[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1024270A - Cleaning method using supercritical fluid as cleaning fluid - Google Patents

Cleaning method using supercritical fluid as cleaning fluid

Info

Publication number
JPH1024270A
JPH1024270A JP19854296A JP19854296A JPH1024270A JP H1024270 A JPH1024270 A JP H1024270A JP 19854296 A JP19854296 A JP 19854296A JP 19854296 A JP19854296 A JP 19854296A JP H1024270 A JPH1024270 A JP H1024270A
Authority
JP
Japan
Prior art keywords
cleaning
supercritical fluid
cleaned
fluid
contaminants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19854296A
Other languages
Japanese (ja)
Other versions
JP3784464B2 (en
Inventor
Akira Kobuchi
彰 小渕
Yasunobu Minamino
康信 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP19854296A priority Critical patent/JP3784464B2/en
Publication of JPH1024270A publication Critical patent/JPH1024270A/en
Application granted granted Critical
Publication of JP3784464B2 publication Critical patent/JP3784464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PROBLEM TO BE SOLVED: To excellently clean a material to be cleaned by extracting a contaminant soluble in a supercritical fluid among the contaminants depositing on the material surface in a mixed state with the supercritical fluid and washing away the contaminants insoluble in the supercritical fluid with liq. and gas. SOLUTION: The liq. carbon dioxide from a liq. carbon dioxide storage tank 10 is pressurized with a carbon dioxide pump 11 to the supercritical pressure, heated to the supercritical temp. by a first heat exchanger 12 and supplied to a first cleaning tank 20 to clean a first material to be cleaned in the tank 20. The supercritical carbon dioxide discharged from the tank 20 and contg. a contaminant soluble in the supercritical carbon dioxide is depressurized, cooled and supplied to a second cleaning tank 30, the liq. carbon dioxide used in the cleaning and discharged from the first to third cleaning tanks 20 to 40 is depressurized, controlled in temp. and supplied to a separation tank 50 to separate the contaminants.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被洗浄物の表面に
混在状態で付着する超臨界流体に溶解または溶解しない
汚染物質を良好に洗浄できる超臨界流体を洗浄流体とす
る洗浄方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cleaning method using a supercritical fluid capable of satisfactorily cleaning a contaminant that is dissolved or not dissolved in a supercritical fluid adhering in a mixed state to the surface of an object to be cleaned.

【0002】[0002]

【従来の技術】精密洗浄技術は、電子関連部品、光学機
器、精密機械部品の分野で、表面処理、蒸着、接着など
の前工程や最終仕上げ工程などとして、品質や生産性の
向上に大いに貢献している。洗浄方法は、水や薬液、有
機溶媒を洗浄媒体とした浸漬法、揺動法、超音波法、噴
射法やフロン系などの有機溶媒による蒸気洗浄法などが
開発され、目的、コスト、前後工程などにより種々の組
合せで実用化されている。しかし、洗浄流体として活用
されているフロン系溶媒は、オゾン層破壊などの問題か
ら使用が制限されている。また、製品の高性能化に伴な
って、洗浄力のレベルアップも求められている。これら
のことから、従来法に代わる新しい洗浄法が検討されて
おり、その1つとして研究開発されているのが超臨界流
体を利用する洗浄法である。超臨界洗浄法は、超臨界流
体が持つユニークな物性、気体のような低粘性で高拡散
性を持ちながら、液体のような密度や大きな溶解性をも
ち、圧力、温度の僅かな変化でこれらの性質が大きく変
動する性質を利用する方法である。超臨界流体として
は、取り扱い性および経済性の観点から二酸化炭素が最
も利用されている。
2. Description of the Related Art Precision cleaning technology greatly contributes to the improvement of quality and productivity in the fields of electronics-related parts, optical equipment, and precision mechanical parts, such as surface treatment, vapor deposition, bonding, and other pre-processes and final finishing processes. doing. Cleaning methods such as immersion method using water, chemicals, and organic solvent as a cleaning medium, rocking method, ultrasonic method, spraying method, and vapor cleaning method using organic solvent such as chlorofluorocarbon are developed. Various combinations have been put to practical use. However, the use of the chlorofluorocarbon-based solvent used as a cleaning fluid is restricted due to problems such as destruction of the ozone layer. In addition, as products have higher performance, there is a demand for higher levels of detergency. Based on these facts, a new cleaning method which is an alternative to the conventional method is being studied, and one of the methods being researched and developed is a cleaning method using a supercritical fluid. The supercritical cleaning method has the unique properties of supercritical fluids, low viscosity like gas, and high diffusivity, while having the density and large solubility like a liquid. Is a method that utilizes the property that the property of fluctuates greatly. As the supercritical fluid, carbon dioxide is most used from the viewpoint of handling properties and economy.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、超臨界
洗浄方法では、被洗浄物の表面に混在状態で付着する油
脂、水分、有機溶媒などの汚染物質を抽出して除去する
ことができ、また超臨界流体は低粘性でかつその拡散係
数が液体より格段と大きいために、液体系洗浄剤が入れ
ない部分にも容易に浸透することができ、微細な溝や複
雑な幾何学構造の細孔や高分子材料などの内部に存在
し、超臨界流体に溶解する汚染物質は容易に除去でき
る。しかしながら、反面、長時間かけて洗浄しても、被
洗浄物の表面などに混在状態で付着する無機化合物、高
分子化合物の粉粒体や剥離物などの超臨界流体に溶解し
ない汚染物質を除去することはできないという問題点が
ある。本発明は、従来の問題点に鑑みなされたもので、
被洗浄物の表面に混在状態で付着した超臨界流体に溶解
または溶解しない汚染物質を良好に洗浄できる超臨界流
体を洗浄流体とする洗浄方法を提供することを目的とす
る。
However, the supercritical cleaning method can extract and remove contaminants such as oils, fats, water, and organic solvents adhering in a mixed state to the surface of the object to be cleaned. Since the critical fluid has low viscosity and its diffusion coefficient is much higher than that of liquid, it can easily penetrate into the area where liquid-based cleaning agents cannot enter, and it has fine grooves and pores with complicated geometric structures. Contaminants existing inside the polymer material and dissolved in the supercritical fluid can be easily removed. However, even if it is washed over a long period of time, it removes contaminants that do not dissolve in supercritical fluids, such as inorganic compounds and polymer compound powders and exfoliated substances that adhere in a mixed state to the surface of the cleaning object. There is a problem that cannot be done. The present invention has been made in view of the conventional problems,
An object of the present invention is to provide a cleaning method using a supercritical fluid capable of satisfactorily cleaning a contaminant that is dissolved or not dissolved in a supercritical fluid adhered in a mixed state to the surface of an object to be cleaned.

【0004】[0004]

【課題を解決するための手段】請求項1記載の超臨界流
体を洗浄流体とする洗浄方法は、超臨界流体により被洗
浄物に付着した油脂、水分、有機溶媒などの超臨界流体
に溶解する汚染物質を抽出する第1工程と、第1工程で
排出された超臨界流体を減圧および/または冷却して得
られる液体または気体により被洗浄物の表面に残存す
る、粉粒体、剥離物などの超臨界流体に溶解しない汚染
物質を洗い流す第2工程、とを備えている。
According to a first aspect of the present invention, there is provided a cleaning method using a supercritical fluid as a cleaning fluid, wherein the supercritical fluid dissolves in a supercritical fluid such as an oil, a water, an organic solvent or the like attached to an object to be cleaned. A first step of extracting contaminants, and powders and particles, exfoliated substances, etc. remaining on the surface of the object to be cleaned by a liquid or gas obtained by depressurizing and / or cooling the supercritical fluid discharged in the first step A second step of washing out contaminants that do not dissolve in the supercritical fluid.

【0005】また、請求項2記載の超臨界流体を洗浄流
体とする洗浄方法は、油脂、水分、有機溶媒などの超臨
界流体に溶解する汚染物質と、粉粒体、剥離物などの超
臨界流体に溶解しない汚染物質とが付着している第1の
被洗浄物を収納した第1の洗浄槽に、超臨界流体を供給
し、第1の被洗浄物の表面から超臨界流体に溶解する汚
染物質を抽出する第1工程と、第1工程後、第1の洗浄
槽から排出される超臨界流体を減圧および/または冷却
して液体または気体を得る第2工程と、第2工程で得ら
れた液体または気体を、あらかじめ超臨界流体に溶解す
る汚染物質が抽出除去された第2の被洗浄物を収納する
第2の洗浄槽に供給して、第2の被洗浄物の表面に残存
する超臨界流体に溶解しない汚染物質を洗い流す第3工
程と、第3工程後、第2の洗浄槽から液体または気体を
排除し、洗浄済みの第2の被洗浄物を取り出す第4工程
と、第4工程後、超臨界流体に溶解する汚染物質と、超
臨界流体に溶解しない汚染物質とが付着している第3の
被洗浄物を第2の洗浄槽に収納する第5工程とを備え、
これらの工程の操作を第1、2の洗浄槽内で、順次、繰
り返すことにより、所定個数の被洗浄物の洗浄を行う。
Further, the cleaning method using a supercritical fluid as a cleaning fluid according to the second aspect of the present invention is characterized in that a contaminant dissolved in a supercritical fluid such as fats, oils, water and an organic solvent and a supercritical fluid such as powders and exfoliated substances. A supercritical fluid is supplied to a first cleaning tank containing a first cleaning object to which a contaminant that does not dissolve in the fluid is attached, and is dissolved in the supercritical fluid from the surface of the first cleaning object. A first step of extracting contaminants; a second step of depressurizing and / or cooling the supercritical fluid discharged from the first washing tank to obtain a liquid or a gas after the first step; The liquid or gas thus obtained is supplied to a second cleaning tank containing a second object to be cleaned from which contaminants previously dissolved in the supercritical fluid are extracted and removed, and remains on the surface of the second object to be cleaned. The third step of washing out contaminants that do not dissolve in the supercritical fluid, and after the third step A fourth step of removing the liquid or gas from the second cleaning tank and taking out the washed second object to be cleaned, and after the fourth step, contaminants that dissolve in the supercritical fluid and do not dissolve in the supercritical fluid A fifth step of storing the third object to be cleaned to which the contaminant is attached in the second cleaning tank,
By repeating these operations in the first and second cleaning tanks sequentially, a predetermined number of objects to be cleaned are cleaned.

【0006】さらに、請求項3記載の超臨界流体を洗浄
流体とする洗浄方法は、あらかじめ3槽以上の洗浄槽を
配備し、そのうち第1の洗浄槽に、油脂、水分、有機溶
媒などの超臨界流体に溶解する汚染物質と、粉粒体、剥
離物などの超臨界流体に溶解しない汚染物質とが付着し
ている第1の被洗浄物を収納し、また第2の洗浄槽に、
超臨界流体に溶解する汚染物質が抽出除去された第2の
被洗浄物を収納し、さらに第3の洗浄槽以降に、超臨界
流体に溶解する汚染物質と、超臨界流体に溶解しない汚
染物質とが付着する第3の被洗浄物以降をそれぞれ収納
準備しておき、第1の洗浄槽に、超臨界流体を供給し、
第1の被洗浄物の表面から超臨界流体に溶解する汚染物
質を抽出する第1工程と、第1工程後、第1の洗浄槽か
ら排出された超臨界流体を減圧および/または冷却して
液体または気体を得る第2工程と、第2工程で得られた
液体または気体を、第2の洗浄槽に供給して、第2の被
洗浄物の表面に残存する超臨界流体に溶解しない汚染物
質を洗い流す第3工程と、第3工程後、第2の洗浄槽か
ら液体または気体を排除し、洗浄済みの第2の被洗浄物
を取り出す第4工程と、第4工程後、超臨界流体に溶解
する汚染物質と、超臨界流体に溶解しない汚染物質とが
付着している新たな被洗浄物を第2の洗浄槽に収納して
待機する第5工程と、一方、第3工程後、第3の洗浄槽
に超臨界流体を供給して、収納された第3の被洗浄物に
付着している超臨界流体に溶解する汚染物質を抽出除去
する第6工程と、第6工程後、第3の洗浄槽から排出さ
れる超臨界流体を減圧および/または冷却して液体また
は気体を得る第7工程と、第7工程により得られた液体
または気体を、第1の洗浄槽に供給して、第1の被洗浄
物に残存する超臨界流体に溶解しない汚染物質を洗い流
す第8工程と、第8工程後、第1の洗浄槽から液体また
は気体を排除し、洗浄済みの第1の被洗浄物を取り出す
第9工程と、第9工程後、超臨界流体に溶解する汚染物
質と、超臨界流体に溶解しない汚染物質とが付着してい
るさらに新たな被洗浄物を第1の洗浄槽に収納して待機
する第10工程とを備え、以上の工程の操作を3槽以上
の洗浄槽内で、順次、繰り返すことにより、所定個数の
被洗浄物の洗浄を連続的に行う。
Further, in the cleaning method using a supercritical fluid as a cleaning fluid according to a third aspect of the present invention, three or more cleaning tanks are provided in advance, and a first cleaning tank is provided with a supercritical fluid such as oil, water, or an organic solvent. A first cleaning object to which a contaminant dissolved in a critical fluid and a contaminant insoluble in a supercritical fluid such as a granular material and an exfoliated substance are stored, and in a second cleaning tank,
A second cleaning object from which contaminants dissolved and removed in the supercritical fluid are extracted and removed, and a contaminant soluble in the supercritical fluid and a contaminant insoluble in the supercritical fluid after the third cleaning tank The third and subsequent objects to be cleaned to which are adhered are stored and prepared, and a supercritical fluid is supplied to the first cleaning tank.
A first step of extracting contaminants dissolved in the supercritical fluid from the surface of the first object to be cleaned, and after the first step, the supercritical fluid discharged from the first cleaning tank is depressurized and / or cooled. A second step of obtaining a liquid or gas; and supplying the liquid or gas obtained in the second step to a second cleaning tank to contaminate the supercritical fluid remaining on the surface of the second object to be cleaned. A third step of washing away the substance, after the third step, a liquid or gas is removed from the second washing tank, and a fourth step of taking out the washed second object to be washed, and after the fourth step, a supercritical fluid And a fifth step in which a new object to be cleaned, to which a contaminant that dissolves in water and a contaminant that does not dissolve in the supercritical fluid adheres, is stored in the second cleaning tank and is on standby. A supercritical fluid is supplied to the third cleaning tank, and the supercritical fluid adhering to the stored third object to be cleaned is supplied. A sixth step of extracting and removing contaminants dissolved in the fluid, and after the sixth step, a seventh step of depressurizing and / or cooling the supercritical fluid discharged from the third washing tank to obtain a liquid or gas; An eighth step of supplying the liquid or gas obtained in the seventh step to the first cleaning tank to wash out contaminants insoluble in the supercritical fluid remaining in the first object to be cleaned, and after the eighth step Ninth step of removing the liquid or gas from the first cleaning tank and taking out the first cleaned object to be cleaned, and after the ninth step, contaminants dissolved in the supercritical fluid and dissolved in the supercritical fluid A tenth step of storing a new object to be cleaned to which no contaminants are attached in the first cleaning tank and waiting, and performing the operations of the above steps sequentially in three or more cleaning tanks. By repeating, a predetermined number of objects to be cleaned are continuously cleaned.

【0007】また、請求項4記載の超臨界流体を洗浄流
体とする洗浄方法は、請求項2または3に記載の超臨界
流体を洗浄流体とする洗浄方法において、第2工程と第
3工程の間に、液体または気体中から、超臨界流体に溶
解する汚染物質を分離槽により分離する工程を設けたも
のである。さらに、請求項5記載の超臨界流体を洗浄流
体とする洗浄方法は、油脂、水分、有機溶媒などの超臨
界流体に溶解する汚染物質と、粉粒体、剥離物などの超
臨界流体に溶解しない汚染物質とが付着している被洗浄
物を収納した1つの洗浄槽に、超臨界流体を供給し、被
洗浄物の表面から超臨界流体に溶解する汚染物質を抽出
する第1工程と、第1工程後、液体または気体を洗浄槽
に供給して、被洗浄物の表面に残存する超臨界流体に溶
解しない汚染物質を洗い流す第2工程と、第2工程後、
洗浄槽から液体または気体を排除し、洗浄済みの被洗浄
物を取り出して、洗浄槽に超臨界流体に溶解する汚染物
質および超臨界流体に溶解しない汚染物質が付着した次
の被洗浄物を新たに収納する第3工程と、第3工程後、
洗浄槽に超臨界流体を供給して、洗浄槽内の次の被洗浄
物の表面から超臨界流体に溶解する汚染物質を抽出する
第4工程とを備え、以上の工程を、順次、繰り返すこと
により、1つの洗浄槽内で各被洗浄物からの超臨界流体
に溶解および溶解しない汚染物質の除去を断続的に行
う。
The cleaning method using a supercritical fluid as a cleaning fluid according to claim 4 is a cleaning method using a supercritical fluid as a cleaning fluid according to claim 2 or 3, In the meantime, a step of separating a contaminant dissolved in the supercritical fluid from a liquid or a gas by a separation tank is provided. Further, in the cleaning method using a supercritical fluid as a cleaning fluid according to claim 5, the contaminants dissolved in the supercritical fluid such as oils, fats, water, and organic solvents and the supercritical fluid such as powders and particles are separated. A first step of supplying a supercritical fluid to a single cleaning tank containing an object to be cleaned to which contaminants not to be adhered and extracting contaminants dissolved in the supercritical fluid from the surface of the object to be cleaned; After the first step, a second step of supplying a liquid or gas to the cleaning tank to wash away contaminants that are not dissolved in the supercritical fluid remaining on the surface of the object to be cleaned, and after the second step,
Remove the liquid or gas from the cleaning tank, remove the cleaned object, and remove the next cleaning object with contaminants that dissolve in the supercritical fluid and contaminants that do not dissolve in the supercritical fluid. In the third step of storing in the
A fourth step of supplying a supercritical fluid to the cleaning tank and extracting contaminants dissolved in the supercritical fluid from the surface of the next object to be cleaned in the cleaning tank, and sequentially repeating the above steps. Accordingly, the contaminants that are dissolved and do not dissolve in the supercritical fluid from each of the objects to be cleaned in one cleaning tank are intermittently removed.

【0008】さらにまた、請求項6記載の超臨界流体を
洗浄流体とする洗浄方法は、請求項2〜5いずれか1項
に記載の超臨界流体を洗浄流体とする洗浄方法におい
て、超臨界流体に溶解しない汚染物質を洗い流した後の
液体または気体中から、汚染物質を分離除去するもので
ある。そして、請求項7記載の超臨界流体を洗浄流体と
する洗浄方法は、請求項6記載の超臨界流体を洗浄流体
とする洗浄方法において、洗浄槽へ超臨界流体および液
体または気体を供給する液体流体貯槽を有しており、ま
た汚染物質が分離除去されて清浄化された液体または気
体を、冷却後に液体流体貯槽に戻して循環使用するもの
である。さらに、請求項8記載の超臨界流体を洗浄流体
とする洗浄方法は、請求項1〜7において、超臨界流体
として、超臨界二酸化炭素を用いる。
Further, the cleaning method using a supercritical fluid as a cleaning fluid according to claim 6 is a cleaning method using a supercritical fluid as a cleaning fluid according to any one of claims 2 to 5, wherein This is to separate and remove contaminants from the liquid or gas after washing away the contaminants that do not dissolve in water. The cleaning method using a supercritical fluid as a cleaning fluid according to claim 7 is the cleaning method using the supercritical fluid as a cleaning fluid according to claim 6, wherein the supercritical fluid and a liquid or gas are supplied to the cleaning tank. It has a fluid storage tank, and a liquid or gas, which has been cleaned by separating and removing contaminants, is cooled and returned to the liquid fluid storage tank for circulating use. Further, the cleaning method using a supercritical fluid as a cleaning fluid according to claim 8 uses supercritical carbon dioxide as the supercritical fluid in claims 1 to 7.

【0009】本発明における洗浄流体としては、エタ
ン、プロパン、ブタン、アンモニア、亜酸化チッ素、ま
たは二酸化炭素などの、超臨界状態にある流体が挙げら
れ、そのうちでも作業者や環境に対しての安全性から超
臨界二酸化炭素を用いるのが好ましい。また、本発明に
おける被洗浄物としては、例えばガラス、セラミック
ス、合成樹脂からなる電子関連部品、光学機器、精密機
械部品などが挙げられる。ここで、洗浄される被洗浄物
の表面とは、被洗浄物の露呈する表側の面および裏側の
面を含み、しかもその表面にある微細な溝、孔などをも
含む。本発明における被洗浄物の表面に付着した超臨界
流体に溶解する汚染物質としては、例えば鉱物油、動植
物油などを原料とする切削油、研磨油、防錆油、潤滑油
などの油脂、水分、またアルコール、ケトン、エーテ
ル、エステルなどの有機溶媒やシリコン系樹脂、ポリカ
ーボネート樹脂などの未反応モノマー、オリゴマー、離
型剤などが挙げられる。また、被洗浄物の表面に付着し
た超臨界流体に溶解しない汚染物質としては、例えば金
属、セラミックス、高分子物などの被洗浄物に由来する
粉粒体や剥離物、加工用器具の材料に由来する粉体およ
び空気中の塵などが挙げられる。
The cleaning fluid in the present invention includes fluids in a supercritical state, such as ethane, propane, butane, ammonia, nitrogen suboxide, or carbon dioxide. It is preferable to use supercritical carbon dioxide from the viewpoint of safety. The object to be cleaned in the present invention includes, for example, electronic parts, optical equipment, precision mechanical parts, and the like made of glass, ceramics, and synthetic resin. Here, the surface of the object to be cleaned includes the surface on the front side and the surface on the back side of the object to be cleaned, and also includes fine grooves and holes on the surface. The contaminants dissolved in the supercritical fluid attached to the surface of the object to be cleaned in the present invention include, for example, cutting oils, polishing oils, rust preventive oils, oils and fats such as lubricating oils, and mineral oils, animal and vegetable oils as raw materials. And organic solvents such as alcohols, ketones, ethers and esters, and unreacted monomers, oligomers and release agents such as silicone resins and polycarbonate resins. Examples of contaminants that do not dissolve in the supercritical fluid attached to the surface of the object to be cleaned include, for example, powders and particles derived from the object to be cleaned such as metals, ceramics, and polymers, and materials for processing equipment. Derived powder and dust in the air.

【0010】以下、本発明における超臨界二酸化炭素な
どの超臨界流体を説明する。自然界は、気体、液体、固
体という3つの状態があることは知られており、例えば
二酸化炭素の場合も、気体は炭酸ガス、液体は液体二酸
化炭素、固体はドライアイスとなる。ところで、1つの
圧力容器の中に液体二酸炭素を入れると液体と気体が互
いに平衡状態を保持しながら気体と液体の2つの相を形
成する。この状態から、圧力、温度をゆっくりと上昇し
ていくと、気液の境界面が消失し、単一相になる状態が
観察できる。この時の圧力、温度をそれぞれ臨界圧力
(73.8kg/cm2 G)、臨界温度(31.1℃)
と呼んでいる。超臨界流体は、この臨界圧力、臨界温度
を超えた条件にある流体のことをいう。いわば、超臨界
流体は、第4の状態と言えるものである。
Hereinafter, a supercritical fluid such as supercritical carbon dioxide in the present invention will be described. It is known that nature has three states: gas, liquid, and solid. For example, in the case of carbon dioxide, the gas is carbon dioxide, the liquid is liquid carbon dioxide, and the solid is dry ice. By the way, when liquid carbon dioxide is put in one pressure vessel, liquid and gas form two phases of gas and liquid while maintaining equilibrium with each other. From this state, when the pressure and temperature are gradually increased, the state where the gas-liquid interface disappears and a single phase can be observed. The pressure and temperature at this time are defined as critical pressure (73.8 kg / cm 2 G) and critical temperature (31.1 ° C.), respectively.
I'm calling The supercritical fluid refers to a fluid under conditions that exceed the critical pressure and critical temperature. In other words, the supercritical fluid is in the fourth state.

【0011】因みに、エタン、プロパン、アンモニア、
亜酸化チッ素、二酸化炭素の超臨界状態は、それぞれ、
臨界圧力が48.8、42.6、38.0、112.
8、71.7、73.8kg/cm2 G、臨界温度は3
2.3、96.9、152.0、132.4、36.
5、31.1℃である。超臨界流体の物性と特徴は、超
臨界流体は液体に近い密度をもちながら、粘度は気体に
近く、拡散係数も液体より格段と大きいため、微細な部
分にまで物質移動を容易に行える流体である。一般に、
液体のような密度の大きい流体は物質をよく溶解し、気
体のような密度の小さい流体は溶解力が低いことが知ら
れている。超臨界流体の溶解力は、その密度に比例する
が、僅かな圧力、温度変化で密度が大きく変化すため、
大きな溶解度差が得られる。超臨界流体を用いた超臨界
洗浄法は、概念的には水や有機溶媒の洗浄媒体を超臨界
流体に置換えただけであるが、フロン系洗浄法、水系洗
浄法と比較して次の特徴をもっている。
Incidentally, ethane, propane, ammonia,
The supercritical states of nitrogen suboxide and carbon dioxide are:
Critical pressure is 48.8, 42.6, 38.0, 112.
8, 71.7, 73.8 kg / cm 2 G, critical temperature 3
2.3, 96.9, 152.0, 132.4, 36.
5, 31.1 ° C. The properties and characteristics of supercritical fluids are that while supercritical fluids have a density close to that of liquids, their viscosity is close to that of gases, and their diffusion coefficient is much higher than that of liquids, they can facilitate mass transfer to fine parts. is there. In general,
It is known that a fluid having a high density such as a liquid dissolves a substance well, and a fluid having a low density such as a gas has a low dissolving power. The dissolving power of a supercritical fluid is proportional to its density, but the density changes greatly with a slight pressure and temperature change.
Large solubility differences are obtained. The supercritical cleaning method using a supercritical fluid conceptually only replaces the water or organic solvent cleaning medium with a supercritical fluid, but has the following characteristics compared to the CFC-based cleaning method and the water-based cleaning method. Have.

