JPH10213303A - Boiler load distribution control device - Google Patents
Boiler load distribution control deviceInfo
- Publication number
- JPH10213303A JPH10213303A JP9016823A JP1682397A JPH10213303A JP H10213303 A JPH10213303 A JP H10213303A JP 9016823 A JP9016823 A JP 9016823A JP 1682397 A JP1682397 A JP 1682397A JP H10213303 A JPH10213303 A JP H10213303A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- signal
- steam flow
- steam
- boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Landscapes
- Regulation And Control Of Combustion (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、並列運転される複
数のボイラの負荷配分制御に利用されるボイラ負荷配分
制御装置の改良に関する。The present invention relates to an improvement in a boiler load distribution control device used for load distribution control of a plurality of boilers operated in parallel.
【0002】[0002]
【従来の技術】一般に、工場などの蒸気発生設備は、複
数のボイラが並列運転されており、蒸気の消費量に対し
て良好な効率が得られるように、また所望の運用形態に
合致するように、さらにボイラの大きさ等に従って負荷
配分比率を変えている。従って、各ボイラは、この設定
された負荷配分比率に基づいて運転するようになってい
る。2. Description of the Related Art Generally, in a steam generating facility such as a factory, a plurality of boilers are operated in parallel so that a good efficiency can be obtained with respect to a consumption amount of steam and a desired operation mode can be met. In addition, the load distribution ratio is changed according to the size of the boiler. Therefore, each boiler is operated based on the set load distribution ratio.
【0003】図6は並列運転される複数(N)台のボイラ
を備えた従来のボイラ負荷配分制御装置の系統構成図で
ある。この制御装置は、各ボイラ11 〜1N にそれぞれ
取付けられた蒸気流量検出器21 〜2N で各ボイラ11
〜1N の発生蒸気流量を検出し、第1の加算手段3に導
入する。この第1の加算手段3では、各蒸気流量検出器
21 〜2N で検出される発生蒸気流量を加算合成して総
蒸気流量信号を求めた後、第2の加算手段4に導入す
る。FIG. 6 is a system configuration diagram of a conventional boiler load distribution control device having a plurality of (N) boilers operated in parallel. The control device, the boiler 1 1 in each boiler 1 1 to 1 steam respectively attached to the N flow sensor 2 1 to 2 N
The generated steam flow rate of 11 N is detected and introduced into the first adding means 3. The first addition means 3 adds and synthesizes the generated steam flow rates detected by the respective steam flow rate detectors 2 1 to 2 N to obtain a total steam flow rate signal, and then introduces the signal into the second addition means 4.
【0004】一方、各ボイラ11 〜1N が接続される共
通ヘッダにおける代表点の蒸気圧力を蒸気圧力検出器5
で検出し、この検出信号をフィードバック信号として蒸
気圧力調節手段6に入力する。この蒸気圧力調節手段6
は、フィードバック信号と所望の蒸気圧力設定値Psと
を比較し、実際の蒸気圧力が所望の蒸気圧力設定値Ps
に一致するように調節演算を実行し、得られた調節演算
出力を第2の加算手段4に導いて前記総蒸気流量信号に
加算している。On the other hand, the steam pressure detector vapor pressure of the representative point in the common header which each boiler 1 1 to 1 N is connected 5
The detection signal is input to the steam pressure adjusting means 6 as a feedback signal. This steam pressure adjusting means 6
Compares the feedback signal with the desired steam pressure set value Ps and determines that the actual steam pressure is the desired steam pressure set value Ps
The adjustment calculation is executed so as to coincide with the equation (1), and the obtained adjustment calculation output is guided to the second adding means 4 to be added to the total steam flow rate signal.
【0005】次いで、第2の加算手段4の出力信号は、
各ボイラごとに良好な運用・効率が得られるように負荷
配分係数α1 〜αN をもつ負荷配分係数設定手段71 〜
7Nに導入され、ここで第2の加算手段4の出力信号に
蒸気負荷配分係数α1 〜αNを乗じて各ボイラ11 〜1N
への発生蒸気流量指令信号を取り出し、蒸気流量調節
手段81 〜8N および補正手段91 〜9N に導入してい
る。Next, the output signal of the second adding means 4 is:
Load distribution coefficient setting means 7 1 to 7 having load distribution coefficients α 1 to α N so that good operation and efficiency can be obtained for each boiler.
7 N are introduced into, wherein the second steam load distribution coefficient to an output signal of the adding means 4 alpha 1 to? Multiplied by N each boiler 1 1 to 1 N
Removed generation steam flow rate command signal to have been introduced into the steam flow rate adjusting means 8 1 to 8 N and the correction means 9 1 to 9 N.
【0006】この蒸気流量調節手段81 〜8N において
は、例えば一定時間毎に発生蒸気流量指令信号を目標信
号とし、蒸気流量検出器21 〜2N から出力される実発
生蒸気流量信号をフィードバック信号とし、これら目標
信号とフィードバック信号との偏差に基づいて比例・積
分調節演算を実行し、蒸気流量補正用調節信号を求め
る。そして、この蒸気流量補正用調節信号を補正手段9
1 〜9N でそれぞれの発生蒸気流量指令信号に加算し、
各発生蒸気流量指令信号と実発生蒸気流量信号とが一致
するように補正する。その後、これら補正された発生蒸
気流量信号はそれぞれの各ボイラ11 〜1N に導入さ
れ、この指令信号に基づいて各ボイラ11 〜1N の燃焼
量が制御され、蒸気発生量を調節する構成となってい
る。[0006] In this steam flow rate adjustment means 8 1 to 8 N, for example a target signal generated steam flow command signal at predetermined time intervals, the actual generation steam flow rate signal outputted from the steam flow rate detector 2 1 to 2 N As a feedback signal, a proportional / integral adjustment operation is performed based on the deviation between the target signal and the feedback signal to obtain an adjustment signal for steam flow rate correction. Then, the control signal for correcting the steam flow rate is
In 1 to 9 N is added to each of the generated steam flow command signal,
Correction is performed so that each generated steam flow rate command signal matches the actually generated steam flow rate signal. Thereafter, these corrected generated steam flow signal is introduced into each of the boilers 1 1 to 1 N, the combustion amount of each boiler 1 1 to 1 N on the basis of the command signal is controlled to adjust the steam generation amount It has a configuration.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、以上の
ようなボイラ負荷配分制御装置は、並列運転している各
ボイラ11 〜1N の動特性や効率の相違によって、蒸気
圧力が低下して蒸気圧力調節手段6の出力信号が正,つ
まり蒸気流量を増加させる要求を出していても、各ボイ
ラ11 〜1N の大きさ等からくる応答性の違いから、各
ボイラの蒸気流量調節手段81 〜8N の出力信号が必ず
しも蒸気流量増加方向とはならず、各ボイラ11 〜1N
ごとに増・減方向がまちまちとなり、蒸気圧力が変動し
たり、整定するまでに長時間を要する問題がある。これ
は、蒸気消費量が変化しても、蒸気圧力を一定に制御し
て良質の蒸気を供給する蒸気圧力制御系と並列運転ボイ
ラをそれぞれの負荷配分指令値に基づいて正確に追従さ
せるといった各ボイラの蒸気流量制御系が独立した関係
で動作する結果、互いに相互干渉するためである。[SUMMARY OF THE INVENTION However, the boiler load distribution controller as described above, the difference in dynamic characteristics and efficiency of the boiler 1 1 to 1 N are operated in parallel, the steam pressure decreases steam output signal is positive pressure adjusting means 6, i.e. even if a request is made to increase the steam flow rate, the difference response coming from the size of each boiler 1 1 to 1 N, each boiler steam flow rate adjustment means 8 The output signals of 1 to 8 N are not necessarily in the direction of increasing the steam flow rate, and each boiler 11 to 1 N
There is a problem that the direction of increase / decrease is varied every time, the steam pressure fluctuates, and it takes a long time to settle. This means that even if the steam consumption changes, the steam pressure control system that controls the steam pressure at a constant level and supplies high-quality steam and the parallel operation boiler accurately follow each other based on the respective load distribution command values. This is because the steam flow control systems of the boiler operate in an independent relationship and, as a result, interfere with each other.
