JPH10197011A - Air conditioner and air conditioning system - Google Patents
Air conditioner and air conditioning systemInfo
- Publication number
- JPH10197011A JPH10197011A JP35824096A JP35824096A JPH10197011A JP H10197011 A JPH10197011 A JP H10197011A JP 35824096 A JP35824096 A JP 35824096A JP 35824096 A JP35824096 A JP 35824096A JP H10197011 A JPH10197011 A JP H10197011A
- Authority
- JP
- Japan
- Prior art keywords
- air
- space
- path
- heat pump
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1016—Rotary wheel combined with another type of cooling principle, e.g. compression cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/104—Heat exchanger wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1056—Rotary wheel comprising a reheater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1072—Rotary wheel comprising two rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空調システムに係
り、特に室内空気を循環させて処理する空調機(エアコ
ン)と、外気を処理して室内に導く空調機(外調機)と
を併用する空調システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system, and more particularly to an air conditioner (air conditioner) that circulates and processes indoor air and an air conditioner (external air conditioner) that processes outside air and guides the air into the room. Related to air conditioning systems.
【0002】[0002]
【従来の技術】図5は、従来の空調システムの例を示す
もので、これは、室内空気を循環させて処理する空調機
3と、外気を処理して室内に導く空調機(外調機)11
とを併用する空調システムである。この外調機は、全熱
交換器(エンタルピ熱交換器)であり、外気と室内空気
の湿度分と顕熱を同時に熱交換する。一方、空調空間の
内部で発生する空調負荷は室内の空調機(ヒートポンプ
を用いるエアコン)が取り出して室外に捨てている。2. Description of the Related Art FIG. 5 shows an example of a conventional air conditioning system, which includes an air conditioner 3 which circulates and processes indoor air and an air conditioner which processes outside air and guides the air into the room (external air conditioner). ) 11
This is an air conditioning system that uses both. The external conditioner is a total heat exchanger (enthalpy heat exchanger), and simultaneously exchanges the humidity and sensible heat between the outside air and the indoor air. On the other hand, the air-conditioning load generated inside the air-conditioned space is taken out by an indoor air conditioner (air conditioner using a heat pump) and discarded outside the room.
【0003】[0003]
【発明が解決しようとする課題】上記のような全熱交換
器の動作は、図6に示す湿り空気線図で説明すると、冷
房時において外気(状態K)と室内空気(状態Q)がエン
タルピ交換してそれぞれ処理外気が状態L、室内排気が
状態Tとなって、各々室内への給気、屋外への排気とな
る。この際のエンタルピ交換の効率は、現状の製品では
実用上60〜70%と低いので、給気(状態L)と室内
(状態Q)の間にはエンタルピ差ΔHが生じ、結果的に空
気の絶対湿度に差(水分差ΔX)がある空気が室内に供
給され、未処理外気と室内の水分差の30〜40%の湿
気が室内に入ってくる。この水分はエアコンで除湿しな
ければならないので、エアコンでは室内空気を露点温度
(15〜16℃)以下のおよそ5〜10℃に冷却して除
湿する必要がある。The operation of the total heat exchanger as described above will be described with reference to a psychrometric chart shown in FIG. 6, in which the outside air (state K) and the indoor air (state Q) are enthalpy during cooling. After the replacement, the processing outside air becomes the state L and the indoor exhaust becomes the state T, so that the air is supplied to the room and the air is exhausted to the outside. At this time, the enthalpy exchange efficiency of the current product is practically low at 60 to 70% with the current product, so an enthalpy difference ΔH occurs between the supply air (state L) and the room (state Q), and as a result, the air Air having a difference in absolute humidity (moisture difference ΔX) is supplied into the room, and 30 to 40% of the moisture difference between the untreated outside air and the room enters the room. Since this moisture must be dehumidified by an air conditioner, it is necessary to cool the room air to a dew point temperature (15 to 16 ° C.) of about 5 to 10 ° C. to dehumidify the air.
【0004】空調負荷の内、除湿に要する潜熱負荷は全
熱交換器を用いた場合で全空調負荷の10〜15%を占
め、残りの85〜90%は顕熱負荷である。この顕熱空
調負荷は、露点まで冷却する必要がなく、15〜20℃
程度に冷却すれば十分な空調負荷である。しかしなが
ら、これまでの空調システムでは、導入外気を室内空気
と混ぜて顕熱と潜熱を一括で処理するため、全ての熱を
10℃程度の露点温度以下の温度レベルで冷却してしま
うため、エアコンの蒸発温度と凝縮温度の差(温度ヘッ
ド)を全熱交換器を用いない時と同じに設定する必要が
あり、空調負荷は減少させることができるが、熱を汲み
上げる温度ヘッドは減少できない。Among the air conditioning loads, the latent heat load required for dehumidification accounts for 10 to 15% of the total air conditioning load when a total heat exchanger is used, and the remaining 85 to 90% is a sensible heat load. This sensible heat air conditioning load does not need to be cooled to the dew point,
It is enough air-conditioning load if cooled to the extent. However, in the conventional air conditioning system, the sensible heat and the latent heat are collectively processed by mixing the introduced outside air with the room air, so that all the heat is cooled at a temperature level below the dew point temperature of about 10 ° C. It is necessary to set the difference (temperature head) between the evaporation temperature and the condensation temperature of the air conditioner the same as when the total heat exchanger is not used, and the air conditioning load can be reduced, but the temperature head for pumping up the heat cannot be reduced.