【0012】(1)超臨界流体は、低粘性で高拡散性で
あるため、液体系洗浄剤が入れない部分にも容易に浸透
することができる。そのため、微細な溝や複雑な幾何学
構造の細孔や高分子材料などの内部に存在する汚染物質
も容易に除去できる。 (2)液体系洗浄法では、洗浄→リンス→乾燥が一般的
工程であるが、超臨界法では、洗浄槽から取出すと、対
象物の表面から洗浄流体は直ちに気化するので洗浄後の
乾燥工程が不要である。 (3)液体系洗浄法では、汚染物質を再利用する場合、
蒸留などで水や有機溶媒と分離する工程が必要である。
だが、超臨界洗浄法では、分離槽で汚染物質と洗浄流体
とが完全に分離されるので、利用価値のある汚染物質は
そのままの姿で回収、再利用できる。 (4)超臨界流体は、減圧することで溶解度が大きく低
下し、溶存している汚染物質と洗浄流体を分離すること
ができる。従って、循環再利用が可能である。
(1) Since the supercritical fluid has a low viscosity and a high diffusivity, it can easily penetrate into the portion where the liquid cleaning agent is not put. Therefore, contaminants existing inside fine grooves, pores having a complicated geometric structure, and a polymer material can be easily removed. (2) In the liquid-based cleaning method, the general process is cleaning → rinsing → drying. However, in the supercritical method, when the cleaning fluid is taken out of the cleaning tank, the cleaning fluid is immediately vaporized from the surface of the object, and thus the drying process after cleaning. Is unnecessary. (3) In the liquid cleaning method, when contaminants are reused,
A step of separating from water or an organic solvent by distillation or the like is required.
However, in the supercritical cleaning method, the contaminants and the cleaning fluid are completely separated in the separation tank, so that the contaminants having utility value can be recovered and reused as they are. (4) The solubility of the supercritical fluid is greatly reduced by reducing the pressure, and the dissolved contaminants and the cleaning fluid can be separated. Therefore, cyclic reuse is possible.

【0013】次に、超臨界洗浄方法の応用分野について
述べる。洗浄方法の選択は、洗浄対象物の材質や形状が
大きく影響する。超臨界洗浄法に適している対象物の特
徴は、次のようなものである。 (1)複雑な幾何学構造、洗浄媒体が入り込めない構造
を持つもの。 (2)水や熱に敏感なもの。 (3)洗浄、乾操に長い処理時間を必要とするもの。 これらのうち、精密機械組立品分野では、マイクロマシ
ン、ベアリング組立品、コンピュータディスクドライブ
部品などの内部は、複雑な幾何学構造になっている部分
が多い。超臨界洗浄法は、見つけ難いこれらの空間に存
在する汚染物質を除去するのに有効であると考えられて
いる。ヘリコプターの羽根の軸受部は、ベアリングとハ
ウジングで構成されているが、錆発生を防止するために
ハウジング内の微細空間から完全に水分を除去する必要
がある。超臨界洗浄法は、この目的に適しているとさ
れ、検討が進んでいる。
Next, application fields of the supercritical cleaning method will be described. The selection of the cleaning method largely depends on the material and shape of the object to be cleaned. The characteristics of the object suitable for the supercritical cleaning method are as follows. (1) Those having a complicated geometric structure and a structure that does not allow a cleaning medium to enter. (2) Those sensitive to water or heat. (3) Those requiring long processing time for washing and drying. Of these, in the field of precision machine assemblies, the interiors of micromachines, bearing assemblies, computer disk drive components, and the like often have complicated geometric structures. Supercritical cleaning methods are believed to be effective in removing contaminants present in these hard-to-find spaces. The bearing portion of a helicopter blade is composed of a bearing and a housing, but it is necessary to completely remove moisture from a minute space in the housing in order to prevent rust. The supercritical cleaning method is considered to be suitable for this purpose, and is under study.

【0014】また、航空宇宙分野では、最も検討されて
いるのがジャイロスコープの洗浄である。その第一の理
由は、ジャイロスコープに使われている高価な振動防止
流体の回収であり、超臨界洗浄法で洗浄を行うと、振動
防止流体が超臨界流体に良く溶解するため、微細な空孔
に存在する防振流体まで取出すことができ、そのままの
姿で回収再利用することができるからである。第二の理
由は、ジャイロスコープの部品材料として使われている
ベリリウム系合金が水によって腐食が誘発され、簡単に
傷つくことである。水系洗浄法でも腐食防止剤は使われ
るが、多段の洗浄やリンス工程でダメージを受けやす
い。だが、超臨界洗浄法では、水を使用しないので腐食
発生がなく、水系洗浄法より適していると考えられてい
るからである。
In the field of aerospace, cleaning of a gyroscope is most studied. The first reason is the recovery of the expensive anti-vibration fluid used in the gyroscope.When the anti-vibration fluid is cleaned by the supercritical cleaning method, the anti-vibration fluid dissolves well in the supercritical fluid. This is because even the vibration-proof fluid existing in the hole can be taken out and can be recovered and reused as it is. The second reason is that water induces corrosion in beryllium-based alloys used as gyroscope component materials, and is easily damaged. Corrosion inhibitors are also used in water-based cleaning methods, but are susceptible to damage in multi-stage cleaning and rinsing steps. However, because supercritical cleaning does not use water, it does not cause corrosion and is considered more suitable than aqueous cleaning.

【0015】また、繊維製品では、有害な有機溶媒、
油、血液などで汚染された作業服、消毒綿、ボロ布、紙
タオルなどの繊維系廃棄物を洗浄し、有害物として廃棄
する量を少なくし、繊維自体は回収再利用するシステム
の構築や、新しく織られた布地から油や薬品を除去する
ための代替法として超臨界洗浄法が検討されている。例
えば、自動車のモータ油などで汚染された綿布などが洗
浄でき、ドライクリーニングの代替法として利用でき
る。なお、超臨界洗浄法は、前述したメカニズムでの利
用だけでなく、超臨界流体の圧力急変に伴う流動性増大
を利用する方法、超音波法や脈動法と超臨界洗浄法を組
合わせる方法などにより洗浄効果を増大することも考え
られる。急激減圧法は、例えば微細な溝や細孔の入口を
閉塞している粒状物質の除去などに利用可能であり、圧
力容器内に洗浄対象物を入れ、系内を高密度の超臨界状
態にしたのち、バルブを開くなどの操作により圧力を急
激減圧すると、溝や細孔の奥部に浸透した超臨界流体が
瞬間的に気化し、急速な流体の流れが発生する。この急
速な流れの力を利用して、閉塞し粒状物質を取去ろうと
する方法である。さらに、超音波法を組合わせた超臨界
洗浄法も応用できる。この方法は、洗浄槽に超音波発生
器を取付け、単一周波数音波を発生させて超臨界流体中
に部分的圧力変動を生じさせ、複数個の気体領域と超臨
界領域とが交互に並んだ状態を洗浄物上に作り出すこと
によって洗浄効果を増大させる方法である。
In textile products, harmful organic solvents,
Construction of a system to wash and recycle fiber waste such as work clothes, cotton swabs, rags, and paper towels contaminated with oil, blood, etc. Supercritical cleaning is being considered as an alternative to removing oils and chemicals from newly woven fabrics. For example, cotton cloth and the like contaminated with motor oil of automobiles can be washed and used as an alternative to dry cleaning. In addition, the supercritical cleaning method uses not only the mechanism described above, but also a method that utilizes the increase in fluidity due to a sudden change in pressure of the supercritical fluid, a method that combines the supercritical cleaning method with the ultrasonic method or the pulsation method, etc. It is also conceivable that the cleaning effect is increased by this. The rapid depressurization method can be used, for example, for removing particulate matter blocking the entrance of fine grooves or pores.Put the object to be cleaned in a pressure vessel and bring the inside of the system to a high density supercritical state. Thereafter, when the pressure is rapidly reduced by an operation such as opening a valve, the supercritical fluid that has permeated into the deep portion of the groove or the pores is instantaneously vaporized, and a rapid fluid flow is generated. This is a method that uses the force of this rapid flow to block and remove particulate matter. Furthermore, a supercritical cleaning method combining an ultrasonic method can be applied. In this method, an ultrasonic generator is attached to a cleaning tank, and a single-frequency acoustic wave is generated to generate a partial pressure fluctuation in a supercritical fluid, and a plurality of gas regions and a supercritical region are alternately arranged. This is a method for increasing the cleaning effect by creating a state on the cleaning object.

【0016】洗浄流体として、二酸化炭素を用いる場
合、 超臨界流体による汚染物質の抽出条件は、圧力8
0〜500kg/cm2 G、特に100〜400kg/
cm2Gが好ましく、80kg/cm2 G未満では油脂
類の汚染物質はほとんど溶解せず、洗浄が困難となり、
500kg/cm2 Gを超えると装置建設費および洗浄
処理コストが高くなり、経済上好ましくない。また、洗
浄温度は、31〜80℃、特に35〜70℃が好まし
く、31℃未満では洗浄効果が大きく低下し、一方80
℃を超えると高分子系材料などを基材とする被洗浄物で
は、基材などに変質が生じることがあるためである。特
に必要であれば、抽出助剤として、例えばメタノールな
どの低級アルコール類、ヘキサンなどの脂肪族炭化水素
類などを、30重量%以下、特に10重量%以下添加し
てもよい。30重量%を超える添加量をいくら増加して
も、溶解洗浄効率の向上は望めない。
When carbon dioxide is used as the cleaning fluid, the conditions for extracting contaminants with a supercritical fluid are as follows:
0-500 kg / cm 2 G, especially 100-400 kg /
cm 2 G is preferred, and if it is less than 80 kg / cm 2 G, contaminants of fats and oils hardly dissolve, making cleaning difficult,
If it exceeds 500 kg / cm 2 G, the construction cost of the apparatus and the cleaning treatment cost increase, which is economically undesirable. Further, the washing temperature is preferably from 31 to 80 ° C., particularly preferably from 35 to 70 ° C., and if it is less than 31 ° C., the washing effect is greatly reduced.
This is because if the temperature exceeds ℃, the substrate to be cleaned may be deteriorated in an object to be cleaned having a polymer material or the like as a substrate. If necessary, a lower alcohol such as methanol or an aliphatic hydrocarbon such as hexane may be added as an extraction aid at 30% by weight or less, particularly at 10% by weight or less. No matter how much the addition amount exceeds 30% by weight, improvement in the dissolution cleaning efficiency cannot be expected.

【0017】また、超臨界二酸化炭素の溶解性について
は、次のような特徴がある。 (1)炭素数が1〜5個程度のアルコール、ケトン、エ
ステル、エーテル類は低圧でも容易に溶解する。 (2)上記(1)に記したものの次に溶解性が高い物質
は、炭素数が若干多いアルカン、アルケン、テルペンな
どの炭化水素系化合物である。 (3)機械油、潤滑油、食用油などの非極性物質は、分
子量も大きいこともあり、僅かではあるが溶解する。 (4)二酸化炭素は、フロン系溶媒のようにオゾン層を
破壊することはない。また、再生、循環使用するので地
球温暖化などにも大きな影響を与えないので、作業者や
環境に対して安全である。 (5)洗浄媒体として二酸化炭素を使用するので、水に
よる腐食はない。また、操作温度が35〜70゜C程度
なので、熱に弱い対象物にも適用できる。 (6)無機系化合物、リン脂質、アミノ酸などの極性物
質は、殆ど溶解しない。
The solubility of supercritical carbon dioxide has the following characteristics. (1) Alcohols, ketones, esters and ethers having about 1 to 5 carbon atoms easily dissolve even at low pressure. (2) A substance having the second highest solubility next to that described in the above (1) is a hydrocarbon-based compound such as alkane, alkene, and terpene having a slightly higher carbon number. (3) Non-polar substances such as machine oils, lubricating oils, and edible oils may have high molecular weights and are slightly soluble. (4) Carbon dioxide does not destroy the ozone layer unlike the CFC-based solvent. In addition, since it is recycled and recycled, it does not significantly affect global warming and the like, so it is safe for workers and the environment. (5) Since carbon dioxide is used as a cleaning medium, there is no corrosion by water. Further, since the operating temperature is about 35 to 70 ° C., the present invention can be applied to an object which is weak to heat. (6) Polar substances such as inorganic compounds, phospholipids and amino acids hardly dissolve.

【0018】これらの性質が、液体系洗浄法に比べ超臨
界洗浄法による精密洗浄を効率良く行う要因である。し
かしながら、超臨界二酸化炭素は、無期化合物、リン脂
質、アミノ酸などの極性物質は、ほとんど溶解せず、従
って、従来の超臨界洗浄法では、被洗浄物の表面に上記
の極性物質などが残存してしまう欠点があり、本発明
は、これを大幅に向上させる方法を提案するものであ
る。
These properties are the factors that make the precision cleaning by the supercritical cleaning method more efficient than the liquid cleaning method. However, in supercritical carbon dioxide, polar substances such as indefinite compounds, phospholipids, and amino acids hardly dissolve, and therefore, in the conventional supercritical cleaning method, the above-mentioned polar substances remain on the surface of the object to be cleaned. The present invention proposes a method for greatly improving this.

【0019】このように、請求項1〜8に記載の超臨界
流体を洗浄流体とする洗浄方法においては、被洗浄物の
表面に混在状態で付着する超臨界流体に溶解または溶解
しない汚染物質のうち、まず超臨界流体に溶解する汚染
物質を超臨界流体により抽出し、それから超臨界流体に
溶解しない汚染物質を密度の高くなった液体で洗い流し
または気体により吹き流して洗浄するので、被洗浄物を
良好に洗浄できる。
As described above, in the cleaning method using the supercritical fluid as the cleaning fluid according to any one of the first to eighth aspects, the contaminants that are dissolved or do not dissolve in the supercritical fluid adhering in a mixed state to the surface of the object to be cleaned are removed. First, the contaminants that dissolve in the supercritical fluid are extracted with the supercritical fluid, and then the contaminants that do not dissolve in the supercritical fluid are washed away with a liquid with a high density or blown off with a gas. Can be cleaned well.

【0020】請求項1に記載の超臨界流体を洗浄流体と
する洗浄方法においては、超臨界流体に溶解する汚染物
質を抽出した超臨界流体を減圧および/または冷却し
て、超臨界流体に溶解しない汚染物質を洗い流す液体ま
たは気体を得るようにしたので、超臨界流体に溶解する
汚染物質の抽出除去と、超臨界流体に溶解しない汚染物
質の洗い流し除去という、2つの仕事を連続して行うこ
とができる。また、請求項2に記載の超臨界流体を洗浄
流体とする洗浄方法においては、2槽の洗浄槽内で、交
互に各被洗浄物の超臨界流体に溶解する汚染物質の洗浄
および超臨界流体に溶解しない汚染物質の洗浄を繰り返
すことで、被洗浄物の洗浄作業の作業性が向上できる。
さらに、請求項3に記載の超臨界流体を洗浄流体とする
洗浄方法においては、3槽以上の洗浄槽内で、交互かつ
連続的に各被洗浄物の超臨界流体に溶解する汚染物質の
洗浄および超臨界流体に溶解しない汚染物質の洗浄を、
順次、繰り返すことで、洗浄操作を中断することなく連
続して洗浄でき、被洗浄物の洗浄作業の作業性が向上で
きる。
According to the first aspect of the present invention, in the cleaning method using a supercritical fluid as a cleaning fluid, the supercritical fluid from which contaminants dissolved in the supercritical fluid are extracted is decompressed and / or cooled to dissolve in the supercritical fluid. Since liquid or gas is obtained to wash away contaminants that do not dissolve in the supercritical fluid, two tasks must be performed in succession: extraction and removal of contaminants that dissolve in the supercritical fluid, and washing and removing contaminants that do not dissolve in the supercritical fluid. Can be. Further, in the cleaning method using a supercritical fluid as a cleaning fluid according to claim 2, cleaning of a contaminant and a supercritical fluid which alternately dissolve in a supercritical fluid of each object to be cleaned in two cleaning tanks. By repeating the cleaning of the contaminants that do not dissolve in the water, the workability of the cleaning operation of the object to be cleaned can be improved.
Furthermore, in the cleaning method using a supercritical fluid as a cleaning fluid according to claim 3, cleaning of contaminants that are alternately and continuously dissolved in the supercritical fluid of each object to be cleaned in three or more cleaning tanks. And cleaning of contaminants that do not dissolve in supercritical fluids
By sequentially repeating the cleaning operation, the cleaning operation can be continuously performed without interrupting the cleaning operation, and the workability of the cleaning operation of the object to be cleaned can be improved.

【0021】さらにまた、請求項4に記載の超臨界流体
を洗浄流体とする洗浄方法においては、被洗浄物に付着
する超臨界流体に溶解する汚染物質を抽出除去した液体
または気体中から、超臨界流体に溶解する汚染物質を、
分離槽により分離するので、清浄化された液体または気
体を、次工程の別の被洗浄物の表面に残存する超臨界流
体に溶解しない汚染物質の洗浄に使用でき、しかも利用
価値のある汚染物質を回収・再利用できる。さらにま
た、請求項5に記載の超臨界流体を洗浄流体とする洗浄
方法においては、1つの洗浄槽内で各被洗浄物から超臨
界流体に溶解する汚染物質と、超臨界流体に溶解しない
汚染物質の除去を断続的に行うことにより、設備コスト
の低減が図れる。
Further, in the cleaning method using a supercritical fluid as a cleaning fluid according to the present invention, a supercritical fluid is extracted from a liquid or a gas from which a contaminant dissolved in the supercritical fluid attached to an object to be cleaned is removed. Contaminants that dissolve in the critical fluid
Separation by the separation tank allows the purified liquid or gas to be used for cleaning contaminants that do not dissolve in the supercritical fluid remaining on the surface of another object to be cleaned in the next process, and is a useful pollutant. Can be collected and reused. Further, in the cleaning method using a supercritical fluid as a cleaning fluid according to claim 5, a contaminant dissolved in the supercritical fluid from each of the objects to be cleaned in one cleaning tank and a contaminant not dissolved in the supercritical fluid. By intermittently removing the substance, the equipment cost can be reduced.

【0022】そして、請求項6、7に記載の超臨界流体
を洗浄流体とする洗浄方法においては、超臨界流体に溶
解しない汚染物質を洗い流した後の液体または気体中か
ら、汚染物質を分離除去することにより、利用価値のあ
る超臨界流体に溶解しない汚染物質を回収、再利用でき
る。特に、請求項7記載の超臨界流体を洗浄流体とする
洗浄方法においては、洗浄槽へ供給される超臨界流体お
よび液体または気体は、途中で超臨界処理されたり、そ
のままの状態で液体流体貯槽から洗浄槽へ供給され、ま
た汚染物質が分離除去されて清浄化された液体または気
体は、冷却後に液体流体貯槽に戻して循環使用されるの
で、作業者や環境に対しても安全であり、かつランニン
グコストの低減も図れる。さらに、請求項8記載の超臨
界流体を洗浄流体とする洗浄方法においては、超臨界流
体として超臨界二酸化炭素などを採用しているので、経
済的であり、また作業者や環境に対して安全性が確保さ
れるので好ましい。
In the cleaning method using the supercritical fluid as the cleaning fluid according to the sixth and seventh aspects, the contaminants are separated and removed from the liquid or the gas after washing away the contaminants that do not dissolve in the supercritical fluid. By doing so, it is possible to collect and reuse contaminants that do not dissolve in a supercritical fluid having a use value. In particular, in the cleaning method using a supercritical fluid as a cleaning fluid according to claim 7, the supercritical fluid and the liquid or gas supplied to the cleaning tank are subjected to a supercritical treatment on the way or a liquid fluid storage tank as it is. The liquid or gas supplied to the washing tank from which the contaminants are separated and removed is cleaned and returned to the liquid fluid storage tank after cooling, so that the liquid or gas is safe for workers and the environment. In addition, running costs can be reduced. Furthermore, in the cleaning method using a supercritical fluid as a cleaning fluid according to claim 8, since supercritical carbon dioxide or the like is employed as the supercritical fluid, it is economical and safe for workers and the environment. It is preferable because the property is secured.

【0023】[0023]

【発明の実施の形態】以下に本発明の実施の形態につい
て図面を参照しながら説明する。なお、本実施の形態
は、洗浄流体として超臨界二酸化炭素を用いたものであ
るが、エタン、プロパン、ブタン、アンモニアまたは亜
酸化チッ素などを洗浄流体として用いる場合について
も、ほぼ同一の実施の形態となる。まず、図1〜3に示
す洗浄装置に基づいて、本発明の実施の形態1に係る超
臨界二酸化炭素を洗浄流体とする洗浄方法を説明する。
図1の洗浄装置において、10は液体二酸化炭素貯槽で
あり、20は第1の洗浄槽、30は第2の洗浄槽、40
は第3の洗浄槽である。液体二酸化炭素貯槽10および
各第1〜3の洗浄槽20〜40に連結された第1の流路
aの途中には、二酸化炭素ポンプ11、第1の熱交換器
12、弁13〜15が配設されており、また第1〜3の
洗浄槽20〜40の上下間には、各第1〜3の洗浄槽2
0〜40から排出された超臨界二酸化炭素を冷却および
減圧して液体または気体としたのち、それを他の第1〜
3の洗浄槽20〜40に供給する第2の流路bが連結さ
れている。第2の流路bの3本に分岐された一端部付近
には、弁16〜18が配設されており、その後一括して
まとめられた下流部に、順次、超臨界二酸化炭素を減圧
する第1の保圧弁19と、超臨界二酸化炭素を冷却する
第2の熱交換器21とが配設されている。さらに、それ
より下流には、3本に分岐され他端部付近に、弁22〜
24が配設されている。
Embodiments of the present invention will be described below with reference to the drawings. Although the present embodiment uses supercritical carbon dioxide as the cleaning fluid, the same operation is performed for a case where ethane, propane, butane, ammonia, or nitrogen suboxide is used as the cleaning fluid. Form. First, a cleaning method using supercritical carbon dioxide as a cleaning fluid according to Embodiment 1 of the present invention will be described based on the cleaning device shown in FIGS.
In the cleaning apparatus of FIG. 1, 10 is a liquid carbon dioxide storage tank, 20 is a first cleaning tank, 30 is a second cleaning tank, 40
Denotes a third washing tank. In the middle of the first flow path a connected to the liquid carbon dioxide storage tank 10 and the first to third cleaning tanks 20 to 40, a carbon dioxide pump 11, a first heat exchanger 12, and valves 13 to 15 are provided. The first to third cleaning tanks 2 are provided between the upper and lower sides of the first to third cleaning tanks 20 to 40, respectively.
The supercritical carbon dioxide discharged from 0 to 40 is cooled and decompressed to be a liquid or a gas, and then the other
A second flow path b to be supplied to the third cleaning tanks 20 to 40 is connected. Valves 16 to 18 are provided in the vicinity of one end of the second flow path b which is branched into three, and thereafter, the supercritical carbon dioxide is sequentially decompressed to a downstream part collectively collected. A first pressure holding valve 19 and a second heat exchanger 21 for cooling supercritical carbon dioxide are provided. Further, downstream therefrom, the valve is branched into three parts, and near the other end, the valves 22 to 22 are provided.
24 are provided.

【0024】また、各第1〜3の洗浄槽20〜40に
は、外部排出系の第3の流路cも連結されている。第3
の流路cには、分岐された上流部から順に弁25〜2
7、第2の保圧弁28、第3の熱交換器29、洗浄後の
液体二酸化炭素中から超臨界二酸化炭素に溶解または溶
解しない汚染物質を分離する、例えばサイクロンなどの
分離槽50、第3の保圧弁31が配設されている。図1
において、32〜34は各第1〜3の洗浄槽20〜40
に連結された大気開放弁、35は分離槽50の下部に連
結された分離物排出弁である。
Further, a third flow path c of an external discharge system is also connected to each of the first to third cleaning tanks 20 to 40. Third
In the flow path c, the valves 25 to 2 are arranged in order from the branched upstream portion.
7, a second pressure-holding valve 28, a third heat exchanger 29, a separation tank 50 such as a cyclone for separating contaminants dissolved or insoluble in supercritical carbon dioxide from liquid carbon dioxide after washing, Pressure holding valve 31 is provided. FIG.
, 32 to 34 are first to third cleaning tanks 20 to 40, respectively.
An air release valve 35 is connected to the lower portion of the separation tank 50.

【0025】次に、図2、3に基づいて、この超臨界二
酸化炭素を洗浄流体とする洗浄装置を用いた本実施の形
態1の超臨界二酸化炭素を洗浄流体とする洗浄方法を説
明する。あらかじめ、第1の洗浄槽20には未洗浄の第
1の被洗浄物が収納されており、また第2の洗浄槽30
には超臨界二酸化炭素に溶解する汚染物質だけが抽出除
去された第2の被洗浄物が収納されており、さらに第3
の洗浄槽40は第3の被洗浄物がセット中である。図2
において、液体二酸化炭素貯槽10から第1の流路aへ
引き出された液体二酸化炭素は、二酸化炭素ポンプ11
により臨界圧力以上の所定圧力まで昇圧されたのち、第
1の熱交換器12により臨界温度以上の所定温度まで昇
温されて超臨界二酸化炭素となり、その後、開放された
弁13を経て第1の洗浄槽20へ供給される。第1の洗
浄槽20内では、未洗浄の第1の被洗浄物が収納されて
おり、この第1の被洗浄物の表面に付着した超臨界二酸
化炭素に溶解する汚染物質が、送り込まれた超臨界二酸
化炭素により抽出・除去される。
Next, a cleaning method using supercritical carbon dioxide as a cleaning fluid according to the first embodiment using the cleaning device using supercritical carbon dioxide as a cleaning fluid will be described with reference to FIGS. The first cleaning tank 20 contains an uncleaned first cleaning object in advance, and the second cleaning tank 30
Contains a second object to be cleaned from which only contaminants dissolved in supercritical carbon dioxide have been extracted and removed.
In the cleaning tank 40, the third object to be cleaned is being set. FIG.
The liquid carbon dioxide drawn from the liquid carbon dioxide storage tank 10 to the first flow path a
After the pressure is increased to a predetermined pressure equal to or higher than the critical pressure, the temperature is increased to a predetermined temperature equal to or higher than the critical temperature by the first heat exchanger 12 to become supercritical carbon dioxide. It is supplied to the cleaning tank 20. In the first cleaning tank 20, an uncleaned first cleaning object is stored, and contaminants dissolved in the supercritical carbon dioxide attached to the surface of the first cleaning object are sent. Extracted and removed by supercritical carbon dioxide.

【0026】次いで、超臨界二酸化炭素に溶解する汚染
物質抽出後の超臨界二酸化炭素は、開放された弁16か
ら第2の流路bへ流れ込み、第1の保圧弁19により減
圧されたのち、第2の熱交換器21により冷却されて液
体二酸化炭素となり、弁23を経て第2の洗浄槽30に
供給される。第2の洗浄槽30では、超臨界二酸化炭素
に溶解する汚染物質だけが抽出された第2の被洗浄物の
表面に付着した超臨界二酸化炭素に溶解しない汚染物質
が、送り込まれた液体二酸化炭素により洗い流される
か、または冷却し、再液化して液体二酸化炭素貯槽10
に戻る。それから、洗浄後の液体二酸化炭素は、開放さ
れた弁26を経て第3の流路cへ流れ込み、途中、第2
の保圧弁28により減圧後、第3の熱交換器29により
温度調節されて超臨界二酸化炭素に溶解または溶解しな
い汚染物質が析出されたのち、分離槽50に供給され
て、超臨界二酸化炭素に溶解または溶解しない汚染物質
が分離され、それから第3の保圧弁31により減圧され
てから大気開放される。一方、図3に示すように、第2
の洗浄槽30内は、大気開放弁33の開放により大気圧
化し、その中から洗浄済みの第2の被洗浄物が取り出さ
れ、続いて新たな未洗浄の第4の被洗浄物が収納され
る。
Next, the supercritical carbon dioxide dissolved in the supercritical carbon dioxide after the extraction of the contaminants flows from the opened valve 16 into the second flow path b and is depressurized by the first pressure holding valve 19. Liquid carbon dioxide is cooled by the second heat exchanger 21 and supplied to the second cleaning tank 30 via the valve 23. In the second cleaning tank 30, the contaminants insoluble in the supercritical carbon dioxide adhering to the surface of the second object to be cleaned, from which only the contaminants soluble in the supercritical carbon dioxide have been extracted, are sent to the liquid carbon dioxide Or cooled and re-liquefied by the liquid carbon dioxide storage tank 10
Return to Then, the washed liquid carbon dioxide flows into the third flow path c via the opened valve 26,
After the pressure is reduced by the pressure holding valve 28, the contaminants which are dissolved or insoluble in the supercritical carbon dioxide are controlled by the temperature adjustment by the third heat exchanger 29, and then supplied to the separation tank 50, where the supercritical carbon dioxide is removed. Dissolved or undissolved contaminants are separated, then depressurized by a third pressure holding valve 31, and then released to the atmosphere. On the other hand, as shown in FIG.
The inside of the cleaning tank 30 is set to the atmospheric pressure by opening the air release valve 33, the second cleaned object to be cleaned is taken out from the atmospheric pressure, and a new uncleaned fourth object to be cleaned is stored. You.

【0027】次に、二酸化炭素ポンプ11および第1の
流路aの弁15を介して、液体二酸化炭素貯槽10から
第3の洗浄槽40に超臨界二酸化炭素が供給され、その
後、超臨界二酸化炭素に溶解する汚染物質を洗浄後の超
臨界二酸化炭素は弁18を経て第2の流路bへ流れ込
み、第1の保圧弁19による減圧、第2の熱交換器21
による冷却されて液体二酸化炭素となり、弁22を経て
第1の洗浄槽20へ供給される。ここで、前述したよう
に超臨界二酸化炭素に溶解する汚染物質が抽出済みであ
る第1の被洗浄物の表面に、この液体二酸化炭素が送り
込まれて超臨界二酸化炭素に溶解しない汚染物質が洗い
流される。続いて、洗浄後の液体二酸化炭素は、開放さ
れた弁25を経て第3の流路cへ流れ込み、途中、第2
の保圧弁28により減圧後、第3の熱交換器29により
温度調節されて超臨界二酸化炭素に溶解または溶解しな
い汚染物質が析出されたのち、分離槽50に供給され
て、超臨界二酸化炭素に溶解または溶解しない汚染物質
が分離され、それから第3の保圧弁31により減圧され
てから大気開放される。
Next, supercritical carbon dioxide is supplied from the liquid carbon dioxide storage tank 10 to the third cleaning tank 40 via the carbon dioxide pump 11 and the valve 15 of the first flow path a. The supercritical carbon dioxide after washing the contaminants dissolved in the carbon flows into the second flow path b via the valve 18, and is depressurized by the first pressure-holding valve 19, and the second heat exchanger 21
And is supplied to the first washing tank 20 through the valve 22. Here, as described above, the liquid carbon dioxide is fed into the surface of the first object to be cleaned from which the contaminants soluble in the supercritical carbon dioxide have been extracted, and the contaminants that do not dissolve in the supercritical carbon dioxide are washed away. It is. Subsequently, the liquid carbon dioxide after the cleaning flows into the third flow path c via the opened valve 25,
After the pressure is reduced by the pressure holding valve 28, the contaminants which are dissolved or insoluble in the supercritical carbon dioxide are controlled by the temperature adjustment by the third heat exchanger 29, and then supplied to the separation tank 50, where the supercritical carbon dioxide is removed. Dissolved or undissolved contaminants are separated, then depressurized by a third pressure holding valve 31, and then released to the atmosphere.

【0028】一方、第1の洗浄槽20内は、大気開放弁
32の開放により大気圧化し、その中から洗浄済みの第
1の被洗浄物が取り出され、続いて新たな未洗浄の第5
の被洗浄物が収納される。その後、これらの工程の操作
を第1〜3の洗浄槽20〜30内で、順次、繰り返すこ
とにより、各第1〜3の洗浄槽20〜40内で被洗浄物
に付着した超臨界二酸化炭素に溶解または溶解しない汚
染物質の除去が交互かつ連続的に行われる。これによ
り、被洗浄物の表面に混在状態で付着した超臨界二酸化
炭素に溶解または溶解しない汚染物質を良好に洗浄でき
る。
On the other hand, the inside of the first cleaning tank 20 is set to the atmospheric pressure by opening the air release valve 32, from which the first cleaned object to be cleaned is taken out.
Are stored. Thereafter, the operations of these steps are sequentially repeated in the first to third cleaning tanks 20 to 30, so that the supercritical carbon dioxide adhered to the object to be cleaned in each of the first to third cleaning tanks 20 to 40. The removal of contaminants that are dissolved or not dissolved in water is performed alternately and continuously. Thus, contaminants that are dissolved or do not dissolve in supercritical carbon dioxide adhering in a mixed state to the surface of the object to be cleaned can be satisfactorily cleaned.

【0029】図4は、本発明の実施の形態2に係る超臨
界二酸化炭素を洗浄流体とする洗浄方法が適用された洗
浄装置を示している。図4に示すように、実施の形態2
は、油分などの超臨界二酸化炭素に溶解する汚染物質が
表面に付着している量が多い被洗浄物に対処するもので
あり、第2の流路bの第2の熱交換器21の下流に、超
臨界二酸化炭素に溶解する汚染物質の除去専用の分離槽
60を配置した例である。各第1〜3の洗浄槽20〜4
0から多量の超臨界二酸化炭素に溶解する汚染物質を含
む超臨界二酸化炭素として排出されて、第1の保圧弁1
9により減圧され、第2の熱交換器21により冷却され
た液体二酸化炭素は、分離槽60に供給されることによ
り、混入された多量の超臨界二酸化炭素に溶解する汚染
物質が分離されたのち、別の第1〜3の洗浄槽20〜4
0へ供給される。図4において、36は分離物排出弁で
ある。なお、実施の形態1と同じ部品には同一符合を付
して説明を省略する。
FIG. 4 shows a cleaning apparatus to which a cleaning method using supercritical carbon dioxide as a cleaning fluid according to a second embodiment of the present invention is applied. As shown in FIG.
Is to deal with a large amount of contaminants dissolved in supercritical carbon dioxide, such as oil, attached to the surface, and is located downstream of the second heat exchanger 21 in the second flow path b. In this example, a separation tank 60 exclusively for removing contaminants dissolved in supercritical carbon dioxide is arranged. First to third washing tanks 20 to 4
From 0 to a large amount of supercritical carbon dioxide containing contaminants dissolved in supercritical carbon dioxide,
The pressure of the liquid carbon dioxide 9 and the cooling of the liquid carbon dioxide by the second heat exchanger 21 are supplied to the separation tank 60, so that the contaminants dissolved in the mixed supercritical carbon dioxide are separated. , Another first to third washing tanks 20 to 4
0. In FIG. 4, reference numeral 36 denotes a separated material discharge valve. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0030】図5は、本発明の実施の形態3に係る超臨
界二酸化炭素を洗浄流体とする洗浄方法が適用された洗
浄装置を示している。図5に示すように、実施の形態3
は、1つの洗浄槽70内で各被洗浄物からの超臨界二酸
化炭素に溶解または溶解しない汚染物質の除去を断続的
に行うようにした例であり、液体二酸化炭素貯槽10か
ら、二酸化炭素ポンプ11、弁37、第1の熱交換器1
2を介して洗浄槽70に繋がる流路dと、洗浄槽70か
ら、第1の保圧弁19、洗浄槽70から排出された超臨
界二酸化炭素中の超臨界二酸化炭素に溶解する汚染物質
や、別工程において洗浄槽70から排出された洗浄後の
液体二酸化炭素中に混入されている超臨界二酸化炭素に
溶解しない汚染物質を分離除去する分離槽80と、第2
の熱交換器21を介して液体二酸化炭素貯槽10に繋が
る流路eとを有している。なお、流路dには、二酸化炭
素ポンプ11および弁37間と、第1の熱交換器12お
よび洗浄槽70間とを連絡するバイパス路d′が架設さ
れており、また分離槽80には分離物排出弁39が連結
されている。
FIG. 5 shows a cleaning apparatus to which a cleaning method using supercritical carbon dioxide as a cleaning fluid according to Embodiment 3 of the present invention is applied. As shown in FIG.
Is an example in which a contaminant dissolved or insoluble in supercritical carbon dioxide from each object to be cleaned is intermittently removed in one cleaning tank 70. 11, valve 37, first heat exchanger 1
A flow path d connected to the cleaning tank 70 through the second tank 2, a first pressure-holding valve 19 from the cleaning tank 70, contaminants dissolved in supercritical carbon dioxide in supercritical carbon dioxide discharged from the cleaning tank 70, A separation tank 80 for separating and removing contaminants insoluble in supercritical carbon dioxide mixed in the liquid carbon dioxide after cleaning discharged from the cleaning tank 70 in another step;
And a flow path e connected to the liquid carbon dioxide storage tank 10 via the heat exchanger 21 of FIG. In addition, a bypass d ′ is provided in the flow path d to communicate between the carbon dioxide pump 11 and the valve 37 and between the first heat exchanger 12 and the cleaning tank 70. The separated matter discharge valve 39 is connected.

【0031】次に、この洗浄装置を用いた超臨界二酸化
炭素を洗浄流体とする洗浄方法を説明する。図5に示す
ように、液体二酸化炭素貯槽10から流路dへ導かれた
液体二酸化炭素は、二酸化炭素ポンプ11により臨界圧
力以上の所定圧力まで昇圧されたのち、開放された弁3
7を経て第1の熱交換器12により臨界温度以上の所定
温度まで昇温されて、超臨界二酸化炭素として洗浄槽7
0へ供給される。ここでは、超臨界二酸化炭素により、
あらかじめ収納されていた未洗浄の被洗浄物の表面に付
着した超臨界二酸化炭素に溶解する汚染物質が抽出さ
れ、その後、超臨界二酸化炭素に溶解する汚染物質が混
入された超臨界二酸化炭素は、流路eへ入り、第1の保
圧弁19により減圧されてから分離槽80により超臨界
二酸化炭素に溶解する汚染物質が分離除去される。な
お、分離された超臨界二酸化炭素に溶解する汚染物質
は、分離物排出弁39から排出される。続いて、油脂、
水、有機溶媒などの汚染物質が分離された二酸化炭素
は、第2の熱交換器21により冷却されることにより液
体二酸化炭素となり、その後、液体二酸化炭素貯槽10
に戻されて、循環使用される。
Next, a cleaning method using supercritical carbon dioxide as a cleaning fluid using this cleaning apparatus will be described. As shown in FIG. 5, the liquid carbon dioxide guided from the liquid carbon dioxide storage tank 10 to the flow path d is raised to a predetermined pressure equal to or higher than the critical pressure by the carbon dioxide pump 11 and then opened.
7, the temperature is raised to a predetermined temperature equal to or higher than the critical temperature by the first heat exchanger 12, and is converted into supercritical carbon dioxide.
0. Here, by supercritical carbon dioxide,
Contaminants dissolved in the supercritical carbon dioxide attached to the surface of the uncleaned object to be cleaned that has been stored in advance are extracted, and then the supercritical carbon dioxide mixed with the contaminants dissolved in the supercritical carbon dioxide is: After entering the flow passage e and being depressurized by the first pressure holding valve 19, the separation tank 80 separates and removes contaminants dissolved in the supercritical carbon dioxide. The contaminants dissolved in the separated supercritical carbon dioxide are discharged from the separated material discharge valve 39. Then, fats and oils,
The carbon dioxide from which contaminants such as water and organic solvents have been separated is cooled by the second heat exchanger 21 to become liquid carbon dioxide, and then the liquid carbon dioxide storage tank 10
And used for circulation.

【0032】次に、液体二酸化炭素貯槽10から流路d
へ供給された液体二酸化炭素は、二酸化炭素ポンプ11
を通過して、弁38が開放されたバイパス路d′へ流れ
込み、それから流路dに戻されたのち、洗浄槽70へ供
給される。ここで、超臨界二酸化炭素に溶解する汚染物
質が抽出された被洗浄物の表面から、液体二酸化炭素に
より超臨界二酸化炭素に溶解しない汚染物質が洗い流さ
れる。超臨界二酸化炭素に溶解しない汚染物質を含む液
体二酸化炭素は、流路eへ流れ込んで、第1の保圧弁1
9により減圧されたのち、分離槽70内で超臨界二酸化
炭素に溶解しない汚染物質が分離除去され、次にまた同
様に第2の熱交換器21により冷却されたのち、液体二
酸化炭素貯槽10へ戻される。これらの工程を、順次、
繰り返すことにより、1つの洗浄槽内で、順次、被洗浄
物からの超臨界二酸化炭素に溶解または溶解しない汚染
物質の除去を断続的に行えて、設備コストの低減が図れ
る。なお、実施の形態1と同じ部品には、同一符合を付
して説明を省略する。
Next, the flow path d from the liquid carbon dioxide storage tank 10
Liquid carbon dioxide supplied to the carbon dioxide pump 11
, The valve 38 flows into the opened bypass passage d ', and is returned to the flow passage d. Here, the contaminants that do not dissolve in the supercritical carbon dioxide are washed away from the surface of the object to be cleaned from which the contaminants that dissolve in the supercritical carbon dioxide are extracted. The liquid carbon dioxide containing the contaminants that do not dissolve in the supercritical carbon dioxide flows into the flow path e, and the first pressure holding valve 1
After the pressure is reduced by 9, the contaminants insoluble in the supercritical carbon dioxide are separated and removed in the separation tank 70, and then cooled again by the second heat exchanger 21, and then to the liquid carbon dioxide storage tank 10. Will be returned. These steps, in order,
The repetition allows intermittent removal of contaminants that are dissolved or insoluble in supercritical carbon dioxide from the object to be cleaned in one cleaning tank, thereby reducing equipment costs. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0033】なお、実施の形態1、2では3つの洗浄槽
を用いた例を示し、また実施の形態3では1つの洗浄を
用いた例を示したが、これに限定しなくても、例えば2
槽の洗浄槽内で、相互に各被洗浄物の超臨界二酸化炭素
に溶解する汚染物質の洗浄および超臨界二酸化炭素に溶
解しない汚染物質の洗浄を繰り返して、所定個数の被洗
浄物を洗浄したり、また3槽以上の洗浄槽を用いて、洗
浄が終了した洗浄槽内から洗浄済みの被洗浄物を取り出
して新たな被洗浄物を収納する作業中に、待機中の他の
洗浄槽による被洗浄物の洗浄作業を実行することで、洗
浄作業を中断することなく連続して被洗浄物を洗浄する
ようにしてもよい。
Although the first and second embodiments show an example using three cleaning tanks, and the third embodiment shows an example using one cleaning tank, the present invention is not limited to this. 2
In the cleaning tank of the tank, a predetermined number of objects to be cleaned are washed by repeating the cleaning of contaminants that are mutually soluble in supercritical carbon dioxide and the cleaning of contaminants that are not soluble in supercritical carbon dioxide. Also, while using three or more washing tanks, taking out the washed object to be washed from the washed washing tank and storing a new object to be washed, the other washing tank in a standby state is used. By performing the cleaning operation of the object to be cleaned, the object to be cleaned may be continuously washed without interrupting the cleaning operation.

【0034】[0034]

【実施例】以下、本発明をさらに具体化した実施例を示
す。なお、本発明はこれらの実施例に限定されないこと
はいうまでもない。 実施例1 ここでは、以下の条件のもとに、前述した図1〜3に示
す洗浄装置を用いて、被洗浄物の連続洗浄を行った。す
なわち、二酸化炭素ポンプ11を用いて、液体二酸化炭
素貯槽10からの液体二酸化炭素を200kg/cm2
Gの超臨界圧力まで昇圧し、第1の熱交換器12により
45℃の超臨界温度まで昇温後、内容積2,000cm
3 の第1の洗浄槽20へ超臨界二酸化炭素を供給するこ
とにより、第1の洗浄槽20内の未洗浄の第1の被洗浄
物を洗浄した。
EXAMPLES Examples of the present invention will be described below. Needless to say, the present invention is not limited to these examples. Example 1 Here, the object to be cleaned was continuously cleaned using the cleaning apparatus shown in FIGS. 1 to 3 under the following conditions. That is, by using the carbon dioxide pump 11, the liquid carbon dioxide from the liquid carbon dioxide storage tank 10 is supplied at 200 kg / cm 2.
G to a supercritical pressure of G, and after raising the temperature to a supercritical temperature of 45 ° C. by the first heat exchanger 12, the internal volume is 2,000 cm.
3 first to the cleaning tank 20 by supplying supercritical carbon dioxide, washing the first object to be cleaned of unwashed first cleaning tank 20.

【0035】その後、第1の洗浄槽20から排出された
超臨界二酸化炭素に溶解する汚染物質を含む超臨界二酸
化炭素は、第1の保圧弁19により65kg/cm2
まで減圧され、かつ第2の熱交換器21により20℃ま
で冷却されて、内容積2,000cm3 の第2の洗浄槽
30へ供給される(以下同様)。各第1〜3の洗浄槽2
0〜40から排出された洗浄後の液体二酸化炭素は、第
2の保圧弁28により30kg/cm2 Gまで減圧され
てから、第3の熱交換器29により15℃まで温度調節
されて、内容積500cm3 の分離槽50に供給し、超
臨界二酸化炭素に溶解または溶解しない汚染物質を分離
する。分離後の液体二酸化炭素は、第3の保圧弁31に
より大気圧までさらに減圧される。その結果、被洗浄物
の表面に混在状態で付着した超臨界二酸化炭素に溶解ま
たは溶解しない汚染物質を良好に洗浄できた。
Thereafter, supercritical carbon dioxide containing contaminants dissolved in the supercritical carbon dioxide discharged from the first cleaning tank 20 is 65 kg / cm 2 G by the first pressure holding valve 19.
The pressure is reduced to 20 ° C. by the second heat exchanger 21 and supplied to the second washing tank 30 having an internal volume of 2,000 cm 3 (the same applies hereinafter). First to third washing tanks 2
The washed liquid carbon dioxide discharged from 0 to 40 is decompressed to 30 kg / cm 2 G by the second pressure holding valve 28, and then temperature-controlled to 15 ° C. by the third heat exchanger 29, It is supplied to a separation tank 50 having a volume of 500 cm 3 to separate contaminants that are dissolved or not dissolved in supercritical carbon dioxide. The liquid carbon dioxide after the separation is further reduced to the atmospheric pressure by the third pressure holding valve 31. As a result, contaminants dissolved or not dissolved in supercritical carbon dioxide adhering in a mixed state to the surface of the object to be cleaned were successfully cleaned.

【0036】実施例2 ここでは、以下の条件のもとに、前述した図4に示す洗
浄装置を用いて、被洗浄物の連続洗浄を行った。すなわ
ち、第2の流路bにおける第2の熱交換器21の下流
に、内容積500cm3 の分離槽60を配置した以外
は、実施例1と同様にして実験した。その結果、油分な
どの超臨界二酸化炭素に溶解する汚染物質が表面に付着
している量が多い被洗浄物にでも、被洗浄物の表面に混
在状態で付着した超臨界二酸化炭素に溶解または溶解し
ない汚染物質を良好に洗浄できた。
Example 2 Here, the object to be cleaned was continuously cleaned using the cleaning apparatus shown in FIG. 4 under the following conditions. That is, an experiment was performed in the same manner as in Example 1 except that a separation tank 60 having an internal volume of 500 cm 3 was arranged downstream of the second heat exchanger 21 in the second flow path b. As a result, even if the amount of contaminants dissolved in supercritical carbon dioxide, such as oil, is large on the surface of the object to be cleaned, it is dissolved or dissolved in supercritical carbon dioxide adhering to the surface of the object to be cleaned in a mixed state. The clean contaminants could be cleaned well.

【0037】実施例3 ここでは、以下の条件のもとに、前述した図5に示す洗
浄装置を用いて、被洗浄物の連続洗浄を行った。すなわ
ち、繋ぎ合わせてループ状となる流路d、eに、内容積
2,000cm3 の洗浄槽70と、内容積500cm3
の分離槽80とを配設した以外は、実施例1と略同様に
して実験した。その結果、実施例1のものに比べて時間
と手間はかかったものの、同様に被洗浄物の表面に混在
状態で付着した超臨界二酸化炭素に溶解または溶解しな
い汚染物質を良好に洗浄できた。
Example 3 Here, the object to be cleaned was continuously cleaned using the cleaning apparatus shown in FIG. 5 under the following conditions. That is, the flow path d to be looped by joining, to the e, a cleaning tank 70 having an internal volume of 2,000 cm 3, inner volume 500 cm 3
An experiment was conducted in substantially the same manner as in Example 1 except that the separation tank 80 was provided. As a result, although it took more time and labor than in the case of Example 1, similarly, contaminants dissolved or insoluble in supercritical carbon dioxide adhering in a mixed state to the surface of the object to be cleaned could be cleaned well.

【0038】比較例1 洗浄槽70内に収納された未洗浄の被洗浄物を、液体二
酸化炭素貯槽10側からの超臨界二酸化炭素だけで洗浄
する以外は、実施例3と同様にして実験した。その結
果、実施例3のものに比べて、被洗浄物の表面に混在状
態で付着した液体だけは洗浄できたが、超臨界二酸化炭
素に溶解しない汚染物質は被洗浄物に付着したままだっ
た。
Comparative Example 1 An experiment was performed in the same manner as in Example 3 except that the uncleaned object stored in the cleaning tank 70 was cleaned only with supercritical carbon dioxide from the liquid carbon dioxide storage tank 10 side. . As a result, only the liquid adhering to the surface of the object to be cleaned in a mixed state could be cleaned, but the contaminants that did not dissolve in supercritical carbon dioxide remained adhered to the object to be cleaned, as compared with those of Example 3. .

【0039】[0039]

【発明の効果】このように、本発明の請求項1〜8に記
載の超臨界流体を洗浄流体とする洗浄方法においては、
被洗浄物の表面に混在状態で付着する超臨界流体に溶解
または溶解しない汚染物質のうち、まず超臨界流体に溶
解する汚染物質を超臨界流体により抽出し、それから超
臨界流体に溶解しない汚染物質を液体または気体により
洗い流して洗浄するようにしたので、被洗浄物を良好に
洗浄できる。これにより、液体系洗浄剤が入れない部分
にも、超臨界流体は容易に浸透して、微細な溝や複雑な
幾何学的構造の細孔や高分子材料などの内部に存在する
汚染物質も容易に抽出し、超臨界流体に溶解しない汚染
物質は、より密度の高い液体状態の流体により洗浄、ま
たは気体状態の流体により吹き流すことにより、被洗浄
物に付着したほとんど全ての汚染物質を除去できる。そ
して、二酸化炭素を使用することにより、フロン系溶媒
のようにオゾン層を破壊することなく、また、水によっ
て容易に腐食されたり、熱に弱い対象物にも適用でき、
洗浄後の乾燥工程が不要である。
As described above, in the cleaning method using the supercritical fluid as the cleaning fluid according to claims 1 to 8 of the present invention,
Among the contaminants that dissolve or do not dissolve in the supercritical fluid that adhere to the surface of the object to be cleaned in a mixed state, the contaminants that dissolve in the supercritical fluid are first extracted by the supercritical fluid, and then the contaminants that do not dissolve in the supercritical fluid Is washed away with a liquid or a gas, so that the object to be cleaned can be cleaned well. As a result, the supercritical fluid easily penetrates into the area where the liquid cleaning agent does not enter, and contaminants existing inside fine grooves, pores with complicated geometric structures, polymer materials, etc. Contaminants that are easily extracted and do not dissolve in the supercritical fluid can be cleaned with a denser liquid state fluid or blown off with a gaseous state fluid to remove almost all contaminants attached to the object to be cleaned. it can. And, by using carbon dioxide, without destroying the ozone layer like a CFC-based solvent, and easily corroded by water, it can be applied to heat-sensitive objects,
No drying step after washing is required.

【0040】また、請求項1に記載の超臨界流体を洗浄
流体とする洗浄方法においては、超臨界流体に溶解する
汚染物質を抽出した超臨界流体を減圧および/または冷
却して、超臨界流体に溶解しない汚染物質を洗い流す液
体または気体を得るようにしたので、超臨界流体に溶解
する汚染物質の抽出除去と、超臨界流体に溶解しない汚
染物質の洗い流し除去という、2つの仕事を連続して行
うことができる。さらに、請求項2に記載の超臨界流体
を洗浄流体とする洗浄方法においては、2槽の洗浄槽内
で、交互に各被洗浄物の超臨界流体に溶解する汚染物質
の洗浄および超臨界流体に溶解しない汚染物質の洗浄を
繰り返すようにしたので、被洗浄物の洗浄作業の作業性
が向上できる。さらに、請求項3に記載の超臨界流体を
洗浄流体とする洗浄方法においては、3槽以上の洗浄槽
内で、交互かつ連続的に各被洗浄物の超臨界流体に溶解
する汚染物質の洗浄および超臨界流体に溶解しない汚染
物質の洗浄を、順次、繰り返すようにしたので、洗浄操
作を中断することなく連続して洗浄でき、被洗浄物の洗
浄作業の作業性が向上できる。
According to the first aspect of the present invention, in the cleaning method using a supercritical fluid as a cleaning fluid, the supercritical fluid obtained by extracting a contaminant dissolved in the supercritical fluid is depressurized and / or cooled to obtain a supercritical fluid. As a liquid or gas is obtained to wash away contaminants that do not dissolve in the supercritical fluid, the two tasks of extracting and removing contaminants that dissolve in the supercritical fluid and rinsing and removing contaminants that do not dissolve in the supercritical fluid are continuously performed. It can be carried out. Further, in the cleaning method using a supercritical fluid as a cleaning fluid according to claim 2, cleaning of a contaminant and a supercritical fluid which alternately dissolve in a supercritical fluid of each object to be cleaned in two cleaning tanks. Since the cleaning of the contaminants that do not dissolve in the water is repeated, the workability of the cleaning operation of the object to be cleaned can be improved. Furthermore, in the cleaning method using a supercritical fluid as a cleaning fluid according to claim 3, cleaning of contaminants that are alternately and continuously dissolved in the supercritical fluid of each object to be cleaned in three or more cleaning tanks. Since the cleaning of contaminants that do not dissolve in the supercritical fluid is sequentially repeated, the cleaning operation can be performed continuously without interrupting the cleaning operation, and the workability of the cleaning operation of the object to be cleaned can be improved.

【0041】さらにまた、請求項4に記載の超臨界流体
を洗浄流体とする洗浄方法においては、被洗浄物に付着
する超臨界流体に溶解する汚染物質を抽出除去した液体
または気体中から、超臨界流体に溶解する汚染物質を、
分離槽により分離するようにしたので、清浄化された液
体または気体を、次工程の別の被洗浄物の表面に残存す
る超臨界流体に溶解しない汚染物質の洗浄に使用でき、
利用価値のある汚染物質を回収・再利用できる。そし
て、請求項5に記載の超臨界流体を洗浄流体とする洗浄
方法においては、1つの洗浄槽内で各被洗浄物からの液
体および超臨界流体に溶解しない汚染物質の除去を断続
的に行うようにしたので、設備コストの低減が図れる。
Further, in the cleaning method using a supercritical fluid as a cleaning fluid according to a fourth aspect of the present invention, a supercritical fluid is extracted from a liquid or a gas from which a contaminant dissolved in the supercritical fluid attached to an object to be cleaned is removed. Contaminants that dissolve in the critical fluid
Since the separation is performed by the separation tank, the purified liquid or gas can be used for cleaning contaminants that do not dissolve in the supercritical fluid remaining on the surface of another object to be cleaned in the next step,
Can collect and reuse valuable pollutants. In a cleaning method using a supercritical fluid as a cleaning fluid according to a fifth aspect, removal of liquid and contaminants that are not dissolved in the supercritical fluid from each of the objects to be cleaned is performed intermittently in one cleaning tank. As a result, the equipment cost can be reduced.

【0042】それから、請求項6、7に記載の超臨界流
体を洗浄流体とする洗浄方法においては、超臨界流体に
溶解しない汚染物質を洗い流した後の液体または気体中
から汚染物質を分離除去するようにしたので、汚染物質
を回収、再利用できる。特に、請求項7記載の超臨界流
体を洗浄流体とする洗浄方法においては、洗浄槽へ供給
される超臨界流体および液体または気体は、途中で超臨
界処理されたり、そのままの状態で液体二酸化炭素貯槽
から洗浄槽へ供給され、また汚染物質が分離除去されて
清浄化された液体または気体は、冷却後に液体二酸化炭
素貯槽に戻して循環使用されるようにしたので、作業者
や環境に対しても安全であり、かつランニングコストの
低減も図れる。さらに、請求項8記載の超臨界流体を洗
浄流体とする洗浄方法においては、超臨界流体として超
臨界二酸化炭素を採用したので、経済的であり、また作
業者や環境に対して安全性が確保されるので好ましい。
Further, in the cleaning method using the supercritical fluid as the cleaning fluid according to the sixth and seventh aspects, the contaminants are separated and removed from the liquid or gas after flushing out the contaminants that do not dissolve in the supercritical fluid. As a result, contaminants can be collected and reused. In particular, in the cleaning method using a supercritical fluid as a cleaning fluid according to claim 7, the supercritical fluid and the liquid or gas supplied to the cleaning tank are subjected to a supercritical treatment on the way or to a liquid carbon dioxide as it is. The liquid or gas supplied from the storage tank to the cleaning tank, and the contaminants are separated and removed and cleaned, are returned to the liquid carbon dioxide storage tank after cooling, so that they can be circulated and used. Is safe and running costs can be reduced. Furthermore, in the cleaning method using a supercritical fluid as a cleaning fluid according to claim 8, since supercritical carbon dioxide is employed as the supercritical fluid, it is economical and secures safety for workers and the environment. Is preferred.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1に係る超臨界流体(超臨
界二酸化炭素)を洗浄流体とする洗浄方法が適用された
洗浄装置の全体構成図である。
FIG. 1 is an overall configuration diagram of a cleaning apparatus to which a cleaning method using a supercritical fluid (supercritical carbon dioxide) as a cleaning fluid according to Embodiment 1 of the present invention is applied.

【図2】本発明の実施の形態1の洗浄装置を用いた超臨
界流体(超臨界二酸化炭素)を洗浄流体とする洗浄工程
の一部を示す要部構成図である。
FIG. 2 is a main part configuration diagram illustrating a part of a cleaning process using a supercritical fluid (supercritical carbon dioxide) as a cleaning fluid using the cleaning apparatus according to the first embodiment of the present invention;

【図3】本発明の実施の形態1の洗浄装置を用いた超臨
界流体(超臨界二酸化炭素)を洗浄流体とする洗浄工程
の他部を示す要部構成図である。
FIG. 3 is a main part configuration diagram showing another part of a cleaning process using a supercritical fluid (supercritical carbon dioxide) as a cleaning fluid using the cleaning apparatus according to the first embodiment of the present invention;

【図4】本発明の実施の形態2に係る超臨界流体(超臨
界二酸化炭素)を洗浄流体とする洗浄方法が適用された
洗浄装置の全体構成図である。
FIG. 4 is an overall configuration diagram of a cleaning apparatus to which a cleaning method using a supercritical fluid (supercritical carbon dioxide) as a cleaning fluid according to Embodiment 2 of the present invention is applied.

【図5】本発明の実施の形態3に係る超臨界流体(超臨
界二酸化炭素)を洗浄流体とする洗浄方法が適用された
洗浄装置の全体構成図である。
FIG. 5 is an overall configuration diagram of a cleaning apparatus to which a cleaning method using a supercritical fluid (supercritical carbon dioxide) as a cleaning fluid according to Embodiment 3 of the present invention is applied.

【符号の説明】[Explanation of symbols]

10 液体二酸化炭素貯槽 20 第1の洗浄槽 30 第2の洗浄槽 40 第3の洗浄槽 50 分離槽 60 分離槽 70 洗浄槽 80 分離槽 Reference Signs List 10 Liquid carbon dioxide storage tank 20 First cleaning tank 30 Second cleaning tank 40 Third cleaning tank 50 Separation tank 60 Separation tank 70 Cleaning tank 80 Separation tank

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 超臨界流体により被洗浄物に付着した油
脂、水分、有機溶媒などの超臨界流体に溶解する汚染物
質を抽出する第1工程と、 第1工程で排出された超臨界流体を減圧および/または
冷却して得られる液体または気体により被洗浄物の表面
に残存する、粉粒体、剥離物などの超臨界流体に溶解し
ない汚染物質を洗い流す第2工程、とを備えたことを特
徴とする超臨界流体を洗浄流体とする洗浄方法。
1. A first step of extracting contaminants dissolved in a supercritical fluid such as fats, oils, water, and organic solvents attached to an object to be cleaned by a supercritical fluid, and a step of extracting the supercritical fluid discharged in the first step. A second step of washing out contaminants remaining on the surface of the object to be cleaned, which are not dissolved in a supercritical fluid, such as powders and particles, by a liquid or a gas obtained by decompression and / or cooling. A cleaning method using a supercritical fluid as a cleaning fluid.
【請求項2】 油脂、水分、有機溶媒などの超臨界流体
に溶解する汚染物質と、粉粒体、剥離物などの超臨界流
体に溶解しない汚染物質とが付着している第1の被洗浄
物を収納した第1の洗浄槽に、超臨界流体を供給し、第
1の被洗浄物の表面から超臨界流体に溶解する汚染物質
を抽出する第1工程と、 第1工程後、第1の洗浄槽から排出される超臨界流体を
減圧および/または冷却して液体または気体を得る第2
工程と、 第2工程で得られた液体または気体を、あらかじめ超臨
界流体に溶解する汚染物質が抽出除去された第2の被洗
浄物を収納する第2の洗浄槽に供給して、第2の被洗浄
物の表面に残存する超臨界流体に溶解しない汚染物質を
洗い流す第3工程と、 第3工程後、第2の洗浄槽から液体または気体を排除
し、洗浄済みの第2の被洗浄物を取り出す第4工程と、 第4工程後、超臨界流体に溶解する汚染物質と、超臨界
流体に溶解しない汚染物質とが付着している第3の被洗
浄物を第2の洗浄槽に収納する第5工程とを備え、 これらの工程の操作を第1、2の洗浄槽内で、順次、繰
り返すことにより、所定個数の被洗浄物の洗浄を行うこ
とを特徴とする超臨界流体を洗浄流体とする洗浄方法。
2. A first object to be cleaned in which a contaminant soluble in a supercritical fluid such as oil, fat, water, and an organic solvent and a contaminant insoluble in a supercritical fluid such as a granular material and an exfoliated substance are adhered. A first step of supplying a supercritical fluid to a first cleaning tank containing the object and extracting contaminants dissolved in the supercritical fluid from the surface of the first object to be cleaned; The supercritical fluid discharged from the washing tank is decompressed and / or cooled to obtain a liquid or gas.
And supplying the liquid or gas obtained in the second step to a second cleaning tank containing a second object to be cleaned in which contaminants previously dissolved in the supercritical fluid have been extracted and removed. A third step of washing out contaminants that do not dissolve in the supercritical fluid remaining on the surface of the object to be cleaned, and after the third step, removing the liquid or gas from the second cleaning tank to thereby clean the second object to be cleaned. A fourth step of taking out an object, and after the fourth step, a third object to be cleaned to which a contaminant dissolved in the supercritical fluid and a contaminant insoluble in the supercritical fluid are attached is placed in the second cleaning tank. A supercritical fluid characterized by washing a predetermined number of objects to be washed by sequentially repeating the operations of these steps in the first and second washing tanks. A cleaning method using a cleaning fluid.
【請求項3】 あらかじめ3槽以上の洗浄槽を配備し、
そのうち第1の洗浄槽に、油脂、水分、有機溶媒などの
超臨界流体に溶解する汚染物質と、粉粒体、剥離物など
の超臨界流体に溶解しない汚染物質とが付着している第
1の被洗浄物を収納し、また第2の洗浄槽に、超臨界流
体に溶解する汚染物質が抽出除去された第2の被洗浄物
を収納し、さらに第3の洗浄槽以降に、超臨界流体に溶
解する汚染物質と、超臨界流体に溶解しない汚染物質と
が付着する第3の被洗浄物以降をそれぞれ収納準備して
おき、 第1の洗浄槽に、超臨界流体を供給し、第1の被洗浄物
の表面から超臨界流体に溶解する汚染物質を抽出する第
1工程と、 第1工程後、第1の洗浄槽から排出された超臨界流体を
減圧および/または冷却して液体または気体を得る第2
工程と、 第2工程で得られた液体または気体を第2の洗浄槽に供
給して、第2の被洗浄物の表面に残存する超臨界流体に
溶解しない汚染物質を洗い流す第3工程と、 第3工程後、第2の洗浄槽から液体または気体を排除
し、洗浄済みの第2の被洗浄物を取り出す第4工程と、 第4工程後、超臨界流体に溶解する汚染物質と、超臨界
流体に溶解しない汚染物質とが付着している新たな被洗
浄物を第2の洗浄槽に収納して待機する第5工程と、 一方、第3工程後、第3の洗浄槽に超臨界流体を供給し
て、収納された第3の被洗浄物に付着している超臨界流
体に溶解する汚染物質を抽出除去する第6工程と、 第6工程後、第3の洗浄槽から排出される超臨界流体を
減圧および/または冷却して液体または気体を得る第7
工程と、 第7工程により得られた液体または気体を、第1の洗浄
槽に供給して、第1の被洗浄物に残存する超臨界流体に
溶解しない汚染物質を洗い流す第8工程と、 第8工程後、第1の洗浄槽から液体または気体を排除
し、洗浄済みの第1の被洗浄物を取り出す第9工程と、 第9工程後、超臨界流体に溶解する汚染物質と、超臨界
流体に溶解しない汚染物質とが付着しているさらに新た
な被洗浄物を第1の洗浄槽に収納して待機する第10工
程とを備え、 以上の工程の操作を3槽以上の洗浄槽内で、順次、繰り
返すことにより、所定個数の被洗浄物の洗浄を連続的に
行うことを特徴とする超臨界流体を洗浄流体とする洗浄
方法。
3. A washing tank having three or more washing tanks in advance,
Among them, the first cleaning tank has a first contaminant which dissolves in a supercritical fluid such as oil, water, and organic solvent, and a first contaminant which does not dissolve in a supercritical fluid such as a granular material and a separated substance. Is stored in the second cleaning tank, and a second cleaning object from which contaminants dissolved in the supercritical fluid are extracted and removed is stored in the second cleaning tank. A third cleaning object or later to which a contaminant that dissolves in the fluid and a contaminant that does not dissolve in the supercritical fluid adhere are prepared and stored, and the supercritical fluid is supplied to the first cleaning tank. A first step of extracting contaminants dissolved in the supercritical fluid from the surface of the object to be cleaned, and after the first step, depressurizing and / or cooling the supercritical fluid discharged from the first cleaning tank to obtain a liquid Or the second to get gas
A third step of supplying the liquid or gas obtained in the second step to the second cleaning tank to wash away contaminants insoluble in the supercritical fluid remaining on the surface of the second object to be cleaned; After the third step, a fourth step of removing the liquid or gas from the second cleaning tank and taking out the second cleaned object to be cleaned, and after the fourth step, a contaminant dissolved in the supercritical fluid, A fifth step in which a new object to be cleaned to which a contaminant that does not dissolve in the critical fluid adheres is stored in the second cleaning tank and is on standby; A sixth step of supplying a fluid and extracting and removing contaminants dissolved in the supercritical fluid adhering to the stored third object to be cleaned; and after the sixth step, the contaminants are discharged from the third cleaning tank. Decompressing and / or cooling the supercritical fluid to obtain a liquid or gas.
An eighth step of supplying the liquid or gas obtained in the seventh step to the first cleaning tank to wash away contaminants insoluble in the supercritical fluid remaining in the first object to be cleaned; After the eighth step, a ninth step of removing the liquid or gas from the first cleaning tank and taking out the washed first object to be cleaned, a contaminant dissolved in the supercritical fluid after the ninth step, A tenth step of storing a new object to be cleaned to which contaminants insoluble in the fluid are attached in the first cleaning tank and waiting, and performing the operations of the above steps in three or more cleaning tanks. A cleaning method using a supercritical fluid as a cleaning fluid, wherein a predetermined number of objects to be cleaned are continuously cleaned by repeating the cleaning process sequentially.
【請求項4】 第2工程と第3工程の間に、液体または
気体中から、超臨界流体に溶解する汚染物質を分離槽に
より分離する工程を設けた請求項2または3に記載の超
臨界流体を洗浄流体とする洗浄方法。
4. The supercritical system according to claim 2, further comprising a step of separating a contaminant soluble in the supercritical fluid from a liquid or a gas by a separation tank between the second step and the third step. A cleaning method using a fluid as a cleaning fluid.
【請求項5】 油脂、水分、有機溶媒などの超臨界流体
に溶解する汚染物質と、粉粒体、剥離物などの超臨界流
体に溶解しない汚染物質とが付着している被洗浄物を収
納した1つの洗浄槽に、超臨界流体を供給し、被洗浄物
の表面から超臨界流体に溶解する汚染物質を抽出する第
1工程と、 第1工程後、液体または気体を洗浄槽に供給して、被洗
浄物の表面に残存する超臨界流体に溶解しない汚染物質
を洗い流す第2工程と、 第2工程後、洗浄槽から液体または気体を排除し、洗浄
済みの被洗浄物を取り出して、洗浄槽に超臨界流体に溶
解する汚染物質および超臨界流体に溶解しない汚染物質
が付着した次の被洗浄物を新たに収納する第3工程と、 第3工程後、洗浄槽に超臨界流体を供給して、洗浄槽内
の次の被洗浄物の表面から超臨界流体に溶解する汚染物
質を抽出する第4工程とを備え、 以上の工程を、順次、繰り返すことにより、1つの洗浄
槽内で各被洗浄物からの超臨界流体に溶解および溶解し
ない汚染物質の除去を断続的に行うことを特徴とする超
臨界流体を洗浄流体とする洗浄方法。
5. A cleaning object containing contaminants dissolved in a supercritical fluid such as fats, oils, water, and organic solvents and contaminants insoluble in a supercritical fluid such as powders and exfoliated substances are stored. A first step of supplying a supercritical fluid to the one cleaning tank and extracting contaminants dissolved in the supercritical fluid from the surface of the object to be cleaned; and supplying a liquid or gas to the cleaning tank after the first step. A second step of washing out contaminants insoluble in the supercritical fluid remaining on the surface of the object to be cleaned; and after the second step, removing the liquid or gas from the cleaning tank, taking out the cleaned object to be cleaned, A third step of newly storing a contaminated substance dissolved in the supercritical fluid and a contaminant insoluble in the supercritical fluid in the cleaning tank; and a third step of storing the supercritical fluid in the cleaning tank after the third step. Supply the supercritical fluid from the surface of the next cleaning object in the cleaning tank And a fourth step of extracting contaminants that dissolve in the supercritical fluid from each of the objects to be cleaned in one cleaning tank by sequentially repeating the above steps. Cleaning method using a supercritical fluid as a cleaning fluid, wherein the cleaning is performed intermittently.
【請求項6】 超臨界流体に溶解しない汚染物質を洗い
流した後の液体または気体中から、汚染物質を分離除去
する請求項2〜5いずれか1項に記載の超臨界流体を洗
浄流体とする洗浄方法。
6. The supercritical fluid according to any one of claims 2 to 5, wherein the contaminants are separated and removed from a liquid or a gas after washing out the contaminants that do not dissolve in the supercritical fluid. Cleaning method.
【請求項7】 洗浄槽へ超臨界流体および液体または気
体を供給する液体流体貯槽を有しており、また汚染物質
が分離除去されて清浄化された液体または気体を、冷却
後に液体流体貯槽に戻して循環使用する請求項6記載の
超臨界流体を洗浄流体とする洗浄方法。
7. A liquid fluid storage tank for supplying a supercritical fluid and a liquid or a gas to a cleaning tank, and a liquid or a gas that has been cleaned by separating and removing contaminants is cooled, and is then supplied to the liquid fluid storage tank. The cleaning method according to claim 6, wherein the supercritical fluid is returned and circulated for use.
【請求項8】 超臨界流体として、超臨界二酸化炭素を
用いる請求項1〜7いずれか1項記載の超臨界流体を洗
浄流体とする洗浄方法。
8. The cleaning method according to claim 1, wherein supercritical carbon dioxide is used as the supercritical fluid.
JP19854296A 1996-07-10 1996-07-10 Cleaning method using supercritical fluid as cleaning fluid Expired - Fee Related JP3784464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19854296A JP3784464B2 (en) 1996-07-10 1996-07-10 Cleaning method using supercritical fluid as cleaning fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19854296A JP3784464B2 (en) 1996-07-10 1996-07-10 Cleaning method using supercritical fluid as cleaning fluid

Publications (2)

Publication Number Publication Date
JPH1024270A true JPH1024270A (en) 1998-01-27
JP3784464B2 JP3784464B2 (en) 2006-06-14

Family

ID=16392901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19854296A Expired - Fee Related JP3784464B2 (en) 1996-07-10 1996-07-10 Cleaning method using supercritical fluid as cleaning fluid

Country Status (1)

Country Link
JP (1) JP3784464B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610251B1 (en) 1999-12-27 2003-08-26 Kabushiki Kaisha Sr Kaihatsu Method of sterilizing medical instruments
WO2003097258A1 (en) * 2002-05-20 2003-11-27 Matsushita Electric Industrial Co., Ltd. Washing method and washing device
US6880560B2 (en) 2002-11-18 2005-04-19 Techsonic Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
US7114508B2 (en) * 1999-09-24 2006-10-03 Micell Technologies Cleaning apparatus having multiple wash tanks for carbon dioxide dry cleaning and methods of using same
US7189350B2 (en) 1999-12-27 2007-03-13 Kabushiki Kaisha Sr Kaihatsu Method of sterilizing medical instruments
JP2008505474A (en) * 2004-06-24 2008-02-21 プラクスエア・テクノロジー・インコーポレイテッド Method and apparatus for pretreatment of polymeric materials
CN100387365C (en) * 2002-05-20 2008-05-14 松下电器产业株式会社 Washing method and washing device
US7785082B2 (en) 2004-09-15 2010-08-31 Mitsubishi Heavy Industries, Ltd Sealless pump
JP2011184290A (en) * 2010-02-09 2011-09-22 Mitsubishi Materials Corp Method for producing sintered cubic boron nitride compact
JP2012074436A (en) * 2010-09-28 2012-04-12 Murata Mfg Co Ltd Manufacturing method of electrolytic capacitor
JP2012243856A (en) * 2011-05-17 2012-12-10 Murata Mfg Co Ltd Manufacturing method of solid electrolytic capacitor
CN109879567A (en) * 2019-01-31 2019-06-14 西安交通大学 A kind of system and processing method of reply sludge supercritical water oxidation apparatus burst power outage
CN112251938A (en) * 2020-10-12 2021-01-22 贵州航天乌江机电设备有限责任公司 Method for supercritical cleaning and drying duck feather
CN114018085A (en) * 2021-11-02 2022-02-08 珠海格力绿色再生资源有限公司 Device and method for cleaning air conditioner stamping oil by adopting supercritical technology

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114508B2 (en) * 1999-09-24 2006-10-03 Micell Technologies Cleaning apparatus having multiple wash tanks for carbon dioxide dry cleaning and methods of using same
US7189350B2 (en) 1999-12-27 2007-03-13 Kabushiki Kaisha Sr Kaihatsu Method of sterilizing medical instruments
US6610251B1 (en) 1999-12-27 2003-08-26 Kabushiki Kaisha Sr Kaihatsu Method of sterilizing medical instruments
WO2003097258A1 (en) * 2002-05-20 2003-11-27 Matsushita Electric Industrial Co., Ltd. Washing method and washing device
CN100387365C (en) * 2002-05-20 2008-05-14 松下电器产业株式会社 Washing method and washing device
US7507297B2 (en) 2002-05-20 2009-03-24 Panasonic Corporation Cleaning method and cleaning apparatus
US6880560B2 (en) 2002-11-18 2005-04-19 Techsonic Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
JP2012212908A (en) * 2004-06-24 2012-11-01 Praxair Technology Inc Method and device of pre-processing polymer material
JP2008505474A (en) * 2004-06-24 2008-02-21 プラクスエア・テクノロジー・インコーポレイテッド Method and apparatus for pretreatment of polymeric materials
US7785082B2 (en) 2004-09-15 2010-08-31 Mitsubishi Heavy Industries, Ltd Sealless pump
JP2011184290A (en) * 2010-02-09 2011-09-22 Mitsubishi Materials Corp Method for producing sintered cubic boron nitride compact
US8657893B2 (en) 2010-02-09 2014-02-25 Mitsubishi Materials Corporation Method for producing sintered cubic boron nitride compact
JP2012074436A (en) * 2010-09-28 2012-04-12 Murata Mfg Co Ltd Manufacturing method of electrolytic capacitor
JP2012243856A (en) * 2011-05-17 2012-12-10 Murata Mfg Co Ltd Manufacturing method of solid electrolytic capacitor
CN109879567A (en) * 2019-01-31 2019-06-14 西安交通大学 A kind of system and processing method of reply sludge supercritical water oxidation apparatus burst power outage
CN112251938A (en) * 2020-10-12 2021-01-22 贵州航天乌江机电设备有限责任公司 Method for supercritical cleaning and drying duck feather
CN114018085A (en) * 2021-11-02 2022-02-08 珠海格力绿色再生资源有限公司 Device and method for cleaning air conditioner stamping oil by adopting supercritical technology

Also Published As

Publication number Publication date
JP3784464B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
JPH1024270A (en) Cleaning method using supercritical fluid as cleaning fluid
KR100584105B1 (en) Processing of semiconductor components with dense processing fluids and ultrasonic energy
US6120613A (en) Carbon dioxide cleaning and separation systems
KR100254653B1 (en) Ultracleaning of involuted microparts
JP2922791B2 (en) Inexpensive cleaning equipment using liquefied gas
US5944996A (en) Cleaning process using carbon dioxide as a solvent and employing molecularly engineered surfactants
JPH03503975A (en) How to clean surfaces and liquids
US6128830A (en) Apparatus and method for drying solid articles
US6802961B2 (en) Dense fluid cleaning centrifugal phase shifting separation process and apparatus
JP2005252234A (en) Method and equipment for processing article
US20110021796A1 (en) Lipid purification process
JP2006528553A (en) Workpiece cleaning system and method using supercritical carbon dioxide
TW200303048A (en) Method for reducing the formation of contaminants during supercritical carbon dioxide processes
JP2832190B2 (en) Cleaning method using supercritical and subcritical fluids
WO2003097258A1 (en) Washing method and washing device
JP5423555B2 (en) Washing and drying method and washing and drying apparatus
JP2000308862A (en) Rinsing method using supercritical or subcritical fluid and its apparatus
JPH11207276A (en) Supercritical degreasing apparatus
JPH1043702A (en) Supercritical washing device
JPH0547732A (en) Method and apparatus for precise cleaning
JP3049761B2 (en) Cleaning equipment
JP2004107789A (en) Cleaning method with pressurized fluid
JPH1050648A (en) Supercritical fluid cleaner
JP2006075785A (en) Ultrasonic cleaning method and its apparatus
US20110126856A1 (en) Method of removing contaminants from hard surfaces

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees