JPH10243621A - Permanent magnetic field type brushless motor - Google Patents
Permanent magnetic field type brushless motorInfo
- Publication number
- JPH10243621A JPH10243621A JP9272396A JP27239697A JPH10243621A JP H10243621 A JPH10243621 A JP H10243621A JP 9272396 A JP9272396 A JP 9272396A JP 27239697 A JP27239697 A JP 27239697A JP H10243621 A JPH10243621 A JP H10243621A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- magnetic poles
- salient
- poles
- winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Brushless Motors (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は永久磁石界磁形ブラ
シレスモータに関する。The present invention relates to a permanent magnet field type brushless motor.
【0002】[0002]
【従来の技術】VTR用キヤプスタンモータ等のような
音響機器用小形モータは、大出力でコギングトルクが小
さいことが望まれている。この種のモータには、一般
に、突極磁極のないコアレス形のものが多いがコアレス
形のものはコギングトルクがない反面大出力のものを得
にくい問題がある。一方、コア付形のものは大出力のも
のを得やすいが突極性をもつためにコギングトルクが大
きくなる欠点がある。コア付形モータにおけるコギング
トルクの改善のために、永久磁石極数を突極磁石数より
も大ならしめることが、特公昭49−8568号公報に開示さ
れている。2. Description of the Related Art It is desired that a small motor for audio equipment such as a capstan motor for a VTR has a large output and a small cogging torque. In general, many motors of this type have a coreless type without salient magnetic poles, but a coreless type motor has no cogging torque, but has a problem that it is difficult to obtain a motor having a large output. On the other hand, the core-attached type easily obtains a large output, but has a disadvantage that the cogging torque is increased due to the saliency. JP-B-49-8568 discloses that the number of permanent magnet poles is made larger than the number of salient pole magnets in order to improve cogging torque in a cored motor.
【0003】コギングトルクは1回転につき突極磁極数
Mと永久磁石磁極数Pとの最小公倍数の脈動トルクであ
り、コギングトルクの大きさは脈動数に反比例する。The cogging torque is a pulsating torque of the least common multiple of the number M of salient poles and the number P of permanent magnet poles per rotation, and the magnitude of the cogging torque is inversely proportional to the number of pulsations.
【0004】図4および表1を参照して従来のこの種の
永久磁石回転子形ブラシレスモータについて説明する。
ステータ1は外周に電機子巻線29を集中的に巻回した
突極磁極3を備える。ステータ1の外周には、等間隔に
N,Sに着磁した永久磁石4と磁束を通すヨーク5を備
えたロータ6が空隙を介して回転可能に支承されてい
る。特公昭49−8568号の例では、m相構成の永久磁石磁
極数Pと突極磁極数Mの関係を P:M=m+2:m+1 とすることによってコギングトルクの脈動数を多くし、
コギングトルクの大きさを低減することを提案してい
る。更に、電機子巻数2を突極磁極3に集中的に巻回す
るようにして巻線作業性を向上させている。A conventional permanent magnet rotor type brushless motor of this type will be described with reference to FIG.
The stator 1 includes salient magnetic poles 3 around which an armature winding 29 is concentratedly wound. On the outer circumference of the stator 1, a rotor 6 having a permanent magnet 4 magnetized to N and S at equal intervals and a yoke 5 for passing a magnetic flux is rotatably supported via a gap. In the example of Japanese Patent Publication No. 49-8568, the number of pulsations of the cogging torque is increased by setting the relationship between the number P of permanent magnet magnetic poles and the number M of salient magnetic poles in an m-phase configuration to P: M = m + 2: m + 1.
It is proposed to reduce the magnitude of the cogging torque. Further, the winding workability is improved by intensively winding the armature winding number 2 around the salient pole 3.
【0005】[0005]
【表1】 [Table 1]
【0006】表1は、3相で且つ永久磁石磁極数Pと突
極磁極数Mの比を P:M=4:3 とした場合のコギングトルクの脈動数と巻線利用率をま
とめたもので、永久磁石磁極数Pが16、突極磁極数M
が12の例では、コギングトルクの脈動数が48にも達
し小さなコギングトルクとすることができる。また機械
的に90度の位相をもつ各突極磁極3は電気的には同相
であるので電機子巻線2の利用率がよく、更に脈動トル
クの要因である誘起電圧の脈動を小さくすることができ
る利点をもっている。Table 1 summarizes the number of pulsations of the cogging torque and the utilization factor of the winding when the ratio of the number P of the permanent magnet magnetic poles to the number M of the salient magnetic poles is P: M = 4: 3 in three phases. And the number P of the permanent magnet magnetic poles is 16 and the number M of the salient magnetic poles
In the example of FIG. 12, the number of pulsations of the cogging torque reaches 48, and a small cogging torque can be obtained. Further, since the salient poles 3 having a phase of 90 degrees are electrically in phase with each other, the utilization ratio of the armature winding 2 is good, and the pulsation of the induced voltage which is a factor of the pulsation torque is reduced. Has the advantage of being able to
【0007】[0007]
【発明が解決しようとする課題】しかしながらこの種の
モータでは、更にコギングトルクの低減と電機子巻線の
利用効率向上が望まれている。コギングトルクの低減は
相数mを増すことによって可能であるが、ブラシレスモ
ータにおいては電機子巻線電流制御のために用いる回転
子の磁極位置検出素子数とスイッチング素子数が増える
ことにより、構造が複雑になって高価になる。そして、
電機子巻線2の利用率向上については、突極磁極3の間
に電機子巻線をもたない補助突極を設けて電機子巻線利
用率を1にする方法もあるが、補助突極を多く設けると
巻線作業性が低下し、また補助磁極間の溝が増えてコギ
ングトルクを増大する要因となる。However, in this type of motor, it is desired to further reduce the cogging torque and improve the utilization efficiency of the armature winding. Although the cogging torque can be reduced by increasing the number of phases m, in a brushless motor, the structure is increased by increasing the number of magnetic pole position detection elements and the number of switching elements of the rotor used for controlling the armature winding current. It becomes complicated and expensive. And
To improve the utilization rate of the armature winding 2, there is a method of providing an auxiliary salient pole having no armature winding between the salient poles 3 to make the utilization rate of the armature winding unity. If a large number of poles are provided, the winding workability is reduced, and the number of grooves between the auxiliary magnetic poles is increased, which causes an increase in cogging torque.
【0008】本発明の目的は、構成が簡単でコギングト
ルクが小さく、比較的大出力の永久磁石界磁形ブラシレ
スモータを提供することにある。An object of the present invention is to provide a permanent magnet field type brushless motor which has a simple structure, a small cogging torque, and a relatively large output.
【0009】[0009]
【課題を解決するための手段】本発明は、永久磁石界磁
の永久磁石磁極数Pと固定子の突極磁極数Mの関係を、
(2/3)M<P<(4/3)M 、かつ、M=6n、か
つ、P<6n−2またはP>6n+2 (但しnは2以
上の整数)に設定することにより、コギングトルクと巻
線係数の両面で改善する、すなわち、巻線係数を向上
(出力を向上)させつつ、コギングトルクの大きさを低
減するものであり、かつ、モータの中心に対して機械的
に180度近くなる位置の突極磁極に巻回した電機子巻
線を同相に選べるので、空隙の不平公の影響を少なくし
て、モータの振動を小さくするものである。According to the present invention, the relationship between the number of permanent magnet magnetic poles P of the permanent magnet field and the number of salient magnetic poles M of the stator is expressed as follows.
By setting (2/3) M <P <(4/3) M, and M = 6n, and P <6n-2 or P> 6n + 2 (where n is an integer of 2 or more), the cogging torque is obtained. And the winding coefficient is improved, that is, the magnitude of the cogging torque is reduced while the winding coefficient is improved (output is improved), and mechanically 180 degrees with respect to the center of the motor. Since the armature windings wound around the salient magnetic poles near each other can be selected to have the same phase, the influence of the irregularity of the air gap is reduced, and the vibration of the motor is reduced.
