JPH10212561A - Amorphous alloy with excellent workability - Google Patents
Amorphous alloy with excellent workabilityInfo
- Publication number
- JPH10212561A JPH10212561A JP1402797A JP1402797A JPH10212561A JP H10212561 A JPH10212561 A JP H10212561A JP 1402797 A JP1402797 A JP 1402797A JP 1402797 A JP1402797 A JP 1402797A JP H10212561 A JPH10212561 A JP H10212561A
- Authority
- JP
- Japan
- Prior art keywords
- amorphous alloy
- alloy
- elements
- amorphous
- workability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
(57)【要約】
【課題】 高硬度、高強度、高耐熱性、高耐食性に
優れた非晶質合金をその特性を失うことなく加工性に優
れたものとする。
【解決手段】 一般式:XxMyTz
ただし、X:Zr及びPdから選ばれる1種又は2種の
元素、M:Al、Si、遷移元素(上記X元素は含まな
い)から選ばれる少なくとも1種の元素、T:B又はB
と上記X及びM元素より原子半径の小さな元素、x、
y、zは原子パーセントで、5≦y≦70、0<z<
6、x=100−y−zで示される組成を有する加工性
に優れた非晶質合金。(57) [Problem] To provide an amorphous alloy having excellent hardness, high strength, high heat resistance and high corrosion resistance with excellent workability without losing its properties. SOLUTION: General formula: XxMyTz, wherein X: one or two elements selected from Zr and Pd, M: at least one element selected from Al, Si, and transition elements (not including the X element) , T: B or B
And an element having a smaller atomic radius than the X and M elements, x,
y and z are atomic percentages, 5 ≦ y ≦ 70, 0 <z <
6. An amorphous alloy having a composition represented by x = 100-yz and having excellent workability.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、成形及び加工が容
易に行える加工性に優れた非晶質合金に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous alloy which can be easily formed and processed and has excellent workability.
【0002】[0002]
【従来の技術】従来、ガラス遷移温度(Tg)と結晶化
温度(Tx)との温度幅である過冷却液体領域(△T)
が広く、加工性に優れた非晶質合金材料としては、特開
平3−158446号公報、特開平3−36243号公
報に開示されるものが知られている。2. Description of the Related Art Conventionally, a supercooled liquid region (ΔT) which is a temperature range between a glass transition temperature (Tg) and a crystallization temperature (Tx).
As an amorphous alloy material which is wide and has excellent workability, those disclosed in JP-A-3-158446 and JP-A-3-36243 are known.
【0003】しかしながら、非晶質合金の成形加工など
においては、温度制御あるいは加工時間の厳密な制御が
必要であり、上記公報に開示の合金においてかなり容易
に成形加工が行なえるようになったものの、さらに容易
に行なえる非晶質合金が望まれている。又、上記公報に
記載の合金においても、加工性に優れた組成とその他の
例えば機械的特性が優れた組成とが必ずしも同一ではな
く、加工性を優先する場合と他の特性を優先する場合と
によって組成的にかなり異なるものとなる。However, in the processing of forming an amorphous alloy or the like, strict control of the temperature or the processing time is required, and the forming of the alloy disclosed in the above publication can be performed quite easily. There is a need for an amorphous alloy that can be more easily formed. Further, also in the alloy described in the above publication, the composition excellent in workability and other, for example, the composition excellent in mechanical properties are not necessarily the same, and the case where priority is given to workability and the case where other properties are prioritized. Depending on the composition, the composition is considerably different.
【0004】[0004]
【発明が解決しようとする課題】そこで本発明は、過冷
却液体領域の温度幅がより広く、これにより加工性が優
れるとともに、高硬度、高強度、高耐熱性、高耐食性に
優れた特性を有する新規な非晶質合金を提供せんとする
ものである。すなわち、組成的に過冷却液体領域の広さ
に違いはあるものの、T元素を添加することにより、例
えば過冷却液体領域が20K、30K、50Kなどのも
のを全体的に30K、40K、60Kのように大きくす
ることができ、機械的特性がよいけれども加工性が不十
分なものであっても、加工性に優れた材料として使用可
能となるものである。Accordingly, the present invention provides a supercooled liquid region having a wider temperature range, thereby providing excellent workability, as well as high hardness, high strength, high heat resistance, and high corrosion resistance. And a new amorphous alloy having the same. That is, although there is a difference in the size of the supercooled liquid region in terms of composition, by adding the T element, for example, a supercooled liquid region having a supercooled liquid region of 20K, 30K, 50K or the like can be reduced to a total of 30K, 40K, 60K. Thus, even if the material has good mechanical properties but insufficient workability, it can be used as a material having excellent workability.
【0005】[0005]
【課題を解決するための手段】本発明は、一般式:Xx
MyTz、ただし、X:Zr及びPdから選ばれる1種
又は2種の元素、M:Al、Si、遷移元素(上記X元
素は含まない)から選ばれる少なくとも1種の元素、
T:B又はBと上記X及びM元素より原子半径の小さな
元素、x、y、zは原子パーセントで5≦y≦70、0
<z<6、x=100−y−z、で示される組成を有す
る加工性に優れた非晶質合金である。According to the present invention, there is provided a compound represented by the general formula: Xx
MyTz, where X: one or two elements selected from Zr and Pd, M: at least one element selected from Al, Si, and transition elements (not including the X element);
T: B or B and an element having an atomic radius smaller than the X and M elements, x, y, and z are 5 ≦ y ≦ 70, 0 in atomic percent.
An amorphous alloy having a composition represented by <z <6, x = 100-yz, and having excellent workability.
【0006】上記一般式で示される本発明の合金におい
て、yを原子パーセントで5〜70%の範囲に、Zを0
<z<6%の範囲に、さらにxを100−y−zの範囲
にそれぞれ限定したのは、上記範囲から外れると非晶質
化が難しくなり、液体急冷法などを利用した工業的な急
冷手段では非晶質相を有する合金を得るのが困難である
ためである。上記範囲において本発明の合金は非晶質合
金の特性である高硬度、高強度、高耐食性等の優れた特
性を示す。又、xが原子パーセントで50%以上とし、
yが原子パーセントで50%未満とすることにより、非
晶質合金が少なくとも体積率で50%の非晶質相を有す
るものになるとともに、過冷却液体領域がより広い加工
性に優れたものを提供できる。さらに、zが原子パーセ
ントで3〜5%の範囲に限定することにより、T元素の
添加による過冷却液体領域の拡張がより顕著となる。In the alloy of the present invention represented by the above general formula, y is in the range of 5 to 70% in atomic percent, and Z is 0.
<Z <6%, and x is limited to the range of 100-yz, because if it is out of the range, it becomes difficult to amorphize, and industrial quenching using a liquid quenching method or the like. This is because it is difficult to obtain an alloy having an amorphous phase by the means. Within the above range, the alloy of the present invention exhibits excellent characteristics such as high hardness, high strength, and high corrosion resistance, which are characteristics of the amorphous alloy. X is 50% or more in atomic percent;
When y is less than 50% by atomic percent, the amorphous alloy has an amorphous phase of at least 50% by volume and has a supercooled liquid region having a wider workability and excellent workability. Can be provided. Further, by limiting z to the range of 3 to 5% in atomic percent, the expansion of the supercooled liquid region due to the addition of the T element becomes more remarkable.
【0007】X元素はZr及びPdから選ばれる1種も
しくは2種の元素であり、非晶質相を有する合金を作製
するにあたって本発明においてはなくてはならない必須
元素で非晶質形成元素である。The element X is one or two elements selected from Zr and Pd, and is an essential element that is indispensable in the present invention in producing an alloy having an amorphous phase, and is an amorphous forming element. is there.
【0008】M元素は、Al、Si、遷移元素(上記X
元素は含まない)から選ばれる少なくとも1種の元素で
あり、X元素と共存してアモルファス形成能を向上させ
るとともに、アモルファス相を安定化させる効果を有す
る。又、M元素のうち、Al、Siからなる1種又は2
種からなるM1元素は、過冷却液体領域幅を拡大し、加
工性を向上させる効果を有し、M元素のうち遷移元素
(X元素は含まない)から選ばれる少なくとも1種から
なるM2元素は、機械的特性の向上及び上記非晶質化に
有効である。したがって、上記M1元素とM2元素とを組
合せて用いることが本発明の目的を達成するためにはよ
り有効である。M2元素において、特にTi、Ni、C
o、Cuが有効な元素である。[0008] M element is Al, Si, transition element (X
Element is not included), and has the effect of improving the amorphous forming ability in coexistence with the element X and stabilizing the amorphous phase. Also, among the M elements, one or two of Al and Si
M 1 element consisting of seeds, to expand the supercooled liquid region width has the effect of improving the processability, at least one selected from transition elements of the M element (X element not included) M 2 The element is effective for improving mechanical properties and for making the material amorphous. Accordingly, the use in combination with the M 1 element and M 2 element in order to achieve the object of the present invention is more effective. Among the M 2 elements, especially Ti, Ni, C
o and Cu are effective elements.
【0009】T元素は、X元素及びM元素より原子半径
の小さな元素であり、具体的には、B、C、Pなどの元
素が存在する。T元素は非晶質形成元素であるX元素と
の負の相互作用が強く、少量添加することにより、より
最密充填構造を有した安定なアモルファス相が得られ、
アモルファスが昇温時にガラス遷移し、結晶化するまで
の過冷却液体領域(△T)の幅を大きく広くすることが
できる。特にBは本発明の目的である過冷却液体領域を
大きくするためにはなくてはならない元素である。The T element is an element having a smaller atomic radius than the X element and the M element, and specifically includes elements such as B, C, and P. The T element has a strong negative interaction with the X element which is an amorphous forming element. By adding a small amount, a stable amorphous phase having a more close-packed structure can be obtained.
The width of the supercooled liquid region (ΔT) until the amorphous undergoes glass transition at the time of temperature rise and is crystallized can be greatly increased. In particular, B is an indispensable element for increasing the supercooled liquid region which is the object of the present invention.
【0010】本発明において過冷却液体領域(△T)と
は、アモルファス相を有する合金がもつガラス遷移温度
(Tg)と結晶化温度(Tx)との温度幅の領域であ
り、この領域においてはアモルファス相が安定であり、
種々の加工が容易に行える。又、この領域が広い(温度
幅が大きい)ことにより、前述の加工において、温度制
御、加工時間などの制御が比較的簡単に行え、アモルフ
ァス相を有する合金の成形加工などが容易に行える。
又、この過冷却液体領域において、アモルファス相を有
する合金は過冷却液体状態であり、低い応力で大きな変
形ができ、極めて優れた加工性を示し、このことにより
複雑形状の部材や大きな塑性流動を要する加工を必要と
するものなどに有用である。In the present invention, the supercooled liquid region (ΔT) is a region having a temperature range between a glass transition temperature (Tg) and a crystallization temperature (Tx) of an alloy having an amorphous phase. The amorphous phase is stable,
Various processes can be easily performed. In addition, since this region is wide (the temperature width is large), in the above-mentioned processing, control of temperature, processing time, and the like can be relatively easily performed, and molding of an alloy having an amorphous phase can be easily performed.
Also, in this supercooled liquid region, the alloy having an amorphous phase is in a supercooled liquid state, can be deformed greatly with low stress, and exhibits extremely excellent workability, which can cause a member having a complicated shape or a large plastic flow. It is useful for those requiring necessary processing.
【0011】本発明におけるガラス遷移温度(Tg)と
結晶化温度(Tx)との取り方について説明すると、図
1はZr65Cu27.5Al7.5-xBxの、又、図3はPd
76Si18-xCu6Bxについての示差走査熱量分析曲線
を示すが、この曲線上で吸熱反応が起こる部分で、その
曲線の立ち上がり部と基線の外挿が交わる点での温度を
Tgとし、逆に発熱が起こる部分で上記と同様にして得
られた温度をTxとして設定する。The way of setting the glass transition temperature (Tg) and the crystallization temperature (Tx) in the present invention will be described. FIG. 1 shows Zr 65 Cu 27.5 Al 7.5-x Bx, and FIG.
A differential scanning calorimetry curve for 76 Si 18-x Cu 6 Bx is shown. In the portion where an endothermic reaction occurs on this curve, the temperature at the point where the rising portion of the curve intersects with the extrapolation of the baseline is defined as Tg, Conversely, the temperature obtained in the same manner as described above at the portion where heat is generated is set as Tx.
【0012】本発明の合金は非常に広い温度範囲で過冷
却液体状態(過冷却液体領域)を示し、その温度幅が5
0K以上である。この過冷却液体状態の温度域では低圧
力下で容易にそして無制限に塑性変形するとともに、加
工時の温度制御、加工時間の制御が緩和でき、押出、圧
延、鍛造及びホットプレスなどの従来の加工法で薄帯及
び粉末を容易に固化成形できる。又、同様の理由によ
り、他の合金粉末と混合することにより、低温度、低圧
力で複合材の固化成形も容易にする。又、液体急冷法に
よって作成された本発明合金のアモルファスリボンは広
い組成範囲で180°密着曲げによっても亀裂を発生し
たり基体からの剥離を生じない。更に常温において、
1.6%を越える伸びを示し優れた展延性を示す。又、
本発明の合金はアモルファス化しやすく水焼入れによっ
ても得ることができる。The alloy of the present invention shows a supercooled liquid state (supercooled liquid region) in a very wide temperature range, and its temperature range is 5
0K or more. In this supercooled liquid temperature range, plastic deformation is easily and unlimitedly under low pressure, and temperature control during processing and control of processing time can be relaxed. The ribbon and powder can be easily solidified and formed by the method. For the same reason, by mixing with another alloy powder, solidification molding of the composite material at low temperature and low pressure is also facilitated. In addition, the amorphous ribbon of the alloy of the present invention prepared by the liquid quenching method does not crack or peel off from the substrate even by 180 ° close contact bending in a wide composition range. At room temperature,
It shows an elongation exceeding 1.6% and shows excellent spreadability. or,
The alloy of the present invention easily becomes amorphous and can be obtained by water quenching.
【0013】本発明の合金は上記組成を有する合金の溶
湯を液体急冷法で急冷凝固することにより得ることがで
きる。この液体急冷法とは、溶融した合金を急速に冷却
させる方法をいい、例えば単ロール法、双ロール法等が
特に有効であり、これらの方法では104〜106K/s
ec程度の冷却速度が得られる。この単ロール法、双ロ
ール法などにより薄帯を製造するには、ノズル孔を通し
て約300〜10000rpmの範囲の一定速度で回転
している直径30〜3000mmの例えば銅あるいは銅
製のロールに溶湯を噴出する。これにより幅が約1〜3
00mmで厚さが約5〜500μmの各種薄帯材料を容
易に得ることができる。又、回転液中防糸法により細線
材料を製造するには、ノズル孔を通じ、アルゴンガス背
圧にて、約50〜500rpmで回転するドラム内に遠
心力により保持された深さ約10〜100mmの溶液冷
媒層中に溶湯を噴き出して、細線材料を容易に得ること
ができる。この際のノズルからの噴出溶湯と冷媒面との
なす角度は約60〜90度、噴出溶湯と溶液冷媒面の相
対速度比は約0.7〜0.9であることが好ましい。The alloy of the present invention can be obtained by rapidly solidifying a molten alloy having the above composition by a liquid quenching method. The liquid quenching method refers to a method of rapidly cooling a molten alloy. For example, a single roll method, a twin roll method, etc. are particularly effective, and in these methods, 10 4 to 10 6 K / s.
A cooling rate of about ec is obtained. In order to produce a ribbon by the single roll method, the twin roll method, or the like, a molten metal is jetted through a nozzle hole onto, for example, a copper or copper roll having a diameter of 30 to 3000 mm rotating at a constant speed in a range of about 300 to 10000 rpm. I do. This makes the width about 1-3
Various ribbon materials having a thickness of about 00 mm and a thickness of about 5 to 500 μm can be easily obtained. Further, in order to produce a thin wire material by the spinning method in a rotating liquid, a depth of about 10 to 100 mm retained by a centrifugal force in a drum rotating at about 50 to 500 rpm at a back pressure of argon gas through a nozzle hole. The thin wire material can be easily obtained by blowing the molten metal into the solution refrigerant layer. In this case, it is preferable that the angle between the molten metal jetted from the nozzle and the refrigerant surface is about 60 to 90 degrees, and the relative speed ratio between the jetted molten metal and the solution refrigerant surface is about 0.7 to 0.9.
【0014】なお、上記方法によらないでスパッタリン
グ法によって薄膜を、高圧ガス噴霧法などの各種アトマ
イズ法やスプレー法により急冷粉末を得ることができ
る。It is to be noted that a thin film can be obtained by a sputtering method and a quenched powder by various atomizing methods such as a high-pressure gas spraying method or a spraying method without using the above method.
【0015】[0015]
【発明の実施の形態】次に実施例によって本発明を具体
的に説明する。Next, the present invention will be described in detail with reference to examples.
【0016】実施例1 アーク溶解炉により溶製したZr65Cu27.5Al7.5-x
Bx(x=0,2,4,6)(at%)合金を用いて、
単ロール法により、厚さ約20μm、幅約1mmのリボ
ン材を作製した。急冷相の同定は、X線回折を用い、熱
的安定性の評価は、示差走査熱量計(DSC)を用いて
調べた。Example 1 Zr 65 Cu 27.5 Al 7.5-x produced by an arc melting furnace
Using a Bx (x = 0, 2, 4, 6) (at%) alloy,
A ribbon material having a thickness of about 20 μm and a width of about 1 mm was produced by a single roll method. The quenched phase was identified using X-ray diffraction, and the thermal stability was evaluated using a differential scanning calorimeter (DSC).
【0017】X線回折の結果、本発明の合金は非晶質単
相合金であった。また、示差走査熱量分析曲線を図1に
示すとともに、合わせて結晶化温度(Tx)、ガラス遷
移温度(Tg)及び過冷却液体領域(△T)を示す。更
に図1をもとにこれらTx、Tg、△T(Tx−Tg)
の変化を図2に示す。As a result of X-ray diffraction, the alloy of the present invention was an amorphous single-phase alloy. FIG. 1 shows the differential scanning calorimetry curve, together with the crystallization temperature (Tx), the glass transition temperature (Tg), and the supercooled liquid region (ΔT). Further, based on FIG. 1, these Tx, Tg, ΔT (Tx−Tg)
2 is shown in FIG.
【0018】図2より、B添加によりTxが増大してい
ることがTxの変化を示すグラフより分かる。また△T
は、0%Bで72Kであるが、B量の増加に伴い増大
し、4%Bで100Kの最大値を示した後、B量の増加
にともない減少した。B量3〜5%で△Tが著しく向上
していることが分かる。From FIG. 2, it can be seen from the graph showing the change in Tx that Tx is increased by the addition of B. Also △ T
Was 72K at 0% B, increased with the increase in B content, showed a maximum value of 100K at 4% B, and then decreased with an increase in B content. It can be seen that ΔT is significantly improved when the amount of B is 3 to 5%.
【0019】よって、Zr65Cu27.5Al7.5合金にB
を微量添加することにより△Tの幅を大きく広げること
ができ、材料の加工性を著しく向上させることができ
る。特にB3〜5%で顕著な効果が期待できる。Therefore, Zr 65 Cu 27.5 Al 7.5 alloy has B
By adding a small amount of, it is possible to greatly increase the width of ΔT, and to significantly improve the workability of the material. In particular, a remarkable effect can be expected at B3 to 5%.
【0020】実施例2 アーク溶解炉により溶製したPd76Si18-xCu6Bx
(x=0,1,2,3,4,5,6)(at%)合金を
用いて、単ロール法により、厚さ約20μm、幅1〜4
mmの非晶質リボン材を作製した。熱的安定性の評価は
示差走査熱量計(DSC)を用いて調べた。Example 2 Pd 76 Si 18-x Cu 6 Bx produced by an arc melting furnace
(X = 0,1,2,3,4,5,6) (at%) alloy, about 20 μm in thickness and 1 to 4 in width by single roll method
mm amorphous ribbon material was produced. Evaluation of thermal stability was examined using a differential scanning calorimeter (DSC).
【0021】その結果である示差走査熱量分析曲線を図
3に示すとともに、合わせて結晶化温度(Tx)、ガラ
ス遷移温度(Tg)及び過冷却液体領域(△T)を示
す。さらに、図3をもとにこれらTx、Tg、△T(T
x−Tg)の変化を図4に示す。The resulting differential scanning calorimetry curve is shown in FIG. 3, together with the crystallization temperature (Tx), glass transition temperature (Tg) and supercooled liquid region (ΔT). Further, based on FIG. 3, these Tx, Tg, ΔT (T
x-Tg) is shown in FIG.
【0022】図4より、B添加によりTxが増大してい
ることがTxの変化を示すグラフより分かる。また、△
Tは、B=0%で42Kであるが、B量の増加にともな
い増加し、B=3で70Kの最大値を示した後、B量の
増加にともない減少した。B量2〜4%で△Tが著しく
向上していることが分かる。From FIG. 4, it can be seen from the graph showing the change in Tx that Tx is increased by the addition of B. Also, △
T was 42K at B = 0%, but increased with an increase in the amount of B, showed a maximum value of 70K at B = 3, and then decreased with an increase in the amount of B. It can be seen that ΔT is significantly improved when the amount of B is 2 to 4%.
【0023】よってPd76Si18Cu6合金にBを微量
添加することにより、△Tの幅を大きく広げることがで
き、材料の加工性を著しく向上させることができる。特
にB量2〜4%で顕著な効果が期待できる。Therefore, by adding a small amount of B to the Pd 76 Si 18 Cu 6 alloy, the width of ΔT can be greatly increased, and the workability of the material can be significantly improved. In particular, a remarkable effect can be expected when the B content is 2 to 4%.
【0024】上記実施例はM元素としてAl、Si、C
uを、又、T元素としてBを代表的に用いて示してある
が、他の該当元素とX元素との組合せ並びにX元素がZ
rとPdの場合でも同様の効果を奏する。In the above embodiment, M, Al, Si, C
u is shown using B as a representative T element, but other combinations of the relevant element with the X element and X element being Z
The same effect is obtained in the case of r and Pd.
【0025】実施例3 予め溶製したPd60P40合金、Pd、Ni、Cu、Bを
Ar雰囲気中高周波炉にて溶解し、Pd40Ni10Cu30
P20-xBx(at%)からなる5元素母合金を作製し
た。この母合金からAr雰囲気中単ロール法により、リ
ボン材を作製した。急冷相の同定はX線回折を用い熱的
安定性の評価は示差走査熱量計(DSC)を用いて調べ
た。Example 3 A previously melted Pd 60 P 40 alloy, Pd, Ni, Cu, and B were melted in a high-frequency furnace in an Ar atmosphere to obtain Pd 40 Ni 10 Cu 30.
A five-element mother alloy composed of P 20-x Bx (at%) was produced. A ribbon material was produced from this mother alloy by a single roll method in an Ar atmosphere. The quenched phase was identified using X-ray diffraction, and the thermal stability was evaluated using a differential scanning calorimeter (DSC).
【0026】X線回折の結果、本発明の合金はB置換量
0〜20at%の全範囲で非晶質合金であった。また、
示差走査熱量分析の結果、過冷却液体領域の温度幅(△
T)はB=0at%で95Kで、B添加にともない拡大
し、B=2at%で最大値100Kを示し、その後は単
調に減少した。B量は3〜5%で効果があった。As a result of X-ray diffraction, the alloy of the present invention was an amorphous alloy in the entire range of the B substitution amount of 0 to 20 at%. Also,
As a result of differential scanning calorimetry, the temperature range of the supercooled liquid region (△
T) was 95 K at B = 0 at%, expanded with the addition of B, showed a maximum value of 100 K at B = 2 at%, and thereafter decreased monotonously. The B content was effective at 3-5%.
【0027】よって、Pd40Ni10Cu30P20合金にB
を微量添加することにより、△Tの幅を大きく広げるこ
とができ、材料の加工性を著しく向上させることができ
る。特にB量1〜3%で顕著な効果が期待できる。[0027] Thus, B in Pd 40 Ni 10 Cu 30 P 20 Alloy
By adding a small amount of, it is possible to greatly increase the width of ΔT, and to significantly improve the workability of the material. In particular, a remarkable effect can be expected at a B content of 1 to 3%.
【0028】[0028]
【発明の効果】本発明合金は非晶質相を有する合金であ
るため、非晶質合金の特性である高硬度、高強度、高耐
熱性、高耐食性の優れた特性を有する。そして、本発明
合金は過冷却液体領域の温度幅が広いため、加工の際の
温度制御、加工時間等の制御が容易に行える、多段階で
の加工が比較的容易に行える、上記の加工後の非晶質相
を維持でき、その優れた特性を維持できる、比較的低い
冷却速度でも非晶質合金が得られる、非晶質合金の作製
において比較的肉厚あるいは大きな固化材が得られる、
等の効果がある。従来、機械的特性などの他の特性に優
れているが加工性が不十分で実用化しにくかった合金で
も、本発明によってその加工性の改善を行うことがで
き、実用化の範囲を広げることができる。Since the alloy of the present invention is an alloy having an amorphous phase, it has excellent characteristics of the amorphous alloy such as high hardness, high strength, high heat resistance and high corrosion resistance. Since the alloy of the present invention has a wide temperature range in the supercooled liquid region, temperature control during processing, control of processing time and the like can be easily performed, processing in multiple stages can be relatively easily performed, and after the above-described processing. Amorphous phase can be maintained, its excellent properties can be maintained, an amorphous alloy can be obtained even at a relatively low cooling rate, and a relatively thick or large solidified material can be obtained in the production of an amorphous alloy.
And so on. Conventionally, alloys that are excellent in other properties such as mechanical properties but have poor workability and are difficult to commercialize can be improved by the present invention, and the range of practical use can be expanded. it can.
【図1】実施例1の合金の示差走査熱量分析曲線を示
す。1 shows a differential scanning calorimetry curve of the alloy of Example 1. FIG.
【図2】実施例1の合金のX元素の添加量と△T、T
g、Txとの関係を示すグラフである。FIG. 2 shows the addition amount of element X and ΔT, T in the alloy of Example 1.
9 is a graph showing a relationship between g and Tx.
【図3】実施例2の合金の示差走査熱量分析曲線を示
す。FIG. 3 shows a differential scanning calorimetry curve of the alloy of Example 2.
【図4】実施例2の合金のX元素の添加量と△T、T
g、Txとの関係を示すグラフである。FIG. 4 shows the addition amount of element X and ΔT, T in the alloy of Example 2.
9 is a graph showing a relationship between g and Tx.
───────────────────────────────────────────────────── フロントページの続き (71)出願人 000006828 ワイケイケイ株式会社 東京都千代田区神田和泉町1番地 (72)発明者 井上 明久 宮城県仙台市青葉区川内元支倉35番地川内 住宅11−806 (72)発明者 木村 久道 宮城県亘理郡亘理町荒浜字藤平橋44 (72)発明者 春山 修身 千葉県野田市山崎2641 (72)発明者 青木 崇広 茨城県水戸市元吉田町1739番地 平沼産業 株式会社内 (72)発明者 根岸 忠宏 宮城県仙台市宮野区原町1丁目1−49− 402 (72)発明者 西山 信行 東京都中央区八重洲1丁目9番9号 帝国 ピストンリング株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (71) Applicant 000006828 YK-Kei Co., Ltd. 1-cho, Kanda Izumi-cho, Chiyoda-ku, Tokyo (72) Inventor Akihisa Inoue 35-35 Kawachimoto Hasekura, Aoba-ku, Sendai City, Miyagi Prefecture 11-806 (72 Inventor Hisaichi Kimura 44, Fujihirabashi Arahama, Watari-cho, Watari-gun, Miyagi Prefecture (72) Inventor Osamu Haruyama 2641 Yamazaki, Noda-shi, Chiba-ken (72) Inventor Takahiro Aoki 1739 Motoyoshida-cho, Mito-shi, Ibaraki Pref. (72) Inventor Tadahiro Negishi 1-49-402 Haramachi, Miyano-ku, Sendai-shi, Miyagi (72) Inventor Nobuyuki Nishiyama 1-9-9, Yaesu, Chuo-ku, Tokyo Imperial Piston Ring Co., Ltd.
Claims (9)
元素、 M:Al、Si、遷移元素(上記X元素は含まない)か
ら選ばれる少なくとも1種の元素、 T:B又はBと上記X及びM元素より原子半径の小さな
元素、x、y、zは原子パーセントで 5≦y≦70、0<z<6、x=100−y−z で示される組成を有する加工性に優れた非晶質合金。1. General formula: XxMyTz, wherein X: one or two elements selected from Zr and Pd, M: at least one element selected from Al, Si, and transition elements (excluding the X element) Element: T: B or B and an element having an atomic radius smaller than that of the above X and M elements, x, y, and z are represented by atomic percentages: 5 ≦ y ≦ 70, 0 <z <6, x = 100−yz. Amorphous alloy with excellent composition and workability.
は2種の元素からなるM1元素と、遷移元素(上記X元
素を含まない)から選ばれる少なくとも1種の元素から
なるM2元素とからなる請求項1記載の加工性に優れた
非晶質合金。2. An M 1 element composed of one or two elements whose M elements are selected from Al and Si, and a M 2 element composed of at least one element selected from transition elements (not including the X element). The amorphous alloy having excellent workability according to claim 1, comprising an element.
い)から選ばれる少なくとも1種の元素からなるM2元
素からなる請求項1記載の加工性に優れた非晶質合金。3. The amorphous alloy excellent in workability according to claim 1, wherein the M element is an M 2 element comprising at least one element selected from transition elements (not including the X element).
選ばれる少なくとも1種の元素である請求項2又は3記
載の加工性に優れた非晶質合金。4. The amorphous alloy having excellent workability according to claim 2, wherein the M 2 element is at least one element selected from Ti, Ni, Co, and Cu.
る少なくとも1種の元素とである請求項1記載の加工性
に優れた非晶質合金。5. The amorphous alloy excellent in workability according to claim 1, wherein the T element is B or B and at least one element selected from C and P.
り、yが原子パーセントで50%未満である請求項1記
載の加工性に優れた非晶質合金。6. The workable amorphous alloy according to claim 1, wherein x is 50% or more in atomic percent and y is less than 50% in atomic percent.
請求項1記載の加工性に優れた非晶質合金。7. The amorphous alloy excellent in workability according to claim 1, wherein z is 1 ≦ z ≦ 5 in atomic percent.
ーセントの非晶質相を有する請求項1記載の加工性に優
れた非晶質合金。8. The workable amorphous alloy according to claim 1, wherein the amorphous alloy has at least 50% by volume of an amorphous phase.
である過冷却液体領域がT元素の添加により広くされた
請求項1記載の加工性に優れた非晶質合金。9. The amorphous alloy having excellent workability according to claim 1, wherein a supercooled liquid region which is a temperature range between a glass transition temperature and a crystallization temperature is widened by adding a T element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1402797A JPH10212561A (en) | 1997-01-28 | 1997-01-28 | Amorphous alloy with excellent workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1402797A JPH10212561A (en) | 1997-01-28 | 1997-01-28 | Amorphous alloy with excellent workability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10212561A true JPH10212561A (en) | 1998-08-11 |
Family
ID=11849694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1402797A Pending JPH10212561A (en) | 1997-01-28 | 1997-01-28 | Amorphous alloy with excellent workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10212561A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6325868B1 (en) * | 2000-04-19 | 2001-12-04 | Yonsei University | Nickel-based amorphous alloy compositions |
CN103290341A (en) * | 2013-05-30 | 2013-09-11 | 济南大学 | Anti-corrosion block rare earth-based metal glass and annealing method thereof |
-
1997
- 1997-01-28 JP JP1402797A patent/JPH10212561A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6325868B1 (en) * | 2000-04-19 | 2001-12-04 | Yonsei University | Nickel-based amorphous alloy compositions |
CN103290341A (en) * | 2013-05-30 | 2013-09-11 | 济南大学 | Anti-corrosion block rare earth-based metal glass and annealing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3460206B2 (en) | Nickel-based amorphous alloy composition | |
US4182628A (en) | Partially amorphous silver-copper-indium brazing foil | |
KR920004680B1 (en) | High strength heat-resistant alluminum-based alloy | |
US4050931A (en) | Amorphous metal alloys in the beryllium-titanium-zirconium system | |
JPH03158446A (en) | Amorphous alloy with excellent workability | |
US4201601A (en) | Copper brazing alloy foils containing germanium | |
JPH03257133A (en) | High strength, heat resistant aluminum-based alloy | |
JPH0637696B2 (en) | Method for manufacturing high-strength, heat-resistant aluminum-based alloy material | |
EP0905268A1 (en) | High-strength amorphous alloy and process for preparing the same | |
JP2911708B2 (en) | High-strength, heat-resistant, rapidly solidified aluminum alloy, its solidified material, and its manufacturing method | |
JP2000265252A (en) | High strength amorphous alloy and its production | |
US5118368A (en) | High strength magnesium-based alloys | |
JPH05239583A (en) | High strength heat resistant aluminum alloy, its compacted and caked material and its production | |
JPH10212561A (en) | Amorphous alloy with excellent workability | |
US5221376A (en) | High strength magnesium-based alloys | |
JPS6411704B2 (en) | ||
JP2997381B2 (en) | Ti-Cu amorphous alloy | |
JPS597773B2 (en) | Titanium-beryllium-based amorphous alloy | |
JPH07173556A (en) | High strength copper alloy | |
JPS6043895B2 (en) | copper-based alloy | |
KR100360530B1 (en) | Ni based amorphous alloy compositions | |
JPH07252561A (en) | Ti-zr alloy | |
US4668311A (en) | Rapidly solidified nickel aluminide alloy | |
JPH07188823A (en) | Aluminum-based alloy | |
JP3251333B2 (en) | High strength copper alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Effective date: 20051011 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20051212 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20060921 Free format text: JAPANESE INTERMEDIATE CODE: A02 |