【0008】今後、工場等の蒸気発生源である並列運転
ボイラの制御システムにおいては、省エネルギー化、製
品品質の安定化および安全化などから、益々,蒸気圧力
制御の高精度化と負荷配分追従の高速・高精度化が求め
られるため、以上のような問題を解消する必要がある。[0008] In the future, in the control system of a parallel operation boiler, which is a steam generation source of a factory or the like, in order to save energy, stabilize product quality and ensure safety, more and more accurate steam pressure control and load distribution follow-up will be performed. Since high speed and high accuracy are required, it is necessary to solve the above problems.
【0009】本発明は上記実情に鑑みてなされたもの
で、相互干渉をなくし、蒸気圧力制御の高精度化および
負荷配分に対する速応的追従制御を確保し、より良質な
蒸気を高効率・安定に供給可能とするボイラ負荷配分制
御装置を提供することにある。The present invention has been made in view of the above circumstances, and eliminates mutual interference, ensures high accuracy of steam pressure control and quick response control for load distribution, and provides more efficient steam with higher efficiency and stability. It is an object of the present invention to provide a boiler load distribution control device capable of supplying to a boiler load.
【0010】[0010]
【課題を解決するための手段】本発明は、上記課題を解
決するために、並列運転される複数のボイラからそれぞ
れ発生する蒸気流量の総蒸気流量を負荷配分し各ボイラ
を制御するボイラ負荷配分制御装置において、前記各ボ
イラ群の出力側の共通代表点の蒸気圧力と所定の設定値
との偏差信号から蒸気圧力調節信号を算出し前記総蒸気
流量に加算する蒸気圧力調節手段と、この蒸気圧力調節
手段の蒸気圧力調節信号が加算された総蒸気流量に所望
の負荷配分係数を乗じて各ボイラの発生蒸気流量指令信
号を算出する負荷配分係数設定手段と、この負荷配分係
数設定手段で得られる各ボイラの発生蒸気流量指令信号
である目標値と該当ボイラの実発生蒸気流量とを用いて
調節演算を実行し蒸気流量調節信号を取り出す蒸気流量
調節手段と、前記蒸気圧力調節手段の処理信号と各ボイ
ラに対応する蒸気流量調節手段の処理信号とが同一極性
または何れかが零のとき蒸気流量調節手段の出力を更新
させ、または前記両処理信号が異極性のとき蒸気流量調
節手段の出力更新を禁止させる圧力増・減方向判別手段
と、この圧力増・減方向判別手段で更新または禁止され
る蒸気流量調節手段の出力を用いて負荷配分係数設定手
段の発生蒸気流量指令信号を補正する補正手段とを設
け、この補正手段の出力信号に基づいて対応するボイラ
の蒸気流量を追従制御するボイラ負荷配分制御装置であ
る。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a boiler load distribution system for distributing the total steam flow generated from a plurality of boilers operated in parallel and controlling each of the boilers. A controller for calculating a steam pressure adjustment signal from a deviation signal between a steam pressure at a common representative point on the output side of each of the boiler groups and a predetermined set value, and adding the signal to the total steam flow rate; Load distribution coefficient setting means for calculating a generated steam flow rate command signal for each boiler by multiplying the total steam flow to which the steam pressure adjustment signal of the pressure adjusting means is added by a desired load distribution coefficient, and the load distribution coefficient setting means. Steam flow rate adjusting means for executing a control operation using a target value which is a generated steam flow rate command signal of each boiler and an actually generated steam flow rate of the corresponding boiler and extracting a steam flow rate control signal, When the processing signal of the air pressure adjusting means and the processing signal of the steam flow adjusting means corresponding to each boiler have the same polarity or any of them is zero, the output of the steam flow adjusting means is updated, or the two processing signals have different polarities. When the pressure increase / decrease direction discriminating means inhibits the output update of the steam flow rate adjusting means, and the load distribution coefficient setting means is generated by using the output of the steam flow rate adjusting means updated or inhibited by the pressure increase / decrease direction discriminating means. And a correction means for correcting the steam flow rate command signal, and the boiler load distribution control device for following and controlling the steam flow rate of the corresponding boiler based on the output signal of the correction means.
【0011】従って、本発明は以上のような手段を講じ
たことにより、蒸気圧力調節手段の蒸気圧力増・減方向
と各ボイラの蒸気流量調節手段の増・減方向とを一致さ
せることにより、蒸気消費量が変化したとき、その蒸気
圧力の増・減方向に一致する方向の蒸気流量制御だけを
実行するので、蒸気圧力制御と各ボイラの蒸気流量制御
との間の相互干渉および各ボイラの蒸気流量制御間の相
互干渉を除去でき、蒸気圧力制御の高精度化および負荷
配分に対する速応的追従制御を確保でき、これにより良
質な蒸気を高効率・安定に供給可能となる。Therefore, the present invention, by taking the above measures, makes the steam pressure increasing / decreasing directions of the steam pressure adjusting means coincide with the increasing / decreasing directions of the steam flow rate adjusting means of each boiler. When the steam consumption changes, only the steam flow control in the direction corresponding to the increasing / decreasing direction of the steam pressure is executed, so the mutual interference between the steam pressure control and the steam flow control of each boiler and the Mutual interference between steam flow control can be eliminated, and high-precision steam pressure control and prompt response control to load distribution can be ensured. As a result, high-quality steam can be supplied with high efficiency and stability.
【0012】[0012]
【発明の実施の形態】図1は請求項1に係わる発明の一
実施の形態を示す系統構成図である。なお、同図におい
て従来技術である図6と同一機能構成部分には同一符号
を付し、その同一機能構成部分の詳細説明は省略する。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system configuration diagram showing an embodiment of the first aspect of the present invention. 6, the same reference numerals are given to the same functional components as those in FIG. 6 which is the related art, and the detailed description of the same functional components is omitted.
【0013】この制御装置において特に従来装置と比較
して異なる部分は、補正用蒸気流量を求める蒸気流量調
節手段101 〜10N および蒸気圧力の増減方向を判別
する増減方向判別手段201 〜20N を設けたことにあ
る。The difference between this control device and the conventional device is, in particular, the steam flow rate adjusting means 10 1 to 10 N for obtaining the correction steam flow rate and the increasing / decreasing direction discriminating means 20 1 to 20 for judging the increasing / decreasing direction of the steam pressure. N has been established.
【0014】従って、その他の部分,つまり並列運転さ
れている複数のボイラ11 〜1N の発生蒸気流量を検出
する蒸気流量検出器21 〜2N 、これら検出器21 〜2
N の発生蒸気流量を加算合成して総蒸気流量信号を算出
する第1の加算手段3、各ボイラ群の出力側の共通代表
点の蒸気圧力を検出する蒸気圧力検出器5、この蒸気圧
力検出器5の実際の蒸気圧力が所望の蒸気圧力設定値P
sに一致するように調節演算を実行し、上記圧力調節信
号を取り出す圧力増・減方向を高い優先順位とする蒸気
圧力調節手段6、この蒸気圧力調節手段6から得られる
蒸気圧力調節信号と第1の加算手段3の総蒸気流量信号
とを加算する第2の加算手段4、各ボイラごとの負荷配
分係数を設定する負荷配分係数設定手段71 〜7N およ
び補正手段91 〜9N 等は従来装置と同様な構成となっ
ている。[0014] Therefore, other parts, i.e. the steam flow rate detector 2 1 to 2 N for detecting the occurrence steam flow of a plurality of the boiler 1 1 to 1 N being parallel operation, these detectors 2 1 to 2
First adding means 3 for adding and synthesizing the generated steam flow rate of N to calculate a total steam flow rate signal; a steam pressure detector 5 for detecting a steam pressure at a common representative point on the output side of each boiler group; The actual steam pressure of the vessel 5 is the desired steam pressure set value P
s, a steam pressure adjusting means 6 for executing the adjusting operation so as to coincide with s, and giving a higher priority to the pressure increasing / decreasing directions for extracting the pressure adjusting signal, a steam pressure adjusting signal obtained from the steam pressure adjusting means 6, second addition means for adding the total steam flow signal 1 of the adding means 3 4, each load distribution coefficient setting means for setting a load distribution coefficient for each boiler 7 1 to 7-N and the correction means 9 1 to 9 N, etc. Has the same configuration as the conventional device.
【0015】前記各蒸気流量調節手段101 〜10N
は、各負荷配分係数設定手段71 〜7N の出力信号,つ
まり各ボイラ11 〜1N の目標信号となる発生蒸気流量
指令信号と蒸気流量検出器21 〜2N の検出信号,つま
りフィードバック信号となる実発生蒸気流量信号との偏
差を算出する偏差演算手段11と、この偏差演算手段1
1で算出される偏差信号に基づいて速度形P(P:比
例)I(I:積分)またはPID(D:微分)調節演算
を実行し速度形蒸気流量調節信号を取り出す速度形蒸気
流量調節手段12と、この速度形蒸気流量調節手段12
で得られる速度形蒸気流量調節信号を更新制御または禁
止制御するスイッチ手段13と、このスイツチ手段13
を経由してくる速度形調節信号を位置形蒸気流量補正用
調節信号に変換する速度形/位置形信号変換手段14と
によって構成されている。Each of the steam flow rate adjusting means 10 1 to 10 N
, The output signal of the load distribution coefficient setting means 7 1 to 7-N, i.e. the detection signal of each boiler 1 1 to 1 generates steam flow rate command signal as a target signal of N and steam flow rate detector 2 1 to 2 N, that is Deviation calculating means 11 for calculating a deviation from the actually generated steam flow rate signal serving as a feedback signal;
Speed type steam flow rate adjusting means for executing a speed type P (P: proportional) I (I: integral) or PID (D: differential) adjustment operation based on the deviation signal calculated in step 1 and extracting a speed type steam flow rate adjustment signal 12 and the speed type steam flow control means 12
Switch means 13 for updating or inhibiting the speed type steam flow rate control signal obtained in
And a speed-type / position-type signal converting means 14 for converting a speed-type control signal passing through the control means into a position-type steam flow rate correction control signal.
【0016】前記各増減方向判別手段201 〜20N
は、前記蒸気圧力調節手段6の出力と前記速度形蒸気流
量調節手段12の出力とを乗算する乗算手段21と、こ
の乗算手段21による乗算結果が零または零よりも大き
いとき、前記スイッチ手段13を導通する符号判別手段
22とによって構成されている。[0016] Each of decreasing direction determination means 20 1 to 20 N
Multiplying means 21 for multiplying the output of the steam pressure adjusting means 6 and the output of the speed type steam flow rate adjusting means 12; and when the result of the multiplication by the multiplying means 21 is zero or larger than zero, the switching means 13 And a code discriminating means 22 for conducting the current.
【0017】次に、以上のような装置の動作について説
明する。先ず、蒸気流量検出器21 〜2N が対応する各
ボイラ11 〜1N の実発生蒸気流量を検出して第1の加
算手段3に入力すると、この第1の加算手段3は各ボイ
ラ11 〜1N の実発生蒸気流量を加算合成して総蒸気流
量を求め、第2の加算手段4に導入する。Next, the operation of the above apparatus will be described. First, when the steam flow rate detector 2 1 to 2 N inputs to the first addition means 3 detects the actual occurrence steam flow rate of each boiler 1 1 to 1 N corresponding, the first addition means 3 each boiler The total generated steam flow rate is obtained by adding and synthesizing the actually generated steam flow rates of 11 to 1 N , and is introduced into the second adding means 4.
【0018】一方、蒸気圧力検出器5は、各ボイラの出
側の蒸気共通ヘッダの代表点における蒸気圧力を検出し
フィードバック信号として蒸気圧力調節手段6に導入す
ると、蒸気圧力調節手段6では、フィードバック信号と
所望の蒸気圧力設定値Psとを比較し、実際の蒸気圧力
が所望の蒸気圧力設定値Psに一致するような調節演算
を実行して蒸気圧力調節信号を取り出し第2の加算手段
4に導入する。On the other hand, when the steam pressure detector 5 detects the steam pressure at the representative point of the steam common header on the outlet side of each boiler and introduces it as a feedback signal to the steam pressure adjusting means 6, the steam pressure adjusting means 6 performs feedback. The signal is compared with a desired steam pressure set value Ps, and an adjustment operation is performed so that the actual steam pressure matches the desired steam pressure set value Ps, and a steam pressure adjustment signal is taken out and sent to the second adding means 4. Introduce.
【0019】この第2の加算手段4は、総蒸気流量信号
に蒸気圧力調節手段6で得られた蒸気圧力調節信号を加
算合成した後、各ボイラ11 〜1N に対応する負荷配分
係数設定手段71 〜7N に入力し、ここで負荷配分係数
α1 〜αN (α1 +……+αN )を乗じて各ボイラの発
生蒸気流量指令信号を算出し、各蒸気流量調節手段10
1 〜10N および各補正手段91 〜9N に入力する。[0019] The second adding means 4, after the steam pressure adjusting signal obtained by the steam pressure adjusting means 6 by adding synthesized total steam flow signal, the load distribution coefficient setting which corresponds to the boiler 1 1 to 1 N Input to the means 7 1 to 7 N , where they are multiplied by the load distribution coefficients α 1 to α N (α 1 +... + Α N ) to calculate the generated steam flow rate command signal of each boiler.
Input to the 1 to 10 N and the correction means 9 1 to 9 N.
【0020】この蒸気流量調節手段101 〜10N で
は、偏差演算手段11が各負荷配分係数設定手段71 〜
7N の発生蒸気流量指令信号と各蒸気流量検出器21 〜
2N で検出した実発生蒸気流量信号との偏差信号を求め
た後、速度形蒸気流量調節手段12に導入する。この速
度形蒸気流量調節手段12は、この偏差信号に基づいて
PIまたはPID調節演算を実行し、得られた速度形蒸
気流量調節信号をスイッチ手段13を経由して速度形/
位置形信号変換手段14に導き、ここで位置形蒸気流量
調節信号に変換し、各補正手段91 〜9N に入力する。
つまり、発生蒸気流量指令信号に速度形/位置形信号変
換手段14から得られる位置形蒸気流量調節信号を加算
することにより、各発生蒸気流量指令信号と実発生蒸気
流量信号とが一致するように補正する。In the steam flow rate adjusting means 10 1 to 10 N , the deviation calculating means 11 uses the load distribution coefficient setting means 7 1 to
7 N of generating steam flow command signal and the steam flow rate detector 2 1 -
After obtaining a deviation signal from the actually generated steam flow rate signal detected at 2 N, it is introduced into the speed type steam flow rate adjusting means 12. The speed type steam flow rate adjusting means 12 executes a PI or PID adjustment operation based on the deviation signal, and converts the obtained speed type steam flow rate adjusting signal via the switch means 13 into a speed type / flow rate adjusting signal.
It led to a position type signal converting means 14, where is converted into a position type steam flow rate adjustment signal, input to each correction unit 9 1 to 9 N.
That is, by adding the position-type steam flow rate control signal obtained from the speed type / position type signal conversion means 14 to the generated steam flow rate command signal, each generated steam flow rate command signal and the actual generated steam flow rate signal match. to correct.
【0021】一方、増・減方向判別手段201 〜20N
は、蒸気圧力調節手段6の出力である蒸気圧力調節信号
Pcと速度形蒸気流量調節手段12,…の速度形蒸気流
量調節信号△F11〜△F1Nとを乗算手段21,…に導い
て乗算処理を実施し、その乗算結果を符号判別手段2
2,…に入力する。この各符号判別手段22,…は、乗
算結果の信号が零または零よりも大きい関係(Pc×△
F11(〜F1N)≧0)のとき、つまり蒸気圧力調節信号
Pcと速度形蒸気流量調節信号△F11(〜F1N)とが同
一の極性、言い換えると蒸気圧力調節信号Pcの増・減
方向と速度形蒸気流量調節信号△F11(〜F1N)の増・
減方向とが一致したとき、または両者のうち何れか一方
が零のとき、スイッチ手段13を導通し、速度形蒸気流
量調節手段12,…の速度形蒸気流量調節信号△F
11(〜F1N)を当該スイッチ手段13を経由させて信号
変換手段14に導き、ここで位置形蒸気流量補正用調節
信号を求めて補正手段91 〜9N に入力する。[0021] On the other hand, increase and reduction direction determination means 20 1 ~20 N
Leads the steam pressure adjusting signal Pc output from the steam pressure adjusting means 6 and the speed type steam flow rate adjusting signals ΔF 11 to ΔF 1N of the speed type steam flow rate adjusting means 12 ,. A multiplication process is performed, and the result of the multiplication is determined by a sign determination unit 2
Input to 2, ... Each of the code discriminating means 22,... Has a relationship (Pc × △) in which the signal of the multiplication result is zero or larger than zero.
When F 11 (FF 1N ) ≧ 0, that is, when the steam pressure adjustment signal Pc and the speed-type steam flow rate adjustment signal ΔF 11 (〜F 1N ) have the same polarity, in other words, increase / decrease of the steam pressure adjustment signal Pc increasing the reduction direction and velocity type steam flow rate adjustment signal △ F 11 (~F 1N) ·
When the decrement direction coincides or when either one of them is zero, the switch means 13 is turned on, and the speed-type steam flow control signal ΔF of the speed-type steam flow control means 12,.
11 (to F 1N) guidance to the signal converting means 14 by way of the switching means 13, where seeking adjustment signal for position-shaped steam flow rate correction is input to the correction means 9 1 to 9 N.
【0022】これら補正手段91 〜9N は、各発生蒸気
流量指令信号に位置形蒸気流量補正用調節信号を加算
し、各発生蒸気流量指令信号と実発生蒸気流量信号とが
一致するように補正する。その後、これら補正された発
生蒸気流量指令信号はそれぞれのボイラ11 〜1N に導
入され、この指令信号に基づいて各ボイラ11 〜1N の
燃焼量を制御し、蒸気発生量を調節制御する。These correcting means 9 1 to 9 N add a position-type steam flow rate correction control signal to each generated steam flow rate command signal so that each generated steam flow rate command signal and the actually generated steam flow rate signal match. to correct. Thereafter, these corrected generated steam flow command signal is introduced into each of the boiler 1 1 to 1 N, and controls the combustion amount of each boiler 1 1 to 1 N on the basis of the command signal, adjust controlling steam generation amount I do.
【0023】従って、このように構成された実施の形態
によれば、蒸気圧力調節手段6の蒸気圧力調節信号の増
・減方向に蒸気流量調節手段101 〜10N の蒸気流量
調節信号の増・減方向を一致させるように制御すること
により、各ボイラの蒸気流量制御が蒸気圧力制御に足並
みを揃えて安定追従させることができる。[0023] Thus, increasing of the thus according to the embodiment configured, the steam flow rate adjustment signal of the steam flow rate control means 10 1 to 10 N to increase, decrease direction of the steam pressure adjusting signal of the steam pressure adjusting means 6 By controlling the deceleration directions to be the same, it is possible to make the steam flow control of each boiler follow the steam pressure control in a stable manner and follow the steam pressure control stably.
【0024】その結果、蒸気圧力制御の制御性が改善さ
れるとと共に、各ボイラの蒸気流量制御が個々バラバラ
に動作することがなくなり、増・減方向の一致により、
蒸気圧力制御と各蒸気流量制御との間の相互干渉および
各蒸気流量制御間の相互干渉が全く無くなり、制御全体
の安定性、安全性を向上させることができる。As a result, the controllability of the steam pressure control is improved, and the steam flow control of each boiler does not operate individually.
Mutual interference between the steam pressure control and the respective steam flow rate controls and between the respective steam flow rate controls are completely eliminated, and the stability and safety of the entire control can be improved.
【0025】次に、図2は請求項2に係わる発明の一実
施の形態を示す系統構成図である。なお、同図において
従来技術の第6図および図1と同一機能構成部分には同
一符号を付し、その同一機能構成部分の詳細説明は省略
する。Next, FIG. 2 is a system configuration diagram showing one embodiment of the invention according to claim 2. In this figure, the same reference numerals are given to the same functional components as those in FIG. 6 and FIG. 1 of the prior art, and the detailed description of the same functional components is omitted.
【0026】この制御装置においては、図1とほぼ同様
な構成であるが、特に異なるところは蒸気流量調節手段
101 〜10N の一部を構成するスイッチ手段13′お
よび増・減方向判別手段201 〜20N の一部を構成す
る符号判別手段22′,…を改良したものである。[0026] In this control device is almost the same configuration as FIG. 1, in particular different from the steam flow rate adjusting means 10 1 to 10 N switch means 13 'and increase and reduction direction discrimination means constitutes a part of the code discriminating means constitutes a part of the 20 1 ~20 N 22 ', it is an improvement of the ....
【0027】具体的には、符号判別手段22′の機能と
して、零以下であることを検出する機能,いわゆるPc
×△F21(〜F2N)<0のとき、つまり蒸気圧力調節信
号Pcと速度形蒸気流量調節手段12の出力である該当
ボイラの速度形蒸気流量調節信号△F21(〜F2N)とが
異符号、言い換えれば蒸気圧力調節信号Pcの増・減方
向と該当ボイラの速度形蒸気流量調節信号△F21(〜F
2N)の増・減方向とが反対のとき、スイッチ手段1
3′,…を非導通にすることにより、速度形蒸気流量調
節手段12,…の速度形蒸気流量調節信号△F21(〜F
2N)の更新を禁止し、既に信号変換手段14,…に保存
されている位置形蒸気流量補正用調節信号を補正手段1
4,…に導いて各発生蒸気流量指令信号を補正するが、
蒸気圧力調節信号Pcの増・減方向と該当ボイラの速度
形蒸気流量調節信号△F21(〜F2N)の増・減方向とが
同一の極性または何れかの信号が零となるまで速度形蒸
気流量調節信号△F21(〜F2N)の更新を待機する。More specifically, as a function of the code discriminating means 22 ', a function of detecting that the value is equal to or less than zero, that is, a so-called Pc
× △ F 21 (〜F 2N ) <0, that is, the steam pressure adjustment signal Pc and the speed type steam flow rate adjustment signal ΔF 21 ((F 2N ) of the corresponding boiler which is the output of the speed type steam flow rate adjusting means 12 Is the opposite sign, in other words, the direction of increase / decrease of the steam pressure adjustment signal Pc and the speed type steam flow rate adjustment signal ΔF 21 ((F
2N ) when the increasing / decreasing directions are opposite, switch means 1
3 ′,... Are made non-conductive, the speed-type steam flow control signals ΔF 21 (〜F) of the speed-type steam flow control means 12,.
2N ) is prohibited, and the adjustment signal for position type steam flow rate correction already stored in the signal conversion means 14,.
4, ... to correct each generated steam flow command signal,
The direction of increase / decrease of the steam pressure adjustment signal Pc and the speed type of the corresponding boiler The direction of increase / decrease of the steam flow rate control signal ΔF 21 (FF 2N ) has the same polarity or a speed type until any signal becomes zero. It waits for the update of the steam flow control signal △ F 21 (NF 2N ).
【0028】従って、この図2に示す装置は、図1に示
す装置と符号判別機能が異なるだけで、図1と同様な効
果を得ることができる。図3および図4は請求項3に係
わる発明の一実施の形態を示す系統構成図である。な
お、これらの図において図1、図2と同一機能構成部分
には同一符号を付し、その詳しい説明は省略する。Therefore, the device shown in FIG. 2 can obtain the same effect as that of FIG. 1 except that the device shown in FIG. FIGS. 3 and 4 are system configuration diagrams showing one embodiment of the invention according to claim 3. FIG. In these drawings, the same functional components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0029】図3は、図1と同様に増・減方向判別手段
201 〜20N が蒸気圧力調節手段6の出力である蒸気
圧力調節信号Pcと速度形蒸気流量調節手段12,…の
速度形蒸気流量調節信号△F11〜△F1Nとを取り込んで
乗算手段21,…で乗算することにより、符号判別手段
22,…で乗算結果の信号が零または零よりも大きいと
き、つまり蒸気圧力調節信号Pcと速度形蒸気流量調節
信号△F11(〜△F1N)とが同一の極性または両信号の
うち何れか一方が零のとき、スイッチ手段13を導通す
るものであるが、そのうち乗算手段21,…が蒸気流量
調節手段101〜10N から取り込む信号として、図1
では速度形蒸気流量調節信号△F11〜△F1Nを取り込ん
でいるが、図3では偏差演算手段11で求める偏差信号
を取り込んで乗算する例である。[0029] Figure 3, steam pressure adjustment signal Pc and the velocity type steam flow rate adjusting means 12 1 and likewise increase and reduction direction discrimination means 20 1 to 20 N is the output of the steam pressure adjusting means 6, ... speed of form steam flow rate adjustment signal △ F 11 ~ △ F 1N and the takes in multiplication means 21, by multiplying ... in, when the sign discriminating means 22, ... signal multiplication result is greater than zero or zero, i.e. steam pressure When the control signal Pc and the speed-type steam flow control signal ΔF 11 ((ΔF 1N ) have the same polarity or one of the two signals is zero, the switch means 13 is turned on. means 21, as a signal ... captures from the steam flow rate control means 10 1 to 10 N, 1
In FIG. 3, the speed type steam flow rate control signals △ F 11 to △ F 1N are taken in. However, FIG.
【0030】このような実施の形態であっても、各蒸気
流量調節手段101 〜10N の偏差信号の極性と蒸気圧
力調節手段6の出力である蒸気圧力調節信号Pcの極性
が同一か、または何れかの信号が零のとき、図1と同一
の機能および作用効果を奏する。Even in such an embodiment, whether the polarity of the deviation signal of each of the steam flow rate adjusting means 10 1 to 10 N is the same as the polarity of the steam pressure adjusting signal Pc output from the steam pressure adjusting means 6, Alternatively, when any signal is zero, the same functions and effects as those in FIG.
【0031】図4は図2と同様に増・減方向判別手段2
01 〜20N が蒸気圧力調節手段6の出力である蒸気圧
力調節信号Pcと速度形蒸気流量調節手段12,…の速
度形蒸気流量調節信号△F21〜△F2Nとを取り込んで乗
算手段21,…で乗算することにより、符号判別手段2
2′,…で乗算結果の信号が零以下であるとき、つまり
蒸気圧力調節信号Pcと速度形蒸気流量調節信号△F21
(〜△F2N)とが異極性のとき、スイッチ手段13′を
非導通とするが、このとき乗算手段21,…が蒸気流量
調節手段101 〜10N から取り込む信号として、図2
では速度形蒸気流量調節信号△F21〜△F2Nを取り込ん
でいるが、図4では偏差演算手段11で求める偏差信号
を取り込んで乗算する例である。FIG. 4 is a view similar to FIG.
The steam pressure adjusting signal Pc, where 0 1 to 20 N is the output of the steam pressure adjusting means 6, and the speed type steam flow rate adjusting signals ΔF 21 to ΔF 2N of the speed type steam flow rate adjusting means 12 ,. , By multiplying by two,...
When the signal of the multiplication result is equal to or smaller than zero in 2 ′,..., That is, the steam pressure adjustment signal Pc and the speed type steam flow rate adjustment signal ΔF 21
(~ △ F 2N) when the is different polarities, as the signal will be non-conductive switch means 13 ', taking this time multiplying means 21, ... from the steam flow rate control means 10 1 to 10 N, 2
In FIG. 4, the speed type steam flow rate control signals △ F 21 to △ F 2N are fetched, but FIG. 4 shows an example in which the deviation signal obtained by the deviation calculation means 11 is fetched and multiplied.
【0032】このような実施の形態であっても、各蒸気
流量調節手段101 〜10N の偏差信号の極性と蒸気圧
力調節手段6の出力である蒸気圧力調節信号Pcの極性
とが異なるとき、図2と同一の機能および作用効果を奏
する。Even in such an embodiment, when the polarity of the deviation signal of each of the steam flow rate adjusting means 10 1 to 10 N is different from the polarity of the steam pressure adjusting signal Pc output from the steam pressure adjusting means 6. 2 has the same functions and effects as those of FIG.
【0033】次に、図5は請求項4に係わる発明の一実
施の形態を示す系統構成図である。なお、これらの図に
おいて図1、図2と同一機能構成部分には同一符号を付
し、その詳しい説明は省略する。Next, FIG. 5 is a system configuration diagram showing an embodiment of the invention according to claim 4. In these drawings, the same functional components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0034】この実施の形態は、図3および図4と同様
に、増・減方向判別手段201 〜20N が蒸気圧力調節
手段6の出力である蒸気圧力調節信号Pcと速度形蒸気
流量調節手段12,…の速度形蒸気流量調節信号とを乗
算手段21に導き、両信号の乗算信号から同一の極性ま
たは両信号のうち何れか一方が零のときスイッチ手段1
3を導通し、異極性のときスイッチ手段13′を非導通
としている。[0034] This embodiment is similar to FIG. 3 and FIG. 4, steam pressure adjustment signal Pc and the velocity type steam flow rate adjustment is increased and reduction direction discrimination means 20 1 to 20 N are output of the steam pressure adjusting means 6 The speed-type steam flow control signal of the means 12,... Is led to the multiplying means 21.
3, the switch means 13 'is non-conductive when the polarities are different.
【0035】このとき、乗算手段21,…は蒸気圧力調
節手段6から取り込む信号として、図1ないし図4では
蒸気圧力調節手段6の出力としたが、蒸気圧力調節手段
6が例えばデイジタル調節演算の場合には,図5に示す
ように蒸気圧力と所定の蒸気圧力設定値との偏差を求め
る偏差演算手段61、この偏差信号に基づいてPIまた
はPID調節演算を実行する速度形蒸気圧力調節部62
およびこの調節部62で得られた速度形蒸気圧力調節信
号を位置形蒸気圧力調節信号に変換する速度形/位置形
信号変換手段63で構成されているとき、当該蒸気圧力
調節手段6の出力である位置形蒸気圧力調節信号、前記
蒸気圧力と所定の蒸気圧力設定値との偏差信号、この偏
差信号に基づいて速度形調節演算を行って得られる速度
形蒸気圧力調節信号のうちの何れか1つの信号を取り込
んで乗算する構成であっても同様の機能および作用効果
を奏する。At this time, the multiplying means 21,... Are output from the steam pressure adjusting means 6 in FIGS. 1 to 4 as signals taken in from the steam pressure adjusting means 6. In this case, as shown in FIG. 5, a deviation calculating means 61 for calculating a deviation between the steam pressure and a predetermined steam pressure set value, a speed type steam pressure adjusting section 62 for executing a PI or PID adjustment operation based on the deviation signal.
And a speed-type / position-type signal converting means 63 for converting the speed-type steam pressure adjusting signal obtained by the adjusting section 62 into a position-type steam pressure adjusting signal. Any one of a certain position type steam pressure adjustment signal, a deviation signal between the steam pressure and a predetermined steam pressure set value, and a speed type steam pressure adjustment signal obtained by performing a speed type adjustment operation based on the deviation signal. The same function and operation and effect can be obtained even with a configuration in which two signals are fetched and multiplied.
【0036】[0036]
【発明の効果】以上説明したように本発明によれば、蒸
気圧力調節信号の増・減方向に、各ボイラの蒸気流量調
節信号の増・減方向が一致するように制御するので、蒸
気圧力制御の方向に各ボイラの蒸気流量制御が足並みを
揃えて追従しながら、各発生蒸気流量指令信号に追従制
御することができ、蒸気圧力制御の制御性が改善される
と共に、各ボイラの蒸気流量制御が個々バラバラに動作
せずに増減方向が一致し、蒸気圧力制御と各蒸気流量制
御の間の相互干渉および各蒸気流量制御間の相互干渉が
全くなくなり、制御系全体の安定性、安全性を大きく改
善できるボイラ負荷配分制御装置を提供できる。As described above, according to the present invention, the control is performed such that the increasing / decreasing directions of the steam flow rate adjusting signals of the respective boilers coincide with the increasing / decreasing directions of the steam pressure adjusting signals. The steam flow control of each boiler can follow and follow each generated steam flow command signal while keeping pace with the direction of control, improving the controllability of steam pressure control and improving the steam flow of each boiler. The control does not operate individually, the direction of increase / decrease coincides, the mutual interference between steam pressure control and each steam flow control and the mutual interference between each steam flow control are completely eliminated, and the stability and safety of the entire control system Can be provided.
【図1】 請求項1の発明に係わるボイラ負荷配分制御
装置の一実施の形態を示す系統構成図。FIG. 1 is a system configuration diagram showing one embodiment of a boiler load distribution control device according to the invention of claim 1;
【図2】 請求項2の発明に係わるボイラ負荷配分制御
装置の一実施の形態を示す系統構成図。FIG. 2 is a system configuration diagram showing an embodiment of a boiler load distribution control device according to the invention of claim 2;
【図3】 請求項3の発明に係わるボイラ負荷配分制御
装置の一実施の形態を示す系統構成図。FIG. 3 is a system configuration diagram showing an embodiment of a boiler load distribution control device according to the invention of claim 3;
【図4】 請求項3の発明に係わるボイラ負荷配分制御
装置の他の実施の形態を示す系統構成図。FIG. 4 is a system configuration diagram showing another embodiment of the boiler load distribution control device according to the invention of claim 3;
【図5】 請求項4の発明に係わるボイラ負荷配分制御
装置の一実施の形態を示す系統構成図。FIG. 5 is a system configuration diagram showing one embodiment of a boiler load distribution control device according to the invention of claim 4;
【図6】 従来のボイラ負荷配分制御装置の系統構成
図。FIG. 6 is a system configuration diagram of a conventional boiler load distribution control device.
11 〜1N ……ボイラ 21 〜2N ……蒸気流量検出器 5……蒸気圧力検出器 6……蒸気圧力調節手段 71 〜7N ……負荷配分係数設定手段 91 〜9N ……補正手段 101 〜10N …蒸気流量調節手段 13,13′……スイッチ手段 201 〜20N …増減方向判別手段 21……乗算手段 22……符号判別手段1 1 to 1 N ...... boiler 2 1 to 2 N ...... steam flow rate detector 5 ...... steam pressure detector 6 ...... steam pressure adjusting means 7 1 to 7-N ...... load distribution coefficient setting means 9 1 to 9 N ...... correcting means 10 1 to 10 N ... steam flow rate adjusting means 13, 13 '... switch means 20 1 to 20 N ... decreasing direction discrimination means 21 ... multiplying unit 22 ...... code discriminating means
Claims (4)
ぞれ発生する蒸気流量の総蒸気流量を負荷配分し各ボイ
ラを制御するボイラ負荷配分制御装置において、 前記各ボイラ群の出力側の共通代表点の蒸気圧力と所定
の設定値との偏差信号から蒸気圧力調節信号を算出し前
記総蒸気流量に加算する蒸気圧力調節手段と、 この蒸気圧力調節手段の蒸気圧力調節信号が加算された
総蒸気流量に所望の負荷配分係数を乗じて各ボイラの発
生蒸気流量指令信号を算出する負荷配分係数設定手段
と、 この負荷配分係数設定手段で得られる各ボイラの発生蒸
気流量指令信号である目標値と該当ボイラの実発生蒸気
流量とを用いて調節演算を実行し蒸気流量調節信号を取
り出す蒸気流量調節手段と、 前記蒸気圧力調節手段の処理信号と各ボイラに対応する
蒸気流量調節手段の処理信号とが同一極性または何れか
が零のとき、自ボイラ対応の蒸気流量調節手段の出力を
更新させる圧力増・減方向判別手段と、 前記蒸気流量調節手段の出力を用いて前記負荷配分係数
設定手段から出力される発生蒸気流量指令信号を補正す
る補正手段と、 を具備し、この補正手段の出力信号に基づいて対応する
ボイラの蒸気流量を追従制御することを特徴とするボイ
ラ負荷配分制御装置。1. A boiler load distribution control device which distributes the total steam flow generated from a plurality of boilers operated in parallel and controls each of the boilers, comprising: a common representative point on the output side of each of the boiler groups; A steam pressure adjusting means for calculating a steam pressure adjusting signal from a deviation signal between the steam pressure and a predetermined set value and adding the calculated signal to the total steam flow rate; a steam pressure adjusting signal of the steam pressure adjusting means being added to the total steam flow rate Load distribution coefficient setting means for calculating a generated steam flow rate command signal of each boiler by multiplying by a desired load distribution coefficient; a target value which is a generated steam flow rate command signal of each boiler obtained by the load distribution coefficient setting means; A steam flow control means for executing a control operation using the actual generated steam flow rate and extracting a steam flow control signal; a processing signal of the steam pressure control means and a steam corresponding to each boiler. When the processing signal of the flow rate adjusting means has the same polarity or any one is zero, the pressure increase / decrease direction discriminating means for updating the output of the steam flow rate adjusting means corresponding to the own boiler, and using the output of the steam flow rate adjusting means Correction means for correcting the generated steam flow rate command signal output from the load distribution coefficient setting means, and the tracking control of the steam flow rate of the corresponding boiler based on the output signal of the correction means. Boiler load distribution control device.
ぞれ発生する蒸気流量の総蒸気流量を負荷配分し各ボイ
ラを制御するボイラ負荷配分制御装置において、 前記各ボイラ群の出力側の共通代表点の蒸気圧力と所定
の設定値との偏差信号から蒸気圧力調節信号を算出し前
記総蒸気流量に加算する蒸気圧力調節手段と、 この蒸気圧力調節手段の蒸気圧力調節信号が加算された
総蒸気流量に所望の負荷配分係数を乗じて各ボイラの発
生蒸気流量指令信号を算出する負荷配分係数設定手段
と、 この負荷配分係数設定手段で得られる各ボイラの発生蒸
気流量指令信号である目標値と該当ボイラの実発生蒸気
流量とを用いて調節演算を実行し蒸気流量調節信号を取
り出す蒸気流量調節手段と、 前記蒸気圧力調節手段の処理信号と各ボイラに対応する
蒸気流量調節手段の処理信号とが異極性のとき、蒸気流
量調節手段の出力更新を停止させる圧力増・減方向判別
手段と、 前記蒸気流量調節手段の出力を用いて前記負荷配分係数
設定手段から出力される発生蒸気流量指令信号を補正す
る補正手段と、 を具備し、この補正手段の出力信号に基づいて対応する
ボイラの蒸気流量を追従制御することを特徴とするボイ
ラ負荷配分制御装置。2. A boiler load distribution control device for distributing the total steam flow generated from a plurality of boilers operated in parallel and controlling each of the boilers, comprising a common representative point on the output side of each of the boiler groups. A steam pressure adjusting means for calculating a steam pressure adjusting signal from a deviation signal between the steam pressure and a predetermined set value and adding the calculated signal to the total steam flow rate; a steam pressure adjusting signal of the steam pressure adjusting means being added to the total steam flow rate Load distribution coefficient setting means for calculating a generated steam flow rate command signal of each boiler by multiplying by a desired load distribution coefficient; a target value which is a generated steam flow rate command signal of each boiler obtained by the load distribution coefficient setting means; A steam flow control means for executing a control operation using the actual generated steam flow rate and extracting a steam flow control signal; a processing signal of the steam pressure control means and a steam corresponding to each boiler. When the processing signal of the flow rate adjusting means has a different polarity, a pressure increase / decrease direction determining means for stopping the output update of the steam flow rate adjusting means, and an output from the load distribution coefficient setting means using the output of the steam flow rate adjusting means. And a correction means for correcting the generated steam flow rate command signal to be performed, and a follow-up control of the steam flow rate of the corresponding boiler based on the output signal of the correction means.
ラの発生蒸気流量指令信号とボイラの実発生蒸気流量と
の偏差信号、この偏差信号に基づいて速度形調節演算を
行って得られる速度形蒸気流量調節信号のうちの何れか
1つの信号であることを特徴とする請求項1または請求
項2に記載のボイラ負荷配分制御装置。3. A processing signal of the steam flow rate adjusting means is a deviation signal between a boiler generated steam flow rate command signal and an actual generated steam flow rate of the boiler, and a speed type obtained by performing a speed type adjustment operation based on the deviation signal. The boiler load distribution control device according to claim 1 or 2, wherein the control signal is any one of the steam flow control signals.
当該蒸気圧力調節手段の出力である位置形蒸気圧力調節
信号、前記蒸気圧力と所定の設定値との偏差信号、この
偏差信号に基づいて速度形調節演算を行って得られる速
度形蒸気圧力調節信号のうちの何れか1つの信号である
ことを特徴とする請求項1または請求項2に記載のボイ
ラ負荷配分制御装置。4. The processing signal of the steam pressure adjusting means is:
A position type steam pressure adjustment signal which is an output of the steam pressure adjusting means, a deviation signal between the steam pressure and a predetermined set value, a speed type steam pressure adjustment signal obtained by performing a speed type adjustment operation based on the deviation signal. The boiler load distribution control device according to claim 1 or 2, wherein the signal is any one of the following signals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01682397A JP3822300B2 (en) | 1997-01-30 | 1997-01-30 | Boiler load distribution control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01682397A JP3822300B2 (en) | 1997-01-30 | 1997-01-30 | Boiler load distribution control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10213303A true JPH10213303A (en) | 1998-08-11 |
JP3822300B2 JP3822300B2 (en) | 2006-09-13 |
Family
ID=11926907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01682397A Expired - Lifetime JP3822300B2 (en) | 1997-01-30 | 1997-01-30 | Boiler load distribution control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3822300B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015055367A (en) * | 2013-09-10 | 2015-03-23 | 三浦工業株式会社 | Boiler system |
-
1997
- 1997-01-30 JP JP01682397A patent/JP3822300B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015055367A (en) * | 2013-09-10 | 2015-03-23 | 三浦工業株式会社 | Boiler system |
Also Published As
Publication number | Publication date |
---|---|
JP3822300B2 (en) | 2006-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1086716A3 (en) | Feedback control of mechanical breathing aid gas flow | |
JPH10213303A (en) | Boiler load distribution control device | |
JP2002130604A (en) | Method for controlling number of boilers in continuous control of burning rate | |
JPH0280511A (en) | Method for controlling dew point of atmospheric gas in furnace | |
JP2000274603A (en) | Water supply controller | |
JPH0335922Y2 (en) | ||
RU2044215C1 (en) | Device for control of steam temperature in boiler unit | |
US20060004470A1 (en) | Multivalue control system and method for controlling a multivalue controlled system | |
JPH1163481A (en) | Method and apparatus for controlling pressure of fuel gas in gas fired boiler | |
JPS63284603A (en) | Process plant controller | |
JPH01245301A (en) | Control device | |
JPS634302A (en) | Feedback process controller | |
JPH0781684B2 (en) | Boiler load distribution control device | |
JP3468921B2 (en) | Turbine generator frequency control device | |
JPS60164805A (en) | Process controller | |
JPS6115578A (en) | Fan motor controlling method in combustion controller | |
JPH02264302A (en) | Process control device | |
CN117991827A (en) | Steam flow control method and system based on double-group valve | |
JP2509682B2 (en) | Pressure plant pressure control equipment | |
JPH0397014A (en) | Process control system | |
JPH08234804A (en) | Automatic controller | |
JPH05324005A (en) | Command ff/fb controller | |
JP2600989Y2 (en) | Combustion control device | |
JPS63126001A (en) | Controller | |
JPH1130108A (en) | Turbine control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050801 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050801 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060622 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |