[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH1022595A - Printed wiring board - Google Patents

Printed wiring board

Info

Publication number
JPH1022595A
JPH1022595A JP17357296A JP17357296A JPH1022595A JP H1022595 A JPH1022595 A JP H1022595A JP 17357296 A JP17357296 A JP 17357296A JP 17357296 A JP17357296 A JP 17357296A JP H1022595 A JPH1022595 A JP H1022595A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
glass cloth
thermal expansion
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17357296A
Other languages
Japanese (ja)
Inventor
Akira Murai
曜 村井
Yoshihiro Nakamura
吉宏 中村
Hiroshi Narisawa
浩 成沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP17357296A priority Critical patent/JPH1022595A/en
Publication of JPH1022595A publication Critical patent/JPH1022595A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • H05K3/4015Surface contacts, e.g. bumps using auxiliary conductive elements, e.g. pieces of metal foil, metallic spheres

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To put the thermal expansion coefficients of an electronic component and a printed wiring board at approximate values, by forming terminal plugs for surface mounting so that they may be orthogonal to the direction of threads where the weave density is large. SOLUTION: For example, in a cloth 0.1mm thick, a laminate where glass cloth base material is lined with copper is manufacture, using the glass cloth which is woven so that the threads ma be sixty five pieces in longitudinal direction and fifty five pieces in lateral direction, or sixty seven pieces in longitudinal direction and fifty pieces in lateral direction, as regards the area of 25mm square. This way, a printed wiring board for mounting electronic components is manufactured, using a material for a laminate lined with copper which is manufactured, with the glass cloth, where the weave density is different between the longitudinal direction and the lateral direction, as the base material. At that time, the arrangement of all the terminal plugs of electronic components is designed so that it may be orthogonal to the thread in the direction where the weave density is high. Hereby, the thermal expansion coefficients of the printed wiring board and the electronic component are made approximate values, by which the reliability on connection of the terminal plugs can be improved and also the yield in mounting can also be made good.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品搭載用で
あって、表面実装用端子栓を有するプリント配線板に関
する。
The present invention relates to a printed wiring board for mounting electronic components and having a terminal plug for surface mounting.

【0002】[0002]

【従来の技術】プリント配線板の基板としては、繊維基
材と熱硬化性樹脂とからなる積層板が広く使用されてい
る。繊維基材としては、紙、織布などが一般に用いられ
ているが、ガラス繊維布(以下ガラス布という)を基材
とする、いわゆるガラス布基材積層板は、耐熱性が良好
であるため信頼性を要求されるコンピュータなどに使用
されるプリント配線板の基板材料として最適とされてい
る。現在使用されている主なガラス布を表1に示す。
2. Description of the Related Art As a substrate for a printed wiring board, a laminate made of a fiber base material and a thermosetting resin is widely used. As the fiber base material, paper, woven fabric, and the like are generally used. However, a so-called glass cloth base material laminate made of glass fiber cloth (hereinafter referred to as glass cloth) has good heat resistance. It is optimal as a substrate material for printed wiring boards used in computers and the like that require reliability. Table 1 shows the main glass cloths currently used.

【0003】[0003]

【表1】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ UL分類 使用糸 密度(本/25mm) 厚さ(mm) 質量(g/m2) ──────────────────────────────────── 7628 G75×G75 42×32 0.180 203 G75×G75 44×34 0.180 209 G75×G72 43×33 0.180 211 ──────────────────────────────────── 2116 E225×E225 67×50 0.100 104 E225×E225 60×58 0.100 104 E225×E225 65×55 0.100 108 E225×D450 60×64 0.09 85 ──────────────────────────────────── 1080 D450×D450 60×48 0.055 48 D450×D450 70×60 0.065 58 ──────────────────────────────────── 106 D900×D900 56×56 0.035 25 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 1] 分類 UL classification Used thread density (line / 25mm) Thickness (mm) Mass (g / m 2 ) 28 7628 G75 × G75 42 × 32 0.180 203 G75 × G75 44 × 34 0.180 209 G75 × G72 43 × 33 0.180 211 ─────────────────────────── ───────── 2116 E225 × E225 67 × 50 0.100 104 E225 × E225 60 × 58 0.100 104 E225 × E225 65 × 55 0.100 108 E225 × D450 60 × 64 0.09 85 ──────── ──────────────────────────── 1080 D450 × D450 60 × 48 0.055 48 D450 × D450 70 × 60 0.065 58 ───── ────── 106 106 D900 × D900 56 × 56 0.035 25 ━━━━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━

【0004】積層板の基材となるガラス布の織密度は、
例えば、厚さ0.1mmの布では、25mmあたり縦糸
が60本、横糸が58本というように基準化されている
(UL分類 2116参照)。
[0004] The woven density of the glass cloth used as the base material of the laminate is
For example, in a cloth having a thickness of 0.1 mm, the standardization is such that 60 warp yarns and 58 weft yarns per 25 mm (see UL classification 2116).

【0005】[0005]

【発明が解決しようとする課題】電子部品が小型化し、
実装も高密度化するのに伴い、実装技術においては表面
実装型の実装方式が増えてきている。このためパッケー
ジの形態も挿入型のDIP(デユアルインラインパッケ
ージ)等からSOP(スモールアウトラインパッケー
ジ)、TSOP(シンスモールアウトラインパッケー
ジ)等に変化している。DIP等は挿入型なので基板の
熱膨張係数はあまり関係なかったが、SOP、TSOP
等は表面実装であるため、電子部品とプリント基板との
熱膨張係数が近い値でないと実装歩留りが悪化し、信頼
性が悪くなる等の悪影響がでてくる。
SUMMARY OF THE INVENTION Electronic components have become smaller,
As mounting density has been increased, mounting techniques of a surface mounting type have been increasing in mounting technology. For this reason, the form of the package has changed from an insertion type DIP (dual inline package) or the like to a SOP (small outline package), a TSOP (thin small outline package), or the like. The thermal expansion coefficient of the substrate did not matter so much because DIP etc. were insertion type, but SOP, TSOP
And the like are surface mounting, and if the thermal expansion coefficients of the electronic component and the printed circuit board are not close to each other, the mounting yield is deteriorated, and adverse effects such as deterioration in reliability are caused.

【0006】容量が4メガバイトレベルのメモリーで
は、パッケージの熱膨張係数は11〜13ppm/℃で
あり、プリント配線板の熱膨張係数の許容値が14〜1
6ppm/℃となる。一般のFR−4レベルのプリント
基板の熱膨張係数は、15〜16ppm/℃であり、こ
の値で許容値ぎりぎりの値となる。ところが、現行メモ
リーの容量は、16メガバイトから64メガバイトと大
きくなる傾向にあり、これに対応するプリント配線板の
熱膨張係数の許容値は、10ppm/℃以下にする必要
がある。
In a memory having a capacity of 4 megabytes, the thermal expansion coefficient of the package is 11 to 13 ppm / ° C., and the allowable value of the thermal expansion coefficient of the printed wiring board is 14 to 1 ppm.
6 ppm / ° C. The thermal expansion coefficient of a general FR-4 level printed circuit board is 15 to 16 ppm / ° C., which is a value close to an allowable value. However, the capacity of the current memory tends to increase from 16 megabytes to 64 megabytes, and the corresponding allowable value of the thermal expansion coefficient of the printed wiring board needs to be 10 ppm / ° C. or less.

【0007】また液晶用プリント配線板においては、大
画面化、狭額縁化に伴い、該液晶パネルをはさんだ幅の
狭い細長いプリント配線板が要求されてきている。この
配線板は液晶ガラス部とTCP(テープキャリアパッケ
ージ)で一括に接続される実装技術が発達してきており
長さ方向の熱膨張係数が液晶ガラス部と近い値でないと
TCPに歪みが発生し、信頼性が悪化する。
[0007] Further, as the printed wiring board for liquid crystal becomes larger and the frame becomes narrower, a narrow and narrow printed wiring board sandwiching the liquid crystal panel is required. This wiring board has been developed with the mounting technology of connecting the liquid crystal glass part and the TCP (tape carrier package) collectively. If the thermal expansion coefficient in the length direction is not close to that of the liquid crystal glass part, the TCP will be distorted, Reliability deteriorates.

【0008】このように、電子部品とプリント配線板と
の接続は、配線がファインピッチになればなる程信頼性
を要求される。しかしながら、プリント配線板と電子部
品の材料が異なることによる特性の違いがあり、プリン
ト配線板に電子部品と同様の熱膨張係数を持たせること
は困難である。本発明は、このような課題を解決しよう
とするものであり、電子部品との接続信頼性のよいプリ
ント配線板を提供するものである。
As described above, the connection between the electronic component and the printed wiring board is required to have higher reliability as the wiring has a finer pitch. However, there are differences in characteristics due to different materials of the printed wiring board and the electronic component, and it is difficult to make the printed wiring board have the same thermal expansion coefficient as the electronic component. The present invention is intended to solve such a problem, and provides a printed wiring board having good connection reliability with an electronic component.

【0009】[0009]

【課題を解決するための手段】本発明は、縦方向と横方
向とで織密度が異なるガラス布を基材とする積層板より
得られるプリント配線板において、表面実装用端子栓を
織密度が大きい糸方向と直交するように形成してなるプ
リント配線板である。
SUMMARY OF THE INVENTION The present invention relates to a printed wiring board obtained from a laminated board based on a glass cloth having different weaving densities in the vertical and horizontal directions. This is a printed wiring board formed so as to be orthogonal to the large thread direction.

【0010】積層板のような複合材料の熱膨張係数は、
構成材料の体積分率により特性が決まる。ガラス布の熱
膨張係数は熱硬化性樹脂のそれと比べ1/10以下と非
常に小さく、その為単位断面積当たりのガラス量が多い
方向の熱膨張係数が小さくできる。
The coefficient of thermal expansion of a composite material such as a laminate is
The properties are determined by the volume fraction of the constituent materials. The thermal expansion coefficient of the glass cloth is very small, 1/10 or less of that of the thermosetting resin, so that the thermal expansion coefficient in the direction of increasing the amount of glass per unit sectional area can be reduced.

【0011】またガラス布の縦方向である縦糸は、ガラ
ス布を織るときの機械方向であり、充分延伸されて織ら
れており横糸と比べ伸ばされた形で織られている。この
ため、単位面積当たりの織り縮み量が少ないため、加熱
時の熱膨張係数も横糸と比べると低い値となる。したが
って、縦方向の織密度を大とし、表面実装用端子栓を縦
方向と直交するように形成すると効果がより大となる。
表面実装用端子栓は、TCPなどとの接続を目的とした
パッドで、銅はくなどの金属はくをエッチングして形成
する。
The warp, which is the longitudinal direction of the glass cloth, is the machine direction when weaving the glass cloth, is sufficiently stretched and woven, and is woven in a form stretched as compared with the weft. For this reason, since the weave shrinkage amount per unit area is small, the coefficient of thermal expansion at the time of heating also has a lower value than that of the weft. Therefore, if the weaving density in the vertical direction is increased and the terminal plug for surface mounting is formed so as to be orthogonal to the vertical direction, the effect is further enhanced.
The surface mount terminal plug is a pad for connection with TCP or the like, and is formed by etching a metal foil such as a copper foil.

【0012】[0012]

【発明の実施の形態】使用するガラス布の糸としては、
通常Eガラスの糸を使用する。より低熱膨張係数を要求
される場合には、Sガラス又はDガラスの糸を用いる。
そして、例えば、厚さが0.1mmの布においては、2
5mmについて、縦方向を65本、横方向を55本、あ
るいは、縦方向を67本、横方向を50本となるように
織ったガラス布を用いて、ガラス布基材銅張積層板を製
造する。本発明は多層プリント配線板にも適用できる。
多層プリント配線板の内層板と外層材とを接着する接着
用プリプレグの基材として、縦方向と横方向で織密度の
異なる布を用いる。そして、基材の糸方向が、内層板の
基材の糸方向と同一方向になるように接着用プリプレグ
を配置する。
BEST MODE FOR CARRYING OUT THE INVENTION As a thread of a glass cloth to be used,
Usually, a thread of E glass is used. When a lower coefficient of thermal expansion is required, S glass or D glass yarn is used.
And, for example, in a cloth having a thickness of 0.1 mm, 2
For 5 mm, a glass cloth-based copper-clad laminate is manufactured using a glass cloth woven so as to be 65 in the vertical direction, 55 in the horizontal direction, or 67 in the vertical direction and 50 in the horizontal direction. I do. The present invention can be applied to a multilayer printed wiring board.
Cloths having different weaving densities in the vertical and horizontal directions are used as a base material of an adhesive prepreg for bonding an inner layer plate and an outer layer material of a multilayer printed wiring board. Then, the adhesive prepreg is arranged such that the yarn direction of the base material is the same as the yarn direction of the base material of the inner layer plate.

【0013】このようにして製造された銅張積層板用材
料を用いて、電子部品搭載用プリント配線板を作製す
る。そのときに、織密度の高い方向の糸と直交するよう
に電子部品の全ての端子栓の配置を設計する。
A printed wiring board for mounting electronic components is manufactured using the material for a copper-clad laminate manufactured as described above. At that time, the arrangement of all the terminal plugs of the electronic component is designed so as to be orthogonal to the yarn in the direction of higher weaving density.

【0014】[0014]

【実施例】【Example】

実施例1 Sガラスの糸を、織密度が、縦方向65本/25mm、
横方向55本/25mmで織った電気絶縁材料用ガラス
布(厚さ0.1mm)を用意した。このガラス布に、エ
ポキシ樹脂(油化シェルエポキ株式会社製、商品名エピ
コートE5048を用いた)100部(重量部、以下同
じ)、フェノールノボラック樹脂(大日本インキ化学工
業株式会社製、商品名TD−2131を用いた)35
部、フェニルイミダゾール0.15部、メチルエチルケ
トン40部からなるワニスを含浸し、加熱乾燥して、半
硬化状態のプリプレグを作製した。このプリプレグ4枚
を、ガラス布の方向が同一となるように重ね、最外層に
厚さ18μmの銅はくを重ね、180℃、3MPaで9
0分間加熱加圧して、銅張積層板を製造した。また、得
られた銅張積層板を内層板とし、前記プリプレグを接着
用プリプレグとして、内層板基材と接着用プリプレグ基
材の糸方向が同じになるように配置して、LCD(液晶
表示器)用4層プリント配線板を製造した。LCD用4
層プリント配線板は、縦糸方向を長さ方向とした幅10
mm、長さ240mmの寸法であり、TCP接続用端子
を長さ方向に並ぶように12個、端子栓が長さ方向と直
交するように設けたものである。
Example 1 Weaving density of S glass thread was 65 threads / 25 mm in the longitudinal direction.
A glass cloth (0.1 mm thick) for an electrical insulating material woven in a horizontal direction of 55/25 mm was prepared. 100 parts (parts by weight, hereinafter the same) of an epoxy resin (trade name: Epicoat E5048, manufactured by Yuka Shell Epoki Co., Ltd.) and a phenol novolak resin (trade name: TD-, manufactured by Dainippon Ink and Chemicals, Inc.) 2131) 35
Varnish consisting of 0.15 parts of phenylimidazole and 40 parts of methyl ethyl ketone was impregnated and dried by heating to prepare a semi-cured prepreg. The four prepregs are stacked so that the directions of the glass cloths are the same, and a copper foil having a thickness of 18 μm is stacked on the outermost layer.
By heating and pressing for 0 minutes, a copper-clad laminate was manufactured. Further, the obtained copper-clad laminate is used as an inner layer plate, the prepreg is used as an adhesive prepreg, and the inner layer substrate and the adhesive prepreg substrate are arranged so that the yarn directions are the same. 4) Printed wiring board was manufactured. 4 for LCD
The layer printed wiring board has a width of 10 with the length in the warp direction.
mm, and a length of 240 mm, in which twelve TCP connection terminals are arranged in the length direction, and terminal plugs are provided so as to be orthogonal to the length direction.

【0015】実施例2 ガラス糸をEガラスの糸に変え、織密度を、縦方向67
本/25mm、横方向50本/25mmとしたほかは実
施例1と同様にして銅張積層板及びLCD用4層プリン
ト配線板を製造した。
Example 2 The glass yarn was changed to E glass yarn, and the weaving density was changed to 67 in the machine direction.
A copper-clad laminate and a 4-layer printed wiring board for LCD were manufactured in the same manner as in Example 1 except that the number of wires / 25 mm and the width in the horizontal direction were 50 wires / 25 mm.

【0016】比較例1 Sガラスの糸を用い、織密度を、縦方向60本/25m
m、横方向58本/25mmとしたほかは実施例1と同
様にして銅張積層板を製造し、ガラス布の縦糸方向と平
行に端子栓を設けたほかは実施例1と同様にしてLCD
用4層プリント配線板を製造した。
Comparative Example 1 Using S glass thread, the weaving density was 60 in the longitudinal direction / 25 m
m, and a copper-clad laminate was manufactured in the same manner as in Example 1 except that the width was 58 lines / 25 mm, and a terminal plug was provided in parallel with the warp direction of the glass cloth.
A four-layer printed wiring board was manufactured.

【0017】比較例2 LCD用4層プリント配線板の長さ方向を横糸方向とし
たほか実施例1と同じとした。
Comparative Example 2 The same as Example 1 except that the length direction of the four-layer printed wiring board for LCD was set to the weft direction.

【0018】比較例3 ガラス糸をEガラスの糸に変え、織密度を、縦方向60
本/25mm、横方向58本/25mmとしたほかは実
施例1と同様にして銅張積層板を製造し、ガラス布の縦
糸方向と平行に端子栓を設けたほかは実施例1と同様に
してLCD用4層プリント配線板を製造した。
Comparative Example 3 The glass yarn was changed to E glass yarn, and the weaving density was changed to 60 in the machine direction.
A copper-clad laminate was manufactured in the same manner as in Example 1 except that the number of wires / 25 mm and the width in the direction of 58 wires / 25 mm were used, and a terminal plug was provided in parallel with the warp direction of the glass cloth. Thus, a four-layer printed wiring board for LCD was manufactured.

【0019】試験その1 得られた銅張積層板から、銅はくをエッチング除去し、
熱膨張係数をTMA(熱機械分析)により測定した。そ
の結果を表2に示す。なお、熱膨張係数の単位は、pp
m/℃である。また、比較例2は実施例1と同材料であ
る。
Test 1 Copper foil was removed by etching from the obtained copper-clad laminate.
The coefficient of thermal expansion was measured by TMA (thermomechanical analysis). Table 2 shows the results. The unit of the thermal expansion coefficient is pp
m / ° C. Comparative Example 2 is the same material as in Example 1.

【0020】[0020]

【表2】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 実施例1 比較例1 実施例2 比較例3 ──────────────────────────────────── 縦糸方向 8.5 10.5 14.5 16.2 横糸方向 11.2 10.9 17.5 17.0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 2] Example 1 Comparative Example 1 Example 2 Comparison Example 3 ──────────────────────────────────── Warp direction 8.5 10.5 14.5 16 .2 Weft direction 11.2 10.9 17.5 17.0 mm ━━

【0021】試験その2 LCD用4層プリント配線板を用いて、TCPの接続実
験(試験片の数(=n)を5個とし、各試験片に12個
のTCPを、接続ツールの温度307℃、20秒ではん
だ接続した。)を行い、実装接続時の実装歩留りを調べ
た。また、−65℃〜+80℃の温度サイクル試験を行
い、断線の有無を調べた。その結果を表3に示す。表3
で数字の分母はテストした試験片の数nを、また、分子
は断線した試験片の数を示す。
Test 2 Using a 4-layer printed wiring board for LCD, a TCP connection experiment (the number of test pieces (= n) was 5, 12 TCPs for each test piece, and a connection tool temperature of 307) At 20 ° C. for 20 seconds), and the mounting yield at the time of mounting connection was examined. In addition, a temperature cycle test of -65 ° C to + 80 ° C was performed to check for disconnection. Table 3 shows the results. Table 3
The denominator of the number indicates the number n of the test pieces tested, and the numerator indicates the number of disconnected test pieces.

【0022】[0022]

【表3】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 実施例1 比較例1 比較例2 実施例2 比較例3 ────────────────────────────────── 実装歩留り(%) 100 100 98 85 75 ────────────────────────────────── 温度サイクル試験 50サイクル 異常なし 異常なし 異常なし 異常なし 異常なし 100サイクル 異常なし 異常なし 異常なし 異常なし 2/5 200サイクル 異常なし 異常なし 異常なし 異常なし 4/5 300サイクル 異常なし 異常なし 異常なし 2/5 5/5 400サイクル 異常なし 異常なし 1/5 5/5 5/5 500サイクル 異常なし 1/5 2/5 5/5 5/5 600サイクル 異常なし 2/5 3/5 5/5 5/5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 3] Example 1 Comparative Example 1 Comparative Example 2 Example 2 Comparative Example 3 {Mounting yield (%) 100 100 98 85 75}温度 Temperature cycle test 50 cycles No abnormality No abnormality No abnormality No abnormality No abnormality 100 cycles No abnormality No abnormalities No abnormalities No abnormalities 2/5 200 cycles No abnormalities No abnormalities No abnormalities No abnormalities 4/5 300 cycles No abnormalities No abnormalities No abnormalities 2/5 5/5 400 cycles No abnormalities No abnormalities 1/5 5/5 5 / 5 500 cycles No abnormality 1/5 2/5 5/5 5/5 600 cycles No abnormality / 5 3/5 5/5 5/5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0023】試験その1の結果(表2)から、縦糸方向
の織密度を大きくした実施例1及び実施例2において、
縦糸方向の熱膨張係数が小さくなっていることがわか
る。実施例1と比較例2は同じガラス材料を用いたもの
であり、縦方向の織密度を横方向より大としかつ端子栓
を縦方向と直交するように設けた実施例1では、試験そ
の2において、縦横の織密度が同じ比較例2の端子栓
を、織密度が大きい縦方向と平行になるように設けた比
較例2よりも、温度サイクル試験の結果が格段にすぐれ
ていることがわかる。また、同様なことが、Eガラスの
糸を用いた実施例2と比較例3についても言える。実施
例2は、Sガラスを用いた実施例1よりは劣るものの、
実装歩留り、温度サイクル試験ともに実施例2と同じ材
料の比較例3より格段にすぐれていることがわかる。
From the results of Test 1 (Table 2), it was found that in Examples 1 and 2 where the weaving density in the warp direction was increased,
It can be seen that the coefficient of thermal expansion in the warp direction is small. Example 1 and Comparative Example 2 used the same glass material. In Example 1 in which the weaving density in the vertical direction was larger than that in the horizontal direction and the terminal plug was provided so as to be orthogonal to the vertical direction, test 2 It can be seen that the results of the temperature cycle test are much better than Comparative Example 2 in which the terminal plugs of Comparative Example 2 having the same vertical and horizontal weave densities were provided so as to be parallel to the vertical direction with the higher weave density. . The same can be said for Example 2 and Comparative Example 3 using E glass thread. Example 2 is inferior to Example 1 using S glass,
It can be seen that both the mounting yield and the temperature cycle test are much better than Comparative Example 3 of the same material as in Example 2.

【0024】[0024]

【発明の効果】本発明によれば、端子部の接続信頼性が
大幅に向上し、また実装歩留りも良好となる。
According to the present invention, the connection reliability of the terminal portion is greatly improved, and the mounting yield is also improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 縦方向と横方向とで織密度が異なるガラ
ス布を基材とする積層板より得られるプリント配線板に
おいて、表面実装用端子栓を織密度が大きい糸方向と直
交するように形成してなるプリント配線板。
1. A printed wiring board obtained from a laminated board based on glass cloth having different weaving densities in a longitudinal direction and a lateral direction, wherein a terminal plug for surface mounting is arranged so as to be orthogonal to a yarn direction having a high weaving density. Printed wiring board formed.
【請求項2】 縦方向の織密度が横方向の織密度より大
きいガラス布を基材とする積層板より得られるプリント
配線板において、表面実装用端子栓を縦方向と直交する
ように形成してなるプリント配線板。
2. A printed wiring board obtained from a laminated board based on a glass cloth having a weaving density in a longitudinal direction larger than a weaving density in a lateral direction, wherein a terminal plug for surface mounting is formed so as to be orthogonal to the longitudinal direction. Printed wiring board.
JP17357296A 1996-07-03 1996-07-03 Printed wiring board Pending JPH1022595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17357296A JPH1022595A (en) 1996-07-03 1996-07-03 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17357296A JPH1022595A (en) 1996-07-03 1996-07-03 Printed wiring board

Publications (1)

Publication Number Publication Date
JPH1022595A true JPH1022595A (en) 1998-01-23

Family

ID=15963053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17357296A Pending JPH1022595A (en) 1996-07-03 1996-07-03 Printed wiring board

Country Status (1)

Country Link
JP (1) JPH1022595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182719A (en) * 2009-02-03 2010-08-19 Furukawa Electric Co Ltd:The Metal core printed wiring board, and manufacturing method thereof
JP2013110320A (en) * 2011-11-22 2013-06-06 Sumitomo Bakelite Co Ltd Temporary substrate for manufacturing metal foil clad substrate and manufacturing method for metal foil clad substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182719A (en) * 2009-02-03 2010-08-19 Furukawa Electric Co Ltd:The Metal core printed wiring board, and manufacturing method thereof
JP2013110320A (en) * 2011-11-22 2013-06-06 Sumitomo Bakelite Co Ltd Temporary substrate for manufacturing metal foil clad substrate and manufacturing method for metal foil clad substrate

Similar Documents

Publication Publication Date Title
US4814945A (en) Multilayer printed circuit board for ceramic chip carriers
US4318954A (en) Printed wiring board substrates for ceramic chip carriers
US4591659A (en) Multilayer printed circuit board structure
US6846549B2 (en) Multilayer printed wiring board
JP2004087856A (en) Multilayer wiring board
US6492008B1 (en) Multilayer printed wiring board and electronic equipment
US6682802B2 (en) Selective PCB stiffening with preferentially oriented fibers
US4875282A (en) Method of making multilayer printed circuit board
CN102970821A (en) Printed wiring board
US9232638B2 (en) Printed wiring board and method for manufacturing the same
JPH05286065A (en) Inorganic-fiber woven fabric for reinforcement and multilayer printed wiring board using said inorganic-fiber woven fabric
JPH08294997A (en) Laminate board and glass fabric for the laminate board base material and method of using the laminate board
JPH1022595A (en) Printed wiring board
JP3132337B2 (en) Liquid crystal display device
JPH08216340A (en) Highly rigid copper-clad laminated plate and manufacture thereof
JP3452674B2 (en) Manufacturing method of high rigidity copper clad laminate
JP3343443B2 (en) Resin composition and prepreg
JPH0664095A (en) Laminated plate
JPH05229062A (en) Metal foil clad laminated plate and printed circuit board
JP2002194120A (en) Metal foil clad laminated plate and prepreg
JPH0897561A (en) Multilayer circuit board
JP3272437B2 (en) Glass fiber woven fabric and method for producing the same
JPH0966582A (en) Ceramics composite metal foil clad laminated sheet
JPS60236279A (en) Plate for circuit
JPS5873192A (en) Printed circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060119

A521 Written amendment

Effective date: 20060320

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Effective date: 20060320

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A131 Notification of reasons for refusal

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060731

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905