【0010】また、上記の永久磁石界磁の永久磁石磁極
数Pと固定子の突極磁極数Mの関係において、特に、P
<6n−2の場合には、永久磁石磁極数Pが少ない方
が、電気角で120度毎に設けられる永久磁石磁極の位
置検出素子の電気角での取り付け誤差が小さくなるの
で、この誤差によって発生するところのトルクリプルを
小さくすることができる。In the relationship between the number of permanent magnet magnetic poles P of the permanent magnet field and the number of salient magnetic poles M of the stator, in particular, P
In the case of <6n−2, the smaller the number P of the permanent magnet magnetic poles, the smaller the mounting error in the electrical angle of the position detecting element of the permanent magnet magnetic pole provided every 120 degrees in electrical angle. The torque ripple where it occurs can be reduced.
【0011】[0011]
【発明の実施の形態】図1および図2を参照して一実施
例を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described with reference to FIGS.
【0012】ステータ1は外周に12個の突極磁極3を
備え、この突極磁極3には電機子巻線2が集中的に巻回
されている。1相当りの突極磁極3の数は4であり突極
3U1,3U2,3U3,3U4に巻回された電機子巻線2が同
相に接続されてU相を構成する。つまりこのU相は中心
の突極磁極3U1(任意に設定し得る)を基準として、電
気角で180K(Kは整数)〜180K+60度未満の
範囲の突極磁極3に巻回された電機子巻線2で構成され
る。V,W相はU相の磁極から機械的に120度,24
0度(−120度)隔てた突極磁極3V1,3W1を中心に1
80K〜180+60度未満の範囲の突極磁極3に巻回
された電機子巻線(図示せず)によってそれぞれ構成さ
れる。The stator 1 has twelve salient poles 3 on the outer periphery, and the armature windings 2 are intensively wound around the salient poles 3. 1 The number of corresponding Ri salient poles 3 4 a is salient 3 U1, 3 U2, 3 U3 , 3 U4 wound on the armature winding 2 is connected to the same phase constituting the U-phase. In other words, this U-phase is based on the center salient pole 3 U1 (which can be set arbitrarily), and the armature wound around the salient pole 3 having an electrical angle in the range of 180K (K is an integer) to less than 180K + 60 degrees. It is composed of a winding 2. The V and W phases are mechanically 120 degrees and 24 degrees from the U-phase magnetic poles.
1 around salient poles 3 V1 , 3 W1 separated by 0 degrees (-120 degrees)
It is constituted by an armature winding (not shown) wound around the salient pole 3 in a range of 80K to less than 180 + 60 degrees.
【0013】そして永久磁石ロータ6は、N,Sに交互
に着磁されてヨーク5の内側に配置されて前記突極磁極
3と対向する14個の永久磁石磁極4を備える。The permanent magnet rotor 6 includes fourteen permanent magnet magnetic poles 4 which are alternately magnetized to N and S and are arranged inside the yoke 5 and face the salient poles 3.
【0014】以上のような永久磁石界磁形ブラシレスモ
ータによれば、1回転当りのコギングトルク脈動数は、
永久磁石磁極数14と突極磁極数12の最小公倍数であ
る84となってコギングトルクが軽減される。According to the permanent magnet field type brushless motor as described above, the number of cogging torque pulsations per rotation is:
The cogging torque is reduced to 84, which is the least common multiple of the number of permanent magnet poles 14 and the number of salient poles 12.
【0015】一方、巻線利用率(巻線係数)については、
短節巻係数がcos30/2=0.966、突極磁極の分布によ
る係数も同様にcos30/2=0.966となることか
ら、全体では0.966×0.966=0.933 となり
従来のものより向上する。同様な結果は、永久磁石磁極
数Pを10,突極磁極数Mを12とすることによっても
得られる。On the other hand, regarding the winding utilization rate (winding coefficient),
Since the short section winding coefficient is cos 30/2 = 0.966, and the coefficient based on the distribution of salient magnetic poles is also cos 30/2 = 0.966, the whole becomes 0.966 × 0.966 = 0.933. Better. Similar results can be obtained by setting the number P of permanent magnet magnetic poles to 10 and the number M of salient magnetic poles to 12.
