JPH10215530A - Non-contact power transmission device - Google Patents
Non-contact power transmission deviceInfo
- Publication number
- JPH10215530A JPH10215530A JP9014118A JP1411897A JPH10215530A JP H10215530 A JPH10215530 A JP H10215530A JP 9014118 A JP9014118 A JP 9014118A JP 1411897 A JP1411897 A JP 1411897A JP H10215530 A JPH10215530 A JP H10215530A
- Authority
- JP
- Japan
- Prior art keywords
- power
- side member
- power transmission
- power supply
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Inverter Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は給電側部材に設けら
れて電力が加えられる誘導コイルと、被給電側部材に設
けられて誘導コイルが発生する磁界内におかれる被誘導
コイルとからなる非接触電力伝送装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-conductive coil provided on a power supply side member to which electric power is applied and a guided coil provided on a power supplied side member and placed in a magnetic field generated by the induction coil. The present invention relates to a contact power transmission device.
【0002】[0002]
【従来の技術】非接触電力伝送装置は、一次コイルに高
周波を加えることで発生させた磁界内に二次コイルを位
置させて、二次コイルに電磁誘導によって電力を伝達す
るものであり、一次コイルと二次コイルとの間には絶縁
物を介在させることができるために充電部を外部に露出
させることなく電力を伝達することができることから、
防水構造が必要とされるものにおいて好適に用いること
ができる。2. Description of the Related Art A non-contact power transmission device transfers a power by electromagnetic induction to a secondary coil by positioning a secondary coil in a magnetic field generated by applying a high frequency to a primary coil. Since an insulator can be interposed between the coil and the secondary coil, power can be transmitted without exposing the charged portion to the outside,
It can be suitably used in those requiring a waterproof structure.
【0003】一例を図26に示す。被給電側部材3は防
水型電気かみそりであり、モータ駆動回路に電源を供給
する二次電池30には整流器を介して二次コイル4が接
続されている。一方、給電側部材1は商用電源を整流平
滑して得た直流から高周波を生成するインバータ11と
この高周波が印加される一次コイル2とを内蔵するもの
で、給電側部材1上に被給電側部材3が置かれて一次コ
イル2と二次コイル4とが対向し、給電側部材1から被
給電側部材3への非接触電力伝送によって、二次電池3
0の充電がなされる。給電側部材3が充電器を構成する
ようになっているわけである。FIG. 26 shows an example. The power-supplied member 3 is a waterproof electric razor, and a secondary coil 4 is connected to a secondary battery 30 that supplies power to a motor drive circuit via a rectifier. On the other hand, the power supply side member 1 incorporates an inverter 11 for generating a high frequency from a DC obtained by rectifying and smoothing a commercial power supply and a primary coil 2 to which the high frequency is applied. The member 3 is placed, the primary coil 2 and the secondary coil 4 face each other, and the non-contact power transmission from the power supply side member 1 to the power supply side member 3 causes the secondary battery 3
0 is charged. That is, the power supply side member 3 constitutes a charger.
【0004】[0004]
【発明が解決しようとする課題】ところで、従来のこの
種の電力伝送装置では、給電側部材1が電源に接続され
た状態では、一次コイル2に高周波電流が常時供給され
ていたことから、図27に示すように、金属異物7が一
次コイル2の近接位置に置かれると、金属異物には磁束
の鎖交によってうず電流が流れて誘導加熱状態になり、
急激に発熱することになり、きわめて危険である。By the way, in this type of conventional power transmission device, when the power supply side member 1 is connected to the power supply, the high frequency current is always supplied to the primary coil 2. As shown in FIG. 27, when the metallic foreign matter 7 is placed in the vicinity of the primary coil 2, an eddy current flows through the metallic foreign matter due to the linkage of the magnetic flux, and the metallic foreign matter 7 enters an induction heating state.
It is extremely dangerous because it generates heat rapidly.
【0005】本発明はこのような点に鑑み為されたもの
であり、その目的とするところは対応する被給電側部材
以外に対しては給電側部材からの非接触電力伝送動作が
なされず、安全性が高い非接触電力伝送装置を提供する
にある。SUMMARY OF THE INVENTION The present invention has been made in view of such a point, and an object of the present invention is to perform a non-contact power transmission operation from a power supply side member to a member other than a corresponding power supply side member. An object of the present invention is to provide a non-contact power transmission device with high safety.
【0006】[0006]
【課題を解決するための手段】しかして本発明は、電力
が加えられる一次コイルを備えた給電側部材と、該給電
側部材に対して着脱自在であり且つ給電側部材への装着
時に上記一次コイルによる磁界内におかれる二次コイル
を備えている被給電側部材とからなる非接触電力伝送装
置において、給電側部材は被給電側部材の給電側部材へ
の装着を検出して被給電側部材への非接触電力伝送を開
始させる負荷検出制御回路を備えていることに特徴を有
している。正規負荷としての被給電側部材が装着されて
いない状態では非接触電力伝送動作がなされないように
したものである。According to the present invention, there is provided a power supply side member having a primary coil to which electric power is applied, the power supply side member being detachable from the power supply side member and being attached to the power supply side member. In a non-contact power transmission device including a power-supplied member provided with a secondary coil placed in a magnetic field generated by a coil, the power-supplied member detects the attachment of the power-supplied member to the power-supplied member and detects the power-supplied member. It is characterized in that a load detection control circuit for starting non-contact power transmission to members is provided. The non-contact power transmission operation is not performed in a state where the power-supplied-side member as the regular load is not mounted.
【0007】この時の非接触電力伝送の開始は、給電側
部材の間欠発振状態から連続発振状態への切り換えで行
うようにすると、負荷検出動作が容易となり、特に間欠
発振時における被給電側部材の非線形素子等による微弱
ノイズの検出で被給電側部材の装着を検出すると構成が
簡単ですむものとなる。負荷検出制御回路が専用の発振
手段と受信手段とを備えているものとしてもよく、この
場合、発振手段と受信手段とを共に給電側部材に設けて
も、発振手段は被給電側部材に、受信手段は給電側部材
に設けてもよい。If the start of the non-contact power transmission at this time is performed by switching from the intermittent oscillation state to the continuous oscillation state of the power supply side member, the load detection operation becomes easy, and particularly, the power supply side member at the time of intermittent oscillation. When the attachment of the power-supply-side member is detected by detecting the weak noise by the non-linear element or the like, the configuration can be simplified. The load detection control circuit may include a dedicated oscillating unit and a receiving unit.In this case, even if both the oscillating unit and the receiving unit are provided on the power supply side member, the oscillating unit is provided on the power supply side member, The receiving means may be provided on the power supply side member.
【0008】被給電側部材に発振手段を設ける時には、
発振手段は給電側部材からの非接触電力伝送によって電
源を得るようにするとよく、この場合、被給電側部材の
発振手段からの信号を給電側部材の受信手段が検出して
非接触電力伝送を継続状態とするとよい。被給電側部材
の発振手段と給電側部材の受信手段とは情報の相互授受
を行うものであってもよい。When oscillating means is provided on the member to be fed,
It is preferable that the oscillating means obtains power by non-contact power transmission from the power supply side member. In this case, the reception means of the power supply side member detects a signal from the oscillating means of the power supply side member and performs the non-contact power transmission. It is good to make it a continuation state. The oscillating means of the power-supplied-side member and the receiving means of the power-supplied-side member may mutually exchange information.
【0009】また、被給電側部材の給電側部材への装着
を検出するスイッチを併用してもよい。負荷検出制御回
路が具備するアンテナは、一次コイルを利用してもよ
い。また負荷検出制御回路のアンテナは電力伝送用コイ
ルの発生磁界の誘導を受けない位置に配しておくこと、
たとえばコイルアンテナを電力伝送用コイルの作る磁力
線ループの外側または内側に設けておくことが好まし
い。コイルアンテナを電力伝送用コイルの作る磁力線と
平行な面に設けてもよい。A switch for detecting the attachment of the power-supplied member to the power-supplying member may be used in combination. The antenna included in the load detection control circuit may use a primary coil. Also, the antenna of the load detection control circuit should be placed in a position where it will not receive induction of the magnetic field generated by the power transmission coil,
For example, it is preferable to provide the coil antenna outside or inside the magnetic field loop formed by the power transmission coil. The coil antenna may be provided on a surface parallel to the magnetic field lines formed by the power transmission coil.
【0010】[0010]
【発明の実施の形態】本発明の実施の形態の一例につい
て説明すると、図1において、直流電源10から高周波
電流を生成して一次コイル2に印加するインバータ11
には、該インバータ11を間欠的に作動させることにな
る間欠発振制御回路12が接続されている。また、一次
コイル2におけるコアに巻かれたアンテナコイル17を
備えた負荷検出回路13を備えており、該負荷検出回路
13の出力で間欠発振制御回路12の動作が切り換えら
れるようになっている。図中3は二次コイル4を内蔵し
て非接触電力伝送で送られてきた電力で二次電池30の
充電を行う被給電側部材である。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described. In FIG. 1, an inverter 11 generates a high-frequency current from a DC power supply 10 and applies it to a primary coil 2.
Is connected to an intermittent oscillation control circuit 12 that causes the inverter 11 to operate intermittently. Further, a load detection circuit 13 having an antenna coil 17 wound around a core of the primary coil 2 is provided, and the operation of the intermittent oscillation control circuit 12 is switched by the output of the load detection circuit 13. In the drawing, reference numeral 3 denotes a power-supplied member that incorporates the secondary coil 4 and charges the secondary battery 30 with electric power transmitted by non-contact power transmission.
【0011】この非接触電力伝送装置においては、常時
は間欠発振制御回路12の制御により、インバータ11
は図3に示すように間欠的に高周波電流を一次コイル2
に印加している。図3中のイは無負荷または異物負荷の
期間を、ロは正規負荷が接続された期間を示している。
なお、間欠発振時における一次コイル2に高周波を加え
ている時間は、高周波を加えていない時間よりも図3で
示す期間よりもかなり短くしておくことが好ましく、上
記両時間の比は図に示すものに限るものではない。In this wireless power transmission device, the inverter 11 is normally controlled by the intermittent oscillation control circuit 12.
Indicates that the high-frequency current is intermittently applied to the primary coil 2 as shown in FIG.
Is applied. A in FIG. 3 indicates a period during which no load or a foreign object is loaded, and B indicates a period during which a normal load is connected.
It is preferable that the time during which the high frequency is applied to the primary coil 2 during the intermittent oscillation is considerably shorter than the time during which no high frequency is applied, as shown in FIG. It is not limited to what is shown.
【0012】ここで、正規の被給電側部材3が給電側部
材1に装着されていない時、つまり無負荷であったり金
属異物が置かれている状態では、負荷検出回路13での
検出回路信号Vsがほとんど現れないのに対して、正規
の被給電側部材3が装着された時には、被給電側部材3
側における整流ダイオードなどの非線形素子等から高調
波成分として微弱なノイズが発生する。このノイズをア
ンテナコイル17を通じて負荷検出回路13に高周波交
流としての検出回路信号Vsが流れることから、これを
検出して間欠発振制御回路12に出力することで、イン
バータ11を連続発振状態に移行させる。つまり、正規
の被給電側部材3が接続されていない時には、間欠発振
がなされるだけであるが、正規の被給電側部材3が接続
されたならば、これを検出して連続発振動作に移ること
で非接触電力伝送動作を開始するものである。図2に上
記動作のフローチャートを示す。Here, when the normal power-supplying-side member 3 is not mounted on the power-supplying-side member 1, that is, when there is no load or a metal foreign object is placed, the detection circuit signal of the load detection circuit 13 is detected. Vs hardly appears, but when the regular power-supplied member 3 is mounted, the power-supplied member 3
A weak noise is generated as a harmonic component from a non-linear element such as a rectifier diode on the side. Since the detection circuit signal Vs as high-frequency AC flows through the antenna coil 17 to the load detection circuit 13 through the antenna coil 17, the noise is detected and output to the intermittent oscillation control circuit 12, thereby shifting the inverter 11 to the continuous oscillation state. . That is, when the regular power-supplied member 3 is not connected, only the intermittent oscillation is performed. However, when the regular power-supplied member 3 is connected, this is detected and the operation proceeds to the continuous oscillation operation. This starts the non-contact power transmission operation. FIG. 2 shows a flowchart of the above operation.
【0013】図4は上記アンテナコイル17を電力伝送
用の一次コイル2で兼用するとともに、負荷検出回路1
3を一次コイル2間の電圧から入力されるようにしたも
のを示しており、また図5はアンテナコイル17を電力
伝送用の一次コイル2で兼用するとともに、負荷検出回
路13をインバータ11におけるスイッチング素子の電
圧から入力されるようにしたものを示している。いずれ
にしても、負荷検知動作は非接触電力伝送動作中も継続
して行い、正規の被給電側部材3が外された時には非接
触電力伝送動作を中断し、再度間欠発振動作に移行す
る。上記間欠発振動作に代えて、給電側部材1の電源ス
イッチを投入した時点でインバータ11が短時間作動し
て上記の負荷検知動作を行い、適合負荷が接続されてい
ないことを検知した場合は、再度電源スイッチを投入し
なおさない限り上記負荷検知動作を行わないようにした
ものであってもよい。FIG. 4 shows that the antenna coil 17 is also used as the primary coil 2 for power transmission, and the load detecting circuit 1 is used.
FIG. 5 shows an example in which the antenna coil 17 is also used as the primary coil 2 for power transmission, and the load detection circuit 13 is switched by the inverter 11. The figure shows an input from the voltage of the element. In any case, the load detection operation is continuously performed during the non-contact power transmission operation, and when the regular power-supplied member 3 is detached, the non-contact power transmission operation is interrupted, and the operation shifts to the intermittent oscillation operation again. Instead of the intermittent oscillation operation, when the power switch of the power supply-side member 1 is turned on, the inverter 11 operates for a short time to perform the above load detection operation, and when it is detected that a compatible load is not connected, The above load detection operation may not be performed unless the power switch is turned on again.
【0014】図6に他の実施の形態の一例を示す。ここ
では給電側部材1に信号発振回路15と発振用のアンテ
ナコイル16と受信用アンテナコイル17と負荷検出回
路13とを設けている。信号発振回路15は図7に示す
信号発振出力Vhをアンテナコイル16に加えており、
このために正規の被給電側部材3が接続されていない無
負荷時であれば負荷検出回路13には所定レベル以上の
検出回路信号Vsが流れていることから、インバータ1
1を停止させているが、正規の被給電側部材3が装着さ
れた時には、検出回路信号Vsは所要の減衰が生じたも
のとなるために、これを検出して起動停止回路14を介
してインバータ11を起動させて非接触電力伝送動作に
移行させる。また、金属異物などがおかれた時には、検
出回路信号Vsは正規の負荷の場合よりもさらに減衰が
生じたものとなるために、インバータ11を停止させた
ままとする。図8に示すように、アンテナコイル16が
発振用と受信用とを兼用するようにしてもよい。FIG. 6 shows an example of another embodiment. Here, a signal oscillation circuit 15, an oscillation antenna coil 16, a reception antenna coil 17, and a load detection circuit 13 are provided on the power supply side member 1. The signal oscillation circuit 15 adds the signal oscillation output Vh shown in FIG.
For this reason, if there is no load when the normal power-supplying-side member 3 is not connected, since the detection circuit signal Vs of a predetermined level or more flows to the load detection circuit 13, the inverter 1
1 is stopped, but when the legitimate power-supplied member 3 is mounted, the detection circuit signal Vs has a required attenuation. The inverter 11 is started to shift to the non-contact power transmission operation. Further, when a metal foreign substance or the like is placed, the detection circuit signal Vs is further attenuated as compared with the case of a normal load, so that the inverter 11 is kept stopped. As shown in FIG. 8, the antenna coil 16 may be used for both oscillation and reception.
【0015】インバータ11は正規の被給電側部材3が
装着されていない時には全く作動しないために、前記の
実施の形態のものよりもさらに安全性が高くなるもので
あり、また信号発振回路15がアンテナコイル16を通
じて出力する信号Vhは微弱なものでよいために、非接
触電力伝送動作を行っていない時の電力消費を抑えるこ
とができる。Since the inverter 11 does not operate at all when the regular power-supplied member 3 is not mounted, the safety is higher than that of the above-described embodiment. Since the signal Vh output through the antenna coil 16 may be weak, power consumption when the non-contact power transmission operation is not performed can be suppressed.
【0016】図9に別の実施の形態の一例を示す。ここ
では被給電側部材3に信号発振回路32と発振用アンテ
ナコイル33とを設けるとともに、二次コイル4を通じ
て非接触電力伝送で受ける電力から信号発振回路32に
電源を供給する電源部31を設けている。また給電側部
材1には図1で示したものと同様に負荷検出回路13と
間欠発振制御回路12とを設けている。FIG. 9 shows an example of another embodiment. Here, a signal oscillation circuit 32 and an oscillation antenna coil 33 are provided on the power-supplied member 3, and a power supply unit 31 that supplies power to the signal oscillation circuit 32 from electric power received by non-contact power transmission through the secondary coil 4 is provided. ing. The power supply side member 1 is provided with a load detection circuit 13 and an intermittent oscillation control circuit 12 in the same manner as shown in FIG.
【0017】図11に示すように、正規の被給電側部材
3が接続されていない時には、給電側部材1のインバー
タ11の間欠発振動作によっても負荷検出信号Vsは流
れなかったり正規のものとはならないが、被給電側部材
3が接続されている時には上記インバータ11の間欠発
振動作時の非接触電力伝送で被給電側部材3の信号発振
回路32が作動して特定周波数の信号Vhを発振するた
めに、所定の負荷検出信号Vsが給電側部材1で得られ
ることになり、このためにインバータ11は連続発振動
作に移行して非接触電力伝送を行う。図10は上記動作
のフローチャートである。As shown in FIG. 11, when the normal power-supplied member 3 is not connected, the load detection signal Vs does not flow even when the inverter 11 of the power-supplying member 1 intermittently oscillates, or the load detection signal Vs is different from the normal one. However, when the power-supplied member 3 is connected, the signal oscillation circuit 32 of the power-supplied member 3 operates to oscillate a signal Vh of a specific frequency by contactless power transmission during the intermittent oscillation operation of the inverter 11. As a result, a predetermined load detection signal Vs is obtained at the power supply side member 1, and for this purpose, the inverter 11 shifts to a continuous oscillation operation and performs non-contact power transmission. FIG. 10 is a flowchart of the above operation.
【0018】この場合、信号発振回路32が出力する信
号Vhを被給電側部材3固有の識別信号を含むものとす
ることで、より高精度な正規負荷接続状態の検出を行う
ことができるものとなる。また、給電側部材1と被給電
側部材2との間で情報の送受を行えるようにしておくこ
とで、単なる負荷検出だけでなく、より高機能な制御を
実現することができる。In this case, if the signal Vh output from the signal oscillation circuit 32 includes the identification signal unique to the power-supplied member 3, the state of connection of the normal load can be detected with higher accuracy. In addition, since information can be transmitted and received between the power supply side member 1 and the power supply side member 2, not only load detection but also more sophisticated control can be realized.
【0019】図12にさらに別の実施の形態の一例を、
図13にその動作のフローチャートを示す。ここでは被
給電側部材3に磁石6を設けるとともに、給電側部材1
に負荷検出のためのものとしてマグネットスイッチ5を
設けており、また両部材1,3に夫々相互に情報の授受
を行うための受発信回路18,34を設けている。被給
電側部材3が給電側部材1に装着されると磁石6による
マグネットスイッチ5のオンでインバータ11が作動し
て、被給電側部材3への非接触電力伝送が開始される。
そして被給電側部材3の受発信回路34と給電側部材1
の受発信回路18との間で情報信号の送受が行われるも
のであり、この時、受発信回路18が本来の信号を受信
できなかった場合には発信制御回路12を通じてインバ
ータ11を停止させて、非接触電力伝送動作を中止す
る。マグネットスイッチ5が磁気を帯びた異物で作動し
てしまっても、非接触電力伝送動作を続けることがない
ことから、安全性の高いものを得ることができる。FIG. 12 shows an example of still another embodiment.
FIG. 13 shows a flowchart of the operation. Here, the magnet 6 is provided on the power supply side member 3 and the power supply side member 1 is provided.
Is provided with a magnet switch 5 for detecting a load, and both members 1 and 3 are provided with transmission / reception circuits 18 and 34 for mutually transmitting and receiving information. When the power-supplied member 3 is attached to the power-supplied member 1, the magnet 11 turns on when the magnet switch 5 is turned on by the magnet 6, and the wireless power transmission to the power-supplied member 3 is started.
The receiving / transmitting circuit 34 of the power-supplied member 3 and the power-supplying member
The transmission / reception circuit 18 transmits and receives an information signal. At this time, if the transmission / reception circuit 18 cannot receive the original signal, the inverter 11 is stopped through the transmission control circuit 12 to stop the operation. Then, the non-contact power transmission operation is stopped. Even if the magnet switch 5 is actuated by a magnetized foreign substance, a non-contact power transmission operation is not continued, so that a highly safe switch can be obtained.
【0020】一次コイル2と受信用もしくは発振用のア
ンテナコイル16との配置については、図14に示すよ
うに、一次コイル2に電流を流した場合に生じる磁力線
がアンテナコイル16を通るとアンテナコイル16は本
来の負荷検出信号Vsに重畳される電圧を出力してしま
うことになり、負荷検出信号Vsの検出が困難となる。
このために、図16に示すように、アンテナコイル16
は磁力線ループの外側に配置したり、あるいは図17に
示すように、磁力線ループの内側に配置するとよい。電
力伝送用のコイル2,4のつくる磁束変化が相殺される
ために、アンテナコイル16は本来の負荷検出信号Vs
のみを受信(発信)することができる。図中20及び4
0はコアである。With respect to the arrangement of the primary coil 2 and the receiving or oscillating antenna coil 16, as shown in FIG. 14, when a magnetic field line generated when a current flows through the primary coil 2 passes through the antenna coil 16, 16 outputs a voltage superimposed on the original load detection signal Vs, making it difficult to detect the load detection signal Vs.
For this purpose, as shown in FIG.
May be disposed outside the magnetic field line loop, or may be disposed inside the magnetic field line loop as shown in FIG. Since the change in magnetic flux created by the power transmission coils 2 and 4 is canceled out, the antenna coil 16 receives the original load detection signal Vs
Can only receive (transmit). 20 and 4 in the figure
0 is a core.
【0021】図18に示すように、一次コイル2及び二
次コイル4の軸方向とアンテナコイル16の軸方向とが
直交するようにアンテナコイル16を配置して、コイル
2,4が作る磁力線と平行な面にアンテナコイル16を
位置させてもよい。電力伝送用コイル2,4で生ずる磁
力線の影響をアンテナコイル16が受けることがなくな
る。As shown in FIG. 18, the antenna coil 16 is arranged so that the axial direction of the primary coil 2 and the secondary coil 4 is orthogonal to the axial direction of the antenna coil 16, and the magnetic lines of force created by the coils 2 and 4 The antenna coil 16 may be located on a parallel surface. The antenna coil 16 is not affected by the lines of magnetic force generated in the power transmission coils 2 and 4.
【0022】また図19は非接触電力伝送用コイル2
4,24のコア20,40がCC型を構成している場合
の発振用及び受信用のアンテナコイル17,16の配置
を磁力線ループの外側とした場合を、図20はアンテナ
コイル33,16の配置を磁力線ループの外側とした場
合を示しており、図21は非接触電力伝送用コイル2
4,24のコア20,40がCI型を構成している場合
のアンテナコイル33,16の配置を磁力線ループの外
側とした場合を示している。FIG. 19 shows a non-contact power transmission coil 2.
FIG. 20 shows the case where the arrangement of the oscillating and receiving antenna coils 17 and 16 is outside the line of magnetic force when the cores 20 and 40 of the 4, 24 compose the CC type. FIG. 21 shows a case where the arrangement is outside the magnetic field line loop, and FIG.
The case where the arrangement of the antenna coils 33 and 16 is outside the line of magnetic force when the 4, 20 cores 20 and 40 constitute the CI type is shown.
【0023】さらに図22は円筒型コアを有する一次コ
イル2及び空芯コイルである二次コイル4の軸方向とア
ンテナコイル16,33の軸方向とが直交して、コイル
2,4の作る磁力線と平行な面にアンテナコイル16,
33が位置するように、またアンテナコイル16,33
の軸方向が同一となるようにアンテナコイル16,33
を配置した場合を示している。FIG. 22 shows that the axial directions of the primary coil 2 having a cylindrical core and the secondary coil 4 which is an air-core coil are orthogonal to the axial directions of the antenna coils 16 and 33, and the lines of magnetic force generated by the coils 2 and 4 are perpendicular to each other. Antenna coil 16, on a plane parallel to
33, and the antenna coils 16, 33
Antenna coils 16 and 33 so that their axial directions are the same.
Is shown.
【0024】図23はCC型コア20,40の各脚片に
コイル2,4を巻回したものにおいて、コイル2,4に
よる磁力線ループの外側にアンテナコイル33,16を
配置したものを、図24はポットコア側のコア20,4
0を有するコイル2,4で非接触電力伝送を行うものに
おいて、コア20,40の外側に、つまりコイル2,4
による磁力線ループの外側にアンテナコイル33,16
を配置したものを示している。さらに図25はEE型の
コア20,40を備えたコイル2,4による磁力線ルー
プの外側にアンテナコイル33,16を配置したものを
示している。FIG. 23 is a diagram in which the coils 2 and 4 are wound around each leg of the CC-type cores 20 and 40, and the antenna coils 33 and 16 are arranged outside the lines of magnetic force by the coils 2 and 4. 24 is the core 20, 4 on the pot core side
In the case of performing non-contact power transmission by the coils 2 and 4 having 0, the coils 2, 4
Antenna coils 33 and 16
Are shown. FIG. 25 shows an arrangement in which the antenna coils 33 and 16 are arranged outside the magnetic field loop formed by the coils 2 and 4 having the EE-type cores 20 and 40.
【0025】[0025]
【発明の効果】以上のように本発明においては、被給電
側部材の給電側部材への装着を検出して被給電側部材へ
の非接触電力伝送を開始させる負荷検出制御回路を給電
側部材に設けて正規負荷としての被給電側部材が装着さ
れていない状態では非接触電力伝送動作がなされないよ
うにしていることから、金属異物が給電側部材の一次コ
イル近辺に位置しても金属異物が加熱されてしまうこと
がなくて安全性が高いものである。As described above, according to the present invention, the load detection control circuit for detecting the attachment of the power-supplied member to the power-supplying member and starting the non-contact power transmission to the power-supplied member is provided. To prevent the non-contact power transmission operation from being performed in a state where the power-supplied member as the normal load is not mounted. Has high safety without being heated.
【0026】この時の非接触電力伝送の開始は、給電側
部材の間欠発振状態から連続発振状態への切り換えで行
うようにすると、つまりは間欠発振時に負荷検出を行う
と、負荷検出動作が容易に且つ定期的に行うことができ
る。特に間欠発振時における被給電側部材の非線形素子
等による微弱ノイズの検出で被給電側部材の装着を検出
すると構成が簡単ですむものとなる。At this time, the non-contact power transmission is started by switching the intermittent oscillation state from the intermittent oscillation state to the continuous oscillation state of the power supply side member. That is, when the load is detected at the time of intermittent oscillation, the load detection operation becomes easy. And periodically. In particular, when the attachment of the power-supplied member is detected by detecting the weak noise due to the non-linear element of the power-supplied member at the time of the intermittent oscillation, the configuration can be simplified.
【0027】負荷検出制御回路が専用の発振手段と受信
手段とを備えているものとしてもよく、この場合、より
正確な負荷検出を行うことができる。そして上記発振手
段と受信手段とを共に給電側部材に設けた時には、一次
コイルに間欠的に電流を流す必要がなくなることから、
被給電側部材が装着されていない時の消費電流を下げる
ことができる。The load detection control circuit may include a dedicated oscillating means and a receiving means. In this case, more accurate load detection can be performed. When both the oscillating means and the receiving means are provided on the power supply side member, there is no need to intermittently supply a current to the primary coil.
The current consumption when the power-supplied-side member is not mounted can be reduced.
【0028】また発振手段を被給電側部材に、受信手段
は給電側部材に設けてもよく、この場合は適応する被給
電側部材の装着のみを確実に検出することができるもの
となる。被給電側部材に発振手段を設ける時には、発振
手段は給電側部材からの非接触電力伝送によって電源を
得るようにすると、被給電側部材に電池電源を設ける必
要がなくて、電池電源の消耗による検出不良を招くこと
がなくなる。そして被給電側部材の発振手段からの信号
を給電側部材の受信手段が検出して非接触電力伝送を継
続状態とすることで、電力伝送状態への移行をスムーズ
に行うことができる。The oscillating means may be provided on the power-supplied member, and the receiving means may be provided on the power-supplied member. In this case, it is possible to reliably detect only the mounting of the adapted power-supplied member. When oscillating means is provided on the power-supplied member, if the oscillating means obtains power by non-contact power transmission from the power-supplying member, there is no need to provide a battery power supply on the power-supplied member, and the battery power is consumed. The detection failure does not occur. Then, the signal from the oscillation unit of the power-supplied-side member is detected by the receiving unit of the power-supplying-side member, and the non-contact power transmission is continued, so that the transition to the power transmission state can be smoothly performed.
【0029】被給電側部材の発振手段と給電側部材の受
信手段とは情報の相互授受を行うものであってもよい。
装着された被給電側部材が適合するものであるかどうか
をより正確に判別することができる上に、非接触電力伝
送のより細かい制御も可能となる。また、被給電側部材
の給電側部材への装着を検出するスイッチを併用しても
よい。被給電側部材が装着されたかどうかの検出動作を
スイッチの作動で行わせることができるために、間欠発
振動作や発振手段を常時動作させておく必要がなくな
る。The oscillating means of the power-supplied member and the receiving means of the power-supplied member may mutually exchange information.
It is possible to more accurately determine whether or not the mounted power-supplied-side member is suitable, and it is also possible to perform finer control of non-contact power transmission. Further, a switch for detecting the attachment of the power-supplied-side member to the power-supply-side member may be used together. Since the operation for detecting whether or not the power-supplied-side member is mounted can be performed by operating the switch, it is not necessary to constantly operate the intermittent oscillation operation or the oscillation unit.
【0030】負荷検出制御回路が具備するアンテナは、
一次コイルを利用すると部品数を少なくすることができ
る。また負荷検出制御回路のアンテナは電力伝送用コイ
ルの発生磁界の誘導を受けない位置に配しておくこと、
たとえばコイルアンテナを電力伝送用コイルの作る磁力
線ループの外側または内側に設けておくことや、あるい
はコイルアンテナを電力伝送用コイルの作る磁力線と平
行な面に設けておくことで、電力伝送用コイルによる磁
界の影響を受けることなく負荷検出を行うことができ
る。The antenna provided in the load detection control circuit includes:
The use of the primary coil can reduce the number of components. Also, the antenna of the load detection control circuit should be placed in a position where it will not receive induction of the magnetic field generated by the power transmission coil,
For example, by providing a coil antenna outside or inside a magnetic field line loop made by a power transmission coil, or by providing a coil antenna on a surface parallel to a magnetic field line made by a power transmission coil, Load detection can be performed without being affected by a magnetic field.
【図1】本発明の実施の形態の一例の回路図である。FIG. 1 is a circuit diagram of an example of an embodiment of the present invention.
【図2】同上の動作を示すフローチャートである。FIG. 2 is a flowchart showing the operation of the above.
【図3】同上の動作を示すタイムチャートである。FIG. 3 is a time chart showing the operation of the above.
【図4】同上の他例の回路図である。FIG. 4 is a circuit diagram of another example of the above.
【図5】同上の更に他例の回路図である。FIG. 5 is a circuit diagram of still another example of the above.
【図6】同上の別の例の回路図である。FIG. 6 is a circuit diagram of another example of the above.
【図7】同上の動作を示すタイムチャートである。FIG. 7 is a time chart showing the operation of the above.
【図8】同上の更に別の例の回路図である。FIG. 8 is a circuit diagram of still another example of the above.
【図9】他の実施の形態の一例の回路図である。FIG. 9 is a circuit diagram of an example of another embodiment.
【図10】同上の動作を示すフローチャートである。FIG. 10 is a flowchart showing the operation of the above.
【図11】同上の動作を示すタイムチャートである。FIG. 11 is a time chart showing the operation of the above.
【図12】別の実施の形態の一例を示す回路図である。FIG. 12 is a circuit diagram illustrating an example of another embodiment.
【図13】同上の動作を示すフローチャートである。FIG. 13 is a flowchart showing the operation of the above.
【図14】電磁誘導用コイルとアンテナコイルとの配置
の一例を示す斜視図である。FIG. 14 is a perspective view showing an example of an arrangement of an electromagnetic induction coil and an antenna coil.
【図15】同上の配置の他例を示す斜視図である。FIG. 15 is a perspective view showing another example of the same arrangement.
【図16】同上の配置の更に他例を示す斜視図である。FIG. 16 is a perspective view showing still another example of the same arrangement.
【図17】同上の配置の別の例を示す斜視図である。FIG. 17 is a perspective view showing another example of the same arrangement.
【図18】同上の配置の異なる例を示す斜視図である。FIG. 18 is a perspective view showing a different example of the same arrangement.
【図19】同上の配置の更に異なる例を示す斜視図であ
る。FIG. 19 is a perspective view showing still another example of the same arrangement.
【図20】同上の配置の他の例を示す斜視図である。FIG. 20 is a perspective view showing another example of the above arrangement.
【図21】同上の配置の更に他の例を示す斜視図であ
る。FIG. 21 is a perspective view showing still another example of the same arrangement.
【図22】同上の配置の別の例を示す斜視図である。FIG. 22 is a perspective view showing another example of the same arrangement.
【図23】同上の配置の更に別の例を示す斜視図であ
る。FIG. 23 is a perspective view showing still another example of the same arrangement.
【図24】同上の配置の異なる例を示す斜視図である。FIG. 24 is a perspective view showing a different example of the same arrangement.
【図25】同上の配置の更に異なる例を示す斜視図であ
る。FIG. 25 is a perspective view showing still another example of the same arrangement.
【図26】電磁誘導型非接触電力伝送装置の一例の概略
構成を示す説明図である。FIG. 26 is an explanatory diagram illustrating a schematic configuration of an example of an electromagnetic induction type wireless power transmission device.
【図27】同上の問題点を示す説明図である。FIG. 27 is an explanatory diagram showing the above problem.
1 給電側部材 2 一次コイル 3 被給電側部材 4 二次コイル 13 負荷検出回路 DESCRIPTION OF SYMBOLS 1 Power supply side member 2 Primary coil 3 Power supply side member 4 Secondary coil 13 Load detection circuit
Claims (14)
電側部材と、該給電側部材に対して着脱自在であり且つ
給電側部材への装着時に上記一次コイルによる磁界内に
おかれる二次コイルを備えている被給電側部材とからな
る非接触電力伝送装置において、給電側部材は被給電側
部材の給電側部材への装着を検出して被給電側部材への
非接触電力伝送を開始させる負荷検出制御回路を備えて
いることを特徴とする非接触電力伝送装置。A power supply side member having a primary coil to which power is applied, and a secondary coil detachable from the power supply side member and placed in a magnetic field by the primary coil when the power supply side member is attached to the power supply side member. In the non-contact power transmission device including the power-supplied-side member provided with the power-supply-side member, the power-supply-side member detects the attachment of the power-supplied-side member to the power-supply-side member and starts the non-contact power transmission to the power-supplied-side member. A wireless power transmission device comprising a load detection control circuit.
状態への切り換えで被給電側部材への非接触電力伝送を
開始するものであることを特徴とする請求項1記載の非
接触電力伝送装置。2. The non-contact power transmission according to claim 1, wherein the power supply-side member starts non-contact power transmission to the power-supplied side member by switching from an intermittent oscillation state to a continuous oscillation state. apparatus.
被給電側部材の非線形素子等による微弱ノイズの検出で
被給電側部材の装着を検出するものであることを特徴と
する請求項2記載の非接触電力伝送装置。3. The load detection control circuit according to claim 2, wherein the load detection control circuit detects the mounting of the power supply-side member by detecting a weak noise caused by a nonlinear element or the like of the power-supply-side member during intermittent oscillation. Non-contact power transmission device.
信手段とを備えていることを特徴とする請求項1または
2記載の非接触電力伝送装置。4. The wireless power transmission device according to claim 1, wherein the load detection control circuit includes a dedicated oscillating unit and a receiving unit.
に設けられていることを特徴とする請求項4記載の非接
触電力伝送装置。5. The non-contact power transmission device according to claim 4, wherein both the oscillating means and the receiving means are provided on the power supply side member.
給電側部材に設けられていることを特徴とする請求項4
記載の非接触電力伝送装置。6. The power supply side member, wherein the oscillating means is provided on the power supply side member, and the receiving means is provided on the power supply side member.
The wireless power transmission device according to claim 1.
らの非接触電力伝送によって電源を得ていることを特徴
とする請求項6記載の非接触電力伝送装置。7. The non-contact power transmission device according to claim 6, wherein the oscillating means of the power-supplied-side member obtains power by non-contact power transmission from the power-supply-side member.
電側部材の受信手段が検出して非接触電力伝送を継続状
態とするものであることを特徴とする請求項7記載の非
接触電力伝送装置。8. The non-contact power supply according to claim 7, wherein a signal from the oscillating means of the power supply-side member is detected by a receiving means of the power supply-side member, and non-contact power transmission is continued. Power transmission device.
受信手段とは情報の相互授受を行うものであることを特
徴とする請求項6〜8のいずれかに記載の非接触電力伝
送装置。9. The non-contact power transmission according to claim 6, wherein the oscillating means of the power-supplied member and the receiving means of the power-supplied member exchange information mutually. apparatus.
検出するスイッチを併用していることを特徴とする請求
項6〜9のいずれかに記載の非接触電力伝送装置。10. The non-contact power transmission device according to claim 6, wherein a switch for detecting the attachment of the power-supplied-side member to the power-supplying-side member is also used.
るとともに、該アンテナとして一次コイルを利用してい
ることを特徴とする請求項1〜10のいずれかに記載の
非接触電力伝送装置。11. The non-contact power transmission device according to claim 1, wherein the load detection control circuit has an antenna and uses a primary coil as the antenna.
るとともに、該アンテナは電力伝送用コイルの発生磁界
の誘導を受けない位置に配されていることを特徴とする
請求項1〜11のいずれかの項に記載の非接触電力伝送
装置。12. The load detection control circuit according to claim 1, further comprising an antenna, wherein the antenna is disposed at a position where the antenna does not receive induction of a magnetic field generated by the power transmission coil. Non-contact power transmission device according to the item.
具備するとともに、該コイルアンテナは電力伝送用コイ
ルの作る磁力線ループの外側または内側に設けているこ
とを特徴とする請求項12記載の非接触電力伝送装置。13. The non-contact electric power according to claim 12, wherein the load detection control circuit includes a coil antenna, and the coil antenna is provided outside or inside a magnetic field loop formed by the power transmission coil. Transmission equipment.
具備するとともに、該コイルアンテナは電力伝送用コイ
ルの作る磁力線と平行な面に設けていることを特徴とす
る請求項12記載の非接触電力伝送装置。14. The non-contact power transmission according to claim 12, wherein the load detection control circuit includes a coil antenna, and the coil antenna is provided on a surface parallel to a magnetic field line formed by the power transmission coil. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9014118A JPH10215530A (en) | 1997-01-28 | 1997-01-28 | Non-contact power transmission device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9014118A JPH10215530A (en) | 1997-01-28 | 1997-01-28 | Non-contact power transmission device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10215530A true JPH10215530A (en) | 1998-08-11 |
Family
ID=11852215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9014118A Pending JPH10215530A (en) | 1997-01-28 | 1997-01-28 | Non-contact power transmission device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10215530A (en) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6040986A (en) * | 1997-12-09 | 2000-03-21 | Matsushita Electric Works, Ltd. | Non-contact power transmitting device having simplified self-oscillation feedback loop which interrupts power transmission when no load is present |
JP2002034169A (en) * | 2000-07-14 | 2002-01-31 | Sanyo Electric Co Ltd | Noncontact charger and portable telephone |
JP2002305120A (en) * | 2001-04-06 | 2002-10-18 | Terumo Corp | Insulation type power transmission connector and medical equipment having the same |
US6489874B2 (en) | 2000-07-25 | 2002-12-03 | Matsushita Electric Works, Ltd. | Non-contact electric power transmission apparatus |
JP2004166449A (en) * | 2002-11-15 | 2004-06-10 | Riso Kagaku Corp | Feeder system |
JP2006230129A (en) * | 2005-02-18 | 2006-08-31 | Nanao Corp | Noncontact power supply |
JP2006333557A (en) * | 2005-05-23 | 2006-12-07 | Dainippon Printing Co Ltd | Noncontact power transmitting apparatus, power supplying apparatus, and power receiving apparatus |
JP2008301645A (en) * | 2007-06-01 | 2008-12-11 | Sanyo Electric Co Ltd | Non-contact power receiving apparatus and electronic apparatus therewith |
JP2009010394A (en) * | 2002-05-13 | 2009-01-15 | Splashpower Ltd | Improvement relating to contact-less power transfer |
JP2009135344A (en) * | 2007-11-30 | 2009-06-18 | Mie Denshi Kk | Guiding device |
JP2009261105A (en) * | 2008-04-15 | 2009-11-05 | Toyota Motor Corp | Radio energy transmission device and radio energy transmission method |
JP2010200594A (en) * | 2009-01-27 | 2010-09-09 | Panasonic Electric Works Co Ltd | Noncontact power transmission system |
JP2010259172A (en) * | 2009-04-22 | 2010-11-11 | Panasonic Electric Works Co Ltd | Non-contact power supply system |
US7868587B2 (en) | 2004-05-11 | 2011-01-11 | Access Business Group International Llc | Controlling inductive power transfer systems |
WO2011036863A1 (en) * | 2009-09-24 | 2011-03-31 | パナソニック電工株式会社 | Noncontact charger system |
US7953369B2 (en) | 1999-06-21 | 2011-05-31 | Access Business Group International Llc | System and method for inductive power supply control using remote device power requirements |
US7989986B2 (en) | 2006-03-23 | 2011-08-02 | Access Business Group International Llc | Inductive power supply with device identification |
US8039995B2 (en) | 2004-05-11 | 2011-10-18 | Access Business Group International Llc | Controlling inductive power transfer systems |
WO2012002063A1 (en) * | 2010-06-30 | 2012-01-05 | パナソニック電工 株式会社 | Non-contact electric power feeding system and metal foreign-object detection apparatus for non-contact electric power feeding system |
JP2012060875A (en) * | 2010-09-10 | 2012-03-22 | Samsung Electronics Co Ltd | Wireless power transmission device, wireless charge device, and wireless charge system using the same |
US8222827B2 (en) | 1999-06-21 | 2012-07-17 | Access Business Group International Llc | Inductively coupled ballast circuit |
JP2012525752A (en) * | 2009-04-29 | 2012-10-22 | ワイドミュラー インターフェース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Non-contact energy / data supply system for bus subscriber modules |
JP2012249401A (en) * | 2011-05-27 | 2012-12-13 | Nissan Motor Co Ltd | Non-contact power supply device |
JP2012533277A (en) * | 2009-07-14 | 2012-12-20 | コンダクティクス−バンプフラー ゲーエムベーハー | Equipment for inductive transmission of electrical energy |
US8620484B2 (en) | 2010-02-08 | 2013-12-31 | Access Business Group International Llc | Input parasitic metal detection |
US8664802B2 (en) | 2008-04-15 | 2014-03-04 | Toyota Jidosha Kabushiki Kaisha | Wireless energy transfer device |
WO2014038018A1 (en) * | 2012-09-05 | 2014-03-13 | 富士機械製造株式会社 | Non-contact power supply device |
US8766487B2 (en) | 2007-12-21 | 2014-07-01 | Access Business Group International Llc | Inductive power transfer |
WO2014111971A1 (en) * | 2013-01-16 | 2014-07-24 | 三重電子株式会社 | Non-contact transmission device |
JP2014529281A (en) * | 2011-12-16 | 2014-10-30 | アビオメド インコーポレイティドAbiomed, Inc. | Automatic power regulation for transcutaneous energy transfer charging system |
JP5622013B1 (en) * | 2013-11-27 | 2014-11-12 | 悠一 桐生 | Collective tidal current power generation facility |
US8893977B2 (en) | 2010-04-08 | 2014-11-25 | Access Business Group International Llc | Point of sale inductive systems and methods |
TWI469468B (en) * | 2011-08-25 | 2015-01-11 | Panasonic Corp | Method for detecting metal foreign object in contactless power supply system, contactless power supply device, power reception device, and contactless power supply system |
TWI470897B (en) * | 2011-08-01 | 2015-01-21 | Panasonic Corp | Contactless power supply device |
US9002469B2 (en) | 2010-12-20 | 2015-04-07 | Abiomed, Inc. | Transcutaneous energy transfer system with multiple secondary coils |
US9002468B2 (en) | 2011-12-16 | 2015-04-07 | Abiomed, Inc. | Automatic power regulation for transcutaneous energy transfer charging system |
US9013895B2 (en) | 2003-02-04 | 2015-04-21 | Access Business Group International Llc | Adaptive inductive power supply |
EP2882063A1 (en) * | 2013-11-20 | 2015-06-10 | Samsung Electro-Mechanics Co., Ltd. | Non-contact type power supplying apparatus and non-contact type power supplying method |
JP2016502385A (en) * | 2012-10-19 | 2016-01-21 | ワイトリシティ コーポレーションWitricity Corporation | Foreign object detection in wireless energy transmission systems |
US9247588B2 (en) | 2006-03-23 | 2016-01-26 | Access Business Group International Llc | System and method for device identification |
CN106410982A (en) * | 2015-07-31 | 2017-02-15 | 三星电机株式会社 | Wireless power transmitter |
CN106464034A (en) * | 2014-04-17 | 2017-02-22 | 庞巴迪无接触运行有限责任公司 | Apparatus and method for detecting an interfering body in a system for inductive energy transmission and system for inductive energy transmission |
CN107925269A (en) * | 2015-11-30 | 2018-04-17 | 欧姆龙株式会社 | Non-contact power supply system |
CN109804525A (en) * | 2016-08-19 | 2019-05-24 | 高通股份有限公司 | Wireless power transmitting control |
WO2019155439A1 (en) * | 2018-02-12 | 2019-08-15 | Techwell (Hk) Limited | Power transmission apparatus and methods |
CN110954837A (en) * | 2019-12-17 | 2020-04-03 | 常州格力博有限公司 | Battery pack diagnostic instrument |
US11245287B2 (en) | 2006-03-23 | 2022-02-08 | Philips Ip Ventures B.V. | Inductive power supply with device identification |
-
1997
- 1997-01-28 JP JP9014118A patent/JPH10215530A/en active Pending
Cited By (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6040986A (en) * | 1997-12-09 | 2000-03-21 | Matsushita Electric Works, Ltd. | Non-contact power transmitting device having simplified self-oscillation feedback loop which interrupts power transmission when no load is present |
US9299493B2 (en) | 1999-06-21 | 2016-03-29 | Access Business Group International Llc | Inductively coupled ballast circuit |
US9590456B2 (en) | 1999-06-21 | 2017-03-07 | Access Business Group International Llc | Inductively coupled ballast circuit |
US7953369B2 (en) | 1999-06-21 | 2011-05-31 | Access Business Group International Llc | System and method for inductive power supply control using remote device power requirements |
US8346167B2 (en) | 1999-06-21 | 2013-01-01 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US8618749B2 (en) | 1999-06-21 | 2013-12-31 | Access Business Group International Llc | Inductively coupled ballast circuit |
US10014722B2 (en) | 1999-06-21 | 2018-07-03 | Philips Ip Ventures B.V. | Inductively coupled ballast circuit |
US9397524B2 (en) | 1999-06-21 | 2016-07-19 | Access Business Group International Llc | Inductively coupled ballast circuit |
US9036371B2 (en) | 1999-06-21 | 2015-05-19 | Access Business Group International Llc | Adaptive inductive power supply |
US9368976B2 (en) | 1999-06-21 | 2016-06-14 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US8855558B2 (en) | 1999-06-21 | 2014-10-07 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US8116681B2 (en) | 1999-06-21 | 2012-02-14 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US8351856B2 (en) | 1999-06-21 | 2013-01-08 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US8222827B2 (en) | 1999-06-21 | 2012-07-17 | Access Business Group International Llc | Inductively coupled ballast circuit |
JP2002034169A (en) * | 2000-07-14 | 2002-01-31 | Sanyo Electric Co Ltd | Noncontact charger and portable telephone |
US6489874B2 (en) | 2000-07-25 | 2002-12-03 | Matsushita Electric Works, Ltd. | Non-contact electric power transmission apparatus |
JP4584484B2 (en) * | 2001-04-06 | 2010-11-24 | テルモ株式会社 | Insulated power transmission connector and medical device having the power transmission connector |
JP2002305120A (en) * | 2001-04-06 | 2002-10-18 | Terumo Corp | Insulation type power transmission connector and medical equipment having the same |
JP2009010394A (en) * | 2002-05-13 | 2009-01-15 | Splashpower Ltd | Improvement relating to contact-less power transfer |
CN101714788A (en) * | 2002-05-13 | 2010-05-26 | 捷通国际有限公司 | Contact-less power transfer device and method |
CN101699708A (en) * | 2002-05-13 | 2010-04-28 | 捷通国际有限公司 | Contact-less power transfer and method |
JP2004166449A (en) * | 2002-11-15 | 2004-06-10 | Riso Kagaku Corp | Feeder system |
US10439437B2 (en) | 2003-02-04 | 2019-10-08 | Philips Ip Ventures B.V. | Adaptive inductive power supply with communication |
US9906049B2 (en) | 2003-02-04 | 2018-02-27 | Access Business Group International Llc | Adaptive inductive power supply |
US8831513B2 (en) | 2003-02-04 | 2014-09-09 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US9013895B2 (en) | 2003-02-04 | 2015-04-21 | Access Business Group International Llc | Adaptive inductive power supply |
US8538330B2 (en) | 2003-02-04 | 2013-09-17 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US10505385B2 (en) | 2003-02-04 | 2019-12-10 | Philips Ip Ventures B.V. | Adaptive inductive power supply |
US8116683B2 (en) | 2003-02-04 | 2012-02-14 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US8301080B2 (en) | 2003-02-04 | 2012-10-30 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US9190874B2 (en) | 2003-02-04 | 2015-11-17 | Access Business Group International Llc | Adaptive inductive power supply |
US9246356B2 (en) | 2003-02-04 | 2016-01-26 | Access Business Group International Llc | Adaptive inductive power supply |
US8315561B2 (en) | 2003-02-04 | 2012-11-20 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US8039995B2 (en) | 2004-05-11 | 2011-10-18 | Access Business Group International Llc | Controlling inductive power transfer systems |
US8610400B2 (en) | 2004-05-11 | 2013-12-17 | Access Business Group International Llc | Controlling inductive power transfer systems |
US10804751B2 (en) | 2004-05-11 | 2020-10-13 | Philips I.P. Ventures B.V. | Controlling inductive power transfer systems |
US8035340B2 (en) | 2004-05-11 | 2011-10-11 | Access Business Group International Llc | Controlling inductive power transfer systems |
US10673281B2 (en) | 2004-05-11 | 2020-06-02 | Philips Ip Ventures B.V. | Controlling inductive power transfer systems |
US7868587B2 (en) | 2004-05-11 | 2011-01-11 | Access Business Group International Llc | Controlling inductive power transfer systems |
US10069350B2 (en) | 2004-05-11 | 2018-09-04 | Philips Ip Ventures B.V. | Controlling inductive power transfer system |
US9544022B2 (en) | 2004-05-11 | 2017-01-10 | Access Business Group International Llc | Controlling inductive power transfer systems |
US9331526B2 (en) | 2004-05-11 | 2016-05-03 | Access Business Group International Llc | Controlling inductive power transfer system |
US8508077B2 (en) | 2004-05-11 | 2013-08-13 | Access Business Group International Llc | Controlling inductive power transfer systems |
JP2006230129A (en) * | 2005-02-18 | 2006-08-31 | Nanao Corp | Noncontact power supply |
JP2006333557A (en) * | 2005-05-23 | 2006-12-07 | Dainippon Printing Co Ltd | Noncontact power transmitting apparatus, power supplying apparatus, and power receiving apparatus |
US9247588B2 (en) | 2006-03-23 | 2016-01-26 | Access Business Group International Llc | System and method for device identification |
US7989986B2 (en) | 2006-03-23 | 2011-08-02 | Access Business Group International Llc | Inductive power supply with device identification |
US8097984B2 (en) | 2006-03-23 | 2012-01-17 | Access Business Group International Llc | Inductive power supply with device identification |
US9318912B2 (en) | 2006-03-23 | 2016-04-19 | Access Business Group International Llc | Inductive power supply with device identification |
US11245287B2 (en) | 2006-03-23 | 2022-02-08 | Philips Ip Ventures B.V. | Inductive power supply with device identification |
US10312732B2 (en) | 2006-03-23 | 2019-06-04 | Philips Ip Ventures B.V. | System and method for device identification |
US10305329B2 (en) | 2006-03-23 | 2019-05-28 | Philips Ip Ventures B.V. | Inductive power supply with device identification |
JP2012165647A (en) * | 2007-01-02 | 2012-08-30 | Access Business Group Internatl Llc | Inductive power supply with device identification |
JP2008301645A (en) * | 2007-06-01 | 2008-12-11 | Sanyo Electric Co Ltd | Non-contact power receiving apparatus and electronic apparatus therewith |
JP2009135344A (en) * | 2007-11-30 | 2009-06-18 | Mie Denshi Kk | Guiding device |
US8766487B2 (en) | 2007-12-21 | 2014-07-01 | Access Business Group International Llc | Inductive power transfer |
US9906044B2 (en) | 2007-12-21 | 2018-02-27 | Access Business Group International Llc | Inductive power transfer |
US10763699B2 (en) | 2007-12-21 | 2020-09-01 | Philips Ip Ventures B.V. | Inductive power transfer |
JP2009261105A (en) * | 2008-04-15 | 2009-11-05 | Toyota Motor Corp | Radio energy transmission device and radio energy transmission method |
JP4665991B2 (en) * | 2008-04-15 | 2011-04-06 | トヨタ自動車株式会社 | Wireless energy transmission device and wireless energy transmission method |
US8664802B2 (en) | 2008-04-15 | 2014-03-04 | Toyota Jidosha Kabushiki Kaisha | Wireless energy transfer device |
JP2010200594A (en) * | 2009-01-27 | 2010-09-09 | Panasonic Electric Works Co Ltd | Noncontact power transmission system |
JP2010259172A (en) * | 2009-04-22 | 2010-11-11 | Panasonic Electric Works Co Ltd | Non-contact power supply system |
KR101169185B1 (en) | 2009-04-22 | 2012-07-30 | 파나소닉 주식회사 | Non-contact power supply system |
JP2012525752A (en) * | 2009-04-29 | 2012-10-22 | ワイドミュラー インターフェース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Non-contact energy / data supply system for bus subscriber modules |
EP2454797B1 (en) | 2009-07-14 | 2017-05-10 | Conductix-Wampfler GmbH | Device for the inductive transfer of electric energy |
JP2012533277A (en) * | 2009-07-14 | 2012-12-20 | コンダクティクス−バンプフラー ゲーエムベーハー | Equipment for inductive transmission of electrical energy |
US9281708B2 (en) | 2009-07-14 | 2016-03-08 | Conductix-Wampfler Gmbh | Device for inductive transmission of electrical energy |
KR101523573B1 (en) * | 2009-07-14 | 2015-05-28 | 컨덕틱스-웜프러 게엠베하 | Device for the inductive transfer of electric energy |
EP2454797B2 (en) † | 2009-07-14 | 2022-01-05 | Conductix-Wampfler GmbH | Device for the inductive transfer of electric energy |
WO2011036863A1 (en) * | 2009-09-24 | 2011-03-31 | パナソニック電工株式会社 | Noncontact charger system |
TWI455438B (en) * | 2009-09-24 | 2014-10-01 | Panasonic Corp | Noncontact charging system |
JP2011072074A (en) * | 2009-09-24 | 2011-04-07 | Panasonic Electric Works Co Ltd | Noncontact charging system |
KR101330849B1 (en) * | 2009-09-24 | 2013-11-18 | 파나소닉 주식회사 | Noncontact charger system |
CN102598167A (en) * | 2009-09-24 | 2012-07-18 | 松下电器产业株式会社 | Noncontact charger system |
TWI577103B (en) * | 2010-02-08 | 2017-04-01 | 通路實業集團國際公司 | Input parasitic metal detection and mathod for same |
US8620484B2 (en) | 2010-02-08 | 2013-12-31 | Access Business Group International Llc | Input parasitic metal detection |
US9524822B2 (en) | 2010-02-08 | 2016-12-20 | Access Business Group International Llc | Input parasitic metal detection |
US9424446B2 (en) | 2010-04-08 | 2016-08-23 | Access Business Group International Llc | Point of sale inductive systems and methods |
US8893977B2 (en) | 2010-04-08 | 2014-11-25 | Access Business Group International Llc | Point of sale inductive systems and methods |
US9027840B2 (en) | 2010-04-08 | 2015-05-12 | Access Business Group International Llc | Point of sale inductive systems and methods |
CN103069689A (en) * | 2010-06-30 | 2013-04-24 | 松下电器产业株式会社 | Non-contact electric power feeding system and metal foreign-object detection apparatus for non-contact electric power feeding system |
WO2012002063A1 (en) * | 2010-06-30 | 2012-01-05 | パナソニック電工 株式会社 | Non-contact electric power feeding system and metal foreign-object detection apparatus for non-contact electric power feeding system |
JP2012016125A (en) * | 2010-06-30 | 2012-01-19 | Panasonic Electric Works Co Ltd | Non-contact power supply system, and metal foreign substance detector of non-contact power supply system |
US9099239B2 (en) | 2010-06-30 | 2015-08-04 | Panasonic Intellectual Property Management Co., Ltd. | Contactless power supplying system and metal foreign object detection device of contactless power supplying system |
EP2429058A3 (en) * | 2010-09-10 | 2016-09-14 | Samsung Electronics Co., Ltd. | Wireless power supply apparatus, wireless charging apparatus, and wireless charging system using the same |
JP2012060875A (en) * | 2010-09-10 | 2012-03-22 | Samsung Electronics Co Ltd | Wireless power transmission device, wireless charge device, and wireless charge system using the same |
US9002469B2 (en) | 2010-12-20 | 2015-04-07 | Abiomed, Inc. | Transcutaneous energy transfer system with multiple secondary coils |
US20130169062A1 (en) * | 2011-05-27 | 2013-07-04 | Nissan Motor Co., Ltd. | Contactless electricity supply device |
US9553636B2 (en) * | 2011-05-27 | 2017-01-24 | Nissan Motor Co., Ltd. | Contactless electricity supply device with foreign object detector |
JP2012249401A (en) * | 2011-05-27 | 2012-12-13 | Nissan Motor Co Ltd | Non-contact power supply device |
US9275790B2 (en) | 2011-08-01 | 2016-03-01 | Panasonic Intellectual Property Management Co., Ltd. | Contactless power supplying device |
TWI470897B (en) * | 2011-08-01 | 2015-01-21 | Panasonic Corp | Contactless power supply device |
TWI469468B (en) * | 2011-08-25 | 2015-01-11 | Panasonic Corp | Method for detecting metal foreign object in contactless power supply system, contactless power supply device, power reception device, and contactless power supply system |
US9177716B2 (en) | 2011-08-25 | 2015-11-03 | Panasonic Intellectual Property Management Co., Ltd. | Method for detecting metal foreign object in contactless power supply system, contactless power supply device, power reception device, and contactless power supply system |
JP2014529281A (en) * | 2011-12-16 | 2014-10-30 | アビオメド インコーポレイティドAbiomed, Inc. | Automatic power regulation for transcutaneous energy transfer charging system |
US9002468B2 (en) | 2011-12-16 | 2015-04-07 | Abiomed, Inc. | Automatic power regulation for transcutaneous energy transfer charging system |
JPWO2014038018A1 (en) * | 2012-09-05 | 2016-08-08 | 富士機械製造株式会社 | Contactless power supply |
WO2014038018A1 (en) * | 2012-09-05 | 2014-03-13 | 富士機械製造株式会社 | Non-contact power supply device |
US10686337B2 (en) | 2012-10-19 | 2020-06-16 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
US10211681B2 (en) | 2012-10-19 | 2019-02-19 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
JP2016502385A (en) * | 2012-10-19 | 2016-01-21 | ワイトリシティ コーポレーションWitricity Corporation | Foreign object detection in wireless energy transmission systems |
WO2014111971A1 (en) * | 2013-01-16 | 2014-07-24 | 三重電子株式会社 | Non-contact transmission device |
EP2882063A1 (en) * | 2013-11-20 | 2015-06-10 | Samsung Electro-Mechanics Co., Ltd. | Non-contact type power supplying apparatus and non-contact type power supplying method |
US10170933B2 (en) | 2013-11-20 | 2019-01-01 | Samsung Electro-Mechanics Co., Ltd. | Non-contact type power supplying apparatus and non-contact type power supplying method |
JP5622013B1 (en) * | 2013-11-27 | 2014-11-12 | 悠一 桐生 | Collective tidal current power generation facility |
US10284024B2 (en) | 2014-04-17 | 2019-05-07 | Bombardier Primove Gmbh | Device and method for the detection of an interfering body in a system for the inductive transfer of energy and a system for the inductive transfer of energy |
CN106464034A (en) * | 2014-04-17 | 2017-02-22 | 庞巴迪无接触运行有限责任公司 | Apparatus and method for detecting an interfering body in a system for inductive energy transmission and system for inductive energy transmission |
CN106464034B (en) * | 2014-04-17 | 2019-04-30 | 庞巴迪无接触运行有限责任公司 | For detecting the device and method for the interfering bodies being used in the system of induction type energy transmission and for the system of induction type energy transmission |
JP2017518015A (en) * | 2014-04-17 | 2017-06-29 | ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツングBombardier Primove GmbH | Device and method for detecting obstructions in a system for inductive energy transmission and system for inductive energy transmission |
CN106410982A (en) * | 2015-07-31 | 2017-02-15 | 三星电机株式会社 | Wireless power transmitter |
US10637297B2 (en) | 2015-11-30 | 2020-04-28 | Omron Corporation | Non-contact power feeding system |
CN107925269A (en) * | 2015-11-30 | 2018-04-17 | 欧姆龙株式会社 | Non-contact power supply system |
CN109804525A (en) * | 2016-08-19 | 2019-05-24 | 高通股份有限公司 | Wireless power transmitting control |
JP2019528663A (en) * | 2016-08-19 | 2019-10-10 | クアルコム,インコーポレイテッド | Wireless power transfer control |
CN109804525B (en) * | 2016-08-19 | 2023-05-16 | 高通股份有限公司 | Method and apparatus for wireless power transfer control |
WO2019155439A1 (en) * | 2018-02-12 | 2019-08-15 | Techwell (Hk) Limited | Power transmission apparatus and methods |
CN110954837A (en) * | 2019-12-17 | 2020-04-03 | 常州格力博有限公司 | Battery pack diagnostic instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10215530A (en) | Non-contact power transmission device | |
JP5554937B2 (en) | Contactless power supply system | |
JP2008236917A (en) | Non-contact power transmission apparatus | |
JP6963659B2 (en) | Inductive power transmitter | |
JP4649430B2 (en) | Non-contact power transmission device | |
WO2011132471A1 (en) | Non-contact power supply device, non-contact power receiving device, and non-contact power charging system | |
EP1022840B1 (en) | Controller for an inductive battery charger | |
JP2006230129A (en) | Noncontact power supply | |
JP6918526B2 (en) | Non-contact power transmission equipment and non-contact power transmission equipment | |
US11996699B2 (en) | Receiving unit, transmission unit, power transmission system and method for wireless power transmission | |
JP2000295796A (en) | Non-contact power supply | |
JP2000166129A (en) | Method and apparatus for reducing stand-by power of noncontact charger | |
JP2008236968A (en) | Noncontact power transmitter | |
US8198755B2 (en) | Contactless energy and data transmission device and method | |
JPH11122832A (en) | Charger | |
EP2427957B1 (en) | Electromagnetic apparatus using shared flux in a multi-load parallel magnetic circuit and method of operation | |
JPH09233706A (en) | Noncontact charger | |
JP2008167582A (en) | Non-contact power transmission device | |
JP2012170243A (en) | Contactless charging system | |
JP2007336787A (en) | Contactless power supply system, power supply device, and power receiving device | |
EP0851440B1 (en) | Noncontacting power transfer device | |
JP2010049292A (en) | Card reader device | |
JP2020156307A (en) | Non-contact power supply device | |
JPH1169640A (en) | Non-contact charging device | |
JPH10179454A (en) | Toilet stool with seat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041005 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050222 |