JPH10216459A - NOx reduction method and apparatus for combustion exhaust gas - Google Patents
NOx reduction method and apparatus for combustion exhaust gasInfo
- Publication number
- JPH10216459A JPH10216459A JP9017150A JP1715097A JPH10216459A JP H10216459 A JPH10216459 A JP H10216459A JP 9017150 A JP9017150 A JP 9017150A JP 1715097 A JP1715097 A JP 1715097A JP H10216459 A JPH10216459 A JP H10216459A
- Authority
- JP
- Japan
- Prior art keywords
- nox
- reaction layer
- concentration
- exhaust gas
- denitration catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
(57)【要約】
【課題】 脱硝触媒におけるNH3 /NOxモル比を適
正に設定および制御し、高脱硝効率を維持し、設備メン
テナンス負荷を軽減する。
【解決手段】 NH3 からNOxへの転換触媒28、N
Ox還元触媒29およびNOx分析計30を組合せ、ス
リップNH3 相当濃度31および不足還元剤濃度32を
演算器33によって求め、信号変換器34によって、そ
の値から脱硝触媒のNH3 添加装置35の流量調節弁3
6および脱硫設備のNH3 添加装置37の流量調節弁3
8の弁開度を制御する。制御信号は、設定値との偏差を
流量調節弁36、38の開度変更信号に換え、前記偏差
が最小量となるようにNH3 流量を調整する。
[PROBLEMS] To appropriately set and control the NH 3 / NOx molar ratio in a denitration catalyst, maintain high denitration efficiency, and reduce equipment maintenance load. SOLUTION: A catalyst 28 for converting NH 3 to NOx, N
The Ox reduction catalyst 29 and the NOx analyzer 30 are combined, the slip NH 3 equivalent concentration 31 and the insufficient reducing agent concentration 32 are obtained by the calculator 33, and the flow rate of the NH 3 addition device 35 of the denitration catalyst is calculated from the values by the signal converter 34. Control valve 3
6 and flow control valve 3 of NH 3 addition device 37 of desulfurization equipment
8 is controlled. The control signal converts the deviation from the set value into an opening change signal for the flow control valves 36 and 38, and adjusts the NH 3 flow rate so that the deviation becomes a minimum amount.
Description
【0001】[0001]
【発明の属する技術分野】この発明は、燃焼排ガス中の
窒素酸化物(NOx)と還元剤(NH3 等)とを触媒反
応層内において選択接触させ、脱硝処理する焼排ガスの
NOx還元方法および装置に関するものである。特に、
NH3 濃度を間接的に計測し、その値を用いてNH3 と
NOxとの濃度比(以下、「NH3 /NOxモル比」と
いう)を適正に設定し制御する方法および装置に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing NOx in combustion exhaust gas by selectively contacting a nitrogen oxide (NOx) in a combustion exhaust gas with a reducing agent (NH 3 or the like) in a catalytic reaction layer and performing a denitration treatment. It concerns the device. Especially,
The present invention relates to a method and apparatus for indirectly measuring the NH 3 concentration and appropriately setting and controlling the concentration ratio between NH 3 and NOx (hereinafter referred to as “NH 3 / NOx molar ratio”) using the measured value. .
【0002】[0002]
【従来の技術】触媒を用いた脱硝と還元供給技術につい
て:触媒を用いた選択接触還元方法は、排煙脱硝の一般
的な技術の一つであり、触媒種類や反応条件{温度、空
間速度(SV)、線速度(LV)、還元剤等}は、プロ
セスの必要効率や排ガス成分等により適正に選択され、
設計される。2. Description of the Related Art Catalyst-based denitrification and reduction supply technology: The selective catalytic reduction method using a catalyst is one of the general technologies of flue gas denitration, and it depends on the type of catalyst and reaction conditions divided by temperature and space velocity. (SV), linear velocity (LV), reducing agent, etc. are appropriately selected according to the required efficiency of the process, exhaust gas components, etc.
Designed.
【0003】ここで、 SV=(処理ガス流量)/(触媒反応層容積)、 LV=(処理ガス流量)/(触媒反応層流路断面積) 図3は従来技術の排煙脱硝を実施するための装置を示す
概念図である。排ガス39はダクト40に導かれ脱硝反
応層41内に組み込まれた触媒層42を通過する際、排
ガス中のNOx43は脱硝反応層41の入り口に設けら
れたノズル44から吹き込まれた還元剤のNH3 45と
混合され、触媒層42の表面で還元され、N2 46およ
びH2 O47になり、無害化され煙突48へ送られる。Here, SV = (processing gas flow rate) / (catalytic reaction layer volume), LV = (processing gas flow rate) / (catalyst reaction layer flow path cross-sectional area) FIG. FIG. 1 is a conceptual diagram showing an apparatus for performing the above. When the exhaust gas 39 is guided to the duct 40 and passes through the catalyst layer 42 incorporated in the denitration reaction layer 41, NOx 43 in the exhaust gas is reduced by NH 3 of the reducing agent blown from a nozzle 44 provided at the entrance of the denitration reaction layer 41. It is mixed with 345 and reduced on the surface of the catalyst layer 42 to become N 2 46 and H 2 O 47, detoxified and sent to the chimney 48.
【0004】還元剤の種類および投入方法も、コストや
設備制約などを考慮し設定され、投入量も脱硝に際し過
不足なく供給するよう調整され制御されるのが一般的で
ある。還元剤としてはNH3 が使用される。なお、還元
剤としてはNH3 の他にも尿素または硫化水素などを使
用することもできるが、殆どNH3 が使用される。以
下、還元剤はNH3 として説明する。[0004] The type of the reducing agent and the charging method are also set in consideration of costs and equipment restrictions, and the charging amount is generally adjusted and controlled so as to be supplied without excess or depletion during denitration. NH 3 is used as a reducing agent. As the reducing agent can also be used like in addition to urea or hydrogen sulfide NH 3, most NH 3 are used. Hereinafter, the reducing agent will be described as NH 3 .
【0005】NH3 (還元剤)の投入量調整の一般的技
術としては、処理ガス流量およびNOx濃度を計測し、
演算にて必要流量を設定し、流量設定器および調節弁を
介し処理ガス中に混合させる方法(特開平1−1483
33号公報;脱硝用還元剤の供給方法、特開平5−15
4340号公報;焼結機排ガスの脱硝処理方法、特公平
2−579805号公報;アンモニア注入量制御装置等
が開示する)が知られている。As a general technique for adjusting the input amount of NH 3 (reducing agent), a processing gas flow rate and a NOx concentration are measured,
A method in which a required flow rate is set by calculation and mixed into a processing gas via a flow rate setting device and a control valve (Japanese Patent Laid-Open No. 1-1483)
No. 33; method for supplying a reducing agent for denitration, JP-A-5-15
No. 4340; a method for denitration of exhaust gas from a sintering machine, Japanese Patent Publication No. 2-579805, and a disclosure of an ammonia injection amount control device, etc.) are known.
【0006】また、一般的には、還元剤の分析が煩雑等
の理由で添加後の濃度確認および添加量フィードバック
制御等迄の調整は行わない。一般的には、脱硝処理プロ
セスの前工程から還元剤のスリップ(還元剤過剰)がお
こるケースは希であるため、上記の手段で還元剤の投入
量および濃度比の調整を行なっても操業上問題はない。In general, adjustments such as confirmation of the concentration after addition and feedback control of the addition amount are not performed because the analysis of the reducing agent is complicated. In general, it is rare that slip of the reducing agent (excess of the reducing agent) occurs from the previous step of the denitration treatment process. Therefore, even if the charging amount and the concentration ratio of the reducing agent are adjusted by the above-described means, the operation is not improved. No problem.
【0007】しかし、脱硝処理ガス中に上工程からの還
元剤のスリップがあるようなプロセスで、且つそのスリ
ップ濃度が変動するようなプロセスでは、スリップ濃度
の連続および定量把握ができないため、「割り切り、定
量吹込法」がとられている。これは処理ガス中のスリッ
プ還元剤濃度の連続計測が複雑且つ安定性に欠ける等の
課題があるためであり、計測値がそのまま流量制御信号
として利用できないからである。However, in a process in which the reducing agent slips from the upper step in the denitration processing gas, and a process in which the slip concentration fluctuates, it is impossible to continuously and quantitatively grasp the slip concentration. , Quantitative injection method ". This is because continuous measurement of the concentration of the slip reducing agent in the processing gas has problems such as being complicated and lacking in stability, and the measured value cannot be used as it is as a flow control signal.
【0008】NH3 ガスの分析技術について:連続式N
H3 分析計には、乾式では、例えば紫外線(UV)吸光
分析計があり、これは、NH3 等のスペクトル特性値か
ら濃度を定量化する方法である。湿式では、特開昭52
−90994号公報は、イオン電極法を用いた計測機器
を開示する。[0008] Regarding NH 3 gas analysis technology: continuous N
The H 3 analyzer includes, for example, an ultraviolet (UV) absorption analyzer in a dry system, and is a method of quantifying a concentration from a spectral characteristic value such as NH 3 . In the wet method,
Japanese Patent Application No. -90994 discloses a measuring instrument using an ion electrode method.
【0009】しかし、分析ガス中の不純物や析出物付着
等によるセンサの被覆、汚れおよび劣化に対し、ガス前
処理のメンテナンス(サンプリング導管内での凝縮、ト
ラップや化合物の析出および分離等の対策および処理)
が煩雑すぎる等の理由で、オンライン機器としてに実績
に乏しい。[0009] However, maintenance of gas pretreatment (for example, countermeasures such as condensation in a sampling conduit, trapping or separation and separation of compounds, etc.) are required for covering, fouling and deterioration of the sensor due to impurities and deposits in the analysis gas. processing)
Is too poor for online devices because it is too complicated.
【0010】NH3 分析には、湿式法と呼ばれるインド
フェノール法(JIS K−0099)および簡易な検
知管(ガステック等)等があるが、いずれもバッチ分析
であり、且つ分析時間や精度等からオンライン分析計に
ならない。The NH 3 analysis includes an indophenol method (JIS K-0099) called a wet method and a simple detector tube (Gastec etc.), all of which are batch analyses, and include analysis time and accuracy. From becoming an online analyzer.
【0011】ガス中のNH3 分析を間接的に行う技術と
して、特公昭56−32580号公報および特開昭52
−114666号公報等は、酸化触媒でNH3 をNOに
転換し、その濃度差が概略のNH3 濃度とする提案を開
示する。これは、ほぼNH3/NOが等モル反応するこ
とを利用している。As a technique for indirectly analyzing NH 3 in a gas, Japanese Patent Publication No. 56-32580 and Japanese Patent Laid-Open Publication No.
Publication No. -114666 is the NH 3 in the oxidation catalyst to convert to NO, discloses a proposal that the concentration difference is the NH 3 concentration in the schematic. This makes use of the fact that NH 3 / NO reacts almost equimolarly.
【0012】図4は特公昭56−32580号公報に開
示されたガス中のNH3 の分析を実施するための装置構
成を示す系統図である。図4に示すように、事前に排ガ
ス49のSOx処理50を行った後、流通経路を2つに
分岐し、一方は直接ルート51、他方は温度調節器5
2、NH3 酸化器53およびNO転換器54を経てNO
x分析計55を有するルートに導かれる。この2ルート
は電磁弁56にて自動切換えを行う。ここで得られた2
ルートのNOx濃度差をNH3 相当量としている。FIG. 4 is a system diagram showing the configuration of an apparatus for performing analysis of NH 3 in gas disclosed in Japanese Patent Publication No. 56-32580. As shown in FIG. 4, after performing SOx treatment 50 on the exhaust gas 49 in advance, the distribution route is branched into two, one of which is a direct route 51 and the other of which is a temperature controller 5.
2. NO through NH 3 oxidizer 53 and NO converter 54
Guided to a route with x analyzer 55. These two routes are automatically switched by the solenoid valve 56. 2 obtained here
And a NH 3 equivalent amount of NOx concentration difference of the route.
【0013】還元剤の濃度が変動するプロセスについ
て:図5は従来技術の製鉄所焼結排ガス処理を実施する
ための装置構成を示す系統図である。図5に示すよう
に、焼結機57で生成した燃焼排ガス58中のダスト5
9、SOx60およびNOx61を、集塵機62、脱硫
設備63および脱硝設備64により清浄化する排ガス処
理プロセスにおいて、脱硫に吸収液65を用いる湿式脱
硫法が脱硫効率上有利であり、且つ吸収後の液が隣接の
コークスの化工における副生ガスであるCOG66中の
NH3 67を吸収する吸収液として利用され、更に、N
H3 を吸収して液になったものを循環ポンプ68を介し
て焼結排ガスの脱硫の吸収液として循環利用される。Regarding a process in which the concentration of the reducing agent fluctuates: FIG. 5 is a system diagram showing a configuration of an apparatus for performing a conventional sintering exhaust gas treatment at a steel mill. As shown in FIG. 5, dust 5 in the combustion exhaust gas 58 generated by the sintering machine 57
9. In an exhaust gas treatment process for purifying SOx60 and NOx61 by a dust collector 62, a desulfurization facility 63 and a denitration facility 64, a wet desulfurization method using an absorbent 65 for desulfurization is advantageous in terms of desulfurization efficiency, and the liquid after absorption is It is used as an absorbing solution for absorbing NH 3 67 in COG 66 which is a by-product gas in the chemical processing of an adjacent coke.
The liquid that has absorbed H 3 is circulated through a circulation pump 68 as an absorption liquid for desulfurization of the sintering exhaust gas.
【0014】湿式脱硫設備において、処理ガスは反応塔
に導かれ、吸収液と塔内において気液接触しつつガス中
のSOxは吸収される。反応塔69は上流から冷却段7
0、吸収段71、希薄段72、精製段73およびデミス
タ74から構成されており、各段のノズル75からスプ
レーされた液はポンプ76により系内外に循環される。In the wet desulfurization equipment, the processing gas is guided to a reaction tower, and SOx in the gas is absorbed while making gas-liquid contact with the absorbing liquid in the tower. The reaction tower 69 has a cooling stage 7 from the upstream.
0, an absorption stage 71, a dilution stage 72, a purification stage 73, and a demister 74. The liquid sprayed from the nozzle 75 in each stage is circulated into and out of the system by a pump 76.
【0015】この反応塔での基本的な反応式は、下記の
通りである。 SO2 +(NH4 )2 SO3 +H2 O→2(NH4 )H
SO3 :酸性亜硫安の生成 ここで、(NH4 )2 SO3 :吸収液。The basic reaction formula in this reaction tower is as follows. SO 2 + (NH 4 ) 2 SO 3 + H 2 O → 2 (NH 4 ) H
SO 3 : production of ammonium acid sulfite Here, (NH 4 ) 2 SO 3 : absorption liquid.
【0016】図6は従来技術の湿式排煙脱硫の反応等に
おけるSOxおよびNH3 のスリップ特性を示すグラフ
である。図6に示すように、吸収塔の最終段にあたる精
製液のpHがアルカリ側に振れると脱硝効率は向上し、
反面スリップNH3 が増加する。通常脱硫効率の管理で
あるから、プロセス設計からある程度の濃度レベルのス
リップNH3 が常時発生するバランスで操業している。FIG. 6 is a graph showing the slip characteristics of SOx and NH 3 in a conventional wet flue gas desulfurization reaction and the like. As shown in FIG. 6, when the pH of the purified solution corresponding to the final stage of the absorption tower is shifted to the alkali side, the denitration efficiency is improved,
On the other hand, the slip NH 3 increases. Since the desulfurization efficiency is usually controlled, the operation is performed in a balance where slip NH 3 of a certain concentration level is always generated from the process design.
【0017】上工程からの還元剤(NH3 )のスリップ
濃度は、脱硫プロセスの吸収液バランス(化工でのNH
3 吸収等)の変化により変動する。しかし、実脱硫操業
では、脱硫効率が優先するような吸収液の性状およびp
H等が調整される。その調整機能は、化工でのNH3 吸
収プロセスでコークス炉ガス処理量、ならびに、硫安製
造のための液抽出量および系内NH3 添加量等によって
バランス調整する。The slip concentration of the reducing agent (NH 3 ) from the above step is determined by adjusting the balance of the absorbent in the desulfurization process (NH in the chemical process).
3 Absorption). However, in the actual desulfurization operation, the properties of the absorbing solution and p
H and the like are adjusted. The adjustment function adjusts the balance by the coke oven gas processing amount in the NH 3 absorption process in chemical processing, the liquid extraction amount for ammonium sulfate production, the NH 3 addition amount in the system, and the like.
【0018】[0018]
【発明が解決しようとする課題】還元剤(NH3 )の添
加量調整について:触媒を用いた選択接触還元法におい
て、NOx還元剤(主としてNH3 、他に尿素、硫化水
素等を使用可)の濃度比の設定および制御は、効率管
理、ランニングコスト面および環境管理上極めて重要な
意味を持つ。即ち、適正濃度比以下で運転すれば還元剤
不足で脱硝効率が低下し、一方、過剰の運転では脱硝反
応層をスリップする還元剤の量が増加し、還元剤コスト
アップは勿論、事後工程への影響(例えば、熱交換器の
閉塞、腐食等)および煙突排出時の環境汚染の問題が生
ずる。Adjustment of the amount of reducing agent (NH 3 ) added: In the selective catalytic reduction method using a catalyst, a NOx reducing agent (mainly NH 3 , urea, hydrogen sulfide, etc. can be used) The setting and control of the concentration ratio are extremely important in terms of efficiency management, running cost and environmental management. That is, if the operation is performed at an appropriate concentration ratio or less, the denitration efficiency is reduced due to the shortage of the reducing agent, while if the operation is excessive, the amount of the reducing agent slipping through the denitration reaction layer is increased, and the cost of the reducing agent is increased, as well as the post-process. (E.g., heat exchanger blockage, corrosion, etc.) and the problem of environmental pollution during chimney discharge.
【0019】脱硝処理過程のみで還元剤を添加するプロ
セスでは、精度ある処理ガス流量およびNOx濃度の計
測値があれば、演算によって適正な還元剤添加流量が求
められ、流量調節弁にて制御できる。In the process of adding the reducing agent only in the denitration process, if there is an accurate measurement value of the processing gas flow rate and the NOx concentration, an appropriate reducing agent addition flow rate can be obtained by calculation and can be controlled by the flow rate control valve. .
【0020】図7は特開平5−154340号公報に開
示された湿式排煙脱硫の還元剤(NH3 )添加流量制御
を実施するための装置構成を示す系統図である。図7に
示すように、焼結77から排出された燃焼排ガス78中
のNOx79の濃度および処理ガス流量80を、硝酸脱
硝81の反応層82の入り口ダクト83においてNOx
計84および流量計によって計測し、触媒入り口NH3
の必要量85を演算器86にて算出する。しかし、脱硝
の前工程から還元剤のスリップがあり、その濃度も変動
するようなプロセスにおいては、脱硝触媒入り口での適
正な還元剤濃度設定には、通常スリップ濃度を連続的に
計測し、過不足量を演算にて求め、そして、還元剤を流
量調整して添加する方法が必要である。そのためには、
脱硝処理ガス流量およびNOx濃度の計測と共に、精度
の高いスリップ還元剤の濃度分析が必要になる。FIG. 7 is a system diagram showing the configuration of an apparatus for controlling the flow rate of a reducing agent (NH 3 ) added for wet flue gas desulfurization disclosed in Japanese Patent Application Laid-Open No. 5-154340. As shown in FIG. 7, the concentration of NOx 79 and the processing gas flow rate 80 in the combustion exhaust gas 78 discharged from the sintering 77 are changed by the NOx in the inlet duct 83 of the reaction layer 82 of the nitrate denitration 81.
Meter 84 and a flow meter, and the catalyst inlet NH 3
Is calculated by the computing unit 86. However, in a process in which the reducing agent slips from the previous step of denitration and the concentration of the reducing agent fluctuates, in order to set the appropriate reducing agent concentration at the entrance of the denitration catalyst, the slip concentration is usually continuously measured and the slip concentration is usually measured. A method is required in which the shortage amount is calculated by calculation, and the flow rate of the reducing agent is adjusted and added. for that purpose,
Along with the measurement of the denitration gas flow rate and the NOx concentration, a highly accurate concentration analysis of the slip reducing agent is required.
【0021】還元剤(NH3 )の連続分析と濃度比(モ
ル比)制御について:脱硝の主要な還元剤として用いら
れるNH3 のオンライン分析は、SOxダスト等不純物
を多く含む焼結排ガスの如き対象では、ガスサンプリン
グ導管、前処理装置におけるダスト、析出物等による閉
塞、ドレーン凝縮およびトラップ等の影響をセンサが受
け、その結果センサ部への付着および被覆ならびに腐食
などによるセンサの劣化および精度低下を来す場合が生
じ、オンライン計測機器としては信頼性に乏しい。Concerning continuous analysis of reducing agent (NH 3 ) and concentration ratio (molar ratio) control: Online analysis of NH 3 used as a main reducing agent for denitration is carried out in a sintering exhaust gas containing many impurities such as SOx dust. In the target, the sensor is affected by blockage due to dust and precipitates in the gas sampling conduit and pretreatment device, drain condensation and trapping, etc., and as a result, sensor deterioration and accuracy deterioration due to adhesion and coating to the sensor part and corrosion May occur, and the reliability is poor as an online measuring device.
【0022】スリップする還元剤(NH3 )の濃度変動
の抑制対策には、脱硫効率維持および吸収液の需給バラ
ンス(焼結/化工間の)調整の観点から制約が多く、そ
のためスリップNH3 濃度は操業成り行きにならざるを
得ない。[0022] suppression of the concentration variation of the slip reducing agent (NH 3), the supply-demand balance of the desulfurization efficiency maintaining and absorption solution (between sinter / Chemical) many limitations in terms of adjustment, slip NH 3 concentration for its Has to be the result of operations.
【0023】排ガスの脱硫および脱硝には、一般的に省
エネルギーの観点から熱交換器が設けられ、特に処理ガ
ス流量が多い場合には回転蓄熱式熱交換器(例えばユン
グストローム等)が用いられるが、排ガス中にSOx
(Mist,Fume 状)がある場合には、硫安〔(NH4 )2
SO4 〕や酸性硫安〔(NH4 )HSO4 〕として、あ
る温度領域で熱交換器エレメント(波板)の表面で硫化
物の析出およびガス化を生じ、その際スリップNH3 の
一部が吸収および分離を起こすので、脱硝触媒の上流に
これらの設備があるとその設備内でもNH3 の濃度変動
が生じる。For the desulfurization and denitration of exhaust gas, a heat exchanger is generally provided from the viewpoint of energy saving. In particular, when the flow rate of the processing gas is large, a rotary heat storage type heat exchanger (for example, Jungstrom) is used. , SOx in exhaust gas
(Mist, Fume-like), ammonium sulfate ((NH 4 ) 2
As SO 4 ] or ammonium acid sulfate [(NH 4 ) HSO 4 ], sulfide precipitates and gasifies on the surface of the heat exchanger element (corrugated plate) in a certain temperature range, and a part of the slip NH 3 Since absorption and separation occur, the presence of these facilities upstream of the denitration catalyst causes fluctuations in the NH 3 concentration even within the facilities.
【0024】しかし、このNH3 の吸収および分離は一
様に起こる分けではなく、ガス温度、NH3 濃度、スリ
ップSOx濃度、NH3 /NOxモル比ならびに熱交換
器エレメントの形状および閉塞状況等に影響されるた
め、その現象を定量的に把握することは困難である。However, the absorption and separation of NH 3 is not a uniform occurrence, but depends on the gas temperature, NH 3 concentration, slip SOx concentration, NH 3 / NOx molar ratio, the shape of the heat exchanger element and the state of blockage. Because it is affected, it is difficult to grasp the phenomenon quantitatively.
【0025】脱硝触媒入り口でのNOxと還元剤(NH
3 )とのモル比の適正制御は、脱硝効率維持、設備の腐
食および閉塞防止、触媒活性安定化および排出ガスのク
リーン化の面から重要である。しかし、スリップNH3
濃度の精度ある連続分析値がないと、モル比制御は困難
である。NOx and a reducing agent (NH
Appropriate control of the molar ratio with 3 ) is important in terms of maintaining denitration efficiency, preventing corrosion and blockage of equipment, stabilizing catalyst activity, and reducing exhaust gas. However, slip NH 3
Without continuous analytical values with accurate concentration, it is difficult to control the molar ratio.
【0026】また、実プロセスでは、NH3 過剰のケー
スだけでなく不足の状況も存在し、この場合触媒効率は
不足濃度にほぼ比例して低下する。そのため還元剤の不
足量把握も極めて重要である。即ち、還元剤のモル比制
御には、ガス中の還元剤の過剰または不足量(濃度)の
計測および把握が不可欠な要素といえる。Further, in the actual process, there are not only cases where the amount of NH 3 is excessive but also cases where the amount is insufficient. In this case, the catalyst efficiency is reduced almost in proportion to the insufficient concentration. Therefore, it is very important to know the amount of the reducing agent. That is, in controlling the molar ratio of the reducing agent, it is indispensable to measure and grasp the excess or shortage (concentration) of the reducing agent in the gas.
【0027】焼結等燃焼排ガス中のSOxおよびNOx
を処理する際、脱硫が湿式でその吸収液がNH3 を含む
場合、後段の脱硝プロセスに吸収液の中のNH3 がスリ
ップして混入する。脱硝触媒におけるNOxと還元剤N
H3 とのモル比設定は、効率管理および設備メンテナン
ス上重要な項目である。SOx and NOx in combustion exhaust gas such as sintering
When processing, desulfurization when the absorption liquid in a wet contains NH 3, NH 3 in the absorption liquid in the subsequent stage of the denitration process is mixed with the slip. NOx and reducing agent N in denitration catalyst
Setting the molar ratio with H 3 is an important item for efficiency management and equipment maintenance.
【0028】この発明は、上記の課題を解決するために
なされたものであって、その目的は、脱硝触媒における
NH3 /NOxモル比を適正に設定および制御すること
により、高脱硝効率の維持および設備メンテナンス負荷
の軽減を実現することができる燃焼排ガスのNOx還元
方法および装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to maintain and maintain a high denitration efficiency by appropriately setting and controlling the NH 3 / NOx molar ratio in a denitration catalyst. It is another object of the present invention to provide a method and an apparatus for reducing NOx in combustion exhaust gas, which can reduce the load of equipment maintenance.
【0029】[0029]
【課題を解決するための手段】請求項1記載の発明の燃
焼排ガスのNOx還元方法は、燃焼排ガスの流路に脱硫
設備および脱硝触媒反応層を有する施設を使用し、還元
剤にNH3 を用いて燃焼排ガスに含有する窒素酸化物
(NOx)を前記脱硝触媒反応層において選択接触還元
する燃焼排ガスのNOx還元方法において、前記脱硝触
媒反応層出口における燃焼排ガスのNH3 濃度の過不足
を測定してNH3 /NOxモル比を求め、求めたモル比
と設定モル比との差から前記脱硝触媒反応層および前記
脱硫設備の各々のNH3 投入流量調節弁の開度を求めて
開度調整信号に変換し、前記信号によって前記脱硝触媒
反応層および前記脱硫設備の投入NH3 流量を調整し
て、前記脱硝触媒反応層のNH3 /NOxのモル比を所
定の適正値に制御することに特徴を有するものである。According to the first aspect of the present invention, there is provided a method for reducing NOx of combustion exhaust gas, wherein a desulfurization facility and a facility having a denitration catalyst reaction layer are used in a flow path of the combustion exhaust gas, and NH 3 is used as a reducing agent. In the NOx reduction method for combustion exhaust gas, wherein nitrogen oxides (NOx) contained in the combustion exhaust gas are selectively reduced in the denitration catalyst reaction layer by using the same, the excess / deficiency of the NH 3 concentration of the combustion exhaust gas at the outlet of the denitration catalyst reaction layer is measured. To determine the NH 3 / NOx molar ratio, and from the difference between the determined molar ratio and the set molar ratio, determine the opening of the NH 3 input flow rate control valve of each of the denitration catalyst reaction layer and the desulfurization equipment to adjust the opening. into a signal, by adjusting the introduced NH 3 flow rate of the denitration catalyst reaction layer and the desulfurization by said signal, controlling the child the molar ratio of NH 3 / NOx of the denitration catalyst reaction layer to a predetermined appropriate value Those having features to.
【0030】請求項2記載の発明の燃焼排ガスのNOx
還元方法は、燃焼排ガスの流路に脱硫設備および脱硝触
媒反応層を有する施設を使用し、還元剤にNH3 を用い
て燃焼排ガスに含有する窒素酸化物(NOx)を前記脱
硝触媒反応層において選択接触還元する燃焼排ガスのN
Ox還元方法において、前記脱硝触媒反応層の出口の燃
焼排ガスを、酸化触媒を有するルートと、触媒を有さ
ず燃焼排ガスがそのまま通過するルートと、還元触媒
を有するルートとの3つの流路に分配し、前記ルート
において、燃焼排ガスを前記酸化触媒によって酸化し
た後のNOx量を測定し、前記ルートにおいて、燃焼
排ガスのNOx量を測定し、前記ルートにおいて、前
記燃焼排ガスに所定量のNH3 を添加し前記還元触媒に
よって還元した後の前記燃焼排ガスのNOx量を測定
し、前記ルートのNOx量測定値と前記ルートのN
Ox量測定値との差により過剰NH3 濃度を演算し、前
記ロートのNOx量測定値と前記ルートのNOx量
測定値との差により不足NH 3 濃度を演算し、前記過剰
NH3 濃度および不足NH3 濃度の演算値から前記脱硝
触媒反応層のNH3 /NOxモル比を演算し、前記モル
比の演算値から、前記脱硝触媒反応層または前記脱硫設
備の一方または両方の投入NH3 量を演算し、前記演算
量のNH3 を前記脱硝触媒反応層および前記脱硫設備の
一方または両方に投入することにより前記脱硝触媒反応
層のモル比を所定値に制御することに特徴を有するもの
である。The NOx of the flue gas of the invention according to claim 2
The reduction method uses desulfurization equipment and denitration catalyst in the flue gas flow path.
Using a facility having a medium reaction layer, NHThreeUsing
To remove nitrogen oxides (NOx) contained in the combustion exhaust gas.
N of combustion exhaust gas which is selectively catalytically reduced in the nitrate catalyst reaction layer
In the Ox reduction method, the fuel at the outlet of the denitration catalyst reaction layer
The flue gas is passed through a route with an oxidation catalyst and
The route through which the flue gas passes, and the reduction catalyst
And distributing into three flow paths with a route having
In the above, the combustion exhaust gas is oxidized by the oxidation catalyst.
The amount of NOx after the combustion was measured and
The amount of NOx in the exhaust gas was measured and
The combustion exhaust gas contains a predetermined amount of NH.ThreeTo the reduction catalyst
Therefore, the NOx amount of the combustion exhaust gas after reduction is measured.
The measured value of the NOx amount of the route and the N of the route
Excess NH due to the difference from the measured Ox amountThreeCalculate the concentration and
NOx measured value of the funnel and NOx amount of the route
Insufficient NH due to difference from measured value ThreeCalculate the concentration
NHThreeConcentration and lack of NHThreeFrom the calculated value of the concentration,
NH in the catalytic reaction layerThree/ NOx molar ratio is calculated,
From the calculated value of the ratio, the denitration catalyst reaction layer or the desulfurization
One or both input NHThreeCalculate the quantity and calculate
Amount of NHThreeOf the denitration catalyst reaction layer and the desulfurization equipment
By adding to one or both, the denitration catalytic reaction
Characterized by controlling the molar ratio of the layers to a predetermined value
It is.
【0031】請求項3記載の発明は、請求項1記載の発
明において、前記脱硝触媒反応層および前記脱硫設備の
各々のNH3 投入流量調節弁の動作を相互に切り替え可
能とし、求めたNH3 /NOxモル比と設定モル比との
差の値が所定の制御範囲以内のときは、前記脱硝触媒反
応層のNH3 投入流量調節弁を作動して前記脱硝触媒反
応層へNH3 を投入し、所定の制御範囲以外のときは、
前記脱硫設備のNH3投入流量調節弁を作動して前記脱
硫設備へNH3 を投入して、前記脱硝触媒反応層および
前記脱硫設備のNH3 投入流量を制御することに特徴を
有するものである。According to a third aspect of the present invention, in the first aspect of the present invention, the operations of the NH 3 introduction flow rate control valve of each of the denitration catalyst reaction layer and the desulfurization equipment can be switched mutually, and the obtained NH 3 When the value of the difference between the / NOx molar ratio and the set molar ratio is within a predetermined control range, the NH 3 supply flow rate control valve of the denitration catalyst reaction layer is operated to supply NH 3 to the denitration catalyst reaction layer. , Outside the prescribed control range,
The method is characterized in that the NH 3 supply flow rate control valve of the desulfurization facility is operated to supply NH 3 to the desulfurization facility, thereby controlling the NH 3 supply flow rate of the denitration catalyst reaction layer and the NH 3 supply rate of the desulfurization facility. .
【0032】請求項4記載の発明の燃焼排ガスのNOx
還元装置は、燃焼排ガスの流路に脱硫設備および脱硝触
媒反応層を有し、還元剤にNH3 を用いて燃焼排ガスに
含有する窒素酸化物(NOx)を前記脱硝触媒反応層に
おいて選択接触還元する燃焼排ガスのNOx還元装置に
おいて、前記脱硝触媒反応層の出口に接続されたルート
、ルートおよびルートの3つの燃焼排ガス流路
と、前記ルートに設けられたNH3 酸化触媒と、前記
ルートに設けられた所定量のNH3 の添加装置および
前記添加装置の下流のNOx還元触媒と、前記ルート
、ルートおよびルートの流路のNOx濃度を測定
するためのNOx濃度計と、前記NOx濃度計の値から
過剰NH3 濃度および不足NH3 濃度を演算するための
演算器と、前記過剰NH3 濃度および不足NH3 濃度か
ら前記脱硝触媒反応層のNH3 流量調節弁および前記脱
硫設備のNH3 流量調節弁を制御する信号を発するため
の信号変換器とからなることに特徴を有するものであ
る。NOx in the flue gas of the invention according to claim 4
The reduction device has a desulfurization facility and a denitration catalyst reaction layer in a flow path of the flue gas, and uses NH 3 as a reducing agent to selectively reduce nitrogen oxides (NOx) contained in the flue gas in the denitration catalyst reaction layer. in the NOx reduction apparatus of the combustion exhaust gas, the denitration catalyst outlet connected to the root of the reaction layer, the root and three flue gas passage route, and NH 3 oxidation catalyst provided in the route provided in the route A predetermined amount of NH 3 addition device, a NOx reduction catalyst downstream of the addition device, a NOx concentration meter for measuring the NOx concentration in the route, the route and the flow path of the route, and a value of the NOx concentration meter Oyo excess NH 3 concentration and a calculator for calculating a shortage NH 3 concentration, the excess NH 3 concentrations and under NH 3 from said concentration denitration catalyst reaction layer NH 3 flow rate control valve from And a signal converter for generating a signal for controlling the NH 3 flow control valve of the desulfurization facility.
【0033】脱流設備および脱硝設備(脱硝触媒)を備
える窒素酸化物還元施設において、脱硝触媒の入口の処
理ガス中の還元剤(NH3 )濃度は、硫安等の析出、ガ
ス分離、ドレーン中凝縮トラップ、脱硫操業の変動、お
よび、投入NH3 の混合不良などによってバラツキ、且
つ経時的に変化している。そのため、本発明において
は、変動の大きい脱硝触媒の入口のNH3 濃度は測定せ
ず、脱硝触媒(触媒反応層)の出口の過剰(スリップ)
NH3 濃度および不足のNH3 濃度を間接的な方法で求
め、その値を還元剤添加流量制御信号としてNH3 投入
量制御方法に利用するものである。排ガス分析を脱硝触
媒の出口で行うのは、脱硝触媒の触媒反応層がガスのミ
キサ機能をなし、比較的混合均一化が達成された状態に
なるからである。In a nitrogen oxide reduction facility equipped with a degassing facility and a denitration facility (denitration catalyst), the concentration of the reducing agent (NH 3 ) in the processing gas at the inlet of the denitration catalyst depends on the precipitation of ammonium sulfate and the like, gas separation, and drainage. It fluctuates due to fluctuations in the condensation trap, desulfurization operation, and improper mixing of the input NH 3 , and changes over time. Therefore, in the present invention, the NH 3 concentration at the inlet of the denitration catalyst having a large fluctuation is not measured, and the excess (slip) at the outlet of the denitration catalyst (catalyst reaction layer) is not measured.
The NH 3 concentration and the insufficient NH 3 concentration are obtained by an indirect method, and the values are used as a reducing agent addition flow rate control signal in the NH 3 input amount control method. The reason why the exhaust gas analysis is performed at the outlet of the denitration catalyst is that the catalyst reaction layer of the denitration catalyst functions as a gas mixer, and a state in which mixing and uniformity are relatively achieved.
【0034】まず、間接的なスリップNH3 濃度および
不足のNH3 濃度連続測定方法について述べる。脱硝触
媒(触媒反応層)の出口の燃焼排ガス(分析ガス)を主
ダクトからルート(NH3 酸化触媒設置)、ルート
(未処理ライン)およびルート(NOx還元触媒設
置)の3系統の流通経路に分岐し、分岐した3系統のル
ートにタイマによって流通の切り替えを行い、排ガスを
交互に流通させる。各々の処理ルート〜は連続NO
x計を介しガス吸引ポンプに接続される。ガスは前記吸
引ポンプにより一定量吸引される。First, a method of continuously measuring the indirect NH 3 concentration and the insufficient NH 3 concentration will be described. The combustion exhaust gas (analytical gas) at the outlet of the denitration catalyst (catalyst reaction layer) is transferred from the main duct to three routes: a route (NH 3 oxidation catalyst installed), a route (untreated line) and a route (NOx reduction catalyst installed). The flow is switched by means of a timer to the branched three routes, and the exhaust gas is made to flow alternately. Each processing route is continuous NO
Connected to gas suction pump via x-meter. A certain amount of gas is sucked by the suction pump.
【0035】ルートでは、ほぼ全量のスリップNH3
が等モルのNOxに転換されるので、ルートのガスク
ーラのみの値とのNOx濃度格差は近似的にスリップN
H3濃度となる。In the route, almost all of the slip NH 3
Is converted to equimolar NOx, so that the difference in NOx concentration from the value of the route gas cooler alone is approximately equal to the slip N
H 3 concentration.
【0036】このケースでルートでは、還元剤(NH
3 )が充分供給されているため、特別添加NH3 の有無
によるNOx濃度格差は無く、且つ指示値もほぼ設定値
(<2ppm)の範囲である。即ち、高効率転換酸化触
媒と被毒および析出影響のない高温反応とを利用して、
NH3 直接でなく等モル転換するNOx(殆どNO)に
よって間接的にNH3 濃度を把握する。In this case, in the route, the reducing agent (NH
Since 3 ) is sufficiently supplied, there is no difference in NOx concentration due to the presence or absence of specially added NH 3 , and the indicated value is almost in the range of the set value (<2 ppm). That is, utilizing a high-efficiency conversion oxidation catalyst and a high-temperature reaction without poisoning and precipitation effects,
NH 3 to grasp indirectly NH 3 concentration by equimolar converted to NOx rather than direct (mostly NO).
【0037】次に、各ルートについて説明する。 ルートについて:ルートにおいては、還元剤の酸化
(NH3 からNOへの転換)が行なわれ、過剰(スリッ
プ)NH3 量が計測される。Next, each route will be described. About the route: In the route, oxidation of the reducing agent (conversion from NH 3 to NO) is performed, and the amount of excess (slip) NH 3 is measured.
【0038】構成;ガス間接ヒータ(排ガスを800〜
1000℃に加熱できる)、NH3酸化触媒反応層(P
t−Rh系貴金属触媒、Rh10%程度)、ガスクー
ラ、切替え弁およびNOx分析計からなる。脱硝触媒
(触媒反応層)の出口の排ガスを硫安や酸性硫安等塩類
の析出温度以上に加熱することにより、分析ガスの導管
および前処理装置のメンテナンス負荷を軽減解消し、精
度ある分析および計測が達成される。Structure: gas indirect heater (exhaust gas is 800 to
Can be heated to 1000 ° C), NH 3 oxidation catalyst reaction layer (P
t-Rh noble metal catalyst, about 10% Rh), a gas cooler, a switching valve, and a NOx analyzer. By heating the exhaust gas at the outlet of the denitration catalyst (catalyst reaction layer) above the precipitation temperature of salts such as ammonium sulfate and acidic ammonium sulfate, the maintenance load on the analytical gas conduit and pretreatment equipment is reduced, and accurate analysis and measurement can be performed. Achieved.
【0039】作用;排ガス中のNH3 の酸化(NH3 か
らNOへの転換)を行う。反応式は、以下の通りであ
る。 4NH3 +5O2 →4NO+6H2 O ここでは、基本的に等モルのNO転換と考える。Function: Oxidation of NH 3 in exhaust gas (conversion from NH 3 to NO). The reaction formula is as follows. 4NH 3 + 5O 2 → 4NO + 6H 2 O Here, it is basically considered as equimolar NO conversion.
【0040】計測値;計測値は、排ガス中の残留NOと
還元剤(NH3 )から転換したNOの合計濃度である。
この濃度の絶対値は、脱硝触媒(触媒反応層)の出口の
NOおよび過剰(スリップ)NH3 の濃度によって変化
する。また、脱硝触媒の効率が一定でも、処理前のガス
中のNOx濃度は排ガス精製プロセスの操業変動などで
変化する。Measured value: The measured value is the total concentration of residual NO in the exhaust gas and NO converted from the reducing agent (NH 3 ).
The absolute value of this concentration varies depending on the concentration of NO and excess (slip) NH 3 at the outlet of the denitration catalyst (catalytic reaction layer). Further, even if the efficiency of the denitration catalyst is constant, the NOx concentration in the gas before the treatment changes due to an operation fluctuation of the exhaust gas purification process and the like.
【0041】ルートについて:ルートおいては、生
排ガス(脱硝触媒の出口のNOx)が流通し、基準の排
ガス中のNOx濃度が計測される。Route: On the route, raw exhaust gas (NOx at the outlet of the denitration catalyst) flows, and the standard NOx concentration in the exhaust gas is measured.
【0042】構成;ガスクーラ、切換弁およびNOx分
析計からなる。 作用;排ガス中のNOx濃度のみを計測する。分析障害
成分はドレーントラップにより除去する。Structure: A gas cooler, a switching valve and a NOx analyzer. Function: Measures only the NOx concentration in the exhaust gas. Analytical obstacle components are removed by a drain trap.
【0043】計測値;計測値は、脱硝触媒(触媒反応
層)の出口のガスのNOx濃度であり、本発明方法にお
いて、脱硝触媒出口の過剰(スリップ)または不足NH
3 量判定のための基準値となる。これにより、脱硝未処
理ガス中のNOx濃度変動および本施設の脱硝触媒の効
率が把握される。Measured value: The measured value is the NOx concentration of the gas at the outlet of the denitration catalyst (catalyst reaction layer). In the method of the present invention, excess (slip) or insufficient NH at the outlet of the denitration catalyst is used.
It becomes the reference value for 3 quantity judgment. Thereby, the NOx concentration fluctuation in the denitration-untreated gas and the efficiency of the denitration catalyst of this facility are grasped.
【0044】ルートについて:ルートにおいては、
未反応NOの還元(ガス中NH3 および特別添加NH3
による未反応NOの還元)が行なわれる。また、脱硝触
媒の性能確認および不足還元剤(NH3 )量の計測が行
なわれる。About the route: In the route,
Reduction of unreacted NO (NH 3 in gas and specially added NH 3
To reduce unreacted NO). In addition, the performance of the denitration catalyst is checked and the amount of the insufficient reducing agent (NH 3 ) is measured.
【0045】構成;ガス間接ヒータ(排ガスを約300
℃に加熱できる)、高性能脱硝触媒反応層(Ti−V−
W系)、ガスクーラ、切換弁およびNOx分析計からな
る。更に、特別添加NH3 の添加機器を備え、処理ガス
流通期間中に、特別添加NH 3 の添加有りまたは無しの
状態をつくる。Configuration: gas indirect heater (exhaust gas is about 300
° C), high performance denitration catalyst reaction layer (Ti-V-
W system), gas cooler, switching valve and NOx analyzer.
You. Furthermore, specially added NHThreeProcess gas
During the distribution period, specially added NH ThreeWith or without the addition of
Create a state.
【0046】作用; (イ)脱硝触媒(触媒反応層)のスリップNH3 とNO
との還元反応が行なわれる。反応式は、以下の通りであ
る。(A) Slip NH 3 and NO of NOx removal catalyst (catalytic reaction layer)
And a reduction reaction is performed. The reaction formula is as follows.
【0047】 4NO+4NH3 +O2 →4N2 +6H2 O (ロ)特別添加NH3 による還元剤不足なしの状態での
本触媒スリップNOの還元反応が行なわれる。4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (ii) The reduction reaction of the present catalyst slip NO is carried out in a state where there is no shortage of reducing agent due to the specially added NH 3 .
【0048】計測値; (イ)特別添加NH3 添加無し 脱硝触媒(触媒反応層)の出口の還元剤(NH3 )が過
剰(潤沢)な場合は格差ゼロである。一方、還元剤(N
H3 )不足の場合は格差が発生する。(A) No special addition of NH 3 When the reducing agent (NH 3 ) at the outlet of the denitration catalyst (catalytic reaction layer) is excessive (abundant), the difference is zero. On the other hand, the reducing agent (N
H 3 ) If there is a shortage, a gap occurs.
【0049】(ロ)特別添加NH3 添加有り 脱硝触媒(触媒反応層)の出口の還元剤が過剰(潤沢)
な場合は格差ゼロである。一方、還元剤不足の場合も格
差ゼロである。(B) With special addition of NH 3 Addition of excess reducing agent at outlet of denitration catalyst (catalytic reaction layer)
In such cases, the disparity is zero. On the other hand, the disparity is also zero when the reducing agent is insufficient.
【0050】2つの計測値の格差;ここで、上記2つの
計測値(イ)と(ロ)との格差が、本脱硝触媒の還元剤
(NH3 )の不足濃度の絶対値である。The difference between the two measured values; the difference between the two measured values (a) and (b) is the absolute value of the insufficient concentration of the reducing agent (NH 3 ) in the present denitration catalyst.
【0051】次に、ルートにおけるNH3 不足濃度測
定方法について述べる。排ガスを間接ガスヒータによっ
て約300℃に加熱後、所定量(完全還元が可能な濃度
設定)のNH3 (特別添加NH3 )が定時間添加され
る。次いで、NOx還元触媒反応層(Ti−V−W系)
に導かれた後NOx分析計に入る。この際、NH3 特別
添加無し(生の排ガスにおける還元)の場合とのNOx
濃度差が不足NH3 濃度となる。Next, a method for measuring the NH 3 deficiency concentration in the route will be described. After the exhaust gas is heated to about 300 ° C. by an indirect gas heater, a predetermined amount of NH 3 (special addition NH 3 ) is added for a fixed period of time (concentration setting enabling complete reduction). Next, a NOx reduction catalyst reaction layer (Ti-VW system)
And then enter the NOx analyzer. At this time, NOx with no special addition of NH 3 (reduction in raw exhaust gas)
The concentration difference becomes the insufficient NH 3 concentration.
【0052】特別添加NH3 によるNOの還元反応は、
下記式の通りである。 4NO+4NH3 +O2 →8N2 +6H2 O スリップNH3 が無いときは、NH3 酸化触媒出口(ル
ート)と未処理ガス(ルート)とのNOx濃度差が
なくなる為、更にNH3 の必要量が不足した場合には、
ここ(ルート)で得られた前記格差がNH3 不足量と
して把握できる。The reduction reaction of NO with the specially added NH 3 is as follows:
It is as follows. 4NO + 4NH 3 + O 2 → 8N 2 + 6H 2 O When there is no slip NH 3 , there is no difference in NOx concentration between the NH 3 oxidation catalyst outlet (route) and the untreated gas (route), so the required amount of NH 3 is further insufficient. If you do
The difference obtained here (route) can be grasped as the NH 3 deficiency.
【0053】脱硝触媒の効率および還元剤モル比は下記
の通りである。一般の触媒脱硝効率は、規制値、経済性
および触媒性能等から約70〜90%程度である。The efficiency of the denitration catalyst and the molar ratio of the reducing agent are as follows. The general catalyst denitration efficiency is about 70 to 90% in view of regulatory values, economy and catalyst performance.
【0054】脱硝触媒(触媒反応層)の入口のNH3 /
NOモル比は触媒種類、反応条件にも依るが、通常1.
0〜1.2に設定する。触媒効率に与えるNH3 /NO
モル比特性の一般形は図8に示す通りである。等モル反
応でNH3 /NOモル比が1.0でも、触媒効率が80
%なら20%相当の未還元NOxおよびNH3 が残留す
る。At the inlet of the denitration catalyst (catalyst reaction layer), NH 3 /
Although the NO molar ratio depends on the type of catalyst and reaction conditions, it is usually 1.
Set to 0-1.2. NH 3 / NO on catalyst efficiency
The general form of the molar ratio characteristic is as shown in FIG. Even if the NH 3 / NO molar ratio is 1.0 in an equimolar reaction, the catalyst efficiency is 80%.
%, Unreduced NOx and NH 3 equivalent to 20% remain.
【0055】次に、3系統の流路(ルート〜)のガ
ス分析値から得られる情報について説明する。図9は還
元剤のモル比の測定方法を説明する系統図である。ま
ず、3系統のルートのガス分析値から得られる情報を、
下記の通り定義する。Next, information obtained from the gas analysis values of the three channels (routes to) will be described. FIG. 9 is a system diagram illustrating a method for measuring the molar ratio of the reducing agent. First, the information obtained from the gas analysis values of the three routes is
Define as follows.
【0056】ルートのNOx値:NOx−a ルートのNOx値:NOx−b ルートの特別NH3 添加無しNOx値:NOx−c ルートの特別NH3 添加有りNOx値:NOx−d 方式(a):ルートの酸化触媒出口排ガス(NOx−
a)とルートの生ガス(NOx−b)との格差(酸化
触媒出口スリップNH3 のNO転換量) 脱硝触媒における還元剤(NH3 )が過剰(潤沢)
な場合;ΔNOxルートとルート (NOx−a)−(NOx−b)>(NOx−b)*K
1 ただし、K1:酸化触媒転換効率(K1=0.9〜0.
95) 理想の等モル反応の場合;ΔNOxルートとルー
ト (NOx−a)−(NOx−b)=(NOx−b)*K
1 還元剤不足の場合; ΔNOxルートとルート (NOx−a)−(NOx−b)<(NOx−b)*K
1 制御偏差(必要NH3 濃度)=ΔNH3 は、以下の通り
である。[0056] Route of NOx values: NOx-a route NOx values: Special NH 3 added without NOx value of the NOx-b route: Special NH 3 addition there NOx value of the NOx-c route: NOx-d method (a): Oxidation catalyst outlet exhaust gas (NOx-
Disparity between a) and the raw gas (NOx-b) in the route (NO conversion amount of slip NH 3 at oxidation catalyst outlet) Excessive reduction (NH 3 ) in denitration catalyst
Case: ΔNOx route and route (NOx-a)-(NOx-b)> (NOx-b) * K
1 where K1: oxidation catalyst conversion efficiency (K1 = 0.9-0.
95) In case of ideal equimolar reaction; ΔNOx route and route (NOx-a)-(NOx-b) = (NOx-b) * K
1 In case of insufficient reducing agent; ΔNOx route and route (NOx-a)-(NOx-b) <(NOx-b) * K
1 Control deviation (required NH 3 concentration) = ΔNH 3 is as follows.
【0057】ΔNH3 =(NOx−b)−{(NOx−
a)−(NOx−b)}/K1 (ΔNH3 >0;不足、ΔNH3 =0;等モル比、ΔN
H3 <0;過剰) ただし、NH3 とNOxとは等モル反応するとの前提条
件内で成立。ΔNH 3 = (NOx−b) − {(NOx−
a)-(NOx-b)} / K1 (ΔNH 3 >0; insufficient, ΔNH 3 = 0; equimolar ratio, ΔN
(H 3 <0; excess) However, the condition is satisfied under the precondition that NH 3 and NOx react equimolarly.
【0058】方式(b):ルートの還元触媒出口排ガ
スの特別添加NH3 添加無しと添加有りとの格差 脱硝触媒における還元剤が過剰(潤沢)な場合; (NOx−c)=(NOx−d) (NOx−c)=(NOx−b)*(1−K2) ただし、K2:還元触媒の転換率(K2=0.95〜
0.99) 理想の等モル反応の場合; (NOx−c)=(NOx−d) (NOx−c)=(NOx−b)*(1−K2) 還元剤不足の場合; 脱硝触媒出口スリップNH3 ={(NOx−b)−(N
Ox−c)}/K2 触媒必要NH3 量(ΔNH3 )={(NOx−c)−
(NOx−d)}/K2 NH3 不足のバランスでの制御偏差(必要NH3 濃度)
=ΔNH3 は、以下の通りである。Method (b): Difference between the special addition of NH 3 at the outlet of the reduction catalyst at the route and the addition of NH 3 When the reducing agent in the denitration catalyst is excessive (abundant); (NOx−c) = (NOx−d) (NOx−c) = (NOx−b) * (1−K2) where K2: conversion rate of the reduction catalyst (K2 = 0.95 to 0.95)
0.99) In the case of ideal equimolar reaction; (NOx-c) = (NOx-d) (NOx-c) = (NOx-b) * (1-K2) In the case of insufficient reducing agent; NH 3 = {(NOx−b) − (N
Ox-c)} / K2 Catalyst required NH 3 amount (ΔNH 3 ) = {(NOx-c)-
(NOx-d)} / K2 Control deviation in the balance of NH 3 deficiency (required NH 3 concentration)
= ΔNH 3 is as follows.
【0059】 ΔNH3 ={(NOx−c)−(NOx−d)}/K2 ただし、K2:還元触媒の転換率 (ΔNH3 >0;不足、ΔNH3 =0;等モル比または
過剰) このような、上記の方式(a)および方式(b)の2方
式を併用する理由は以下の通りである。ΔNH 3 = {(NOx−c) − (NOx−d)} / K2, where K2: conversion rate of the reduction catalyst (ΔNH 3 >0; insufficient, ΔNH 3 = 0; equimolar ratio or excess) The reason why the above two methods (a) and (b) are used together is as follows.
【0060】方式(a)は、NH3 とNOとが等モル反
応であることを前提にしているが、触媒反応温度を得る
過程で無触媒状態で酸素が共存するため、下記の酸化反
応や還元反応が一部発生する(誤差要因)。The method (a) is based on the premise that NH 3 and NO are equimolar reactions. However, since oxygen coexists in a non-catalytic state in the process of obtaining the catalytic reaction temperature, the following oxidation reaction and Partial reduction reaction occurs (error factor).
【0061】 4NO+4NH3 +O2 →4N2 +6H2 O 4NH3 +5O2 →4NO+6H2 O 4NH3 +3O2 →2N2 +6H2 O 上記反応はNH3 、NOおよびO2 の濃度や温度等によ
り変化するので、方式(a)を必ずしも等モル反応と限
定できない。4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O 4NH 3 + 5O 2 → 4NO + 6H 2 O 4NH 3 + 3O 2 → 2N 2 + 6H 2 O Since the above reaction varies depending on the concentration and temperature of NH 3 , NO and O 2 , etc. However, the method (a) cannot always be limited to an equimolar reaction.
【0062】方式(b)は、触媒被毒の無い反応条件で
の分析であり、上記に見られる中間反応もないので、比
較的正確な判定が可能である。ただし、等モル比以上の
NH 3 が存在するときは格差が無くなる。In the method (b), the reaction is carried out under a reaction condition without catalyst poisoning.
Analysis, and there is no intermediate reaction seen above.
Relatively accurate judgment is possible. However, equimolar ratio or more
NH ThreeWhen there is, there is no gap.
【0063】従って、方式(b)は、還元剤比が等モル
以上の領域での、方式(a)の誤差の修正に利用する。
分析値および格差の利用法は、以下の通りである。Therefore, the method (b) is used for correcting an error of the method (a) in a region where the ratio of the reducing agent is equal to or more than equimolar.
The use of the analysis values and disparities is as follows.
【0064】脱硝触媒(触媒反応層)の出口のNH3 の
スリップ濃度相当量を計測し、設定値との偏差を求めそ
れを本窒素酸化物還元施設の脱硫設備および脱硝触媒反
応層の各々のNH3 投入量調節弁の弁開度調整信号とし
て用いる。The slip concentration of NH 3 at the outlet of the denitration catalyst (catalyst reaction layer) was measured, and the deviation from the set value was determined. The deviation was determined for each of the desulfurization equipment and the denitration catalyst reaction layer of the present nitrogen oxide reduction facility. It is used as a valve opening adjustment signal for the NH 3 input amount adjustment valve.
【0065】還元剤過剰(スリップNH3 )から等モル
の領域では、方式(a)の格差を利用する。ただし、方
式(b)の格差が「ゼロ」である前提である。還元剤不
足の領域では、方式(b)の格差を利用する。利用方法
は、本脱硝触媒の還元剤(NH3 )のモル比の制御(設
定モル比との偏差)による。そして、触媒反応後のガス
濃度を分析して、設定値との格差を脱硝触媒反応層のN
H3 投入量を調整する制御信号とする。In the region from excess reducing agent (slip NH 3 ) to equimolar, the difference of the method (a) is used. However, it is assumed that the disparity of the method (b) is “zero”. In the area where the reducing agent is insufficient, the disparity of the method (b) is used. The method of utilization depends on the control of the molar ratio of the reducing agent (NH 3 ) of the present denitration catalyst (deviation from the set molar ratio). Then, the gas concentration after the catalytic reaction is analyzed and the difference from the set value is determined by the N 2
This is a control signal for adjusting the H 3 input amount.
【0066】次に、本発明による脱硝触媒の還元剤濃度
比(NH3 /NOxモル比)の調整方法について述べ
る。還元剤濃度比調整は、本窒素酸化物還元施設の脱硫
設備および脱硝触媒反応層におけるNH3 流量調節弁の
NH3 投入量制御(2段調整法)によって行う。即ち、
2段調整法は、脱硫設備のNH3 添加および脱硝触媒反
応層のNH3 添加の2段とする。方法は、NH3 流量調
節弁の開度調節(増加または絞り込み)による)。Next, a method of adjusting the reducing agent concentration ratio (NH 3 / NOx molar ratio) of the denitration catalyst according to the present invention will be described. Adjustment of the reducing agent concentration ratio is performed by controlling the NH 3 input amount of the NH 3 flow rate control valve (two-stage adjustment method) in the desulfurization facility and the denitration catalyst reaction layer of the nitrogen oxide reduction facility. That is,
2-step adjustment method, a two-stage NH 3 addition of NH 3 addition and denitration catalyst reaction layer desulfurization. The method is by adjusting (increasing or narrowing) the opening of the NH 3 flow control valve).
【0067】(イ)脱硫設備の制御範囲:(スリップN
H3 濃度<50ppm)のとき;増加、または、(スリ
ップNH3 濃度>250ppm)のとき;絞り込み。(A) Control range of desulfurization equipment: (Slip N
H 3 Concentration <When 50 ppm); increased or, (slip NH 3 concentration> when 250 ppm); refinement.
【0068】(ロ)脱硝触媒反応層の制御範囲:50p
pm≦スリップNH3 濃度≦250ppm。脱硫スリッ
プNH3 濃度と脱硝触媒入口(熱交換器未処理出口、即
ち、脱硝触媒反応層NH3 添加前)の濃度:脱硝触媒反
応層の入口濃度は、0.7〜0.75(脱硫スリップN
H3 濃度)の範囲である。これは、熱交換器のエレメン
ト表面に析出し補足され、濃度が減少する。(B) Control range of the denitration catalyst reaction layer: 50 p
pm ≦ slip NH 3 concentration ≦ 250 ppm. Desulfurization slip NH 3 concentration and concentration at the inlet of the denitration catalyst (untreated heat exchanger outlet, that is, before the addition of the denitration catalyst reaction layer NH 3 ): The inlet concentration of the denitration catalyst reaction layer is 0.7 to 0.75 (desulfurization slip). N
H 3 concentration). This deposits on the element surfaces of the heat exchanger and is captured, reducing the concentration.
【0069】NH3 濃度比の調整方法:脱硝触媒のスリ
ップNH3 が設定値より過剰な場合には、 (イ)切換弁(電磁弁)の切り替えにて得られたNOx
濃度格差ΔNOxA(ppm)(ルート、)と脱硝
触媒の性能および活性維持の観点から設定された設定N
Oxo(ppm)との偏差を求める。Method of adjusting NH 3 concentration ratio: When slip NH 3 of the denitration catalyst is excessive than the set value, (a) NOx obtained by switching the switching valve (electromagnetic valve)
The concentration difference ΔNOxA (ppm) (root) and the setting N set from the viewpoint of the performance and activity maintenance of the denitration catalyst
The deviation from Oxo (ppm) is determined.
【0070】ΔNOxAの値が、ΔNOxA>NOxo
からΔNOxA={NOxo−20ppm}の範囲にお
いては、脱硝触媒のNH3 流量調節弁を、ΔNOxA=
NOxoになるように調節する。If the value of ΔNOxA is ΔNOxA> NOxo
In the range from ΔNOxA = {NOxo−20 ppm}, the NH 3 flow rate control valve of the denitration catalyst is set to ΔNOxA =
Adjust to become NOxo.
【0071】(ロ)脱硝触媒のNH3 流量調節弁を絞り
きっても、 ΔNOxA>(NOxo+20ppm) のときは(即ち、スリップNH3 )、NH3 調整機能を
脱硝触媒反応層から脱流設備の流量調節弁に移行する。(B) Even if the NH 3 flow rate control valve of the denitration catalyst is squeezed, if ΔNOxA> (NOxo + 20 ppm) (ie, slip NH 3 ), the NH 3 adjusting function is provided from the denitration catalyst reaction layer to the denitration catalyst reaction layer. Move to flow control valve.
【0072】ただし、上記アクションは、別系統のNO
x情報である排ガスの還元ルート(ルート)の所定量
NH3 添加(特別添加NH3 )の添加有無によるNOx
格差が2ppm以内の条件を満たすことを前提とする。However, the above-mentioned action is performed by a different system NO.
NOx depending on whether or not a predetermined amount of NH 3 addition (special addition NH 3 ) is added to the exhaust gas reduction route (route), which is x information
It is assumed that the disparity satisfies the condition within 2 ppm.
【0073】脱硝触媒のNH3 が設定値より不足してい
る場合には、 (イ)ΔNOxA<(NOxo−20ppm)で、且
つ、還元ルートのNOx格差が2ppm以上の場合は、
脱硝触媒(触媒反応層)においてNH3 不足の状態であ
る。When NH 3 of the denitration catalyst is less than the set value, (a) when ΔNOxA <(NOxo−20 ppm) and the NOx disparity in the reduction route is 2 ppm or more,
In the denitration catalyst (catalytic reaction layer), NH 3 is insufficient.
【0074】(ロ)この場合、所定量(完全還元が可能
な濃度設定)のNH3 添加(特別添加NH3 )の有無に
よる還元触媒出口NOx濃度差がそのままNH3 不足量
となるので、その格差が2ppm以内になるまで、格差
相当量のNH3 を脱硝触媒に追加し増量する。脱硝触媒
のNH3 投入能力は、上流からのNH3 スリップがゼロ
でも対応可能なように設計されているので、このアクシ
ョンは1動作で良い。(B) In this case, the difference in NOx concentration at the outlet of the reduction catalyst due to the presence / absence of addition of a predetermined amount (concentration setting capable of complete reduction) of NH 3 (special addition NH 3 ) directly becomes an NH 3 deficiency amount. Until the disparity is within 2 ppm, NH 3 equivalent to the disparity is added to the denitration catalyst to increase the amount. Since the NH 3 supply capacity of the denitration catalyst is designed to be able to cope with even zero NH 3 slip from the upstream, this action may be one operation.
【0075】ガスサンプリング周期は約5〜6分/回、
偏差制御アクションは20〜30分間の格差平均値を演
算しそれを用いて行う。The gas sampling cycle is about 5 to 6 minutes / time,
The deviation control action is performed by calculating and using the average difference value for 20 to 30 minutes.
【0076】[0076]
【発明の実施の形態】次に、この発明の実施の形態を図
面を参照しながら説明する。図1は、この発明の一実施
態様に係る触媒反応層(脱硝触媒)出口の還元剤(NH
3 )スリップ濃度計測を実施するための装置構成を示す
系統図である。Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a reducing agent (NH) at the outlet of a catalytic reaction layer (denitration catalyst) according to an embodiment of the present invention.
3 ) It is a system diagram showing a device configuration for performing a slip concentration measurement.
【0077】図1に示す装置において、脱硝反応層1に
内蔵された脱硝触媒2に、NOx3とNH3 4とが所定
の濃度比で流通し、触媒活性表面にて選択接触還元反応
を生じ、NOx3はN2 5とH2 O6とに還元される。
還元反応式は下記の通りである。In the apparatus shown in FIG. 1, NOx 3 and NH 3 4 flow at a predetermined concentration ratio through the denitration catalyst 2 incorporated in the denitration reaction layer 1 to cause a selective catalytic reduction reaction on the catalytically active surface. NOx3 is reduced to the N 2 5 and H 2 O6.
The reduction reaction formula is as follows.
【0078】 4NO+4NH3 +O2 →4N2 +6H2 O 触媒反応層1の出口の排ガス中には、触媒の脱硝効率に
応じた未還元のNOxと還元反応に過剰なNH3 とが残
留する場合が一般的である。ここで、理想反応は等モル
であるが、実際の反応層では、ガス滞留時間等の関係で
約10〜50%過剰に還元剤(NH3 )を投入するのが
普通である。4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O In the exhaust gas at the outlet of the catalytic reaction layer 1, unreduced NOx corresponding to the denitration efficiency of the catalyst and excessive NH 3 in the reduction reaction may remain. General. Here, the ideal reaction is equimolar, but in an actual reaction layer, it is usual to add a reducing agent (NH 3 ) in excess of about 10 to 50% due to the gas residence time and the like.
【0079】この排ガスをガス吸引ポンプ7により排ガ
スダクト8より分岐し、各々のガスクーラ9出口の切換
弁(電磁弁)10によって各々3系統からなるガス処理
ルート11(ガス検出管)に分離する。The exhaust gas is branched from an exhaust gas duct 8 by a gas suction pump 7 and separated into three gas processing routes 11 (gas detection tubes) by switching valves (electromagnetic valves) 10 at the outlets of the respective gas coolers 9.
【0080】3系統の処理ルートは、タイマ12の作用
によって排ガスが交互に流通するようになっている。第
1の処理ルート(ルート)は酸化用間接ガスヒータ1
3、NH3 酸化触媒反応層14およびガスクーラ9の配
列である。なお、NH3 酸化触媒にはPt−Rh系貴金
属触媒を用い、ガスヒータの設定温度は約800〜10
00℃に設定する。第2のルート(ルート)はガスク
ーラ9のみで構成する。更に残りの第3のルート(ルー
ト)は、還元処理用間接ガスヒータ15、その上流の
ガス処理ラインにNH3 ガス定量吹き込み弁16および
その弁作動用の定量NH3 (特別添加NH3 )吹き込み
タイマ17を備えたNH3 添加装置18、ならびに、T
i−V−W系の脱硝触媒反応層19によって構成する。
この還元ルートの脱硝触媒には前記のようにTi−V−
W系を用い、ヒータ温度を約300℃一定に調整する。
また、分析ガスのダスト濃度に応じてガス処理ルートの
分岐前に簡易なダスト補集器20を設置する。ガスクー
ラ9出口の分析ガス21は集合され、NOx分析計22
に導かれ、NOx濃度を計測する。この際、第2のルー
ト(ルート)のガスのNOxを生NOx23、第1の
ルート(ルート)のNH3 酸化触媒を経たガスのNO
xを転換NOx24とし、この濃度格差a25の時間平
均値を演算器26によって算出する。In the three processing routes, the exhaust gas flows alternately by the action of the timer 12. The first processing route (route) is an indirect gas heater for oxidation 1
3, an arrangement of the NH 3 oxidation catalyst reaction layer 14 and the gas cooler 9. Note that the NH 3 oxidation catalyst using Pt-Rh-based noble metal catalyst, the set temperature of the gas heater is about 800 to 10
Set to 00 ° C. The second route (route) includes only the gas cooler 9. Further, the remaining third route (route) includes an indirect gas heater 15 for reduction treatment, an NH 3 gas quantitative injection valve 16 into a gas processing line upstream thereof, and a constant NH 3 (special addition NH 3 ) injection timer for operating the valve. NH 3 adding device 18 provided with
It is composed of an iVW-based denitration catalyst reaction layer 19.
As described above, the denitration catalyst of this reduction route includes Ti-V-
The heater temperature is adjusted to be constant at about 300 ° C. using a W system.
Further, a simple dust collector 20 is installed before branching of the gas processing route according to the dust concentration of the analysis gas. The analysis gas 21 at the outlet of the gas cooler 9 is collected and the NOx analyzer 22
And the NOx concentration is measured. At this time, the NOx of the gas on the second route (route) is converted into raw NOx 23, and the NOx of the gas that has passed through the NH 3 oxidation catalyst on the first route (route).
x is converted NOx 24, and the time average value of the concentration difference a25 is calculated by the calculator 26.
【0081】燃焼排ガスのNH3 選択接触還元では、近
似的に等モル反応と考えられるので、この格差a25の
濃度が近似的にスリップした還元剤(NH3 )の濃度と
いえる。In the NH 3 selective catalytic reduction of the combustion exhaust gas, since it is considered that the reaction is approximately equimolar, the concentration of the difference a25 can be said to be approximately the concentration of the slipping reducing agent (NH 3 ).
【0082】還元剤(NH3 )が脱硝触媒2において充
分なモル比で供給されない(即ち、還元剤(NH3 )不
足)場合、濃度格差は減少傾向を示し、ついには格差が
なくなるレベルに至る。このレベルは完全に還元剤(N
H3 )不足の状態である。その場合の対応として、還元
剤不足量を推定するため、分析ルートの脱硝触媒出口の
NOx濃度変化を定量添加NH3 (特別添加NH3 )の
添加有無の操作を行ない、そこで現れる濃度格差b.
(27)を検出する。この格差が近似的に還元ガスの不
足濃度といえるので、同様に演算器26にて不足量を把
握することができる。If the reducing agent (NH 3 ) is not supplied at a sufficient molar ratio in the denitration catalyst 2 (ie, the reducing agent (NH 3 ) is insufficient), the concentration difference tends to decrease, and finally reaches the level where the difference disappears. . This level is completely reduced (N
H 3 ) Shortage. As a countermeasure in such a case, in order to estimate the amount of the reducing agent deficiency, a change in the NOx concentration at the outlet of the denitration catalyst in the analysis route is determined by adding or not adding quantitatively added NH 3 (specially added NH 3 ).
(27) is detected. Since this difference can be said to be approximately the insufficient concentration of the reducing gas, the computing unit 26 can similarly grasp the insufficient amount.
【0083】脱硝触媒2の出口の排ガスを前記の手段で
分析し、その格差を用いた還元剤添加量調整およびモル
比制御の概略フローを図2に示す。図2に示すように、
NH3 からNOxへの転換触媒28、NOx還元触媒2
9およびNOx分析計30を組合せ、スリップNH3 相
当濃度31および不足還元剤濃度32を演算器33によ
って求め、信号変換器34によって、その値から脱硝触
媒反応層のNH3 添加装置35の流量調節弁36および
脱硫設備のNH3 添加装置37の流量調節弁38の弁開
度を制御する。The exhaust gas at the outlet of the denitration catalyst 2 is analyzed by the above-mentioned means, and the schematic flow of adjusting the addition amount of the reducing agent and controlling the molar ratio using the difference is shown in FIG. As shown in FIG.
Conversion catalyst 28 from NH 3 to NOx, NOx reduction catalyst 2
9 and the NOx analyzer 30, the slip NH 3 equivalent concentration 31 and the insufficient reducing agent concentration 32 are determined by the calculator 33, and the signal converter 34 adjusts the flow rate of the NH 3 addition device 35 of the denitration catalyst reaction layer based on the calculated values. The valve opening of the valve 36 and the flow control valve 38 of the NH 3 addition device 37 of the desulfurization facility is controlled.
【0084】制御信号は、設定値との偏差を流量調節弁
36、同弁38の開度変更信号に換え、前記偏差がMi
n.(最小量)となるように添加NH3 流量を調整す
る。スリップNH3 濃度が過剰の場合、まず脱硝触媒反
応層の調節弁36を絞り込み、調節弁36が一杯になっ
たら次のアクションとして脱硫設備の調節弁38を絞り
込む2ステージ制御とする。As the control signal, the deviation from the set value is converted into an opening change signal for the flow control valves 36 and 38, and the deviation is determined as Mi.
n. (Minimum amount) The flow rate of the added NH 3 is adjusted. When the slip NH 3 concentration is excessive, first, the control valve 36 of the denitration catalyst reaction layer is narrowed, and when the control valve 36 becomes full, the next action is to perform a two-stage control in which the control valve 38 of the desulfurization facility is narrowed.
【0085】脱硝触媒反応層1における還元剤(N
H3 )の濃度不足のケースでは、スリップNH3 相当濃
度31が”ゼロ”となるので、NH3 添加バルブは開方
向の動作を行う。The reducing agent (N) in the denitration catalyst reaction layer 1
In the case where the concentration of H 3 ) is insufficient, the NH 3 equivalent concentration 31 becomes “zero”, so that the NH 3 addition valve operates in the opening direction.
【0086】このNH3 増量アクションは脱硝触媒反応
層のNH3 供給能力が充分あるので、調節弁36で対処
可能である。還元剤補足時の脱硝効率変化パターンはシ
ャープであり、このアクションで制御する追従性は十分
である。This NH 3 increase action can be dealt with by the control valve 36 because the NH 3 supply capacity of the denitration catalyst reaction layer is sufficient. The denitration efficiency change pattern when the reducing agent is supplemented is sharp, and the followability controlled by this action is sufficient.
【0087】[0087]
【実施例】次に、この発明を実施例により説明する。脱
硝触媒でのNOxと還元剤(NH3 )との適性モル比操
業を可能とする方法および装置の実施例として、製鉄所
の焼結排煙脱硝工程を挙げて説明する。Next, the present invention will be described with reference to embodiments. An example of a method and an apparatus for enabling a proper molar ratio operation of NOx and a reducing agent (NH 3 ) in a denitration catalyst will be described with reference to a sintering flue gas denitration process of an ironworks.
【0088】 脱硝触媒のNH3 /NOモル比設定お
よび制御条件は、下記に示す通りであった。 (イ)触媒効率および被毒の観点からNH3 /NOモル
比を、下記に設定した。 NH3 /NOモル比=
1.1±0.1 (ロ)脱硝未処理ガスのNO濃度は、平均170±20
ppmであった。The NH 3 / NO molar ratio setting and control conditions of the denitration catalyst were as shown below. (A) From the viewpoint of catalyst efficiency and poisoning, the NH 3 / NO molar ratio was set as follows. NH 3 / NO molar ratio =
1.1 ± 0.1 (b) The NO concentration of the denitration-untreated gas is 170 ± 20 on average.
ppm.
【0089】ハ)脱硝触媒の入口のNH3 濃度は、NO
x濃度170ppmで170〜204ppmの範囲であ
った。以上は、前述した方式(a)の設定値および制御
範囲が、−17±17ppm、および、方式(b)の格
差が0、であることが前提である。C) The NH 3 concentration at the inlet of the denitration catalyst is NO
The x concentration was in the range of 170 to 204 ppm at 170 ppm. The above is based on the premise that the set value and the control range of the above-described method (a) are −17 ± 17 ppm, and the disparity of the method (b) is 0.
【0090】 焼結排ガス処理の操業諸元は、下記に
示す通りであった。 焼結排ガス流量;1150kNm3 /h(時間) 排ガス中のNOx濃度;150〜170ppm 脱硫;湿式 脱硝;触媒によるNH3 選択接触還元 触媒反応温度;約300℃ 触媒のSV;約3000(l/h) 脱流スリップSOx;<2ppm まず、比較例として、従来方法による脱硝について述べ
る。The operation specifications of the sintering exhaust gas treatment were as shown below. Sintered exhaust gas flow rate: 1150 kNm 3 / h (hour) NOx concentration in exhaust gas; 150 to 170 ppm Desulfurization; wet denitration; selective catalytic reduction of NH 3 by catalyst Catalytic reaction temperature: about 300 ° C Catalyst SV: about 3000 (l / h) ) Outflow slip SOx; <2 ppm First, as a comparative example, denitration by a conventional method will be described.
【0091】脱硫プロセスからのスリップNH3 は30
〜350ppmの範囲で変動し、変動パターンは緩やか
なウエーブ状であり、通常はピークからピークまで(pe
ak to peak)で約4〜5時間程度である。The slip NH 3 from the desulfurization process is 30
350350 ppm, the fluctuation pattern is a gentle wave shape, usually from peak to peak (pe
ak to peak) for about 4-5 hours.
【0092】オペレータのマニュアル介入時は、スリッ
プNH3 濃度の変動範囲は80〜150ppm程度に抑
制できる(ただし、アラーム等があったときのみの対
応)。脱硝触媒(触媒反応層)の入口に到達するNH3
濃度は、通常脱硫スリップNH3 の約65〜70%であ
り、途中の熱交換器で30〜35%が硫安、酸性硫安等
の塩類の形態でトラップされる。At the time of manual intervention by the operator, the variation range of the slip NH 3 concentration can be suppressed to about 80 to 150 ppm (however, only when there is an alarm or the like). NH 3 reaching the inlet of the denitration catalyst (catalytic reaction layer)
Concentration is about 65-70% of the normal desulfurization slip NH 3, 30 to 35% in the middle of the heat exchanger is ammonium sulfate is trapped in the form of salts such as acid ammonium sulfate.
【0093】脱硝触媒のNH3 /NOモル比の変動範囲
は0.9〜1.9である。不足時にはオペレータ介入に
より処置される。次に、本発明実施例について説明す
る。The fluctuation range of the NH 3 / NO molar ratio of the denitration catalyst is 0.9 to 1.9. In the case of shortage, it is dealt with by operator intervention. Next, examples of the present invention will be described.
【0094】脱硝触媒スリップNH3 を、Pt−Pd酸
化触媒でNOx転換し、ガス組成のNOx濃度差からス
リップNH3 濃度を推定する方法と、その格差をNH3
投入流量調節弁の開度制御に利用する方法とにより、脱
硝触媒の入口のNH3 /NOxモル比は1.1±0.1
に制御でき、モル比変動による脱硝効率変動を約±3%
以内に制御できた。NH3 からNOxへ転換する酸化触
媒(Pt−Rh系)も反応温度がガスヒータにより高温
に設定、維持されるため、排ガス中の被毒物の影響を免
れ、安定反応を維持することができた。以上により、脱
硝触媒の効率維持および脱硝触媒のスリップNH3 に起
因する腐食、詰まり等のトラブルが低減できた。A method for estimating slip NH 3 concentration from the NOx concentration difference of the gas composition by converting NOx from the denitration catalyst slip NH 3 with a Pt-Pd oxidation catalyst, and calculating the difference between NH 3 and NH 3.
Depending on the method used for controlling the opening of the charging flow control valve, the NH 3 / NOx molar ratio at the inlet of the denitration catalyst is 1.1 ± 0.1.
Denitration efficiency fluctuation due to molar ratio fluctuation of about ± 3%
Could be controlled within. Since the reaction temperature of the oxidation catalyst (Pt-Rh system) for converting NH 3 to NOx is set and maintained at a high temperature by the gas heater, the effect of poisoning substances in the exhaust gas was avoided, and a stable reaction was maintained. As described above, it was possible to maintain the efficiency of the denitration catalyst and reduce troubles such as corrosion and clogging caused by slip NH 3 of the denitration catalyst.
【0095】実施例を通じて得た経済的効果の内訳は以
下の通りである。 脱硝触媒反応層をスリップするNH3 濃度削減は平
均60ppmである。従って、 ΔNH3 (60ppm)*1150kNm3 /h=69
Nm3 −NH3 /h で、費用に換算すると年に約0.2億円の節約ができ
る。The breakdown of the economic effects obtained through the examples is as follows. The NH 3 concentration reduction that slips through the denitration catalyst reaction layer is an average of 60 ppm. Therefore, ΔNH 3 (60 ppm) * 1150 kNm 3 / h = 69
In terms of Nm 3 -NH 3 / h, it can save about 0.2 billion yen a year in terms of cost.
【0096】 脱硝効率安定維持については、触媒脱
硝効率変動幅は、±3%以内を維持できた。従って、エ
ネルギーコスト(燃料+電力)の多大な節約ができる。 脱硝設備の腐食、閉塞等のトラブルが低減し、設備
補修費の節約ができる。Regarding the stable maintenance of the denitration efficiency, the fluctuation range of the catalyst denitration efficiency could be maintained within ± 3%. Therefore, a great saving of energy cost (fuel + electric power) can be achieved. Troubles such as corrosion and blockage of the denitration equipment are reduced, and equipment repair costs can be saved.
【0097】 脱硝被毒軽減による寿命延長ができ
る。The life can be extended by reducing the NOx poisoning.
【0098】[0098]
【発明の効果】以上説明したように、この発明によれ
ば、脱硝触媒反応層の入口の還元剤モル比が適正なレベ
ルで制御され、その結果還元剤コストの削減、触媒およ
び設備の被毒、閉塞および腐食等のトラブルが削減で
き、且つ還元剤(NH3 )測定に際し、NH3 酸化触媒
およびNOx計によって計測装置を構成したことによっ
て、高精度、安定な計測値がメンテナンスの負荷を軽減
した状態で得られ、かくして、工業上有用な効果がもた
らされる。As described above, according to the present invention, the molar ratio of the reducing agent at the inlet of the denitration catalyst reaction layer is controlled at an appropriate level. As a result, the cost of the reducing agent is reduced, and the poisoning of the catalyst and the equipment is reduced. High accuracy and stable measurement value reduce the maintenance burden by reducing troubles such as clogging and corrosion, and configuring the measuring device with NH 3 oxidation catalyst and NOx meter when measuring reducing agent (NH 3 ). Thus, an industrially useful effect is obtained.
【図1】この発明の一実施態様に係る脱硝触媒出口の還
元剤(NH3 )スリップ濃度計測を実施するための装置
構成を示す系統図である。FIG. 1 is a system diagram showing a configuration of an apparatus for measuring a reducing agent (NH 3 ) slip concentration at an outlet of a denitration catalyst according to an embodiment of the present invention.
【図2】この発明の一実施態様に係る濃度測定装置を組
み込んだ還元剤流量制御を実施するための装置構成を示
す系統図である。FIG. 2 is a system diagram showing an apparatus configuration for implementing a reducing agent flow control incorporating a concentration measuring apparatus according to an embodiment of the present invention.
【図3】従来技術の排煙脱硝を実施するための装置を示
す概念図である。FIG. 3 is a conceptual diagram showing an apparatus for performing flue gas denitration according to the related art.
【図4】従来技術のガス中のNH3 の分析を実施するた
めの装置構成を示す系統図である。FIG. 4 is a system diagram showing the configuration of an apparatus for performing analysis of NH 3 in gas according to a conventional technique.
【図5】従来技術の製鉄所焼結排ガス処理を実施するた
めの装置構成を示す系統図である。FIG. 5 is a system diagram showing an apparatus configuration for performing a conventional steelworks sintering exhaust gas treatment.
【図6】従来技術の湿式排煙脱硫の反応等におけるSO
xおよびNH3 のスリップ特性を示すグラフである。FIG. 6 shows SO in a conventional wet flue gas desulfurization reaction and the like.
3 is a graph showing slip characteristics of x and NH 3 .
【図7】従来技術の湿式排煙脱硫の還元剤(NH3 )添
加流量制御を実施するための装置構成を示す系統図であ
る。FIG. 7 is a system diagram showing a configuration of an apparatus for performing a flow rate control of a reducing agent (NH 3 ) addition in wet flue gas desulfurization according to a conventional technique.
【図8】触媒効率に与えるNH3 /NOモル比特性の一
般形を示すグラフである。FIG. 8 is a graph showing a general form of NH 3 / NO molar ratio characteristic given to catalyst efficiency.
【図9】この発明に係る還元剤のモル比の測定方法を説
明する系統図である。FIG. 9 is a system diagram illustrating a method for measuring the molar ratio of a reducing agent according to the present invention.
1 脱硝反応層 2 脱硝触媒 3 NOx 4 還元剤(NH3 ) 5 N2 6 H2 O 7 ガス吸引ポンプ 8 排ガスダクト 9 ガスクーラ 10 切換弁(電磁弁) 11 ガス処理ルート 12 タイマ 13 酸化用間接ガスヒータ 14 NH3 酸化触媒反応層 15 還元処理用間接ガスヒータ 16 NH3 ガス定量吹き込み弁 17 定量NH3 吹き込みタイマ 18 NH3 添加装置 19 Ti−V−W系脱硝触媒反応層 20 ダスト補集器 21 分析ガス 22 NOx分析計 23 生NOx 24 転換NOx 25 濃度格差a 26 演算器 27 濃度差b. 28 NOx酸化触媒(NH3 →NOx転換触媒) 29 NOx還元触媒 30 NOx分析計 31 スリップNH3 相当濃度 32 不足還元剤NH3 濃度 33 演算器 34 信号変換器 35 脱硝触媒のNH3 添加装置 36 NH3 流量調節弁 37 脱硫設備のNH3 添加装置 38 NH3 流量調節便 39 排ガス 40 ダクト 41 脱硝反応層 42 触媒層 43 NOx 44 ノズル 45 NH3 46 N2 47 H2 O 48 煙突 49 排ガス 50 SOx処理 51 直接ライン 52 温度調節器 53 NH3 酸化器 54 NO転換器 55 NOx分析計 56 電磁弁 57 焼結機 58 燃焼排ガス 59 ダスト 60 SOx 61 NOx 62 集塵機 63 脱硫設備 64 脱硝設備 65 吸収液 66 COG 67 NH3 68 循環ポンプ 69 反応塔 70 冷却段 71 吸収段 72 希薄段 73 精製段 74 デミスタ 75 スプレーノズル 76 ポンプ 77 焼結 78 燃焼排ガス 79 NOx 80 処理ガス流量 81 脱硝触媒 82 反応層 83 入口ダクト 84 NOx計 85 触媒入口の必要NH3 86 演算器DESCRIPTION OF REFERENCE NUMERALS 1 denitration reaction layer 2 denitration catalyst 3 NOx 4 reducing agent (NH 3 ) 5 N 2 6 H 2 O 7 gas suction pump 8 exhaust gas duct 9 gas cooler 10 switching valve (electromagnetic valve) 11 gas processing route 12 timer 13 indirect gas heater for oxidation 14 NH 3 oxidation catalyst reaction layer 15 Indirect gas heater for reduction treatment 16 NH 3 gas constant injection valve 17 Fixed NH 3 injection timer 18 NH 3 addition device 19 Ti-V-W system denitration catalyst reaction layer 20 Dust collector 21 Analysis gas 22 NOx analyzer 23 Raw NOx 24 Converted NOx 25 Concentration difference a 26 Operation unit 27 Concentration difference b. Reference Signs List 28 NOx oxidation catalyst (NH 3 → NOx conversion catalyst) 29 NOx reduction catalyst 30 NOx analyzer 31 Slip NH 3 equivalent concentration 32 Insufficient reducing agent NH 3 concentration 33 Arithmetic unit 34 Signal converter 35 NH 3 addition device for denitration catalyst 36 NH 3 flow rate adjusting valve 37 NH 3 addition device 38 NH 3 flow rate control service 39 exhaust gas 40 duct 41 denitration reaction layer 42 catalyst layer 43 NOx 44 nozzle 45 NH 3 46 N 2 47 H 2 O 48 chimney 49 exhaust gas 50 SOx process desulfurization 51 direct line 52 temperature controller 53 NH 3 oxidation device 54 NO diverter 55 NOx analyzer 56 solenoid valve 57 sintering machine 58 flue gas 59 dust 60 SOx 61 NOx 62 dust collector 63 desulfurization 64 denitrification equipment 65 absorbing solution 66 COG 67 NH 3 68 circulation pump 69 reactor 70 cooled stage 71 intake Stage 72 lean stage 73 purification stage 74 demister 75 spray nozzle 76 pump 77 sintered 78 flue gas 79 NOx 80 process gas flow 81 denitration catalyst 82 reaction layer 83 of the inlet duct 84 NOx meter 85 catalyst inlet must NH 3 86 calculator
Claims (4)
触媒反応層を有する施設を使用し、還元剤にNH3 を用
いて燃焼排ガスに含有する窒素酸化物(NOx)を前記
脱硝触媒反応層において選択接触還元する燃焼排ガスの
NOx還元方法において、前記脱硝触媒反応層出口にお
ける燃焼排ガスのNH3 濃度の過不足を測定してNH3
/NOxモル比を求め、求めたモル比と設定モル比との
差から前記脱硝触媒反応層および前記脱硫設備の各々の
NH3 投入流量調節弁の開度を求めて開度調整信号に変
換し、前記信号によって前記脱硝触媒反応層および前記
脱硫設備の投入NH3 流量を調整して、前記脱硝触媒反
応層のNH3 /NOxのモル比を所定の適正値に制御す
ることを特徴とする燃焼排ガスのNOx還元方法。An apparatus having a desulfurization facility and a denitration catalyst reaction layer in a flow path of combustion exhaust gas, wherein NH 3 is used as a reducing agent and nitrogen oxides (NOx) contained in the combustion exhaust gas are used for the denitration catalyst reaction layer in the NOx reduction process of the combustion exhaust gas of selective catalytic reduction, to measure the excess or deficiency of the NH 3 concentration in the combustion exhaust gas in the denitration catalyst reaction layer outlet in NH 3
/ NOx molar ratio is determined, and from the difference between the determined molar ratio and the set molar ratio, the opening of each of the denitration catalyst reaction layer and the NH 3 input flow control valve of each of the desulfurization equipment is obtained and converted into an opening adjustment signal. And adjusting the NH 3 / NOx molar ratio of the denitration catalyst reaction layer to a predetermined appropriate value by adjusting the input NH 3 flow rate of the denitration catalyst reaction layer and the desulfurization equipment according to the signal. NOx reduction method of exhaust gas.
触媒反応層を有する施設を使用し、還元剤にNH3 を用
いて燃焼排ガスに含有する窒素酸化物(NOx)を前記
脱硝触媒反応層において選択接触還元する燃焼排ガスの
NOx還元方法において、前記脱硝触媒反応層の出口の
燃焼排ガスを、酸化触媒を有するルートと、触媒を有
さず燃焼排ガスがそのまま通過するルートと、還元触
媒を有するルートとの3つの流路に分配し、前記ルー
トにおいて、燃焼排ガスを前記酸化触媒によって酸化
した後のNOx量を測定し、前記ルートにおいて、燃
焼排ガスのNOx量を測定し、前記ルートにおいて、
前記燃焼排ガスに所定量のNH3 を添加し前記還元触媒
によって還元した後の前記燃焼排ガスのNOx量を測定
し、前記ルートのNOx量測定値と前記ルートのN
Ox量測定値との差により過剰NH3 濃度を演算し、前
記ロートのNOx量測定値と前記ルートのNOx量
測定値との差により不足NH3 濃度を演算し、前記過剰
NH3 濃度および不足NH3 濃度の演算値から前記脱硝
触媒反応層のNH3 /NOxモル比を演算し、前記モル
比の演算値から、前記脱硝触媒反応層または前記脱硫設
備の一方または両方の投入NH3 量を演算し、前記演算
量のNH3 を前記脱硝触媒反応層および前記脱硫設備の
一方または両方に投入することにより前記脱硝触媒反応
層のモル比を所定値に制御することを特徴とする燃焼排
ガスのNOx還元方法。2. A denitrification catalyst reaction layer using a desulfurization facility and a denitration catalyst reaction layer in a flow path of the combustion exhaust gas and using NH 3 as a reducing agent to reduce nitrogen oxides (NOx) contained in the combustion exhaust gas. In the NOx reduction method for combustion exhaust gas which is subjected to selective catalytic reduction in the above, the combustion exhaust gas at the outlet of the denitration catalyst reaction layer has a route having an oxidation catalyst, a route through which the combustion exhaust gas passes without any catalyst, and a reduction catalyst. Distributed in three flow paths with the route, in the route, measuring the NOx amount after oxidizing the combustion exhaust gas by the oxidation catalyst, in the route, measuring the NOx amount of the combustion exhaust gas, in the route,
A predetermined amount of NH 3 is added to the flue gas and the NOx amount of the flue gas after reduction by the reduction catalyst is measured, and the measured NOx amount of the route and the NOx amount of the route are measured.
The excess NH 3 concentration is calculated from the difference from the measured Ox amount, and the insufficient NH 3 concentration is calculated from the difference between the measured NOx amount of the funnel and the measured NOx amount of the route, and the excess NH 3 concentration and the insufficient NH 3 concentration are calculated. NH 3 calculates the NH 3 / NOx molar ratio of the concentration the denitration catalyst reaction layer from the arithmetic value, from the calculation value of the molar ratio, the charged amount of NH 3 of one or both of the denitration catalyst reaction layer or the desulfurization And calculating the calculated amount of NH 3 into one or both of the denitration catalyst reaction layer and the desulfurization facility to control the molar ratio of the denitration catalyst reaction layer to a predetermined value. NOx reduction method.
の各々のNH3 投入流量調節弁の動作を相互に切り替え
可能とし、求めたNH3 /NOxモル比と設定モル比と
の差の値が所定の制御範囲以内のときは、前記脱硝触媒
反応層のNH 3 投入流量調節弁を作動して前記脱硝触媒
反応層へNH3 を投入し、所定の制御範囲以外のとき
は、前記脱硫設備のNH3 投入流量調節弁を作動して前
記脱硫設備へNH3 を投入して、前記脱硝触媒反応層お
よび前記脱硫設備のNH3 投入流量を制御することを特
徴とする請求項1記載の燃焼排ガスのNOx還元方法。3. The denitration catalyst reaction layer and the desulfurization facility
Each NHThreeSwitching the operation of the input flow control valve between each other
Possible and required NHThree/ NOx molar ratio and set molar ratio
When the difference value is within a predetermined control range, the denitration catalyst
NH of reaction layer ThreeActivating the input flow control valve to activate the denitration catalyst
NH to reaction layerThreeIs out of the specified control range
Is the NH in the desulfurization facilityThreeActivate the flow control valve
NH to desulfurization equipmentThreeAnd put the denitration catalyst reaction layer and
And NH in the desulfurization facilityThreeSpecially designed to control the input flow rate
2. The method for reducing NOx of combustion exhaust gas according to claim 1, wherein:
触媒反応層を有し、還元剤にNH3 を用いて燃焼排ガス
に含有する窒素酸化物(NOx)を前記脱硝触媒反応層
において選択接触還元する燃焼排ガスのNOx還元装置
において、前記脱硝触媒反応層の出口に接続されたルー
ト、ルートおよびルートの3つの燃焼排ガス流路
と、前記ルートに設けられたNH3 酸化触媒と、前記
ルートに設けられた所定量のNH3 の添加装置および
前記添加装置の下流のNOx還元触媒と、前記ルート
、ルートおよびルートの流路のNOx濃度を測定
するためのNOx濃度計と、前記NOx濃度計の値から
過剰NH3 濃度および不足NH3 濃度を演算するための
演算器と、前記過剰NH3 濃度および不足NH3 濃度か
ら前記脱硝触媒反応層のNH3 流量調節弁および前記脱
硫設備のNH3 流量調節弁を制御する信号を発するため
の信号変換器とからなることを特徴とする燃焼排ガスの
NOx還元装置。4. A desulfurization facility and a denitration catalyst reaction layer in a flow path of the combustion exhaust gas, and a nitrogen oxide (NOx) contained in the combustion exhaust gas is selectively contacted in the denitration catalyst reaction layer by using NH 3 as a reducing agent. In the NOx reduction device for reducing combustion exhaust gas, a route connected to the outlet of the denitration catalyst reaction layer, a route, and three combustion exhaust gas channels, an NH 3 oxidation catalyst provided in the route, A device for adding a predetermined amount of NH 3 and a NOx reduction catalyst downstream of the device, a NOx concentration meter for measuring the NOx concentration in the route, the route and the flow path of the route, and a NOx concentration meter for measuring the NOx concentration. and computing unit for computing the excess NH 3 concentrations and under NH 3 concentration from the values, NH 3 flow rate control valve of the denitration catalyst reaction layer from the excess NH 3 concentrations and under NH 3 concentration Contact Fine wherein desulfurization of the NH 3 flow rate signal conversion for emitting a signal for controlling the control valve unit and the NOx reduction apparatus of the combustion exhaust gas, characterized in that it consists of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9017150A JPH10216459A (en) | 1997-01-30 | 1997-01-30 | NOx reduction method and apparatus for combustion exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9017150A JPH10216459A (en) | 1997-01-30 | 1997-01-30 | NOx reduction method and apparatus for combustion exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10216459A true JPH10216459A (en) | 1998-08-18 |
Family
ID=11935968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9017150A Pending JPH10216459A (en) | 1997-01-30 | 1997-01-30 | NOx reduction method and apparatus for combustion exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10216459A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003290630A (en) * | 2002-04-03 | 2003-10-14 | Mitsubishi Heavy Ind Ltd | Treatment apparatus for nitrogen oxide and treatment method for nitrogen oxide |
CN109062053A (en) * | 2018-08-31 | 2018-12-21 | 江苏国信靖江发电有限公司 | A kind of denitration spray ammonia control method based on multivariate calibration |
WO2020251194A1 (en) * | 2019-06-10 | 2020-12-17 | 주식회사 냄새뚝 | Ship exhaust gas purification apparatus and method |
KR102315444B1 (en) * | 2020-04-22 | 2021-10-20 | 한국중부발전(주) | A catalytic performance test system |
CN115032330A (en) * | 2021-12-28 | 2022-09-09 | 大连亚泰科技新材料股份有限公司 | A kind of desulfurizer desulfurization effect detection test machine |
CN115628612A (en) * | 2022-09-26 | 2023-01-20 | 江苏瑞鼎环境工程有限公司 | Efficient roasting equipment for SCR denitration catalyst and preparation process thereof |
-
1997
- 1997-01-30 JP JP9017150A patent/JPH10216459A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003290630A (en) * | 2002-04-03 | 2003-10-14 | Mitsubishi Heavy Ind Ltd | Treatment apparatus for nitrogen oxide and treatment method for nitrogen oxide |
CN109062053A (en) * | 2018-08-31 | 2018-12-21 | 江苏国信靖江发电有限公司 | A kind of denitration spray ammonia control method based on multivariate calibration |
CN109062053B (en) * | 2018-08-31 | 2022-11-29 | 江苏国信靖江发电有限公司 | Denitration ammonia injection control method based on multivariate correction |
WO2020251194A1 (en) * | 2019-06-10 | 2020-12-17 | 주식회사 냄새뚝 | Ship exhaust gas purification apparatus and method |
CN114096744A (en) * | 2019-06-10 | 2022-02-25 | 纳姆萨伊杜克股份有限公司 | Ship exhaust gas purification equipment and method |
JP2022537924A (en) * | 2019-06-10 | 2022-08-31 | ネムセドゥク カンパニー リミテッド | Ship exhaust gas purification device and method |
KR102315444B1 (en) * | 2020-04-22 | 2021-10-20 | 한국중부발전(주) | A catalytic performance test system |
CN115032330A (en) * | 2021-12-28 | 2022-09-09 | 大连亚泰科技新材料股份有限公司 | A kind of desulfurizer desulfurization effect detection test machine |
CN115032330B (en) * | 2021-12-28 | 2023-08-04 | 大连亚泰科技新材料股份有限公司 | Desulfurizing agent desulfurization effect detection testing machine |
CN115628612A (en) * | 2022-09-26 | 2023-01-20 | 江苏瑞鼎环境工程有限公司 | Efficient roasting equipment for SCR denitration catalyst and preparation process thereof |
CN115628612B (en) * | 2022-09-26 | 2023-08-08 | 江苏瑞鼎环境工程有限公司 | SCR denitration catalyst efficient roasting equipment and preparation process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10213739B2 (en) | Dust removal and desulfurization of FCC exhaust gas | |
US7572420B2 (en) | Method for removing mercury in exhaust gas and system therefor | |
US7521032B2 (en) | Method for removing mercury in exhaust gas | |
JP5198786B2 (en) | Exhaust gas purification method and apparatus | |
EP3031514B1 (en) | Exhaust gas treatment system and treatment method | |
RU2501596C2 (en) | Method and plant for purification of combustion gases containing nitrogen oxides | |
KR100788982B1 (en) | High temperature exhaust gas denitrification system applied to cogeneration system and high temperature exhaust gas denitrification method using the system | |
CN105169917A (en) | SNCR-SCR combined denitration system and method based on ammonia nitrogen molar ratio detection and regulation | |
CN111540412B (en) | SCR reactor inlet flue gas soft measurement method based on least square method | |
JPH10216459A (en) | NOx reduction method and apparatus for combustion exhaust gas | |
CN103034208B (en) | Thermal generation unit denitration electricity price method for supervising | |
JP3556728B2 (en) | Exhaust gas denitration method and apparatus | |
US10705067B2 (en) | Methods and systems for testing performance of a catalyst element | |
US7875459B2 (en) | Method and apparatus for managing denitration catalyst | |
KR20070050940A (en) | Control method of exhaust purifier | |
KR100884657B1 (en) | High temperature exhaust gas denitrification system and high temperature exhaust gas denitrification method using the system | |
CN118477461A (en) | A low-temperature denitrification process control method, device and system based on composite ions | |
CA2391710C (en) | Method and device for catalytically treating exhaust gas containing dust and oxygen | |
CN212974729U (en) | Thermal power generating unit denitration system based on data-driven predictive control | |
JPH03137918A (en) | Supply amount control apparatus of oxidizing air for wet waste desulfurization equipment | |
CN106526064A (en) | Method for dynamically detecting catalyst activity in SCR (selective catalytic reduction) denitrification process | |
JPH10109018A (en) | Waste gas denitration method and device therefor | |
WO2004060561A1 (en) | Honeycomb catalyst, denitration catalyst of denitration device, and exhaust gas denitration device | |
JPH10109017A (en) | Operation of denitration device and waste gas purifying device | |
JP3449060B2 (en) | Method for removing sulfur oxides from flue gas |