【0016】更に、同じ相の突極磁極3、例えば3U1,
3U2,3U3,3U4が分布して配置され、これを巻回され
た電機子巻線2の誘起電圧が正弦波状に近くなることか
ら、これに適合した正弦波電流を通電するような電流制
御を行うことにより、誘起電圧高調波成分によるトルク
脈動が補正される効果がある。Further, salient poles 3 of the same phase, for example, 3 U1 ,
3 U2 , 3 U3 , and 3 U4 are arranged in a distributed manner, and the induced voltage of the armature winding 2 wound therewith is close to a sine wave. By performing the current control, there is an effect that the torque pulsation due to the induced voltage harmonic component is corrected.
【0017】なお、上記では、Mが12でP=M±2の
場合を例にとりコギングトルク及び巻線係数には遜色の
ないことを述べたが、PをMより小さくした場合には、
上記PをMより大きくした場合に比べて上述しないブラ
シレスモータ特有の効果が得られることについて以下に
説明する。In the above description, the case where M is 12 and P = M ± 2 is taken as an example, and it is described that the cogging torque and the winding coefficient are not inferior. However, when P is smaller than M,
A description will be given below of how the above-described effects unique to the brushless motor can be obtained as compared with the case where P is larger than M.
【0018】ブラシレスモータでは電気角で120度毎
に設けられた永久磁石磁極の位置検出素子からの信号に
基づいて三相巻線に電流を分配して流すようにしている
が、位置検出素子の取り付け誤差(120度毎)による
制御精度への影響としては、永久磁石磁極数Pが少ない
方が電気角での誤差が小さくなるのでこの誤差によって
発生するところのトルクリプルを小さくすることができ
る。In a brushless motor, a current is distributed to a three-phase winding based on a signal from a position detecting element of a permanent magnet magnetic pole provided at every 120 electrical degrees, and the current flows through the three-phase winding. Regarding the influence on the control accuracy due to the mounting error (every 120 degrees), the smaller the number P of permanent magnet magnetic poles, the smaller the error in the electrical angle. Therefore, the torque ripple caused by this error can be reduced.
【0019】[0019]
【表2】 [Table 2]
【0020】表2は縦方向に永久磁石磁極数Pを横方向
に突極磁極数Mをおき両者の組合せに対するコギングト
ルクの脈動数,巻数係数を示している。巻線係数は短節
巻係数と分布巻係数の積である。短節巻係数はsin(90
P/M)で求められ、分布巻係数は同じ相の突極磁極の
分布状況から算出される。従来のこの種モータの場合、
M=(3/4)PあるいはM=(3/2)Pにおいて分布巻
係数は1であるが、短節巻係数は0.866 となる。Table 2 shows the number of pulsations and the number of turns of the cogging torque for a combination of the permanent magnet magnetic pole number P in the vertical direction and the salient magnetic pole number M in the horizontal direction. The winding factor is the product of the short winding factor and the distributed winding factor. The short winding factor is sin (90
P / M), and the distributed winding coefficient is calculated from the distribution of salient magnetic poles of the same phase. In the case of this type of conventional motor,
At M = (3/4) P or M = (3/2) P, the distributed winding coefficient is 1, but the short-pitch winding coefficient is 0.866.
【0021】表2から、永久磁石磁極数Pと突極磁極数
Mを(2/3)M<P<(4/3)Mとすれば、コギングト
ルクと巻線係数の両面で改善されることが明らかであ
る。しかしM=Pの場合には3相結線ができないことか
らM≠Pであることが必要となる。From Table 2, if the number of permanent magnet magnetic poles P and the number of salient magnetic poles M are (2/3) M <P <(4/3) M, both cogging torque and winding coefficient can be improved. It is clear that. However, when M = P, MPP is necessary because three-phase connection cannot be performed.