【0005】このように、従来の技術では、高い温度ヘ
ッドを汲み上げて外部に捨てるため、顕熱負荷処理分の
ヒートポンプの駆動エネルギーが無駄に消費されてお
り、エネルギ消費率が大きかった。また、エアコンでは
除湿のための結露を処理するためにドレンを設ける必要
があり、設備の複雑化を招いていた。As described above, in the prior art, since the high temperature head is pumped up and discarded outside, the driving energy of the heat pump for the sensible heat load processing is wasted and the energy consumption rate is large. Further, in an air conditioner, it is necessary to provide a drain in order to treat dew condensation for dehumidification, which has led to complication of the equipment.
【0006】[0006]
【課題を解決するための手段】本発明は、上記課題を解
決するためになされたもので、請求項1に記載の発明
は、第1の空間から第2の空間に向かう第1の空気経路
及び第2の空間から第1の空間に向かう第2の空気経路
と、前記第1の空気経路及び第2の空気経路に交互に流
通して、第1の空気経路で再生を受け、第2の空気経路
で流通空気の除湿を行なうデシカントと、前記第1の空
気経路において空気を加熱する高熱源と、前記第2の空
気経路において空気を冷却する低熱源とを与えるヒート
ポンプとを備え、第1の空気経路と第2の空気経路の空
気との間で全熱交換を行い、さらに全熱交換後の前記第
1の空気経路の空気を前記ヒートポンプの高熱源によっ
て加熱したのち前記デシカントを通過させてデシカント
の脱湿再生を行って第2の空間に放出し、全熱交換後の
前記第2の空気経路の空気をデシカントと接触させて除
湿したのち、ヒートポンプの低熱源によって冷却して第
1の空間に放出することを特徴とする空調機である。Means for Solving the Problems The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 has a first air path from a first space to a second space. And a second air path extending from the second space to the first space, and alternately flowing through the first air path and the second air path, undergoing regeneration in the first air path, A desiccant that dehumidifies the flowing air in the air path, a high heat source that heats the air in the first air path, and a heat pump that provides a low heat source that cools the air in the second air path, A total heat exchange is performed between the air in the first air path and the air in the second air path, and the air in the first air path after the total heat exchange is heated by the high heat source of the heat pump and then passes through the desiccant. Let the desiccant dehumidify and regenerate The air in the second air path after the total heat exchange is brought into contact with the desiccant to dehumidify the air, then cooled by a low heat source of the heat pump and discharged to the first space. It is an air conditioner.
【0007】このような構成においては、冷房時におい
て、第1の空間を空調空間として室内空気を第1の空気
経路とし、第2の空間を屋外空間として外気を第2の空
気経路として運転する際、第2の空気経路から室内に供
給する空気(処理した外気)を、室内空気より低い絶対
湿度にすることができるから、水分を室内に持ち込まな
いで済む。従って、空調機で除湿する必要がなくなり、
空調機(エアコン)の熱源冷凍サイクルの動作温度ヘッ
ドを低下させることができ、大幅な省エネが達成され
る。また、空調機で除湿する必要がないので、結露処理
のためのドレンが不要となる。In such a configuration, during cooling, the first space is used as an air-conditioned space, the indoor air is used as a first air path, the second space is used as an outdoor space, and outside air is used as a second air path. In this case, the air (processed outside air) supplied into the room from the second air path can be made to have an absolute humidity lower than that of the room air, so that moisture does not have to be brought into the room. Therefore, there is no need to dehumidify with an air conditioner,
The operating temperature head of the heat source refrigeration cycle of the air conditioner (air conditioner) can be reduced, and significant energy savings can be achieved. In addition, since it is not necessary to dehumidify in an air conditioner, a drain for dew condensation is not required.
【0008】請求項2に記載の発明は、ヒートポンプに
蒸気圧縮式ヒートポンプを用いたことを特徴とする請求
項1に記載の空調機である。The invention according to claim 2 is the air conditioner according to claim 1, wherein a vapor compression heat pump is used as the heat pump.
【0009】請求項3に記載の発明は、ヒートポンプに
吸収式ヒートポンプを用いたことを特徴とする請求項1
に記載の空調機である。According to a third aspect of the present invention, an absorption heat pump is used as the heat pump.
The air conditioner according to the above.
【0010】請求項4に記載の発明は、冷房時におい
て、請求項1乃至3のいずれかに記載の空調機を、第1
の空間を空調室とし、第2の空間を外部空間として用い
ることを特徴とする空調システムである。According to a fourth aspect of the present invention, when the air conditioner according to any one of the first to third aspects is used during cooling,
Is used as an air-conditioning room, and the second space is used as an external space.
【0011】請求項5に記載の発明は、暖房時におい
て、請求項1乃至3のいずれかに記載の空調機を、第1
の空間を外部空間とし、第2の空間を空調室として用い
ることを特徴とする空調システムである。According to a fifth aspect of the present invention, when the air conditioner according to any one of the first to third aspects is used during heating,
An air-conditioning system is characterized in that the first space is used as an external space and the second space is used as an air-conditioning room.
【0012】請求項6に記載の発明は、請求項1乃至3
のいずれかに記載の空調機を外調機とし、顕熱処理用の
空調機を併設したことを特徴とする空調システムであ
る。このような構成においては、冷房時に外調機によ
り、外気を導入して第2の空気経路から室内に供給する
空気を放出する室内空気より低い絶対湿度にすることが
できるから、水分を室内に持ち込まないで済む。従っ
て、空調システムとして空調機で除湿する必要がなくな
り、空調機の動作温度ヘッドを低下させることができ、
大幅な省エネルギが達成される。また、空調機で除湿す
る必要がないので、結露処理のためのドレンが不要とな
る。The invention according to claim 6 is the invention according to claims 1 to 3
An air conditioning system characterized in that the air conditioner described in any one of (1) to (3) is an external air conditioner and an air conditioner for sensible heat treatment is additionally provided. In such a configuration, the outside air is introduced by the external air conditioner at the time of cooling, and the absolute humidity can be made lower than the indoor air that discharges the air supplied to the room from the second air path. No need to bring in. Therefore, there is no need to dehumidify the air conditioner as an air conditioning system, and the operating temperature head of the air conditioner can be reduced,
Significant energy savings are achieved. In addition, since it is not necessary to dehumidify in an air conditioner, a drain for dew condensation is not required.
【0013】請求項7に記載の発明は、ヒートポンプが
空調空間の顕熱負荷を冷却する作用を有していることを
特徴とする請求項1乃至3のいずれかに記載の空調シス
テムである。このような構成においては、冷房時に空調
空間の顕熱負荷を熱回収してデシカントの脱湿再生を行
って、デシカントの除湿作用を高め潜熱処理をするた
め、省エネルギで高い冷房効果が得られる。The invention according to claim 7 is the air conditioning system according to any one of claims 1 to 3, wherein the heat pump has a function of cooling a sensible heat load in the air conditioning space. In such a configuration, during cooling, the sensible heat load of the air-conditioned space is recovered by heat recovery and desiccant dehumidification regeneration is performed to increase the desiccant's dehumidifying effect and perform latent heat treatment, so that a high cooling effect with energy saving and high cooling effect can be obtained. .
【0014】[0014]
【実施例】以下、本発明に係る空調システムの一実施例
を図1乃至図4を参照して説明する。図1は本発明に係
る空調システムの基本構成を示すもので、空調すべき室
内2の空気を循環させて処理する空調機3と、外気を処
理して室内に導く空調機(外調機)1とを併用する空調
システムである。空調機3としては、冷凍機とヒートポ
ンプを切り換えて用いる通常のものでよいが、これ以外
の任意のものを採用することができる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an air conditioning system according to the present invention will be described below with reference to FIGS. FIG. 1 shows a basic configuration of an air conditioning system according to the present invention. An air conditioner 3 circulates and processes air in a room 2 to be air conditioned, and an air conditioner (outside air conditioner) that processes outside air and guides the air into the room. This is an air-conditioning system that uses the air conditioning system 1 and the air conditioning system 1 together. The air conditioner 3 may be an ordinary air conditioner that switches between a refrigerator and a heat pump, but any other air conditioner may be used.
【0015】図2は本発明の空調機1の部分の構成を示
す第1の実施例である。空調機1は、水分の吸着と放出
(再生)を繰り返すデシカントロータ103と全熱交換
器153とヒートポンプ200を用いるデシカント外調
機である。すなわち、このデシカント空調機1には、室
内空気を室外に放出する排気放出経路A(第1の空気経
路)と、外気を室内に導入する外気導入経路B(第2の
空気経路)とが交差して設けられている。そして、これ
らの排気放出経路A及び外気導入経路Bの間には、両方の
経路にまたがって全熱交換器153とデシカントロータ
103が設けられ、このデシカント空調機1の熱源とな
るヒートポンプ200が設けられている。ヒートポンプ
200としては、任意のものを採用して良いが、ここで
は、出願人が先に特願平8−22133において提案し
た蒸気圧縮式ヒートポンプを用いるものとする。FIG. 2 is a first embodiment showing the configuration of the air conditioner 1 of the present invention. The air conditioner 1 is a desiccant external air conditioner that uses the desiccant rotor 103, the total heat exchanger 153, and the heat pump 200, which repeats adsorption and release (regeneration) of moisture. That is, in the desiccant air conditioner 1, an exhaust discharge path A (first air path) for discharging indoor air to the outside and an external air introduction path B (second air path) for introducing outside air into the room intersect. It is provided. A total heat exchanger 153 and a desiccant rotor 103 are provided between the exhaust discharge path A and the outside air introduction path B over both paths, and a heat pump 200 serving as a heat source of the desiccant air conditioner 1 is provided. Have been. As the heat pump 200, an arbitrary one may be adopted, but here, a vapor compression heat pump proposed by the applicant in Japanese Patent Application No. 8-22133 is used.
【0016】室内空気を室外に放出する放出経路A(第
1の空気経路)は、室内空間(第1の空間)の排気取り
出し口(記号RAとして図示)と送風機140の吸込口と
を路124を介して接続し、送風機140の吐出口は経
路125を介して全熱交換器153と接続し、放出経路
Aの全熱交換器153出口は、経路126を介してヒー
トポンプ200の加熱器(高熱源)220と接続し、放
出経路Aの加熱器(高熱源)220出口は経路127を
介してデシカントロータ103の再生空気側に接続し、
放出経路Aのデシカントロータ103の再生空気側出口
は経路128を介して、外部空間(第2の空間)への排
気口(記号EXとして図示)に接続して形成されている。
これにより、室内空気を取り入れて、外部に排気するサ
イクルを形成する。A discharge path A (first air path) for discharging indoor air to the outside of the room is formed by a passage 124 between an exhaust outlet (shown as a symbol RA) of the indoor space (first space) and a suction port of the blower 140. And the outlet of the blower 140 is connected to the total heat exchanger 153 via the path 125, and the discharge path
The outlet of the total heat exchanger 153 of A is connected to the heater (high heat source) 220 of the heat pump 200 via the path 126, and the outlet of the heater (high heat source) 220 of the discharge path A is connected to the desiccant rotor 103 via the path 127. Connected to the regeneration air side of
The outlet of the desiccant rotor 103 on the regenerating air side of the discharge path A is connected to an exhaust port (shown as EX) to an external space (second space) via a path 128.
Thus, a cycle is formed in which room air is taken in and exhausted to the outside.
【0017】一方、外気導入経路Bは、外部空間(第2
の空間)と外気導入用の送風機102の吸込口とを経路
107を介して接続し、送風機102の吐出口を全熱交
換器153と経路108を介して接続し、導入経路Bの
全熱交換器153の出口は経路109を介してデシカン
トロータ103の除湿空気(処理空気)側に接続し、外
気導入経路Bのデシカントロータ103の除湿空気(処
理空気)側出口は、経路110を介してヒートポンプ2
00の冷却器(低熱源)210と接続し、外気導入経路
Bのヒートポンプ200の冷却器(低熱源)210側出
口は経路111を介して室内空間(第1の空間)への給
気口(記号SAとして図示)と接続して形成されている。
これにより、外気を取り入れて処理して室内に導入する
サイクルを形成する。On the other hand, the outside air introduction path B is connected to the outside space (second
Is connected to the suction port of the blower 102 for introducing outside air via the path 107, and the discharge port of the blower 102 is connected to the total heat exchanger 153 via the path 108, so that the total heat exchange of the introduction path B is performed. The outlet of the vessel 153 is connected to the dehumidifying air (processing air) side of the desiccant rotor 103 via the path 109, and the outlet of the desiccant rotor 103 on the outside air introduction path B on the dehumidifying air (processing air) side is connected to the heat pump via the path 110. 2
Connected to the cooler (low heat source) 210 of the outside air and the outside air introduction path
The outlet of the B heat pump 200 on the side of the cooler (low heat source) 210 is connected to a supply port (shown as a symbol SA) to a room space (first space) via a path 111.
This forms a cycle in which outside air is taken in, processed, and introduced into the room.
【0018】前記加熱器220の熱媒体(温水または冷
媒)入口は経路221を介してヒートポンプ200の熱
媒体経路出口に接続し、加熱器220の温水出口は経路
222を介してヒートポンプ200の熱媒体経路入口に
接続する。また、前記冷却器210の熱媒体経路入口は
経路211を介してヒートポンプ200の熱媒体経路出
口に接続し、冷却器210の冷水出口は経路212を介
してヒートポンプ200の熱媒体経路入口に接続する。
なお図中、丸で囲ったアルファベットK〜Vは、図3と対
応する空気の状態を示す記号であり、SAは給気(処理さ
れた外気)を、RAは還気(排出される室内空気)を、OA
は外気を、EXは排気を表わす。The heat medium (hot water or refrigerant) inlet of the heater 220 is connected to the heat medium path outlet of the heat pump 200 via a path 221, and the hot water outlet of the heater 220 is connected to the heat medium of the heat pump 200 via a path 222. Connect to the route entrance. The heat medium path inlet of the cooler 210 is connected to the heat medium path outlet of the heat pump 200 via a path 211, and the cold water outlet of the cooler 210 is connected to the heat medium path inlet of the heat pump 200 via a path 212. .
In the figure, circled alphabets K to V are symbols indicating the state of air corresponding to FIG. 3, where SA is supply air (processed outside air), RA is return air (exhausted indoor air). ), OA
Represents outside air, and EX represents exhaust.
【0019】次に、前述のように構成されたヒートポン
プ200を熱源とするデシカント空調機の冷房時の動作
を、図2の実施例の空気調和の部分の作動状態を示す湿
り空気線図である図3を参照して説明する。Next, the operation of the desiccant air conditioner using the heat pump 200 configured as described above as a heat source at the time of cooling is a psychrometric chart showing the operation state of the air conditioning part of the embodiment of FIG. This will be described with reference to FIG.
【0020】放出経路Aの室内からの放出空気(RA:状
態Q)は経路124を経て送風機140に吸引され、昇
圧されて全熱交換器153に至り、ここで外気(状態
K)と全熱交換して、全熱交換器の公知の状態変化過程
の通り状態Kと状態Qを結ぶ直線上に沿って状態変化し
て、エンタルピが上昇し、温度および絶対湿度が増加す
る(状態R)。全熱交換器153を出た放出空気はヒー
トポンプ200の加熱器(高熱源)220に送られて4
5〜60℃まで加熱され、相対湿度が低下する(状態
S)。相対湿度が低下した放出空気はデシカントロータ
103の再生空気側に流入してデシカントロータの水分
を除去する(脱湿再生:状態T)。デシカントロータ1
03を通過した放出空気は経路128を経て、排気とし
て外部に捨てられる。The air discharged from the room in the discharge path A (RA: state Q) is sucked into the blower 140 via the path 124 and is boosted to reach the total heat exchanger 153, where the outside air (state
Total heat exchange with K), the state changes along the straight line connecting state K and state Q according to the known state change process of the total heat exchanger, enthalpy rises, temperature and absolute humidity increase (State R). The discharged air exiting the total heat exchanger 153 is sent to the heater (high heat source) 220 of the heat pump 200 and
Heated to 5-60 ° C, relative humidity decreases (state
S). The discharged air having the reduced relative humidity flows into the regenerating air side of the desiccant rotor 103 to remove the moisture of the desiccant rotor (dehumidification regeneration: state T). Desiccant rotor 1
The discharged air that has passed through 03 passes through a path 128 and is discarded outside as exhaust gas.
【0021】外気導入経路Bの導入される外気(導入空
気:状態K)は経路107を経て送風機102に吸引さ
れ、昇圧されて経路108を経て全熱交換器153に至
り、ここで放出空気(状態Q)と全熱交換して、全熱交
換器の公知の状態変化過程の通り状態Kと状態Qを結ぶ直
線上に沿って状態変化して、エンタルピが減少し温度お
よび絶対湿度が低下する(状態L)。エンタルピが減少
し除湿冷却された空気(状態L)は経路109を経てデ
シカントロータ103に流入し、等エンタルピ過程で水
分を吸着され、絶対湿度が低下する(状態M)。湿度が
低下した導入空気はヒートポンプ200の冷却器(低熱
源)210に送られて15〜20℃まで冷却される(状
態N)。冷却された導入空気は経路111を経て室内空
間に供給される。The outside air (introduced air: state K) introduced into the outside air introduction path B is sucked into the blower 102 via the path 107, and is boosted to reach the total heat exchanger 153 via the path 108, where the discharged air ( Total heat exchange with the state Q), the state changes along the straight line connecting the state K and the state Q according to the known state change process of the total heat exchanger, the enthalpy decreases, the temperature and the absolute humidity decrease. (State L). The enthalpy-reduced, dehumidified and cooled air (state L) flows into the desiccant rotor 103 via the path 109, where water is adsorbed during the isenthalpy process and the absolute humidity decreases (state M). The introduced air with reduced humidity is sent to the cooler (low heat source) 210 of the heat pump 200 and cooled to 15 to 20 ° C. (state N). The cooled introduced air is supplied to the indoor space via the path 111.
【0022】このようにして得られる導入空気(給気:
状態N)はエンタルピ及び絶対湿度を室内空間よりも低
くすることができる。即ち導入空気(給気:状態N)と
室内空間(状態Q)との間にエンタルピ差Δhおよび絶対
湿度差Δxが生じさせることが可能で、これによって室
内空間に水分を持ち込むことが防止されるとともに、エ
ンタルピ差Δhによって冷房効果を発揮することもでき
る。The thus obtained introduction air (supply air:
In the state N), the enthalpy and the absolute humidity can be lower than those in the indoor space. That is, an enthalpy difference Δh and an absolute humidity difference Δx can be generated between the introduced air (air supply: state N) and the indoor space (state Q), thereby preventing moisture from being brought into the indoor space. At the same time, a cooling effect can be exerted by the enthalpy difference Δh.
【0023】このように構成されたデシカント空調機の
ヒートポンプ200の作用について説明すると、ヒート
ポンプ200によって冷却器210では、導入空気を冷
却し、導入空気の顕熱を除去してエンタルピを低下させ
る作用をなし、さらに加熱器220では、放出空気を加
熱して相対湿度を低下させ、デシカント103を脱湿再
生する作用をなす。この脱湿再生作用によってデシカン
トは吸湿能力を回復し、室内から取り出した状態Qの放
出空気を状態Mまで除湿する作用をひきおこし、前記の
顕熱除去作用と併せて、給気の状態(状態N)を室内
(状態Q)よりも低温低湿に変化させることができる。
このように、ヒートポンプ200の作用によって、導入
空気を冷却し除去した熱を昇温して再びデシカントの再
生に用いるため、別々の冷却熱源と加熱源を用いる場合
よりも大幅な省エネルギ効果が得られる。The operation of the heat pump 200 of the desiccant air conditioner constructed as described above will be described. In the cooler 210, the heat pump 200 acts to cool the introduced air, remove the sensible heat of the introduced air, and reduce the enthalpy. The heater 220 has a function of heating the released air to lower the relative humidity and dehumidifying and regenerating the desiccant 103. By this dehumidifying and regenerating action, the desiccant recovers its moisture absorbing ability, dehumidifies the discharged air in the state Q taken out of the room to the state M, and, together with the sensible heat removing action, changes the state of the air supply (state N ) Can be changed to lower temperature and lower humidity than in the room (state Q).
As described above, the heat pump 200 cools and removes the introduced air, raises the heat, and uses the heat again to regenerate the desiccant. Therefore, a significant energy saving effect is obtained as compared with the case where separate cooling heat sources and heating sources are used. Can be
【0024】本発明の空調機1では、状態Mと状態Nのエ
ンタルピ差に空気流量を乗じた熱量の冷凍効果を持った
ヒートポンプで、室内への外気負荷を全て除去すること
ができるが、本発明の外調機1を用いずに外気を導入し
た場合には状態Kと状態Nのエンタルピ差に空気流量を乗
じた熱量の冷凍効果を持った冷凍機が必要になるため、
その場合と比べても大幅な省エネルギ効果が得られる。In the air conditioner 1 of the present invention, the heat pump having a refrigeration effect of calorific value obtained by multiplying the enthalpy difference between the state M and the state N by the air flow rate can remove all the external air load to the room. When outside air is introduced without using the external air conditioner 1 of the present invention, a refrigerator having a refrigeration effect of calorific value obtained by multiplying the enthalpy difference between the state K and the state N by the air flow rate is required.
A significant energy saving effect can be obtained as compared with that case.
【0025】今、状態N(給気)を状態Q(室内)に等し
くなるように設計し、全熱交換器の効率を70%とする
と、線分LMは等エンタルピ線に平行になる。従って点M
のエンタルピは点Lのエンタルピに置き換えることがで
きるため、エンタルピ差M〜Nはエンタルピ差L〜Qに、エ
ンタルピ差K〜Nはエンタルピ差K〜Qに置き換えることが
できる。従って、 エンタルピ差(K〜N):エンタルピ差(M〜N) =エンタルピ差(K〜Q):エンタルピ差(L〜Q) =10:3 となる。即ち、ヒートポンプの冷凍容量は、外調機1を
用いない場合の外気負荷分を賄う冷凍容量に比べ、3/
10になり、70%省エネルギとなる。Now, when the state N (air supply) is designed to be equal to the state Q (room) and the efficiency of the total heat exchanger is 70%, the line segment LM is parallel to the isenthalpy line. Therefore point M
Can be replaced by the enthalpy of the point L, the enthalpy differences M to N can be replaced by enthalpy differences L to Q, and the enthalpy differences K to N can be replaced by enthalpy differences K to Q. Therefore, enthalpy difference (K to N): enthalpy difference (M to N) = enthalpy difference (K to Q): enthalpy difference (L to Q) = 10: 3. That is, the refrigeration capacity of the heat pump is 3/3 of the refrigeration capacity that covers the outside air load when the external air conditioner 1 is not used.
10, which is 70% energy saving.
【0026】一方、エアコン3においても省エネルギ効
果が得られる。つまり、デシカント外調機1により、室
内に供給する空気SAは還気RAより低い絶対湿度にするこ
とができるから、水分を室内に持ち込まないで済む。従
って、エアコン3で除湿する必要がなくなり、空気の顕
熱処理をするだけで良くなる。従って、エアコン3は、
空気を20℃程度に冷却すればよく、蒸発温度がおよそ
10℃高くとれる。これにより、温度ヘッドが小さくな
る(例えば、40℃から30℃)。これによる省エネル
ギ率は、 ΔT1/ΔT2=30/40=0.75 であるから約25%省エネルギとなる。On the other hand, also in the air conditioner 3, an energy saving effect can be obtained. That is, the desiccant external air conditioner 1 allows the air SA to be supplied to the room to have an absolute humidity lower than that of the return air RA, so that moisture does not have to be brought into the room. Therefore, it is not necessary to dehumidify in the air conditioner 3, and it is sufficient only to perform the sensible heat treatment of the air. Therefore, the air conditioner 3
The air may be cooled to about 20 ° C., and the evaporation temperature can be raised by about 10 ° C. This reduces the size of the temperature head (eg, 40 ° C. to 30 ° C.). Since the energy saving rate is ΔT1 / ΔT2 = 30/40 = 0.75, the energy saving rate is about 25%.
【0027】従って、システム全体としての省エネルギ
率は、平均的な空調負荷の外気負荷の割合が30%程度
であることを勘案すると、 0.3×0.3+0.7×0.75=0.615 であるから、約38%省エネルギとなる。Therefore, the energy saving rate of the whole system is 0.3 × 0.3 + 0.7 × 0.75 = 0, considering that the ratio of the outside air load to the average air conditioning load is about 30%. .615, energy saving of about 38%.
【0028】また、エアコン3で除湿する必要がなくな
り、これにドレンが不要となるので、設備コストや操作
の手間を削減することができる。なお、本実施例では、
ヒートポンプ200として蒸気圧縮式ヒートポンプを用
いたが、前述した内容によれば、ヒートポンプ作用のあ
る熱源機であれば何でもよく、例えば、特願平7−33
3053に提案したような吸収式ヒートポンプを採用し
ても差し支えなく、同様の効果を得ることができる。ま
た熱移送媒体として本実施例では冷温水を用いる事例を
示したが、冷温水の代りに直接冷媒の蒸発、凝縮作用を
利用しても差し支えない。Further, since it is not necessary to dehumidify the air conditioner 3, and no drain is required, it is possible to reduce equipment costs and operation time. In this embodiment,
Although a vapor compression heat pump is used as the heat pump 200, any heat source unit having a heat pump function may be used according to the above-described contents.
The same effect can be obtained by adopting an absorption heat pump as proposed in 3053. Further, in the present embodiment, an example in which cold and hot water is used as the heat transfer medium has been described. However, instead of the cold and hot water, direct evaporation and condensation of the refrigerant may be used.
【0029】また、蒸気圧縮式ヒートポンプの圧縮機の
騒音振動を室内に伝達させないため、例えば、発明者が
特願平8−195732に提案したように、デシカント
およびヒートポンプの熱交換器を収容する集合組立体と
ヒートポンプの圧縮機を収納する集合組立体とを分離し
ても差し支えない。Further, in order to prevent noise and vibration of the compressor of the vapor compression heat pump from being transmitted to the room, for example, as proposed by the inventor in Japanese Patent Application No. Hei 8-195732, an assembly accommodating a desiccant and a heat exchanger of the heat pump. The assembly and the assembly that houses the heat pump compressor may be separated.
【0030】また、この実施例では冷房運転の作用につ
いて説明したが、暖房運転においては、図3において室
内の状態と外気の状態が入れ替わり、外気が低温低湿で
室内が高温高湿となる。従って暖房の場合には第1の空
気経路を外気(導入空気)とし、第2の空気経路を室内
からの排気(放出空気)とすることによって、状態Tが
室内への給気となり、状態Nが室外への排気となり、外
気の水分を回収して室内に加湿することができ、空調機
(エアコン)3の暖房負荷を軽減することができる。こ
の場合の作用については、冷房の場合と同様なため省略
する。In this embodiment, the operation of the cooling operation has been described. However, in the heating operation, the state of the room and the state of the outside air are switched in FIG. 3, and the outside air has a low temperature and a low humidity, and the room has a high temperature and a high humidity. Accordingly, in the case of heating, the first air path is set to outside air (introduced air), and the second air path is set to exhaust air (released air) from the room. Is exhausted to the outside of the room, the moisture of the outside air can be collected and humidified in the room, and the heating load of the air conditioner (air conditioner) 3 can be reduced. The operation in this case is the same as that in the case of cooling, and thus the description is omitted.
【0031】図4は本発明の空調システムの構成を示す
第2の実施例である。空調機(外調機)1に接続したヒ
ートポンプ200は経路41、42を介して空調空間の
空調機(顕熱処理機)4と接続されている。本システム
では、外調機1のヒートポンプ200が空調機4の熱源
機を兼ねており、従って、空調空間で回収した顕熱を昇
温してヒートポンプ200の加熱に用いることができ
る。そのためデシカントの脱湿再生に用いる熱量が増加
してデシカントの除湿作用が高くなり、室内への給気の
湿度が低くなって、顕熱負荷ひいては冷房負荷の処理能
力が高くなるため、ヒートポンプ200全体の消費動力
を抑制し省エネルギ効果が得られる。また相対的にヒー
トポンプ200の容量を小さくすることもできる。FIG. 4 is a second embodiment showing the configuration of the air conditioning system of the present invention. The heat pump 200 connected to the air conditioner (external air conditioner) 1 is connected to an air conditioner (sensible heat treatment machine) 4 in the air-conditioned space via paths 41 and 42. In the present system, the heat pump 200 of the air conditioner 1 also serves as a heat source of the air conditioner 4, and therefore, the sensible heat recovered in the air-conditioned space can be heated to be used for heating the heat pump 200. Therefore, the amount of heat used for desiccant dehumidification regeneration increases, the desiccant dehumidifying action increases, the humidity of air supply to the room decreases, and the processing capacity of the sensible heat load and, consequently, the cooling load increases. Power consumption is suppressed and an energy saving effect is obtained. Further, the capacity of the heat pump 200 can be relatively reduced.
【0032】[0032]
【発明の効果】以上説明したように、本発明によれば、
冷房時において、放出空気(排気)と導入空気(外気)
とを全熱交換させ、さらに全熱交換後の放出空気を前記
ヒートポンプの高熱源によって加熱したのち前記デシカ
ントを通過させてデシカントの脱湿再生を行って外部に
放出し、さらに全熱交換後の導入空気をデシカントとを
接触させ除湿したのち、ヒートポンプの低熱源によって
冷却して空調空間に放出する様構成したヒートポンプと
デシカントと全熱交換器を有するハイブリッドな空調機
(外調機)を空調システムに用いたことにより、外気処
理が大幅に省エネルギになり、ランニングコストを低下
させた空調システムが提供されるとともに、組合せて用
いるエアコン等のドレンを不要としてその面からもコス
トを低減させることができる。As described above, according to the present invention,
During cooling, released air (exhaust air) and introduced air (outside air)
And the total heat exchange, and further discharge air after the total heat exchange is heated by the high heat source of the heat pump, then passed through the desiccant to perform dehumidification regeneration of the desiccant and release to the outside, and further after the total heat exchange A hybrid air conditioner (outside air conditioner) that has a heat pump configured to contact the desiccant with the desiccant to dehumidify it, then cool it with a low heat source of the heat pump and discharge it to the air-conditioned space, and a desiccant and a total heat exchanger. In addition to providing air-conditioning systems that greatly reduce external energy processing and running costs, the use of such air conditioners eliminates the need for drains such as air conditioners to be used in combination, thereby reducing costs. it can.
【図1】本発明に係る空調システムの第1の実施例の基
本構成を示す説明図である。FIG. 1 is an explanatory diagram showing a basic configuration of a first embodiment of an air conditioning system according to the present invention.
【図2】図1の実施例の空調機の基本構成を示す説明図
である。FIG. 2 is an explanatory diagram showing a basic configuration of the air conditioner of the embodiment of FIG.
【図3】図2の空調機の空気のデシカント空調サイクル
を湿り空気線図で示す説明図である。FIG. 3 is an explanatory diagram showing a desiccant air-conditioning cycle of air of the air conditioner of FIG. 2 in a psychrometric chart.
【図4】本発明に係る空調システムの第2の実施例の基
本構成を示す説明図である。FIG. 4 is an explanatory diagram showing a basic configuration of a second embodiment of the air conditioning system according to the present invention.
【図5】従来の空調システムの基本構成を示す説明図で
ある。FIG. 5 is an explanatory diagram showing a basic configuration of a conventional air conditioning system.
【図6】従来のデシカント空調の空気のデシカント空調
サイクルを湿り空気線図で示す説明図である。FIG. 6 is an explanatory diagram showing a desiccant air-conditioning cycle of air in a conventional desiccant air-conditioning in a psychrometric chart.
1 デシカント外調機 2 室内空間 3 空調機(エアコン) 200 ヒートポンプ 102,140 送風機 103 デシカントロータ 153 全熱交換器 210 冷却器(低熱源) 220 加熱器(高熱源) A 放出経路 B 導入経路 SA 給気 RA 還気 EX 排気 OA 外気 Δx 水分差 Δh エンタルピ差 REFERENCE SIGNS LIST 1 desiccant outside air conditioner 2 indoor space 3 air conditioner (air conditioner) 200 heat pump 102, 140 blower 103 desiccant rotor 153 total heat exchanger 210 cooler (low heat source) 220 heater (high heat source) A discharge route B introduction route SA supply Air RA Return air EX Exhaust OA Outside air Δx Moisture difference Δh Enthalpy difference
Claims (7)
の空気経路及び第2の空間から第1の空間に向かう第2
の空気経路と、 前記第1の空気経路及び第2の空気経路に交互に流通し
て、第1の空気経路で再生を受け、第2の空気経路で流
通空気の除湿を行なうデシカントと、 前記第1の空気経路において空気を加熱する高熱源と、
前記第2の空気経路において空気を冷却する低熱源とを
与えるヒートポンプとを備え、 第1の空気経路と第2の空気経路の空気との間で全熱交
換を行い、さらに全熱交換後の前記第1の空気経路の空
気を前記ヒートポンプの高熱源によって加熱したのち前
記デシカントを通過させてデシカントの脱湿再生を行っ
て第2の空間に放出し、全熱交換後の前記第2の空気経
路の空気をデシカントと接触させて除湿したのち、ヒー
トポンプの低熱源によって冷却して第1の空間に放出す
ることを特徴とする空調機。A first space extending from the first space to the second space;
Air path and a second space from the second space to the first space
And a desiccant that alternately circulates through the first air path and the second air path, receives regeneration in the first air path, and dehumidifies the flowing air in the second air path; A high heat source for heating air in a first air path;
A heat pump for providing a low heat source for cooling air in the second air path; performing a total heat exchange between the air in the first air path and the air in the second air path; After the air in the first air path is heated by the high heat source of the heat pump, the air passes through the desiccant to perform dehumidification regeneration of the desiccant and discharges it to the second space, and the second air after the total heat exchange An air conditioner, wherein air in a path is brought into contact with a desiccant to dehumidify, and then cooled by a low heat source of a heat pump and discharged into a first space.
ンプを用いたことを特徴とする請求項1に記載の空調
機。2. The air conditioner according to claim 1, wherein a vapor compression heat pump is used as the heat pump.
を用いたことを特徴とする請求項1に記載の空調機。3. The air conditioner according to claim 1, wherein an absorption heat pump is used as the heat pump.
れかに記載の空調機を、第1の空間を空調室とし、第2
の空間を外部空間として用いることを特徴とする空調シ
ステム。4. The air conditioner according to claim 1, wherein the first space is an air conditioning room, and
An air-conditioning system characterized by using a space as an external space.
れかに記載の空調機を、第1の空間を外部空間とし、第
2の空間を空調室として用いることを特徴とする空調シ
ステム。5. An air conditioning system, wherein the air conditioner according to claim 1 is used as an external space and the second space is used as an air conditioning room during heating.
機を外調機とし、顕熱処理用の空調機を併設したことを
特徴とする空調システム。6. An air conditioning system comprising the air conditioner according to claim 1 as an external controller and an air conditioner for sensible heat treatment.
を冷却する作用を有していることを特徴とする請求項1
乃至3のいずれかに記載の空調機。7. The heat pump according to claim 1, wherein the heat pump has a function of cooling a sensible heat load in the air-conditioned space.
The air conditioner according to any one of claims 1 to 3.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8358240A JP2994292B2 (en) | 1996-12-27 | 1996-12-27 | Air conditioners and air conditioning systems |
MYPI97006245A MY117922A (en) | 1996-12-27 | 1997-12-23 | Air conditioning system |
US09/331,786 US6199394B1 (en) | 1996-12-27 | 1997-12-24 | Air conditioning system |
PCT/JP1997/004779 WO1998029694A1 (en) | 1996-12-27 | 1997-12-24 | Air conditioning system |
CN97181022A CN1120332C (en) | 1996-12-27 | 1997-12-24 | Air conditioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8358240A JP2994292B2 (en) | 1996-12-27 | 1996-12-27 | Air conditioners and air conditioning systems |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10197011A true JPH10197011A (en) | 1998-07-31 |
JP2994292B2 JP2994292B2 (en) | 1999-12-27 |
Family
ID=18458266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8358240A Expired - Fee Related JP2994292B2 (en) | 1996-12-27 | 1996-12-27 | Air conditioners and air conditioning systems |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2994292B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006308232A (en) * | 2005-04-28 | 2006-11-09 | Mitsubishi Electric Corp | Refrigerator |
JP2008256257A (en) * | 2007-04-04 | 2008-10-23 | Mitsubishi Electric Corp | Refrigerator |
JP2011257099A (en) * | 2010-06-11 | 2011-12-22 | Mitsubishi Electric Corp | Air conditioner |
KR101420598B1 (en) * | 2013-06-07 | 2014-08-14 | 주 식 김 | Hybrid Air-con |
-
1996
- 1996-12-27 JP JP8358240A patent/JP2994292B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006308232A (en) * | 2005-04-28 | 2006-11-09 | Mitsubishi Electric Corp | Refrigerator |
JP2008256257A (en) * | 2007-04-04 | 2008-10-23 | Mitsubishi Electric Corp | Refrigerator |
JP2011257099A (en) * | 2010-06-11 | 2011-12-22 | Mitsubishi Electric Corp | Air conditioner |
KR101420598B1 (en) * | 2013-06-07 | 2014-08-14 | 주 식 김 | Hybrid Air-con |
Also Published As
Publication number | Publication date |
---|---|
JP2994292B2 (en) | 1999-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6199394B1 (en) | Air conditioning system | |
US5761923A (en) | Air conditioning system | |
JP2968241B2 (en) | Dehumidifying air conditioning system and operating method thereof | |
US7428821B2 (en) | Dehumidifying system | |
JP3668786B2 (en) | Air conditioner | |
JPH09318127A (en) | Air-conditioning system | |
JP2010131583A (en) | Dehumidifying apparatus of low power consumption | |
JPH09196482A (en) | Desiccant air-conditioning apparatus | |
JP2968224B2 (en) | Air conditioners and air conditioning systems | |
JPH10205819A (en) | Air conditioner and air conditioning system | |
JPH10205821A (en) | Air conditioner and air conditioning system | |
JP2008111643A (en) | Liquid desiccant device utilizing engine waste heat | |
JP2008111644A (en) | Liquid desiccant device utilizing waste heat of air conditioner | |
JP2994292B2 (en) | Air conditioners and air conditioning systems | |
EP3133352B1 (en) | Dehumidifying and cooling apparatus | |
JP4011724B2 (en) | Desiccant air conditioning method | |
JPH10205816A (en) | Air conditioner and air conditioning system | |
JPH10205815A (en) | Air conditioner and air conditioning system | |
JPH09318129A (en) | Air-conditioning system | |
JPH10197010A (en) | Air conditioner and air conditioning system | |
JPH09318126A (en) | Air-conditioning system | |
JPH10205817A (en) | Air conditioner and air conditioning system | |
JPH10205814A (en) | Air conditioner and air conditioning system | |
JPH10205818A (en) | Air conditioner and air conditioning system | |
JPH09318128A (en) | Air-conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |