[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH10234846A - Anti-thrombus material - Google Patents

Anti-thrombus material

Info

Publication number
JPH10234846A
JPH10234846A JP9043200A JP4320097A JPH10234846A JP H10234846 A JPH10234846 A JP H10234846A JP 9043200 A JP9043200 A JP 9043200A JP 4320097 A JP4320097 A JP 4320097A JP H10234846 A JPH10234846 A JP H10234846A
Authority
JP
Japan
Prior art keywords
substance
antithrombotic
biodegradable
fine particles
thrombus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9043200A
Other languages
Japanese (ja)
Inventor
Seiki Arikawa
清貴 有川
Hideaki Asai
秀昭 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP9043200A priority Critical patent/JPH10234846A/en
Publication of JPH10234846A publication Critical patent/JPH10234846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable prolonged gradual elimination with a prevention of reduction in activity by applying a coating of a material with an anti-thrombus substance immobilized on a base material through a hydrophilic substance on the surface of fine grains indicating decomposability in vivo to increase the degree of immobilization of the thrombus substance. SOLUTION: A material which is decomposed to produce matters unharmful to a human body, for example, polyalkylcyanoacrylate based polymer is used to form fine grains decomposable in vivo. An anti-thrombus substance is immobilized on the fine grains through a hydrophilic substance which has at least one functional group that allows bonding of a functional group able to immobilize the anti-thrombus substance to the fine grains decomposable in vivo in one molecule. The hydrophilic substance herein used is, for example, polyalkyl glycol or the like having a carboxyl group at both terminals thereof. This can prevent a drop in the activity of the anti-thrombus substance thereby enabling prolonged gradual elimination.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は医療用具、手術用具
など血液と接触する材料表面に抗血栓性を付与する材料
に関する。更に詳しくは、人工血管、カテーテル、人工
心臓、人工腎臓等の表面に抗血栓性を付与する材料に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material that imparts antithrombotic properties to the surface of a material that comes into contact with blood, such as a medical device or a surgical device. More specifically, the present invention relates to a material that imparts antithrombotic properties to the surface of artificial blood vessels, catheters, artificial hearts, artificial kidneys, and the like.

【0002】[0002]

【従来の技術】医療用具の材料表面への血液適合性付与
技術は、ヘパリン様物質、又はウロキナーゼ等に代表さ
れる線溶系物質を基材に何らかの方法で固定化するもの
である。(特公平7-265405号公報、特公昭60-10734号公
報) 基材への抗血栓性物質の固定化は抗血栓性物質が
固定化しやすい基材の官能基を利用して表面に直接、あ
るいは特定の物質を介して行われる。上述のような方法
で基材表面に抗血栓性物質を固定化する場合、抗血栓性
物質は材料表面に存在し抗血栓性を発現する。しかしな
がら基材表面で反応を行うため複雑な形状への固定化操
作が困難であり、固定化量の不足、使用時での血中の酵
素による抗血栓性物質の活性低下の問題等がある。抗血
栓性物質の血中の酵素等によるの活性低下、固定化によ
る抗血栓性物質の運動の束縛、活性部位の向きによる活
性効率低下の問題を解決する為、抗血栓性物質を材料表
面より徐放させることで抗血栓性を維持する技術が開発
されている。この場合の抗血栓性物質の担持は、抗血栓
性物質と基材表面のイオン結合や、マトリックスとなる
材料と共に抗血栓性物質を基材上にコーティングするこ
とで行われる。
2. Description of the Related Art A technique for imparting blood compatibility to a material surface of a medical device involves immobilizing a fibrinolytic substance typified by a heparin-like substance or urokinase on a base material by some method. (Japanese Patent Publication No. 7-265405, Japanese Patent Publication No. 60-10734) Immobilization of an antithrombotic substance on a substrate is performed directly on the surface by using a functional group of the substrate on which the antithrombotic substance is easily immobilized. Alternatively, it is performed through a specific substance. When the antithrombotic substance is immobilized on the surface of the base material by the method described above, the antithrombotic substance is present on the surface of the material and exhibits antithrombotic properties. However, since the reaction is performed on the surface of the base material, it is difficult to perform an immobilization operation into a complicated shape, and there are problems such as an insufficient amount of the immobilization and a decrease in the activity of the antithrombotic substance due to enzymes in blood during use. In order to solve the problems of decreased activity of the antithrombotic substance due to enzymes in the blood, restriction of the movement of the antithrombotic substance by immobilization, and reduction of the activity efficiency due to the orientation of the active site, the antithrombotic substance was removed from the material surface. Techniques for maintaining antithrombotic properties by sustained release have been developed. In this case, the loading of the antithrombotic substance is carried out by ionic bonding between the antithrombotic substance and the surface of the substrate, or by coating the substrate with the antithrombotic substance together with a matrix material.

【0003】抗血栓性物質と基材表面のイオン結合によ
る抗血栓性物質の徐放機構は、抗血栓性物質と血中イオ
ンやタンパク質とのイオン交換反応である。(特開平4-
298523号公報) 抗血栓性物質と血中イオンやタンパク
質とのイオン交換反応は抗血栓性物質1分子と血中物質
の複数分子とのイオン交換反応であり複雑である。放出
機構がイオン交換反応による為、ランダムに血中のイオ
ンを基材上に吸着してしまう他、基材上に抗血栓性物質
は露出している為に血中の酵素による活性の減少が問題
となる。抗血栓性物質を高分子マトリックス中に分散さ
せる場合の抗血栓性物質徐放機構は、マトリックス材料
が血液接触するにより膨潤あるいは含水し、マトリック
ス内の抗血栓性物質の溶解、マトリックス内拡散であ
る。(特公平3-33340号公報) この場合はマトリック
ス内の抗血栓性物質の拡散速度が速いために抗血栓性物
質の徐放期間が短い問題がある。残念ながら現在まで徐
放速度や期間、抗血栓性において満足する表面の抗血栓
性材料は未だ開発されていない。
[0003] The mechanism of sustained release of the antithrombotic substance by ionic bonding between the antithrombotic substance and the substrate surface is an ion exchange reaction between the antithrombotic substance and blood ions or proteins. (JP-A-4-
No. 298523) The ion exchange reaction between an antithrombotic substance and blood ions or proteins is an ion exchange reaction between one molecule of the antithrombotic substance and a plurality of blood substances and is complicated. The release mechanism is based on the ion exchange reaction, so that the ions in the blood are randomly adsorbed on the substrate, and the antithrombotic substance is exposed on the substrate. It becomes a problem. When the antithrombotic substance is dispersed in the polymer matrix, the mechanism of sustained release of the antithrombotic substance is swelling or hydration due to the matrix material coming into contact with the blood, dissolution of the antithrombotic substance in the matrix, and diffusion into the matrix. . In this case, there is a problem that the slow release period of the antithrombotic substance is short because the diffusion rate of the antithrombotic substance in the matrix is high. Unfortunately, antithrombotic materials with a satisfactory surface in terms of sustained release rate, duration and antithrombotic properties have not yet been developed to date.

【0004】[0004]

【発明が解決しようとする課題】本発明は抗血栓性を長
期に維持できる表面をもつ抗血栓性材料を得る為に、抗
血栓性物質の固定化量を増加させ、抗血栓性物質の活性
低下を防止し、さらに抗血栓性物質の長期徐放を可能と
するために研究したものである。
SUMMARY OF THE INVENTION The present invention provides an antithrombotic material having a surface capable of maintaining antithrombotic properties for a long period of time by increasing the amount of immobilized antithrombotic substance and increasing the activity of the antithrombotic substance. The purpose of this study was to prevent the decrease and to enable long-term sustained release of antithrombotic substances.

【0005】[0005]

【課題を解決するための手段】本発明は抗血栓性物質を
担持した生体内分解性の微粒子を医療用具の基材上にコ
ートし微粒子層を形成させ抗血栓性を付与する技術に関
するものである。すなわち生体内分解性を示す微粒子の
表面に親水性物質を介して抗血栓性物質を固定化した材
料を基材上にコート、あるいは生体内分解性を示す微粒
子内に抗血栓性物質を分散した材料を基材上にコートし
基材表面に抗血栓性を付与した抗血栓性材料である。
The present invention relates to a technique for coating biodegradable fine particles carrying an antithrombotic substance on a base material of a medical device to form a fine particle layer to impart antithrombotic properties. is there. That is, a material in which an antithrombotic substance is immobilized via a hydrophilic substance on the surface of a biodegradable microparticle is coated on a substrate, or the antithrombotic substance is dispersed in the biodegradable microparticle. It is an antithrombotic material obtained by coating a material on a substrate and imparting antithrombotic properties to the surface of the substrate.

【0006】抗血栓性物質を生体内分解性の粒子表面に
担持させる場合では、抗血栓性物質を平面ではなく球形
表面に担持させることで固定化可能な表面積が増加し固
定化量の増加が可能となる。基材に直接抗血栓性物質を
固定化せずに生体内分解性微粒子に結合させて基材表面
をコートする為、複雑な形状の抗血栓性処理操作を基材
を抗血栓性物質の溶液に漬け反応させる方法よりも抗血
栓性物質の損失を少なく行うことができる。微粒子が生
体内分解性を有する為、基材表面の微粒子が徐々に分解
し、活性の低下した抗血栓性物質が排出されると同時に
活性が維持された抗血栓性物質を表面に固定化した微粒
子が基材表面に現れることにより、優れた抗血栓性表面
が維持される。更に微粒子表面に親水性物質を介して抗
血栓性物質を固定化するために、抗血栓性物質の運動性
が束縛されず活性の減少を抑制することができ、優れた
抗血栓性を示す。
In the case where the antithrombotic substance is supported on the surface of biodegradable particles, the surface area that can be immobilized is increased by supporting the antithrombotic substance on a spherical surface instead of a flat surface, thereby increasing the amount of immobilization. It becomes possible. Since the antithrombotic substance is not immobilized directly on the base material and is bound to biodegradable microparticles to coat the surface of the base material, the antithrombotic treatment operation of a complicated shape is applied to the base material solution. Thus, the loss of the antithrombotic substance can be reduced as compared with the method of immersion reaction. Since the microparticles have biodegradability, the microparticles on the surface of the base material are gradually decomposed, the antithrombotic substance with reduced activity is discharged, and the antithrombotic substance whose activity is maintained is immobilized on the surface. The appearance of the fine particles on the surface of the substrate maintains an excellent antithrombotic surface. Further, since the antithrombotic substance is immobilized on the surface of the fine particles via the hydrophilic substance, the motility of the antithrombotic substance is not restricted, and the decrease in the activity can be suppressed.

【0007】粒子内に抗血栓性物質を担持する場合、微
粒子の生体内での分解により抗血栓性物質が放出され
る。微粒子の生体内での分解性に応じて抗血栓性物質の
徐放速度が制御される。微粒子化による利点は、抗血栓
性物質が均一に基材上の微粒子層に担持でき、複雑な形
状への抗血栓性処理操作が可能であることが挙げられ
る。
When an antithrombotic substance is carried in particles, the antithrombotic substance is released by the decomposition of the fine particles in a living body. The sustained release rate of the antithrombotic substance is controlled according to the degradability of the microparticles in the living body. The advantage of micronization is that the antithrombotic substance can be uniformly supported on the fine particle layer on the substrate, and the antithrombotic treatment operation into a complicated shape can be performed.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

1)抗血栓性物質を生体内分解性微粒子表面に固定化す
る場合 はじめに表面に親水性物質を有する生体内分解性微粒子
を作成する。生体内分解性微粒子の粒子核となる物質は
ポリアルキルシアノアクリレート系のポリマー、もしく
はポリ乳酸、ポリ乳酸ポリグリコール酸共重合体、ポリ
アミノ酸系物質がその分解生成物が人体に対して無害で
あるので望ましい。親水性物質は1分子中に抗血栓性物
質を固定化できる官能基と生体内分解性の微粒子と結合
できる官能基の少なくとも一つずつを有している物質が
望ましい。例えば、両末端カルボキシル基型ポリアルキ
ルグリコール、両末端アミノ基型ポリアルキルグリコー
ル等である。更に望ましくは両末端に反応の性質が異な
る官能基を持つ物質が望ましい。例えば、片末端カルボ
キシル基他末端アミノ基型ポリアルキルグリコール、片
末端メタクリロイル型他末端カルボキシル基型ポリアル
キルグリコール等が使用出来る。
1) Immobilization of antithrombotic substance on biodegradable microparticle surface First, biodegradable microparticles having a hydrophilic substance on the surface are prepared. The substance serving as the particle core of the biodegradable fine particles is a polyalkylcyanoacrylate-based polymer, or polylactic acid, a polylactic acid-polyglycolic acid copolymer, or a polyamino acid-based substance whose decomposition products are harmless to the human body So desirable. The hydrophilic substance is desirably a substance having at least one functional group capable of immobilizing an antithrombotic substance and one functional group capable of binding to biodegradable fine particles in one molecule. For example, both terminal carboxyl group type polyalkyl glycol, both terminal amino group type polyalkyl glycol and the like. More preferably, a substance having functional groups having different reaction properties at both ends is desirable. For example, one terminal carboxyl group and other terminal amino group type polyalkyl glycol, one terminal methacryloyl type and other terminal carboxyl group type polyalkyl glycol can be used.

【0009】生体内分解性の微粒子の調製はモノマーが
ビニル型の場合、ラジカル重合、アニオン重合等にて調
製できる。溶媒を適当に選択し、末端ビニル型の親水性
物質と粒子核となる生体内分解性のモノマーを加えて分
散重合を行うと表面に親水性物質を有する微粒子が得ら
れる。縮合型の生体内分解性物質の場合では先に生体内
分解性物質をポリマー化し、その水溶液を油中に分散さ
せ加熱しながら親水性物質を反応させると表面に親水性
分子を有する微粒子が得られる。上記のようにして得ら
れる微粒子の粒子径の制御はモノマーの疎水性度、親水
性物質の分子量、親水性物質と生体内分解性物質との調
製時の仕込み比等を変化させることで可能であり、およ
そ0.05〜500μm程度である。粒子径及び生体内分解性材
料の疎水性度は微粒子の分解速度を支配し、材料の仕込
み比により微粒子の分解速度を制御でき、材料表面の分
解速度制御に利用できる。得られた微粒子に抗血栓性物
質を固定化する方法は官能基に応じて行う。抗血栓性物
質の固定化は公知の方法が数多く存在しその方法に従
う。基本的には微粒子表面の親水性物質の官能基を活性
化後、遠心分離操作を数回行い粒子を洗浄する。緩衝液
に再分散し固定化する抗血栓性物質を加え反応させる。
抗血栓性物質は特に限定はしないが、ヘパリン、硫酸化
多糖、ウロキナーゼ、トロンボモジュリン、ストレプト
キナーゼ、ランボロキナーゼ等が挙げられる。反応終了
後に遠心操作により未反応物質を洗浄し固定化を終了す
る。
The biodegradable fine particles can be prepared by radical polymerization, anion polymerization or the like when the monomer is a vinyl type. When a solvent is appropriately selected, a vinyl-terminated hydrophilic substance and a biodegradable monomer serving as a particle nucleus are added to carry out dispersion polymerization, fine particles having a hydrophilic substance on the surface are obtained. In the case of a condensed type biodegradable substance, the biodegradable substance is first polymerized, and the aqueous solution is dispersed in oil and reacted with the hydrophilic substance while heating, whereby fine particles having hydrophilic molecules on the surface are obtained. Can be The particle size of the fine particles obtained as described above can be controlled by changing the hydrophobicity of the monomer, the molecular weight of the hydrophilic substance, the charge ratio of the hydrophilic substance to the biodegradable substance during preparation, and the like. Yes, about 0.05 to 500 μm. The particle size and the degree of hydrophobicity of the biodegradable material govern the decomposition rate of the fine particles, and the decomposition rate of the fine particles can be controlled by the charge ratio of the material, which can be used for controlling the decomposition rate of the material surface. The method of immobilizing the antithrombotic substance on the obtained fine particles is performed according to the functional group. There are many known methods for immobilizing an antithrombotic substance, and these methods are followed. Basically, after activating the functional group of the hydrophilic substance on the surface of the fine particles, centrifugation is performed several times to wash the particles. An antithrombotic substance to be redispersed and immobilized in a buffer is added and reacted.
The antithrombotic substance is not particularly limited, but examples include heparin, sulfated polysaccharide, urokinase, thrombomodulin, streptokinase, lambolokinase and the like. After the reaction, the unreacted substances are washed by centrifugation to complete the immobilization.

【0010】2)抗血栓性物質を生体内分解性微粒子内
部に担持する場合 生体内分解性微粒子の粒子核となる物質はポリアルキル
シアノアクリレート系のポリマー、もしくはポリ乳酸、
ポリ乳酸ポリグリコール酸共重合体、ポリアミノ酸系物
質がその分解生成物が人体に対して無害であるので望ま
しい。生体内分解性の微粒子の調製はモノマーがビニル
型の場合、ラジカル重合、アニオン重合等にて調製でき
る。溶媒を適当に選択し、末端ビニル型の親水性物質や
過硫酸カリウムと粒子核となる生体内分解性のモノマ
ー、抗血栓性物質を加えて分散重合を行うと粒子内及び
表面に抗血栓性物質が担持される。縮合型の生体内分解
性物質の場合では先に生体内分解性物質をポリマー化し
た後、抗血栓性物質を混合し噴霧乾燥、液中乾燥法等に
より調整できる。
2) When an antithrombotic substance is carried inside the biodegradable fine particles: The substance serving as the core of the biodegradable fine particles is a polyalkylcyanoacrylate polymer or polylactic acid.
Polylactic acid-polyglycolic acid copolymers and polyamino acid-based substances are desirable because their decomposition products are harmless to the human body. Preparation of biodegradable microparticles can be prepared by radical polymerization, anion polymerization or the like when the monomer is a vinyl type. A suitable solvent is selected, and a vinyl-terminated hydrophilic substance, potassium persulfate, a biodegradable monomer serving as a particle nucleus, and an antithrombotic substance are added, and dispersion polymerization is performed. The substance is loaded. In the case of a condensed type biodegradable substance, the biodegradable substance is first polymerized, then mixed with an antithrombotic substance, and adjusted by a spray drying method, a submerged drying method or the like.

【0011】1),2)ようにして得られる微粒子の粒
子径の制御はモノマーの疎水性度、親水性物質と生体内
分解性物質との調製時の仕込み比あるいは乾燥条件等を
変化させることで可能であり、およそ0.05〜500μm程度
である。粒子径及び生体内分解性材料の疎水性度は微粒
子の分解速度を支配し、材料の仕込み比により微粒子の
分解速度を制御でき、材料表面分解の速度制御に利用で
きる。基材上への生体内分解性微粒子分散層の形成は抗
血栓性物質が固定化された生体内分解性微粒子の分散液
をそのまま、あるいは遠心操作により濃縮し、基材上に
塗布することで行える。医療用具基材上への塗布には微
粒子分散液をそのまま用いても良いし、マトリックスと
なる高分子を溶解させ混合した塗布液を用いても良い。
マトリックスとなる高分子は、特には限定しないが、親
水性の血液適合性に優れた高分子が望ましく、ポリエチ
レングリコールやポリメタクリル酸エステル誘導体、ポ
リビニルアルコール等が挙げられる。微粒子層は生体内
分解性微粒子の分散液濃度により厚みを制御できる。
The control of the particle size of the fine particles obtained as described in 1) and 2) is carried out by changing the hydrophobicity of the monomer, the charge ratio at the time of preparing the hydrophilic substance and the biodegradable substance, or the drying conditions. And it is about 0.05 to 500 μm. The particle size and the degree of hydrophobicity of the biodegradable material govern the decomposition rate of the fine particles, and the decomposition rate of the fine particles can be controlled by the charge ratio of the material, which can be used for controlling the decomposition rate of the material surface. The formation of the biodegradable fine particle dispersion layer on the base material is performed by directly applying the concentration of the biodegradable fine particle dispersion having the antithrombotic substance immobilized thereon or by centrifugation, and applying the concentrate on the base material. I can do it. For coating on the medical device substrate, a fine particle dispersion may be used as it is, or a coating solution in which a polymer serving as a matrix is dissolved and mixed may be used.
The polymer serving as the matrix is not particularly limited, but is preferably a hydrophilic polymer having excellent blood compatibility, such as polyethylene glycol, a polymethacrylate derivative, and polyvinyl alcohol. The thickness of the fine particle layer can be controlled by the concentration of the dispersion of the biodegradable fine particles.

【0012】[0012]

【実施例】【Example】

(1)生体内分解性微粒子の調製 (A)ヘパリンが固定化された生体内分解性微粒子の調製 2-シアノアクリル酸エステル(シグマ社製)10gと片末
端メタクリロイル型他末端カルボキシル基ポリエチレン
グリコール1gをエタノール:水=1:1の溶剤に溶解さ
せ、開始剤にアゾビスイソブチロニトリル(和光純薬工
業(株)製)を用いて10時間、60℃にて分散重合を行
った。反応終了後透析、遠心分離により精製を行った。
得られた微粒子の形態観察、直径の測定をSEMにて行っ
たところ、その形状は球形で直径の平均は200nmであっ
た。上記のようにして得られた微粒子の水分散液(0.1g
/ml)10mlを遠心操作によって調製し、水溶性カルボジ
イミド(和光純薬工業(株)製)を0.1g加え微粒子のカル
ボキシル基を4℃で30分間活性化した。その後遠心分
離により過剰な水溶性カルボジイミドを除去した。次に
ヘパリン(和光純薬工業(株)製)水溶液(0.1g/ml)10m
lを加え24時間、4℃で反応を行った。反応終了後、
遠心分離操作により未反応のヘパリンを除去した。反応
前後の粒子重量よりヘパリンの固定化量を算出したとこ
ろ微粒子重量当たり1g/gであった。
(1) Preparation of biodegradable fine particles (A) Preparation of biodegradable fine particles having immobilized heparin 10 g of 2-cyanoacrylate (manufactured by Sigma) and 1 g of methacryloyl-type carboxyl group at one end and 1 g of polyethylene glycol at the other end Was dissolved in a solvent of ethanol: water = 1: 1, and dispersion polymerization was carried out at 60 ° C. for 10 hours using azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) as an initiator. After completion of the reaction, purification was performed by dialysis and centrifugation.
Observation of the morphology and measurement of the diameter of the obtained fine particles by SEM revealed that the shape was spherical and the average diameter was 200 nm. The aqueous dispersion of fine particles obtained as described above (0.1 g
/ ml) by centrifugation, and 0.1 g of water-soluble carbodiimide (manufactured by Wako Pure Chemical Industries, Ltd.) was added to activate the carboxyl groups of the fine particles at 4 ° C for 30 minutes. Thereafter, excess water-soluble carbodiimide was removed by centrifugation. Next, heparin (manufactured by Wako Pure Chemical Industries, Ltd.) aqueous solution (0.1 g / ml) 10 m
l was added and the reaction was carried out at 4 ° C. for 24 hours. After the reaction,
Unreacted heparin was removed by centrifugation. The amount of heparin immobilized was calculated from the weights of the particles before and after the reaction and found to be 1 g / g per fine particle weight.

【0013】(B)ヘパリンを粒子内に担持した生体内分
解性微粒子の調製 ヘパリン1gを水10mlに溶解させエタノール100mlに滴下
しヘパリンの微粒子を形成させた。次に2-シアノアクリ
ル酸エステル(シグマ社製)10gと片末端メタクリロイ
ル型他末端カルボキシル基ポリエチレングリコール1gを
水100mlに溶解させた液を調整し、それぞれを混合し開
始剤にアゾビスイソブチロニトリル(和光純薬工業(株)
製)を用いて10時間、60℃にて分散重合を行った。
反応終了後透析、遠心分離により精製を行った。得られ
た微粒子の形態観察、直径の測定をSEMにて行ったとこ
ろ、その形状は球形で直径の平均は800nmであった。
(B) Preparation of biodegradable fine particles carrying heparin in particles 1 g of heparin was dissolved in 10 ml of water and dropped into 100 ml of ethanol to form fine particles of heparin. Next, a solution was prepared by dissolving 10 g of 2-cyanoacrylate (manufactured by Sigma) and 1 g of methacryloyl-type other-end carboxyl group polyethylene glycol at 100 g of water in 100 ml of water. Nitrile (Wako Pure Chemical Industries, Ltd.)
Was subjected to dispersion polymerization at 60 ° C. for 10 hours.
After completion of the reaction, purification was performed by dialysis and centrifugation. Observation of the morphology and measurement of the diameter of the obtained fine particles were carried out by SEM. As a result, the shape was spherical and the average diameter was 800 nm.

【0014】(2)微粒子の基材へのコーティング ポリウレタン製(TECOFLEX)チューブ(内径1mm)内側
の微粒子層のコーティングを(1)の(A)で作成した微
粒子水分散液(0.2g/ml)をシリンジを用いて行った。
微粒子の水分散液をポリウレタンチューブ内に挿入、排
出し真空乾燥してコーティングを行った。コーティング
層の厚さを電子顕微鏡により測定したところ5μmであっ
た。
(2) Coating of fine particles on a substrate A fine particle aqueous dispersion (0.2 g / ml) prepared by coating the fine particle layer inside a polyurethane (TECOFLEX) tube (inner diameter 1 mm) in (1) (A). Was performed using a syringe.
The aqueous dispersion of the fine particles was inserted into a polyurethane tube, discharged, and dried under vacuum to perform coating. The thickness of the coating layer measured by an electron microscope was 5 μm.

【0015】(3)微粒子層の分解速度試験 微粒子層の分解試験は(2)で作成したチューブに37
℃に保持したリン酸緩衝液(pH=7.4)をポンプを用いて
循環させて行った。所定時間毎にチューブを切り取り真
空乾燥後に微粒子層の厚さを電子顕微鏡を用いて測定し
た。結果を図1に示す。
(3) Decomposition rate test of the fine particle layer The decomposition test of the fine particle layer was performed on the tube prepared in (2).
This was carried out by circulating a phosphate buffer (pH = 7.4) maintained at a temperature of ° C using a pump. The tube was cut off at predetermined time intervals, and after drying under vacuum, the thickness of the fine particle layer was measured using an electron microscope. The results are shown in FIG.

【0016】(4)動物埋め込みによる抗血栓性の評価 体重12 kg のビーグル成犬(雌性)1頭をアトロピン
にて前処理し、導入麻酔をフルニトラゼパム 0.1mg/kg
、ケタミン 3mg/kg の静注によって実施した。犬を手
術台に固定後、ヘパリン(100U/kg)を静注し、フロー
センによる麻酔を維持しながら、頸部を切開し、左右の
両頸動脈を各々5cm程度露出した。次いで左頸動脈を
一時的に結紮し、頸動脈末梢部表面を血流方向に5mm
程度切開し上記で作製した本発明の表面処理を施したポ
リウレタンカテーテルの一端を3cm挿入し、血管の外
側より結紮糸にて縛り、カテーテルを頸動脈内に固定し
た。同様に左頸動脈中枢部を切開しここに同カテーテル
の他端を挿入し、結紮糸によって同様に固定し、頸動脈
バイパスを形成した。比較例として未処理のポリウレタ
ンカテーテルを用い右頸動脈バイパスを同様に形成し
た。
(4) Evaluation of antithrombotic properties by animal implantation One adult beagle dog (female) weighing 12 kg was pretreated with atropine, and induction of anesthesia was performed with flunitrazepam 0.1 mg / kg.
Was performed by intravenous injection of ketamine 3 mg / kg. After fixing the dog on an operating table, heparin (100 U / kg) was intravenously injected, and the neck was incised while maintaining anesthesia with Frosen to expose both left and right carotid arteries by about 5 cm each. Subsequently, the left carotid artery was temporarily ligated, and the peripheral surface of the carotid artery was 5 mm in the blood flow direction.
One end of the polyurethane catheter prepared above and subjected to the surface treatment of the present invention prepared above was inserted by 3 cm, ligated from the outside of the blood vessel with a ligature, and the catheter was fixed in the carotid artery. Similarly, the central portion of the left carotid artery was incised, the other end of the catheter was inserted into the central portion, and similarly fixed with a ligature to form a carotid artery bypass. As a comparative example, a right carotid artery bypass was similarly formed using an untreated polyurethane catheter.

【0017】頸動脈バイパスはフローセンによる麻酔を
維持しながら5時間実施した。20日後、イヌの頸動脈か
ら実施例及び比較例のカテーテルを取り外し、直ちに注
射器を用いて 2500 IU/ 500 mL のヘパリンを溶解した
生理食塩水にて両カテーテルの内外面を静かに洗浄し、
血液を洗い流した。その後、肉眼的に両カテーテルの外
面の血栓の付着の程度を観察し比較評価した後、カテー
テルの内腔を切り開き、同様に両カテーテル内腔面への
血栓の付着の程度を観察し比較評価した。
The carotid artery bypass was performed for 5 hours while maintaining the anesthesia with Frousen. Twenty days later, the catheters of the Examples and Comparative Examples were removed from the carotid artery of the dog, and immediately the inner and outer surfaces of both catheters were gently washed with a syringe in a saline solution of 2500 IU / 500 mL of heparin,
Blood was washed away. Thereafter, the degree of thrombus adhesion on the outer surface of both catheters was visually observed and comparatively evaluated.After that, the lumen of the catheter was cut open, and the degree of thrombus adhesion on the inner surfaces of both catheters was similarly observed and evaluated comparatively. .

【0018】(5)評価結果 実施例及び比較例の各血管バイパス用カテーテルの評価
結果は以下のようになった。
(5) Evaluation Results The evaluation results of the vascular bypass catheters of the example and the comparative example were as follows.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明は抗血栓性物質を付与した生体内
分解性微粒子を基材表面に修飾し表面層を徐々に分解さ
せることで長期間基材の抗血栓性を維持するものであ
る。生体内分解性微粒子表面に固定化された抗血栓性物
質は活性の減少と共に生体内分解性微粒子の分解に伴い
徐々に血中に排除される。このため基材上では活性の高
い新しい抗血栓性物質が供給され優れた抗血栓性が維持
される。生体内分解性微粒子内部に存在する抗血栓性物
質は微粒子の分解または水の進入により徐序に血中に放
出され基材の抗血栓性を維持する。
The present invention is intended to maintain the antithrombotic properties of a substrate for a long period of time by modifying the surface of the substrate with biodegradable fine particles provided with an antithrombotic substance and gradually decomposing the surface layer. . The antithrombotic substance immobilized on the surface of the biodegradable fine particles is gradually eliminated from the blood as the activity of the biodegradable fine particles is degraded as the activity decreases. For this reason, a new antithrombotic substance having high activity is supplied on the substrate, and excellent antithrombotic properties are maintained. The antithrombotic substance present inside the biodegradable microparticles is gradually released into the blood by the decomposition of the microparticles or the ingress of water, thereby maintaining the antithrombotic property of the base material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図の縦軸は微粒子層の厚み、横軸は時間(日)
を示している。100日以上ゆっくりと表面層が分解し
ていることがわかる。
FIG. 1 The vertical axis in the figure is the thickness of the fine particle layer, and the horizontal axis is time (days).
Is shown. It can be seen that the surface layer was slowly decomposed for 100 days or more.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 生体内分解性を示す微粒子の表面に親水
性物質を介して抗血栓性物質を固定化した材料を基材上
にコートすることを特徴とする抗血栓性材料。
1. An antithrombotic material characterized by coating a substrate with a material in which an antithrombotic substance is immobilized via a hydrophilic substance on the surface of microparticles having biodegradability.
【請求項2】 生体内分解性を示す微粒子内に抗血栓性
物質を分散した材料を基材上にコートすることを特徴と
する抗血栓性材料。
2. An antithrombotic material, characterized in that a material in which an antithrombotic substance is dispersed in biodegradable fine particles is coated on a substrate.
JP9043200A 1997-02-27 1997-02-27 Anti-thrombus material Pending JPH10234846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9043200A JPH10234846A (en) 1997-02-27 1997-02-27 Anti-thrombus material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9043200A JPH10234846A (en) 1997-02-27 1997-02-27 Anti-thrombus material

Publications (1)

Publication Number Publication Date
JPH10234846A true JPH10234846A (en) 1998-09-08

Family

ID=12657299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9043200A Pending JPH10234846A (en) 1997-02-27 1997-02-27 Anti-thrombus material

Country Status (1)

Country Link
JP (1) JPH10234846A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262895A (en) * 1999-03-17 2000-09-26 P Sharuma Chandora Production of immunity adsorbent matrix and immunity adsorbent column
JP2005518827A (en) * 2001-10-05 2005-06-30 サーモディクス,インコーポレイテッド Particle fixing coating and use thereof
JP2009542671A (en) * 2006-06-28 2009-12-03 サーモディクス,インコーポレイティド Active agent elution matrix containing fine particles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262895A (en) * 1999-03-17 2000-09-26 P Sharuma Chandora Production of immunity adsorbent matrix and immunity adsorbent column
JP2005518827A (en) * 2001-10-05 2005-06-30 サーモディクス,インコーポレイテッド Particle fixing coating and use thereof
JP2011115601A (en) * 2001-10-05 2011-06-16 Surmodics Inc Particle immobilized coating and use thereof
US8679454B2 (en) 2001-10-05 2014-03-25 Surmodics, Inc. Particle immobilized coatings and uses thereof
JP2009542671A (en) * 2006-06-28 2009-12-03 サーモディクス,インコーポレイティド Active agent elution matrix containing fine particles

Similar Documents

Publication Publication Date Title
US5811151A (en) Method of modifying the surface of a medical device
US6541116B2 (en) Superoxide dismutase or superoxide dismutase mimic coating for an intracorporeal medical device
US8679454B2 (en) Particle immobilized coatings and uses thereof
EP1051208B1 (en) Hydrophilic coating for an intracorporeal medical device
JPH11511355A (en) Method for producing heparinized biomaterial
JP4339413B2 (en) Surface modification method using reaction mixture of water-insoluble polymer and polyalkylenimine
US20060030669A1 (en) Thermally-reactive polymers
JP3705740B2 (en) Ion complex, coating body and coating method
JP2003527874A (en) Methods and compositions for preventing the formation of adhesions in biological tissues
JPH0145373B2 (en)
JPH0687968A (en) Method for grafting previously formed hydrophilic polymer onto base hydrophobic polymer, and coating composition therefor
JP2002523476A (en) Gels and multilayer surface structures derived from boronic acid-containing polymers
EP1147148B1 (en) Dextran-maleic acid monoesters and hydrogels based thereon
JP2012510301A (en) Biodegradable blend for temporary skeleton of blood vessel wall (auxiliary material)
JP2001131271A (en) Surface on which polymer-micell layer is laminated and its preparation process
JP2000507849A (en) Covalent surface modification with polymers to improve biocompatibility
JPH10234846A (en) Anti-thrombus material
Kabanov Preparation of polymeric biomaterials with the aid of radiation-chemical methods
Säilynoja et al. Immobilization of a biologically active coating on a hydrophobic L-lactide-ɛ-caprolactone copolymer
CN115721786B (en) Functional medical coating and preparation method thereof
Kálal Interaction of synthetic polymers with components of the living materials
JPH07236690A (en) Method for fixing fibrinogenolysis active material
JPH0655222B2 (en) Anticoagulant medical material and method for producing the same
RU2388495C1 (en) Method for obtaining thromboresistant polymer materials
Vascularization et al. Journal of Biomaterials