【0022】表2の例では、P=M±1,M=3m(但
しmは2より大きい奇数)の場合にコギングトルクの脈
動数が最も大きくなりトルクの脈動が最も小さくなる。In the example shown in Table 2, when P = M ± 1, M = 3 m (where m is an odd number larger than 2), the number of pulsations of the cogging torque is the largest and the pulsation of the torque is the smallest.
【0023】図3には永久磁石磁極数Pを16,突極磁
極数Mを15の場合例を示しており、この組合せは表2
を見るように、いずれの組合せよりもコギングトルク脈
動数,巻線係数ともに良い。しかし、特にPが大きくな
るに従い巻線係数の減少傾向が大きくなっていることが
わかる。なお、同図においてはPとMの組合せとは関係
なく、電機子巻線方式として、これまでの図1や図2と
異なる巻線方式を記載しているが、同図の場合には、同
じ相の電機子巻線2が巻回される突極磁極3が一ヶ所に
偏在するために、空隙長を均等にしないと相間に電圧の
不平衡を生じやすい。FIG. 3 shows an example in which the number P of the permanent magnet magnetic poles is 16 and the number M of the salient magnetic poles is 15. This combination is shown in Table 2.
As can be seen, both the cogging torque pulsation number and the winding coefficient are better than any of the combinations. However, it can be seen that the tendency for the winding coefficient to decrease particularly increases as P increases. In addition, in the same figure, a winding method different from the previous FIGS. 1 and 2 is described as the armature winding method regardless of the combination of P and M. In the case of FIG. Since the salient magnetic poles 3 around which the armature windings 2 of the same phase are wound are unevenly distributed in one place, a voltage imbalance is likely to occur between the phases unless the gap length is made uniform.
【0024】一方、表2で示した例では永久磁石磁極数
Pと突極磁極数Mの関係を、6n±2:6n(但しnは
2以上の整数)とすることによって、コギングトルクの
脈動数を大きくしつつ、機械的に180度近く異なる位
置の突極磁極3に巻回した電機子巻線2を同相に選べる
ために、空隙の不平衡の影響が少ないモータを得ること
ができる。On the other hand, in the example shown in Table 2, the relationship between the number P of the permanent magnet magnetic poles and the number M of the salient magnetic poles is set to 6n ± 2: 6n (where n is an integer of 2 or more), whereby the pulsation of the cogging torque is obtained. While increasing the number, the armature windings 2 wound around the salient poles 3 mechanically differing by nearly 180 degrees can be selected to have the same phase, so that it is possible to obtain a motor with less influence of air gap unbalance.
【0025】なお、巻線係数は、電気角で180K+0
〜660度(Kは整数)未満の範囲に位置する突極磁極
3に巻回した電機子巻線2を同相として接続した場合に
最も大きくなり、表2はこの考え方に基づいた最良の巻
線係数を示している。The winding coefficient is 180K + 0 in electrical angle.
The maximum value is obtained when the armature windings 2 wound around the salient poles 3 located in a range of less than 60660 degrees (K is an integer) are connected in phase, and Table 2 shows the best windings based on this concept. The coefficient is shown.
【0026】以上の実施例は突極磁極3のすべてに電機
子巻線2を巻回することを前提にして説明したが、突極
磁極3の一部を補助突極(電機子巻線を巻回しない)と
することも可能である。Although the above embodiment has been described on the premise that the armature winding 2 is wound around all of the salient poles 3, a part of the salient pole 3 is replaced with auxiliary salient poles (armature windings). (Not wound).
【0027】また本発明は直線モータにも適用できる。
この場合には、永久磁石の幅1/Pと突極磁極の幅1/
Mを 2/3<P/M<4/3 にすることになる。The present invention is also applicable to a linear motor.
In this case, the width of the permanent magnet 1 / P and the width of the salient pole 1 / P
M will be 2/3 <P / M <4/3.
【0028】[0028]
【発明の効果】以上のように本発明によれば、永久磁石
磁極数Pと突極磁極数Mとの関係を適切に選ぶことによ
り、巻線係数を向上(出力を向上)させつつ、コギング
トルクの小さな永久磁石界磁形ブラシレスモータを提供
することができる。さらに、モータの中心に対して機械
的に180度近く異なる位置(対称な位置)の突極磁極
に巻回した電機子巻線を同相に選ぶことにより、空隙の
不平衡の影響が少なく、振動が小さなモータを提供する
ことができる。As described above, according to the present invention, by appropriately selecting the relationship between the number P of the permanent magnet magnetic poles and the number M of the salient magnetic poles, it is possible to improve the winding coefficient (improve the output) while cogging. A permanent magnet field type brushless motor with small torque can be provided. Furthermore, by selecting the armature winding wound around the salient pole at a position mechanically different from the center of the motor by nearly 180 degrees (symmetric position) in the same phase, the influence of the air gap unbalance is reduced, and the vibration is reduced. Can provide a small motor.
【0029】また、P<6n−2の場合には、永久磁石
磁極数Pが少ない方が、電気角で120度毎に設けられ
る永久磁石磁極の位置検出素子の電気角での取り付け誤
差が小さくなるので、この誤差によって発生するところ
のトルクリプルを小さくすることができる。In the case of P <6n-2, the smaller the number P of the permanent magnet magnetic poles, the smaller the mounting error in the electrical angle of the position detecting element of the permanent magnet magnetic pole provided every 120 degrees in electrical angle. Therefore, the torque ripple generated by this error can be reduced.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の各実施例を示すモータの側面図。FIG. 1 is a side view of a motor showing each embodiment of the present invention.
【図2】図1に示したモータの展開図。FIG. 2 is a development view of the motor shown in FIG.
【図3】本発明の各実施例を示すモータの側面図。FIG. 3 is a side view of a motor showing each embodiment of the present invention.
【図4】従来のモータの側面図。FIG. 4 is a side view of a conventional motor.
1…ステータ、2…電機子巻線、3…突極磁極、4…永
久磁石磁極、6…ロータ。DESCRIPTION OF SYMBOLS 1 ... stator, 2 ... armature winding, 3 ... salient pole magnetic pole, 4 ... permanent magnet magnetic pole, 6 ... rotor.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 今野 猛夫 茨城県日立市東多賀町1丁目1番1号 株 式会社日立製作所多賀工場内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takeo Konno 1-1-1 Higashitaga-cho, Hitachi City, Ibaraki Prefecture Inside the Taga Plant of Hitachi, Ltd.
Claims (5)
永久磁石磁極をもつ永久磁石界磁と、全周にわたって等
間隔に配列されたM個の突極磁極とこの突極磁極に集中
的に巻回され且つ3相接続された電機子巻線を有する電
機子とを備え、前記永久磁石界磁の移動位置に応じて前
記電機子巻線電流を制御して該永久磁石界磁にトルクを
発生する永久磁石界磁形ブラシレスモータにおいて、 前記永久磁石磁極数Pと前記突極磁極数Mの関係を、 (2/3)M<P<(4/3)M 、かつ、M=6n、か
つ、 P<6n−2またはP>6n+2 (但しnは2以上の
整数) としたことを特徴とする永久磁石界磁形ブラシレスモー
タ。1. A permanent magnet field having P permanent magnet magnetic poles arranged at equal intervals over the entire circumference, M salient poles arranged at equal intervals over the entire circumference, and concentrated on the salient poles Armature having an armature winding wound three-phase and connected in three phases, and controlling the armature winding current according to the moving position of the permanent magnet field to control the permanent magnet field. In the permanent magnet field type brushless motor that generates torque, the relationship between the number P of the permanent magnet magnetic poles and the number M of the salient magnetic poles is expressed as: (2/3) M <P <(4/3) M and M = 6n and P <6n-2 or P> 6n + 2 (where n is an integer of 2 or more).
タにおいて、 (2/3)M<P<6n−2、かつ、M=6n(但しnは
2以上の整数) としたことを特徴とする永久磁石界磁形ブラシレスモー
タ。2. The permanent magnet field type brushless motor according to claim 1, wherein (2/3) M <P <6n-2 and M = 6n (where n is an integer of 2 or more). Permanent magnet field type brushless motor.
タにおいて、 P:M=10:12 としたことを特徴とする永久磁石界磁形ブラシレスモー
タ。3. The permanent magnet field type brushless motor according to claim 2, wherein P: M = 10: 12.
タにおいて、 6n+2<P<(4/3)M、かつ、M=6n(但しnは
2以上の整数) としたことを特徴とする永久磁石界磁形ブラシレスモー
タ。4. The permanent magnet field type brushless motor according to claim 1, wherein 6n + 2 <P <(4/3) M and M = 6n (where n is an integer of 2 or more). Permanent magnet field type brushless motor.
タにおいて、 P:M=14:12 としたことを特徴とする永久磁石界磁形ブラシレスモー
タ。5. A permanent magnet field type brushless motor according to claim 4, wherein P: M = 14: 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27239697A JP2954552B2 (en) | 1997-10-06 | 1997-10-06 | Permanent magnet field type brushless motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27239697A JP2954552B2 (en) | 1997-10-06 | 1997-10-06 | Permanent magnet field type brushless motor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8349299A Division JP2743918B2 (en) | 1996-12-27 | 1996-12-27 | Permanent magnet field type brushless motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10243621A true JPH10243621A (en) | 1998-09-11 |
JP2954552B2 JP2954552B2 (en) | 1999-09-27 |
Family
ID=17513321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27239697A Expired - Lifetime JP2954552B2 (en) | 1997-10-06 | 1997-10-06 | Permanent magnet field type brushless motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2954552B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007068330A (en) * | 2005-08-31 | 2007-03-15 | Japan Servo Co Ltd | Three-phase permanent magnet brushless motor |
WO2008092801A2 (en) * | 2007-01-30 | 2008-08-07 | Robert Bosch Gmbh | 18/8 synchronous motor |
WO2010127891A3 (en) * | 2009-05-08 | 2011-08-04 | Robert Bosch Gmbh | Synchronous machine |
WO2011118214A1 (en) * | 2010-03-25 | 2011-09-29 | パナソニック株式会社 | Motor and electrical apparatus housing same |
CN102684347A (en) * | 2011-03-10 | 2012-09-19 | 三菱电机株式会社 | Electric apparatus and manufacturing method thereof |
WO2017123013A1 (en) * | 2016-01-14 | 2017-07-20 | 노순창 | Permanent magnet rotating device having minimized cogging torque, permanent magnet generator using same, and permanent magnet motor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60226759A (en) * | 1984-04-23 | 1985-11-12 | Yaskawa Electric Mfg Co Ltd | Brushless motor |
JPS62110468A (en) * | 1985-11-08 | 1987-05-21 | Hitachi Ltd | Permanent magnet field type brushless motor |
JPH03198645A (en) * | 1989-12-25 | 1991-08-29 | Sony Corp | Three-phase brushless motor |
JPH09172762A (en) * | 1996-12-27 | 1997-06-30 | Hitachi Ltd | Permanent magnet field type brushless motor |
-
1997
- 1997-10-06 JP JP27239697A patent/JP2954552B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60226759A (en) * | 1984-04-23 | 1985-11-12 | Yaskawa Electric Mfg Co Ltd | Brushless motor |
JPS62110468A (en) * | 1985-11-08 | 1987-05-21 | Hitachi Ltd | Permanent magnet field type brushless motor |
JPH03198645A (en) * | 1989-12-25 | 1991-08-29 | Sony Corp | Three-phase brushless motor |
JPH09172762A (en) * | 1996-12-27 | 1997-06-30 | Hitachi Ltd | Permanent magnet field type brushless motor |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007068330A (en) * | 2005-08-31 | 2007-03-15 | Japan Servo Co Ltd | Three-phase permanent magnet brushless motor |
US7592734B2 (en) | 2005-08-31 | 2009-09-22 | Hitachi Industrial Equipment System Co., Ltd. | Three-phase permanent magnet brushless motor |
WO2008092801A2 (en) * | 2007-01-30 | 2008-08-07 | Robert Bosch Gmbh | 18/8 synchronous motor |
WO2008092801A3 (en) * | 2007-01-30 | 2008-10-02 | Bosch Gmbh Robert | 18/8 synchronous motor |
WO2010127891A3 (en) * | 2009-05-08 | 2011-08-04 | Robert Bosch Gmbh | Synchronous machine |
JP5816822B2 (en) * | 2010-03-25 | 2015-11-18 | パナソニックIpマネジメント株式会社 | Motor and electrical equipment equipped with the same |
CN102823118A (en) * | 2010-03-25 | 2012-12-12 | 松下电器产业株式会社 | Motor and electrical apparatus housing same |
US20130076195A1 (en) * | 2010-03-25 | 2013-03-28 | Panasonic Corporation | Motor and electrical apparatus housing same |
WO2011118214A1 (en) * | 2010-03-25 | 2011-09-29 | パナソニック株式会社 | Motor and electrical apparatus housing same |
US9502928B2 (en) | 2010-03-25 | 2016-11-22 | Panasonic Intellectual Property Management Co., Ltd. | Motor design for reducing cogging torque and torque ripple while maintaining efficiency |
US10348141B2 (en) | 2010-03-25 | 2019-07-09 | Panasonic Intellectual Property Management Co., Ltd. | Motor with rotor and stator dimensions for reducing cogging torque and torque ripple |
CN102684347A (en) * | 2011-03-10 | 2012-09-19 | 三菱电机株式会社 | Electric apparatus and manufacturing method thereof |
WO2017123013A1 (en) * | 2016-01-14 | 2017-07-20 | 노순창 | Permanent magnet rotating device having minimized cogging torque, permanent magnet generator using same, and permanent magnet motor |
CN108886277A (en) * | 2016-01-14 | 2018-11-23 | 卢淳昶 | The rotary type permanent-magnet device for minimizing cogging torque and permanent magnet generator and permanent magnet electric motor using it |
Also Published As
Publication number | Publication date |
---|---|
JP2954552B2 (en) | 1999-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH088764B2 (en) | Permanent magnet field type brushless motor | |
JP2743918B2 (en) | Permanent magnet field type brushless motor | |
JP3131403B2 (en) | Stepping motor | |
US7569962B2 (en) | Multi-phase brushless motor with reduced number of stator poles | |
US7638917B2 (en) | Electrical rotating machine | |
JP3535485B2 (en) | Three-phase hybrid type stepping motor | |
JP2000287427A (en) | Brushless motor | |
US7528517B2 (en) | Distribution of motor heat sources | |
JP2954552B2 (en) | Permanent magnet field type brushless motor | |
US20100052460A1 (en) | Electrical rotating machine | |
JPH0444504B2 (en) | ||
CN108880050B (en) | Brushless direct current motor stator winding method | |
JP4039074B2 (en) | Synchronous motor | |
JPS62230346A (en) | Winding method of brushless motor | |
JPH0614773B2 (en) | Brushless motor | |
JPH09322455A (en) | Permanent magnet type electric rotating machine having concentrated winding stator | |
JPH1023724A (en) | Permanent-magnet rotary electric machine | |
JP3473128B2 (en) | Electric motor | |
JPH038049Y2 (en) | ||
JPH1075556A (en) | Permanent magnet dynamo electric machine | |
JPS62114455A (en) | Magnet rotary machine | |
JPS61116952A (en) | Synchronous motor | |
CN114400854A (en) | Homopolar four-phase brushless alternating-current generator | |
JPH07298596A (en) | Brushless motor | |
JPS61273158A (en) | Winding method for brushless rotary electric machine |