ前後の圧縮
破断強度、圧縮回復率、メッキ粒子の電導度、メッキ厚
み、金属被膜剥離度を測定した。結果を表1にまとめ
た。このメッキ微粒子は、金属膜の剥離が少なく、密着
性が良いことがわかった。
With respect to the obtained particles, the compression rupture strength before and after plating, the compression recovery rate, the conductivity of the plated particles, the plating thickness, and the degree of metal film peeling were measured. The results are summarized in Table 1. It was found that the plated fine particles had little peeling of the metal film and had good adhesion.

【0047】<実施例2>実施例1と同様にして、平均
粒子径10.2μm、標準偏差0.45μmの合成樹脂
微粒子(変動係数4.41%)を得た。この粒子20g
を実施例1と同様にして銀メッキ粒子を得た。微粒子の
各特性を測定し、結果を表1にまとめた。この金属メッ
キ微粒子も、密着性はよく、実用的には問題なかった。
Example 2 In the same manner as in Example 1, fine synthetic resin particles having an average particle diameter of 10.2 μm and a standard deviation of 0.45 μm (coefficient of variation 4.41%) were obtained. 20g of these particles
In the same manner as in Example 1 to obtain silver-plated particles. Each property of the fine particles was measured, and the results are summarized in Table 1. These metal-plated fine particles also had good adhesion, and had no practical problems.

【0048】<実施例3>実施例1において、モノマー
混合物の組成をメタアクリル酸240g(16重量
%)、ペンタエリスリトールテトラアクリレート630
g(42重量%)、1,4−ブタンジオールジアクリレ
ート(日本化薬製)630g(42重量%)に変え、重
合開始剤をアゾビスイソブチロニトリル20gに変え、
ポリビニルアルコール水溶液の攪拌速度を下げた以外、
実施例1と同様にして、平均粒子径30.2μm、標準
偏差1.20μmの合成樹脂微粒子(変動係数3.97
%)を得た。これを40gとり実施例1と同様に、銀メ
ッキして、金属被覆微粒子を得た。微粒子の各特性を測
定し、その結果を表1にまとめた。このメッキ微粒子も
実用的に問題はなかった。
Example 3 In Example 1, the composition of the monomer mixture was changed to 240 g (16% by weight) of methacrylic acid and 630 of pentaerythritol tetraacrylate.
g (42% by weight), 630 g (42% by weight) of 1,4-butanediol diacrylate (manufactured by Nippon Kayaku), and the polymerization initiator was changed to 20 g of azobisisobutyronitrile.
Except for lowering the stirring speed of the aqueous polyvinyl alcohol solution,
In the same manner as in Example 1, synthetic resin fine particles having an average particle size of 30.2 μm and a standard deviation of 1.20 μm (coefficient of variation 3.97)
%). 40 g of this was subjected to silver plating in the same manner as in Example 1 to obtain metal-coated fine particles. The properties of the fine particles were measured, and the results are summarized in Table 1. These plated fine particles also had no practical problem.

【0049】<実施例4>実施例3において、モノマー
混合物の組成を、アクリル酸150g(10重量%)、
アクリル酸ブチル1,050g(70重量%)、1,6
−ヘキサメチレンジアクリレート300g(20重量
%)に変え、攪拌速度を更に下げた以外は、実施例3と
同様にして、懸濁重合を行った。得られた微粒子を篩別
して、平均粒子径250μm、標準偏差24μmの合成
樹脂微粒子(変動係数9.60%)を得た。
Example 4 In Example 3, the composition of the monomer mixture was changed to 150 g (10% by weight) of acrylic acid,
Butyl acrylate 1,050 g (70% by weight), 1,6
-Suspension polymerization was carried out in the same manner as in Example 3 except that the stirring speed was further reduced, while changing to 300 g (20% by weight) of hexamethylene diacrylate. The obtained fine particles were sieved to obtain synthetic resin fine particles having an average particle diameter of 250 μm and a standard deviation of 24 μm (variation coefficient: 9.60%).

【0050】この粒子に、日本電子株式会社製スパッタ
リング装置JFC−1300を用いて、アルゴン存在下
に金を塗布した。球状の粒子表面になるべく全体に金が
付着するように、60秒間30mAでスパッタ処理した
後、粒子を試料台上で転がしてかきまぜ、更にスパッタ
する方法で、3回スパッタ処理した。この金被覆粒子を
しごいて、金属層を強制的に剥離させ、電子顕微鏡でそ
の厚みを測定した。その他の測定結果を含め表1にまと
めて示した。
Gold was applied to the particles in the presence of argon using a sputtering device JFC-1300 manufactured by JEOL Ltd. Sputtering was performed at 30 mA for 60 seconds so that gold adhered to the surface of the spherical particles as much as possible. Then, the particles were rolled and stirred on a sample table, and sputtered three times by a spattering method. The gold-coated particles were squeezed, the metal layer was forcibly peeled off, and the thickness was measured with an electron microscope. Table 1 collectively shows other measurement results.

【0051】<実施例5>実施例2で製造した金メッキ
粒子を、エポキシ樹脂セメダイン株式会社製スーパーC
主剤中に2重量%混合し、更に硬化剤を主剤と同量混合
し、熱硬化性異方導電性接着剤(導電性材料)を製造し
た。この導電性材料を10mm×50mm×1mmのス
テンレス板の先端に約10mm×10mm×1mmに塗
布し、ここに同じ大きさのステンレス板をはすかいに接
触させ、ステンレス板間を0.8mm以上に保って硬化
させた後、2枚のステンレス板間の導電性をテスターで
測定したところ、電流は流れなかった。
<Example 5> The gold-plated particles produced in Example 2 were replaced with an epoxy resin Super C manufactured by Cemedine Co., Ltd.
2% by weight was mixed with the main agent, and the same amount of the hardener was mixed with the main agent to produce a thermosetting anisotropic conductive adhesive (conductive material). This conductive material is applied to the tip of a stainless steel plate of 10 mm × 50 mm × 1 mm in a size of about 10 mm × 10 mm × 1 mm, and a stainless steel plate of the same size is brought into contact with a ladder, and the gap between the stainless steel plates is 0.8 mm or more. After curing while maintaining the temperature, the conductivity between the two stainless steel plates was measured with a tester, and no current flowed.

【0052】一方、別にこの導電性材料を、同型のステ
ンレス板に、10mm×10mm×0.05mmに塗布
し、他のステンレス板を重ね、2枚のステンレス板が直
接接触しないように圧着した。その後硬化させ、テスタ
ーで測定すると、導電性を示した。
On the other hand, this conductive material was separately applied to a stainless steel plate of the same type in a size of 10 mm × 10 mm × 0.05 mm, and another stainless steel plate was overlaid and pressed so that the two stainless steel plates did not come into direct contact. It was then cured and measured for conductivity using a tester.

【0053】<比較例1>実施例1において、ペンタエ
リスリトールテトラアクリレートを1,500g(10
0重量%)として、メタアクリル酸を用いない以外は、
実施例1と同様にして、平均粒子径5.1μm、標準偏
差0.22μmの合成樹脂微粒子を得た。この微粒子
を、実施例1と同様にして、銀メッキ微粒子を製造し
た。これら微粒子の特性値を表1にまとめた。本例の金
属被覆微粒子は、実施例1のものに比べ、抗剥離性が劣
る。
Comparative Example 1 In Example 1, 1,500 g of pentaerythritol tetraacrylate (10 g
0% by weight) except that methacrylic acid is not used.
In the same manner as in Example 1, synthetic resin fine particles having an average particle diameter of 5.1 μm and a standard deviation of 0.22 μm were obtained. These particles were used to produce silver-plated particles in the same manner as in Example 1. Table 1 summarizes the characteristic values of these fine particles. The metal-coated fine particles of this example are inferior in anti-peeling properties to those of Example 1.

【0054】<比較例2>比較例1で製造した合成樹脂
微粒子を、10重量%苛性ソーダ水に室温で1時間浸漬
してエッチングし、水洗した後、実施例1と同様にし
て、銀メッキ微粒子を製造した。本例の微粒子は、実施
例1のものに比べ、メッキ後の破断強度、圧縮回復率が
劣る。
<Comparative Example 2> The synthetic resin fine particles produced in Comparative Example 1 were immersed in 10% by weight caustic soda water at room temperature for 1 hour, etched and washed with water. Was manufactured. The fine particles of this example are inferior to those of Example 1 in the breaking strength and the compression recovery after plating.

【0055】<比較例3>実施例1において、モノマー
混合物を、ジビニルベンゼン60g(和光純薬製)(4
重量%)、スチレン1,440g(和光純薬製)(96
重量%)に変えた以外、実施例1と同様にして平均粒子
径7.5μmの樹脂微粒子を得た。この微粒子15g
を、実施例1と同様にして、銀メッキ微粒子を製造し
た。これら微粒子の特性値を表1にまとめた。本例の微
粒子は、抗剥離性が著しく劣った。
Comparative Example 3 In Example 1, 60 g of divinylbenzene (manufactured by Wako Pure Chemical Industries, Ltd.)
Wt.), 1,440 g of styrene (manufactured by Wako Pure Chemical Industries, Ltd.) (96
(% By weight), and resin fine particles having an average particle diameter of 7.5 μm were obtained in the same manner as in Example 1. 15g of these fine particles
In the same manner as in Example 1 to produce silver-plated fine particles. Table 1 summarizes the characteristic values of these fine particles. The fine particles of this example were extremely poor in anti-peeling properties.

【0056】<比較例4>実施例4において、アクリル
酸ブチルを1,200g(80重量%)及び1,6−ヘ
キサメチレンジアクリレートを300g(20重量%)
として、アクリル酸を用いない以外は、実施例4と同様
にして、金属蒸着粒子を得た。蒸着前の平均粒子径は2
52μm、標準偏差26μmであった。本例の金属被覆
微粒子は、実施例4のものに比べ、抗剥離性が劣る。
Comparative Example 4 In Example 4, 1,200 g (80% by weight) of butyl acrylate and 300 g (20% by weight) of 1,6-hexamethylene diacrylate were used.
, Metal-deposited particles were obtained in the same manner as in Example 4 except that acrylic acid was not used. Average particle size before evaporation is 2
52 μm and standard deviation 26 μm. The metal-coated fine particles of this example are inferior in anti-peeling properties to those of Example 4.

【0057】[0057]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧縮応力と圧縮変形との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between compressive stress and compressive deformation.

【図2】圧縮回復を示すグラフである。FIG. 2 is a graph showing compression recovery.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 9/02 C08K 9/02 C09D 5/24 C09D 5/24 11/00 11/00 H01B 1/00 H01B 1/00 C 1/22 1/22 A // B22F 1/02 B22F 1/02 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 9/02 C08K 9/02 C09D 5/24 C09D 5/24 11/00 11/00 H01B 1/00 H01B 1/00 C 1 / 22 1/22 A // B22F 1/02 B22F 1/02 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂微粒子と、その表面に形成され
た金属膜とを具える金属被覆微粒子において、 前記合成樹脂微粒子が、カルボキシル基含有モノマーと
多官能モノマーとを含有するモノマー混合物を重合させ
た共重合体からなることを特徴とする、金属被覆微粒
子。
1. A metal-coated fine particle comprising synthetic resin fine particles and a metal film formed on the surface thereof, wherein the synthetic resin fine particles polymerize a monomer mixture containing a carboxyl group-containing monomer and a polyfunctional monomer. Metal-coated fine particles, characterized in that they consist of a copolymer.
【請求項2】 前記モノマー混合物が、1〜30重量%
のカルボキシル基含有モノマーと5〜99重量%の多官
能モノマーとを含有することを特徴とする、請求項1記
載の金属被覆微粒子。
2. The method according to claim 1, wherein the monomer mixture comprises 1 to 30% by weight.
2. The metal-coated fine particles according to claim 1, comprising a carboxyl group-containing monomer and a polyfunctional monomer in an amount of 5 to 99% by weight.
【請求項3】 前記カルボキシル基含有モノマーが、ア
クリル酸、メタアクリル酸、イタコン酸、マレイン酸、
フマル酸、クロトン酸、アクリル酸ダイマー、メタアク
リル酸ダイマー、アクリロイルオキシアルキルマレイン
酸モノエステル、メタアクリロイルオキシアルキルマレ
イン酸モノエステル、アクリロイルアルキルフタル酸モ
ノエステル、メタアクリロイルアルキルフタル酸モノエ
ステル、ビニル安息香酸、無水マレイン酸、及び無水イ
タコン酸からなる群より選択した1種以上のモノマーで
あることを特徴とする、請求項1又は2記載の金属被覆
微粒子。
3. The method according to claim 1, wherein the carboxyl group-containing monomer is acrylic acid, methacrylic acid, itaconic acid, maleic acid,
Fumaric acid, crotonic acid, acrylic acid dimer, methacrylic acid dimer, acryloyloxyalkylmaleic acid monoester, methacryloyloxyalkylmaleic acid monoester, acryloylalkylphthalic acid monoester, methacryloylalkylphthalic acid monoester, vinylbenzoic acid The metal-coated fine particles according to claim 1, wherein the fine particles are at least one monomer selected from the group consisting of, maleic anhydride, and itaconic anhydride.
【請求項4】 前記多官能モノマーが、アクリル酸エス
テル及びメタアクリル酸エステルの少なくとも一方であ
ることを特徴とする、請求項1〜3のいずれか一項記載
の金属被覆微粒子。
4. The metal-coated fine particles according to claim 1, wherein the polyfunctional monomer is at least one of an acrylate ester and a methacrylate ester.
【請求項5】 前記合成樹脂微粒子が、変動係数20%
以下の粒径分布を有することを特徴とする、請求項1〜
4のいずれか一項記載の金属被覆微粒子。
5. The synthetic resin particles have a coefficient of variation of 20%.
Characterized by having the following particle size distribution:
5. The metal-coated fine particles according to any one of the above items 4.
【請求項6】 前記金属被覆微粒子が、1〜500μm
の平均粒径を有することを特徴とする、請求項1〜5の
いずれか一項記載の金属被覆微粒子。
6. The metal-coated fine particles have a particle size of 1 to 500 μm.
The metal-coated fine particles according to any one of claims 1 to 5, having an average particle diameter of:
【請求項7】 熱可塑性樹脂、熱硬化性樹脂、塗料、イ
ンキ及び接着剤からなる群より選択した少なくとも1種
のマトリックス材料と金属被覆微粒子とからなる導電性
材料において、 請求項1〜6のいずれか一項記載の金属被覆微粒子が含
まれていることを特徴とする、導電性材料。
7. A conductive material comprising at least one matrix material selected from the group consisting of a thermoplastic resin, a thermosetting resin, a paint, an ink and an adhesive, and metal-coated fine particles, A conductive material comprising the metal-coated fine particles according to any one of the preceding claims.
JP6774697A 1997-03-21 1997-03-21 Metal-coated fine particles and conductive materials Expired - Fee Related JP3294146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6774697A JP3294146B2 (en) 1997-03-21 1997-03-21 Metal-coated fine particles and conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6774697A JP3294146B2 (en) 1997-03-21 1997-03-21 Metal-coated fine particles and conductive materials

Publications (2)

Publication Number Publication Date
JPH10259253A true JPH10259253A (en) 1998-09-29
JP3294146B2 JP3294146B2 (en) 2002-06-24

Family

ID=13353828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6774697A Expired - Fee Related JP3294146B2 (en) 1997-03-21 1997-03-21 Metal-coated fine particles and conductive materials

Country Status (1)

Country Link
JP (1) JP3294146B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351910A (en) * 1999-06-14 2000-12-19 Hayakawa Rubber Co Ltd Polymeric fine powder and its production
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric
JP2003045230A (en) * 2001-08-01 2003-02-14 Hayakawa Rubber Co Ltd Synthetic resin particulate, conductive particulate and anisotropy conductive material composite
WO2003104285A1 (en) * 2002-06-06 2003-12-18 ソニーケミカル株式会社 Resin particle, conductive particle and anisotropic conductive adhesive containing the same
JP2007131733A (en) * 2005-11-10 2007-05-31 Shin Etsu Chem Co Ltd Pressure bonding anisotropically electroconductive resin composition and elastic anisotropically electroconductive member
WO2012020799A1 (en) * 2010-08-11 2012-02-16 株式会社日本触媒 Polymeric microparticles, conductive microparticles, and anisotropic conductive material
JP2013125651A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particle
TWI420539B (en) * 2006-09-29 2013-12-21 Nippon Chemical Ind Conductive particles and method of preparing the same
WO2016140196A1 (en) * 2015-03-04 2016-09-09 積水化学工業株式会社 Conducting paste, electric module and electric module production method
KR20160148515A (en) 2014-04-24 2016-12-26 다츠다 덴센 가부시키가이샤 Metal-coated resin particles and electroconductive adhesive in which same are used
JP2017066267A (en) * 2015-09-30 2017-04-06 三菱マテリアル株式会社 Thermally conductive composition
JP2019185936A (en) * 2018-04-05 2019-10-24 三菱マテリアル株式会社 Silver coating elastomer particle and flexible conductive material and conductive paste therewith
CN111234657A (en) * 2020-04-05 2020-06-05 台州天舒新材料科技有限公司 Light high-conductivity coating and preparation method and application thereof
JPWO2020230842A1 (en) * 2019-05-14 2020-11-19

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084794A (en) 1998-09-14 2000-03-28 Makino Milling Mach Co Ltd Machining device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532623B2 (en) * 1999-06-14 2010-08-25 早川ゴム株式会社 Polymer fine powder and method for producing the same
JP2000351910A (en) * 1999-06-14 2000-12-19 Hayakawa Rubber Co Ltd Polymeric fine powder and its production
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric
JP2003045230A (en) * 2001-08-01 2003-02-14 Hayakawa Rubber Co Ltd Synthetic resin particulate, conductive particulate and anisotropy conductive material composite
JP4642286B2 (en) * 2001-08-01 2011-03-02 早川ゴム株式会社 Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
WO2003104285A1 (en) * 2002-06-06 2003-12-18 ソニーケミカル株式会社 Resin particle, conductive particle and anisotropic conductive adhesive containing the same
US7338710B2 (en) 2002-06-06 2008-03-04 Sony Chemicals & Information Device Corporation Resin particle, conductive particle and anisotropic conductive adhesive containing the same
US7524559B2 (en) 2002-06-06 2009-04-28 Sony Chemical & Information Device Corporation Resin particle, conductive particle, and anisotropic conductive adhesive containing the same
JP2007131733A (en) * 2005-11-10 2007-05-31 Shin Etsu Chem Co Ltd Pressure bonding anisotropically electroconductive resin composition and elastic anisotropically electroconductive member
TWI420539B (en) * 2006-09-29 2013-12-21 Nippon Chemical Ind Conductive particles and method of preparing the same
WO2012020799A1 (en) * 2010-08-11 2012-02-16 株式会社日本触媒 Polymeric microparticles, conductive microparticles, and anisotropic conductive material
JP2013125651A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particle
KR20160148515A (en) 2014-04-24 2016-12-26 다츠다 덴센 가부시키가이샤 Metal-coated resin particles and electroconductive adhesive in which same are used
WO2016140196A1 (en) * 2015-03-04 2016-09-09 積水化学工業株式会社 Conducting paste, electric module and electric module production method
JPWO2016140196A1 (en) * 2015-03-04 2018-01-25 積水化学工業株式会社 Conductive paste, electric module, and method of manufacturing electric module
JP2017066267A (en) * 2015-09-30 2017-04-06 三菱マテリアル株式会社 Thermally conductive composition
JP2019185936A (en) * 2018-04-05 2019-10-24 三菱マテリアル株式会社 Silver coating elastomer particle and flexible conductive material and conductive paste therewith
JPWO2020230842A1 (en) * 2019-05-14 2020-11-19
WO2020230842A1 (en) * 2019-05-14 2020-11-19 積水化学工業株式会社 Resin particles, conductive particles, conductive material and connection structure
CN111234657A (en) * 2020-04-05 2020-06-05 台州天舒新材料科技有限公司 Light high-conductivity coating and preparation method and application thereof

Also Published As

Publication number Publication date
JP3294146B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
JP3294146B2 (en) Metal-coated fine particles and conductive materials
JP5075180B2 (en) Conductive particles and anisotropic conductive film containing the same
US8129023B2 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
JP4920698B2 (en) Conductive particles for anisotropic conductive connection
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
TW200826120A (en) Conductive particles and method of preparing the same
JP2000319309A (en) Polymer fine particle and its production, spacer for liquid crystal display element, electroconductive fine particle
JP2002033022A (en) Conductive multilayer structure resin particle and anisotropic conductive adhesive using it
JP3587398B2 (en) Conductive particles and anisotropic conductive adhesive
JP2003313304A (en) Conductive fine particle, its manufacturing method and bonding material for electronic component
JP2507381B2 (en) Conductive microsphere
JP4313664B2 (en) Protruding conductive particles, coated conductive particles, and anisotropic conductive material
JP3427967B2 (en) Metal-coated fine particles and conductive material containing the same
JP2003045230A (en) Synthetic resin particulate, conductive particulate and anisotropy conductive material composite
JP2003208813A (en) Conductive fine grain and anisotropic conductive material
JPH08225625A (en) Elastic microparticle, its production, and elastic conductive microparticle
JP2951744B2 (en) Crosslinked polymer fine particles
JP2000309715A (en) Polymer microparticle and conductive microparticle
JP3766123B2 (en) Conductive connection method between electrodes and conductive fine particles
JPH0449866B2 (en)
JP2006107881A (en) Conductive fine particle and anisotropic conductive material
KR100722152B1 (en) Monodisperse Polymer Particles and Conductive Particles for Anisotropic Conductive Packaging Applications
JP4113403B2 (en) Conductive fine particles, anisotropic conductive material, and method for producing conductive fine particles
JPH04147513A (en) Electrically conductive particulates and manufacture thereof
JP2001151894A (en) Electroconductive fine particle and electroconductive joint structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020226

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150405

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees